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ABSTRACT 

The role of storage in the characterization of higher level 
programming languages is discussed° Assignment~ in particular~ 
has significantly different meaning in different languages~ which 
can hardly be understood without reference to an underlying model 
of storage° A general storage model is sketched which can be spe- 
cialized to a model of ALGOL 68 or of PL/I storage° The same mod- 
el is used co discuss language features allowing highly flexible 
data structures° 

INTRODUCTION 

The term storage commonly is used for certain hardware con- 
structions like core stores or tape units° In a more general 
sensed storage is a carrier of information~ characterized by the 
ways in which this information may be changed and by the ways 
which give access to the information° In this paper we sh~il 
characterize storage as it is seen by the programmer using a 
higher level programming language° Although the above mentioned 
hardware constructions ultimately will realize the programmer's 
storages we shall find peculiar properties of the latter° 

To begin with~ the role of storage in connection with pro- 
gramming languages shall be briefly reviewed. By computing we 
usually want to do something useful within a certain world of 
problems~ be it hydrodynamics, linguistics~ accountings or pure 
mathematics. This makes it necessary to represent aspects of 
this external world in the computer, and to interpret the be- 
haviour of the computer in terms meaningful to the external world. 
This problem of representation and interpretation is likely to be 
overlooked if computing is considered to be just a play with 
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numbers~ but it is crucial, for the understanding of programming 
language s 

A programming languag% being the intermediary between worlds 
of problems and the computer~ is necessarily a compromise bet- 
ween: adequacy for types of problems ~ general applicability~ and 
ease of interpretation by the computer° The type of the compro- 
mise determines the type of the language (~special purpose ~' 
~'universal'~ '~for the beginner~ etc~ )~ and the rich possibili- 
ties for finding different compromises account for the mass of 
languages that exist (Sammet(1970))o 

In the foliowing we shall seek to understand these compro- 
mises in the kind of storage un~rlying programming languages~ 
ioeo in the ways of representing and updating the state of some 
problem world being operated Ono We restrict our attention-to 
~'generai purpose ~ languages~ which means to languages like ALGOL 
or PL/Io It is not the intention~ however~ to fully or even cor- 
rectly describe all storage properties of' any one of these lan- 
guages~ but rather to find essential similarities and differences° 

A general purpose language not being oriented toward a par- 
ticular class of problems~ the question is in which way one could 
get guidance in conceiving the general notion of a "state '~ to be 
represented in storage° We can expect to get hints from logic° A 
system of logic could characterize a ~'universe ~' by 

a set of individuals 
a set of properties and relations~ 

defining the set of questions one may ask about a state of af- 
fairs ~ like 

does individual a have the property P 
does the relation R hold between individuals a and b ? 
The set of answers defines the state° Thus~ we can gain some 

guidance from logic for a systematic design of information re- 
trieval languages. This way has been followed very successfully 
(Codd(1970)~ see also Mealy(1967))o 

However~ logic deals with derivations from state descrip- 
tions~ but not with their change° The concept of updating~ ioe. 
the partial change of information is unique to information pro- 
cessingo Although~ in turn~ computation steps can be interpreted 
as steps of logical derivation~ one can hardly expect to get 
guidance for the design of storage from there° The various forms 
of assignment~ which are the means of updating of information in 
our present programming languages~ can be understood from the 
need for an economic realization in the computer~ rather than 
from a logical point of view. Correspondingly~ there are many 
different notions of assignments and furthermore~ the dissimila- 
rities~ although significant~ usually are not at all apparent 
from the various language descriptions° This situation is the 
motivation for the study of properties of storage and their math- 
ematical formulation~ hence of storage models° 

We can realize by the computer (partial) functional rela- 
tionships~ ioeo unique (partial) mappings from one set of enti- 
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ties to another set of entities° We cou.ld tentatively describe 

the st~se of c'torage by a mapping f 

f : L  ~ V 

from a set L (of' locations) to a set V (of values). We say that 

i{.L .... ha, r) the value v C V~ or is associated with v~ or has the 

property v~ if 

f ( 1 )  vo 

An assignment statement 

1 : = v 

will transform f to a neK function f~ such that 

f~ (i) = v' 

= l' % i f '  ( 1  ~ ) f ( l '  ) for a l l  1 ' £  L~ o 

Let us consider a special example in order to see the pro- 
blems we have not solved yet with this construction° We use a 
snatch of data as it might be contained in the personnel data 
file of a company, For each employee we want to record 

the hiring date~ 
the history of positions held~ 

the employee he reports to, 
These data could easily be expressed in some logical nota- 

tion, We want to express them as mappings ~ however° We need 

a set of employees~ 
a set of dates 
a set of position lists 

and the mappings: 
hiring date:employees --~ dates 
posohistory:employees ---~ position lists 

reports to :employees ---~ employees, 
'A reports to B ' means: B : reports to (A) in functional nota- 

tion o 
Now having only one mapping f to manipulate by a language~ 

we are in trouble, Identifying locations L with employees~ and 
having an appropriate set of values V~ we could represent just 

one of the above mappings, 
We are better off if we can use further mappings of a spe- 

cial natured usually offered hy programming languages, For our 

example we might call them 
first :locations --~ locations 
second:locations ---~ locations 
third ~locations -r-~ locations 
Using first~ second~ third for hiring dated pos,history~ 

reports ton respectively~ we are able to represent e.g, 

A was hired I JULY 70 
A held positions: i01 and 105 

A reports to B 
as shown by the diagram (we use a-g-~ b to mean b -- g(a)) ! 
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first f 11 ----~ i JULY 70 

second f 
A ~ ! 2 - - - - - ~  < l O 1  ~ 1 0 5 >  

t h i r d ~  1 - - - - ~  f 
3 

~nere A and B are identified vith some members of Lo The question 
for the hiring date of A~ for examples is ans, wered by 

f(first(A)) o 

In fact~ this way of representing information (exemplified 
h.y the above diagram) in essence is the way offered by general 
purpose languages° Among the questions which remain open are: 

which kinds of access to information are provided ? 
which of the mappings can be updated ? 
which kind of updating is possibles eog~ extending 

the domain of f ? 
There will be special answers given in the next sections° 

Before proceeding~ we make the followin.g observations: 
.L The mappings first~ second~ etc. above can be viewed as 

mappings from locations to component locations° This leads 
to the concept of a record (or structure~ or aggregate)° 
A record is a composite piece of information~ used to 
record a certain number of properties of an entity (see e.g. 
Hoare{1968))o 

2 The range of the location i 3 is locations~ ioeo we have 
included locations in the set of values° This leads to the 
concept of ~ointers~ which are provided in different lan- 
guages under different names~ and with varying properties~ 

3) The range of the location 12 are lists° Lists are emti- 
ties which themselves have components° Updating the mapping 
third can mean that the number of components of a value 
changes° Languages differ significantly in the ways they 
can handle entities with varying components~ if they can 
handle them at allo This problem is discussed in section 3o 
in some detail. 

4) identifiers used in languages are not necessarily to be 
identified with locations in the above sense. In languages 
like ALGOL 68 or PL/I there is another mapping~ from identi- 
fiers to locations~ which offers the possibility that two 
identifiers share the same location. Most important~ cooper- 
ating processes (subroutines~ coroutines) may have their own 
naming systems with partially shared locations~ 



io SIMPLE LANGUAGES 

l~l A very simple language 

Y p-- ..... ~ us first conceive of a very simple language in vhich we 
dispose of 

a set of identifiers~ 
a set of values (eogo integers)° 

Storage is a partial mapping from identifiers to values: 

S :identifiers -q~ values 
$ 

Identifiers are used 

(I) for retrieving values ° an identifier x stands for S (X)o 
(2) for changing S o An assignment statement s 

S 
X :=~ V 

x being an identifier and v a value~ changes S to S ~ ~ where 
s S S~ is characterized by 

s 

S' (x) : v 
S 

St(y) : S (y) for y £identifiers~ y @ xo 
S S 

Depending on the context~ therefore~ an identifier stands 
either for an element of the range of Ss(a value)~ or for an 
element of the domain of S ~ Following 8trachey(1966)~ we call 
the entity an identifier s~ands for in the first case a 

hand valued in the second case a left-hand value (according to 
the occurrence at the right-hand or the left-hand side of the 
symbol :=)~ In the present example~ the left-hand value of an 
identifier is simply the identifier itself. 

Of coursed we are unable to represent the data of the in- 
troductory example using this language~ even if the set of 
values would include identifiers to be used as pointers° 

It should be noted that this simple language must not be 
confused with a machine code° A machine code similarly would 

provide just a simple mappings from addresses to values° But the 
power of a machine code derives from the fact that the set of 
addresses has got structure~ The addresses are ordered by the re- 
lation 

o+I 
ai+ I = a m 

which together with having addresses aa values~ gives the possi- 
bility of computing addresses. On the power of machine languages 
see Elgot(1964)o 

1o2 ALGOL 60 

We shall not he concerned (also not in the following sec- 
tions) with the problem of the scope of identifiers. Identifiers 
are assumed to he unique° 

Storage S60of ALGOL 60 is similar to S ~ But with respect to 
the above simp±e languages there are two extensions of concern 
for our present consideration in ALGOL 60: 
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1 We have to distinguish between simple and array identifiers, 
Simple identifiers are left-hand values° Array identifiers 
are mappings from ordered lists of integers (the subscripts) 
to subscripted identifiers~ which are left-hand values° 

For example~ the declaration 

r ea~_ arra~ a [i :i0] 

introduces a as a mapping 

a:the integers i~2~oo o ~i0 ~e~ a[]l]~a[~]~o oo ~a[lO] 

where the a[i] belong to the domain of $60 (are left-hand 
values ) o 

2 Identifiers which are name parameters may be associated with 

syntactic constructions like expressions. This association~ 
hoverers cannot be changed by assignment, Access and assign- 

ment to storage via name parameters involves indirect steps~ 
which allows for certain sharing patterns° Let~ for example 

S60 
X - ~  5 

and y be a name parameter associated with X o The right-hand 
value of both x and y is 5~ and an assignment to y will~ as 
a side-effect~ also change the value of x o 

We do not have in ALGOL 60 identifiers and left-hand values 
as clearly separate sets~ and left-hand values are not part of 

the range of $60o There is consequently no direct way for repre- 
senting the example data of the Introduction in ALGOL 60. I) 

2o A STORAGE MODEL 

2ol A general storage model 

in,this section we shall sketch a storage model which more 

fully is given in BekiE~Walk(1970) and which is adequate for ex- 
pressing storage properties of ALGOL 68 and PL/I. Each of these 
languages imposes specializations on the model~ which will brief- 
ly be discussed in the following section° The model will be de- 
veloped in two steps. 

2olol Aimodel with non-flexible locations 

Storage~ again~ is viewed as a partial mapping from a set L 
of loca<ions to a set V of values : 

S ; f ,  - - ~  V 

l) By a direct way ~Te mean one which does not map the whole 
problem to numbers° 
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Each location i ~ L is characterized by a ran~e~ given by the 
function range(1)~ which is the set of values which may be asso- 
ciated with io This is an important restriction~ which is made 
with regard to the realization one has in mind: a location~ real- 
ized by some piece of physical storage~ has a certain limited 
storage capacity° 

In constrast to ALGOL 60~ there are c gmj~j~site values and 
~!~i)osite locations° A composite value v has 

an index-set I~ 
components vo ~ i C Io 
~I~ ~p~en~s v~ may be elementary ors again~ composite° 

Examples for composite values are arrays and structures~ where 
the index-set is the set of subscript lists~ and the set of se- 
lector identifiers~ respectively~ 

A composite location has a range R~ which has 

an index-set I~ 
component ranges R. o 

i 
The members of R are composite values v with 
index-set I~ 
and components v~ £ R~i e I~ 
A composite loca~ion~ correspondingly~ has component loca- 

tions 
i.~ i e I 
w~th range(li) = RiD for i C I. 

We must add a further restriction on the mapping from loca- 
tions to its components. For example~ let i have two composite 
components 11 and 12~ then no components of 11 and 12 must be 
identical~ or have common components. To express these re- 
quirements~ we introduce an ~oendence relation between loca- 
tions~ written as i indep i ~ ~ which has the following properties: 

i is not independent of i 
if I indep i' ~ then also I ' indep i 
if i indep I ~ then also i indep i~ 

i ~ 

for all components i~ of i ~ • 
l . 

Now we can state the requirement for components of composite 

locations i: 

i i indep lid for i @ j. 

The storage function S is constructed in the following way. 
We start ~ith a function S from a set L of independent loca- 

o o 
tions to values: 

S :L ~ V 
o o 

which satisfies the condition that if the value 
it is within the range of Io Storage S 

S:L ~ V  

is the conaistently ~cgmo!ete extension of S under the condition o 
for composite locations I: 

S (i) is defined~ 
o 
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S(1) = v if and only if S(I i) = v i 

for all elements i of the index-set of vo This means that we have 
extended the domain of the storage functiom to the set L which is 
the set of locations L o plus all component locations ~ components 

of components~ etc~ We call L the active locations of So 
There are three operations on storage~ allocation~ freein[~ 

and assignment o 
Allocation is the inclusion of new locations in the set L of 

active locations of So Allocation may be implied 'by the declara- 

tion of a variable in a programming language~ or it may be per- 
formed by an explicit command~ like the ALLOCATE statement in 

FL/I Allocation is described as an operation on S o Let i be a 
° • °of S ~ then location which is independent of all locations L ° o 

(allocate i) (S ) = SV 
o o 

where 

S ~ :L U i --~ V 
o o 

S ~ (i) is undefined 
o 

s (1 = s (l for all L 
o o o 

The resulting storage S ~ is given as the extension of S ~ 
o 

Freeing a location i g L correspondingly is defined by 
o 

(free l)(S ) = S ~ 
o o 

where 

S o~:Lo-[l] -~ V 

S~[l ~ ) : S (I ~ ) for i~ e L -{i] 
o o o 

Assignment of a value v to a location 1 of S~ v 6range(1) ~ 

i £ L~ is defined by 

: s 

where 

S ~ :L --~ V 

S C1) = v 

S~ £I ~ ) = S[l ~ ) for l~ 6 L~ i' indep l 

It follows from these conditions~ that am assignment to a 

location 1 will~ as a side-effects change the values of the com- 
ponent locations~ as well as the values of the locations of which 
1 is a component° 

It is time no~ to reconsider the example given in the Intro- 
duction° Clearly~ we will allocate composite locations with three 
components for all employees we keep on record, All goes well if 
the ranges of the component locations contain the values: dates~ 

position-lists~ locations ~ respectively (up to now we have not 
made any assumptions a-bout the elementary values in V)~ 
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The difficult part is having lists of varying length in a 
range of values° Lists are composite values and thus require 
composite locations° However~ the ranges of composite locations 
introduced above have a fixed index~set~ allowing a fixed num~ 
ber of components only~ The ways out in the present frame-work 
are: using composite locations which pre-determine a certain 
length of the lists they may contain~ or realizing lists by 
chaining independent locations together with pointers° There are 
languages~ ho~ever~ ~hich directly provide the flexibility we 
are looking for° The present storage model~ therefore~ is ex~ 
tended in the next section to describe this capability. 

2olo2 Storage with flexible locations 

Flexible rank are introduced as the union of alternative 
(,elementary or composite) ranges: 

R = R~U RuU o~ o 

An example of flexible ranges are ranges of ALGOL 68 flex- 
ible arrays ~ i oeo of arrays with unspecified bounds. They are 
conceived as the union of alternative ranges of arrays with fix- 

ed bounds (see the next section). 
We assume that R can be ~ decomposed into its alter- 

native ranges~ ioe~ given R and a value v £R we can uniquely de- 
termine the alternative range of which v is a member° 

A flexible location has a flexible range. For each compos- 
ite alternative range R it has component locations: 

l~ for i element of the index-set of R~ 

~ ~ 1~ indep 1~ for i @ j, range(l ) : Ri l $ 

(Note that we do not require independence of component locations 

of different alternatives°) 
Thus for each alternative a flexible location may have dif- 

ferent structuring. Since the alternative is determined by the 
value~ we need the current value of a location to determine its 

current component locations: 

ix i~ v determines i~ 
I 

instead of 

i~ i determines Io 
l 

for composite location~ 
We have to update our notions of independence~ of storage 

and of the operations on storage for flexible locations° 
The condition that if i indep 1'2 1 is also independent of 

all components of i~ also holds for flexible I ~ 
Storage again is constructed as the extension of a function 

S of independent locations to values~ but with the additional 

cSndition for flexible locations i~ that 
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if S(1) = v~ then S(]it)= vo ~ where R is the current ~ 
composite l alternative range determined by Vo 

As a consequence~ the domain of S (the active locations) ~ 
can be changed by an assignment to a flexible location~ if the 
current alternative is changed by the value assigned~ The alter~ 
native of a flexible location cannot be changed~ however~ by an 
assignment to one of its components. This is expressed by an ad- 
ditional condition for the assignment operation° 

Let (l:=v)(S) = S ~ 

and i ~ a flexible location containing I as a component (or sub- 
component) ~ then S~(I ~) is an element of the current alterna-. 
tire range of i ~ as determined by the original value S(i~), 

In particular~ it is not possible to 'add ' a new component 
to a flexible location by assignment to the component. A reorga- 
nization of a flexible location can be caused only by assignment 
to the entire location, 

It should be clear that the realization of flexible locao- 
tion presents a tougher problem~ compared with the realization 
of locations with a fixed structuring° The use of flexible loca- 
tions in ALGOL 68 therefore is restricted by a number of special 
rules (eogo components of flexible locations must not be passed 
to parameters) which make it easier to cope with the problem of 
the varying set of active locations in an implementation of-the 
language, 

2°2 A Glance at ALGOL 68 and PL/! 

The storage model developed in the previous section is used 
for a discussion of storage concepts in ALGOL 68 and PL/I~ 

2o2~i ALGOL 68 

We have to characterize domain and range of the storage 
functions for ALGOL 68~ ~which leads to the special storage func- 
tion $68o They are both determined by the ranges of values that 
can be associated with ALGOL 68 variables° 

There are elementary ranges including e~g~ the set of reals 
and the set of integers of a certain length° Locations are call- 
ed ~names ~ in ALGOL 68 terminology (van Wijngaarden(Edo)(1969))o 
Sets of names having a ra.nge within a certain set of ranges~ also 
f~rm elementary ranges (we do not need a closer characterization 
of ranges of names for the present discussion)~ 

N-dimensional arrays with specified bounds~ and structures 
form composite ranges, A composite array range is given by 

an n-tuple of hound pairs ~11:u ~in~U 
a non-array component range R i ~°°° n 

A structure range is given hy 

id an n~tuple of identifiers ~idi~o~o ~ mR 
an n~tuple of component ranges ~R! ~ ° " ~ n 



The index-set of the array range is, the set of n-tuples of 
i.ntegers <ii ~°oo ~i > with Ik_<iS u ~ iSkSn~ the index-set of the 
~t~-ueture range isnthe set ofkid~ntifiers idi~ o° ~idn° 

Components of array -~ e ~ '  do. va~u~ are in R~ the i -components of 
structures i n  R . °  m 

Flexible ranges are formed by sets of n-dimensional arrays 
with. arbitrary bounds (or some of the bounds being arbitrary)° 
Flexible array ranges can uniquely be decomposed into (an in- 
finite number of) alternative array ranges with fixed bounds, 
Unions of ranges~ eogo the union of integers and reals~ are 
further instances or flexible ranges° 

There are two kinds of mappings for variables in ALGOL 68: 
the mapping from (unique) identifiers to locations (or ~names ~ ) 

and. the mapping $68 from locations to values, The first mapping 
realizes the relation of identifiers Vpossessing' locations~ the 
second one of locations 'referring to' values (using the termi- 
nology of the ALGOL 68 Report), The ~possess ~ relation is estab- 
lished by identity declarations~ the ~refer to ~ relation by as- 
s i gnment ° 

An identity declaration has the form 

declarer identifier : expression 

where the declarer denotes a class of values and where in the 
case of' a variable declaration the value of the expression is a 
location, Locations are produced by 'generators ~ Given the 
specification of a ranger the value of a generator is a location 

having this range, The execution of the identity declaration 
makes the identifier possess the location~ provided it is within 
the class of values denoted by the declarer, 

Examples : 

(i) The declaration of x: 

ref real x = (loc real := 3,14) 

ref real is a declarer denoting the set of locations whose range 
is the set of reals~ loc real is a generator producing some loca- 
tion i whose range is the set of reals~ and 3"14 denotes a real 
value, Execution of the declaration produces the situation: 

~possess' $68 
x -- -~- I --~ 3.14 

(2) The declaration of y: 

ref ref real y = (loc ref real :: (loc real := 3"14)) 

ref ref real is a declarer denoting the class of locations whose 
range is the class of locations ~Tith range real, loc ref rea 
and loc real are generators producing locations ~ say I and m~ 
whose ranges are ref real and rea l~ respectively° 
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The situation resulting from the execution of the declara- 

tion is: 

~P ossess~ $68 
Y --~ I ~ m 

s68 
m ~ 3 o ! 4  

The identifier Y may stand for i~ for m~ or for 3°14~ de- 
pending on the context of its use° The corresponding rules are 
called ~coercion ~ rules vhich~ however~ will not be elaborated 
in this paper° 

(3) The array declaration of z~ 

ref [1:2] real z = (loc [1:2] real :: ~3°14~2~72)) 

leads to 

~possess v s68 
1 ----~ (3o14~2 72) 

s68 
i i ---~ 3o14 

S68 
12 --~ 2°72 

where i is a composite location° The right-hand value of the 
subscripted identifier z[l]~ for examples is obtained in the 
steps 

z --~ i --~i ~ 3o14~ 
I 

The execution of an assignment statement involves~ first~ 
the evaluation of the left- and right-hand side of the statement~ 
reszl%ing in a location and a values and second~ the association 
of the value with the location° This latter operations provided 
that the value is within the range of the location~ is precisely 
the assignment operation defined for the general model in section 
201o 

A slight extension of this model would be necessary to fully 
explain the operations of rowing~ slicing and left-hand-side com- 
posing~ These functions are dealt with in Beki6~Walk(1970)o 

2 o 2~ 2 PL/I 

Again~ we start with a discussion of the ranges of values 
for PL/I locations (see PL/I Language Specifications(1966))o 

Besides arithmetic and string values~ we have to mention 
pointers and offsets as classes of elementary values. Pointers 
and offsets are used as 'tpointersT' in the sense given in the In- 
troductiono They are not locations~ however~ but derivatives of 
locations~ as described below~ 

Arrays and structures are composite ranges similar to those 
in ALGOL 68~ but with an ordered index-seto The ordering is sig- 
nificant for the use of pointers. There are no flexible arrays 
in PL/I~ 
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A new <.type of values are areas° Areas are stora~ and can 
be explained as. pairs 

< ~ S A >  

• w h e r e  ~ i .s a s e t  o f  l o c a t i o n s  a n d  8 A i s  a s t o r a g e  i n  t h e  s e n s e  o f  
section 2.1. ~ is the set of locations that potentially can be 
allocated in SAN and thus accounts for the size of the area, An 
area range is a set of pairs <~S > with fixed ~o We shall see 
below that area ranges are flexibl~o 

There are 2~I!f:T_ variables and parameters in PL/I~ which be- 
come associated with locations when they are declared~ or by ex- 
plicit allocate statements, This. association is similar to the 
~possess ~ relation in ALGOL 68~ Interestingly~ however~ there is 
also the possibility to construct locations from two constitu- 
ents: a pointer and the specification of a range° The syntactic 
facilities for this are pointer variables and based variables° It 
is because of this feature land a similar feature for storage 
overlay called defi~) that we have to specify additional prop- 
erties for PL/I storage SpLjl ~ not already implied by the gener- 
al. model° In particulars we nave to investigate the relation bet- 
ween locations and component locations, 

Pointers are introduced as derivatives of locations, There 
i s  a mappingl) 

addr:locations --~ pointers 

ad.dr is not a one-to-one mapping~ i~eo pointers contain less in- 
formation than locations, We need additional information~ namely 
the specification of a ranged to get a location from a pointer, 
There is a function 

construet(p~R) 

which for a pointer p and a range R uniquely determines a loca- 
tion I such that 

addr{l) = p 
range(l) = R 

It follows that a pointer can "point to" any type of location, 
Syntactically~ there is a built-in function ADDR{ref) ~ which 

returns the pointer addr(l) of the location I associated with the 
reference ref (by a reference ~e mean the identifier of a vari- 
able plus possibly subscripts and selector identifiers), Pointers 
may be assigned, to pointer variahleso A based variable is declar- 
ed with a certain ranges the identifier of a based variable 
stands for this range specification, Let P be a pointer variable 

i We are neglecting here the problem of 'non-connected' loca- 
t~ons which arises in connection with cross-sections~ 
See BekiE~Walk(19 ~)o 
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whose value is Ps and ~ s baaed variable whose declared range is 

R~ then the syntactic construction 

P --~ B 

has a 11eft-hand value I (ace section I) skich is 
I = construct(paR) ~ and a aright-hand value ~ which is S~-~ (i) 
If p was the pointer to the location of smother variabl~/I ° 
this gives the possibility of accessing the other variable's 
storage~ possibly via a different ~'mask~ ire° range specifica- 
tion~ as compared to the range specification of the other vari- 
able° 

The question arises as, to which relationships are defined 

between two values i(SpL/i) and I~(SpL/i) ~ ~hen addr(1) = 
addr(l~) ~ but the ranges of i and i ~ are different. 

Firsts there is no relationship defined in PL/I (it may be 
defined by an implementations of course) if the ranges of i and 
11 are elementary° Second~ however~ for composite I and I I there 
may be identical component locations of i and i ~ This means 
that PL/I imposes special properties on the mapping from loca- 
tions to component locations. 

As mentioned aboves the index-set of a composite range is 
ordered in PL/Io Component locations of a location~ consequently~ 
are ordered~ Let i be a composite location. Its i-th component 
location I. is given by the function 

i 
lo = map(addr(1) ~<R o R i > R.) 
i I ~ °~ -.I ~ i 

where Ro are the component ranges of Ro This means that a loca- 
tion 1 Im s addr( I~ ) : addr(1) ~ has the same component location 1.. 
if its range has the same component ranges up to i~ independent- 
ly of the component ranges '~to the right of ~ the i-th component° 
This property is called left~t0~ri~h/0 e uivalence° 

There are further properties of this mapping defined~ which 
make further uses of pointers and based variables possible which 
otherwise are undefined~ 

Such further properties simply can be added as axioms for 
the function maps restricting the freedom of an implementation of 
PL/I storage mapping. Most important is IVstructure-independent1~ 
mapping~ which is determined just by the ordered set of elemen- 
~E! constituents of composite ranges~ independently of their 
hierarchical structuring. This allows access to composite values 
in storage with differing structural descriptions~ given by the 
range specifications of based variables~ We shall skip the for- 
mal definition of these storage mapping properties (see Beki$~ 
Walk(1970)), 

We finally discuss PL/I areas. One can use based variables 
to allocate locations in areas~ like in the example: 

DECLARE A AREA(iO0)s B BASED FIXED~ 0 0FFSET~ 
ALLOCATE B IN (]A] SET ( 0 ) ~  
O--~B : 5; 
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mn which A is de~lared as~ area variable with size i00~ and the 
based, variable B is us.ed to allocate a location of range FIXED 
(fixed point nu, mbers] ~ say i B in Ao The pointer (or rather off- 
set~ as it is called for locations in areas) of this location 
automatically is stored in the offset variable O~ which subse- 
quently can be used to reconstruct the location by the reference 
0 --.~.Bo The location of the area variable~ say IA~ can be viewed 
as a flexible location whose components come into existence by 
allocations in Ao The above allocation creates a component loca- 

tion lAB of iA~ defined by 

8pL / I ( iAB )  = SA(~-B) 
whereT~ A is the storage defined by the value: Sp~/l (!~)s~oragesOf A. of 

ere are again special properties define~ zor 
area typed which easily can be given as restrictions on the gen- 
eral model~ but which are disregarded in this paper° 

It should have-become clear~ thought that PL/I much more 
than ALGOL 65 constrains the way in which storage is to be real- 
izedo It is particularly for languages like PL/I that a storage 
model is mandatory for an understanding of the various storage- 

dependent features° 

3o HORE FLEXIBILITY 

Languages directly based on the storage model of the previ- 
ous section are restricted with respect to the flexibility of 
the structuring of values that can be associated with locations° 
We first will discuss the reasons for this restrictions and then 
will see whether there are proposals which allow for more freedom 

in this respect° 
The crucial point is the relation between locations and 

their components. For composite locations~ we had: 

i ~i determines i. 
l 

which means that the existence and type of components is indepen- 
dent of the value assigned to locations, A structural change in 
storage 8 is possible only by allocation and freeing~ i~e~ by 
changing the domain of S or by using pointers to establish rela- 
tions between locations, There is no independent allocation and 
freeing of component locations possible~ however, The advantage 
of this concept is that it is realizable by connected stora~: a 
composite location of the abstract model can be realized by a 
segment of adjacent (in the sense of the ordering mentioned in 
section !,i) physical locations~ where the component locations 
are identifiable by fixed offsets relative to the entire loca- 

tion: 
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The components thus are computable by simple address modifi- 
cation in a conventional computer° A further advantage is that 
the value of a composite location can be transferred bloek~o~wise 
eogo to an external storage medium° 

For flexible locations we had~ 

l~v~i determines io 
l 

IIere the structuring may depend on the stored value° We re- 
member~ however~ the restricted possibilities for restructuring° 
Furthermore~ flexible locations in general are not realizable by 
fixed blocks of connected storage° If no maximum size can be de- 
termined~ the way out is to chain blocks of storage together with 
a pointer mechanism which is hidden to the programmer° 

There are languages in which flexibility through a hidden 
pointer mechanism has been made a principle° The most prominent 
example for this is LISPo Although LISP can be understood ~ith~ 
outh referring to its implementation~ we expect that something 
can be learned for our present theme by looking into ito 

3ol A LISP-like system 

Data in LISP~ and also LISP expressions~ are called S-ex- 
~ressions~ which are either atoms or ordered pairs of S - e x ~  
slons (McCarthyC1960))o We call the two components of an ordered 
palr the head and the tail~ respectively. We show the way in 
which S-expressions are represented in storage~ usimg a restrict- 
ed version of the general storage model of section 2~io 

There are two kinds of locations: atomic locations and pair 
locations° The range of atomic locations is the set of atoms° 
Pair locations I are composite~ with two components I h and i t, 
The range of i t and i h is~ 

elementary locations u pair locations U ~NIL] 

Example: Let ~(Ao~)oC) repreaent an S-expression (a pair whose 
first component is the pair of A and B~ whose second component is 
C)o The following picture illustrates the storage representation 
of the S-expression~ where S L stands for the storage function: 



1 
\ 

1 

S L 

i h ~ 

\ 
t 

I C ~  

S 
L 

~C 

S L S L 
~I A .... ~A 

S S 
L L 

i t . ~-e~ i B 

The S-expression is not stored as the value of one location~ 
but its constituents are distributed among several independent 
locations° An expression can be identified~ but not retrieved~ by 
a single location~ 

There are the functions head and tail defined (called car 
and cdr in McCarthy (1960)) ~hich return the head and tail~ re- 
spectively~ of an S-expression~ and the function cons~ ~hich 
given two S-expressions produces the ordered pair having these 
S-expressions as components° These functions are realized such 
that their arguments are pointers~ and that they return poLnters 
representing S-expressions in storage: 

(head i)(S L) = SL[i h) 

(tail i)(S L) = SL(i t) 

The function cons~ besides giving a va!ue~ also changes SL~ 
Given two locations 11~ 12 and SL, we get the new storage by 
(see section 2~i): 

i) 
cons(ll~12)(SL) = (allocate l~lh:=ll~it :=12) [S L) 

where i is some pair location not in the domain of SL~ and the 
value returned hy cons is io 

Operations on data therefore may change the set of active 
locations in S L, We note in passing that we have got only opera- 
tions that increase the domain of S~. This is of no concern in 
the theoretical model~ in a realization one has to rely on a 
garbage collector to remove locations that are no longer used° 

A variable to represent an S-expression is realized by as- 
sociating the identifier of the variable with the location re- 

i) We use (f~g)(x) to mean g{f(x))o 
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presenting the S-expression in storage~ co go b y  a mapping 

~denote~: 

denote 
x ~ ~  i 

Assignment of another S-expression~ being represented by 1 ~ 

say~ will change this association to 

denote 
x - - ~  I ~ 

Assignment ~ therefore~ is not changing SL~ but the mapping 
~denote ~ The left-hand value of x is x itself° 

Let us depict the way which leads from the location repre- 
senting an S-expression to one of the atomic values: 

SL SL S~ 
i ~ i ~ i i --~ i i 12 i i ~ i 

t t 
and compare this with a step from a flexible location to a com- 
ponent value: 

S 
i~S(1) ~i -~ i. ---~ v. 

I i 

In both cases~ reference to stored values must be made in 
order to identify components° The latter case~ however~ relies 
on the existence of a £~gjgi~osite value of the flexible !ocation~ 
The concept of composite values as values of locations is lost 
in the other model~ the gain being a simpler type of storage: 
there is only one type of composite locations~ with two compo- 
nentso 

In the next section we s, hall present the model of a proposal 

following similar concepts° It uses locations with an arbitrary 

number of components~ and reintroduces the concept of having lo- 
cations as left-hand values of variables° 

3°2 Data structures proposed by Standish 

A system for declaring data structures and operations for 
their manipulation is proposed in Standish(1967)o We shall give 
g£ve a formal explanation of the basic lines of this proposal° 

There are variables declared with descriptors ~ describing 
the class of entitiesl) that can be associated with them° De- 
scriptor identifiers can be defined to stand for descriptors~ 

which allows for recursive descriptor definitions° A descriptor 
may have the following forms: 

elementar Z descriptors describe classes of elementary values as 
in conventional programming languages~ including "refer- 
ences ~ (to be explained as locations below)~ 

l) The term ~entities ~ is used to avoid the term ~values ~ which 
has been used in a somewhat different sense in previous 
sections° 
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composite descri2tors have the form <de ~o.~ ~dn> ~ rw~here the do are 
descriptors~ They describe entiti s whos~e components~ respec- 
tively are described by d I ~ooo ~d n (We leave out for the pres- 
ent purpose particular component selectors and use the in- 
tegers 1~ ~ o ~ ~n instead o) 

iterative descri~l~rA have the form repl do They describe enti- 
tme~--Ts ~i-~-7£th an mndefinite number of componeats described by do 

alternative descriptors have-the form (dil o oo I d ) ~ where the d~ 
are descriptors° They describe the unlon o9 the entities Re- 
scribed by d I ~0 ~o ~d o This form is relevant only for range 
• tests~ but not for ~torage organization° 

NIL describes the ~'empty data space~'~ 

There are also descri£tor modifiers defined° They will be 
disregarded in the present context~ as they do not concern the 
storage organization. 

Like in the LISP system~ composite entities are not the 
values of one (connected) location~ but are realized by a poin- 
ter structure° Identifiers are associated with locations as 
left-hand values by a mapping ~denote ~ This mapping is not 

changed by assignment° 
We need the following types of locations: 

elementary locations whose range is specified by elementary de- 

scriptors 
pointer locations whose range is the set of locations ~ {NILI~ 
composite locations with a fixed number of components which are 

pointer locations 
flexible locations with ~n indefinite number of components which 

are pointer locations~ 
An elementary entity~ say A~ is represented in storage SST 

as 
SST 

i A --~ A 

where I A is an elementary location. We say that i points to Ao 
A composite entity~ say e : (e I ~.oo ~en) ~ e.m ~eing entities~ 

is represented as 

SST 

. ~  1 e 1 

SST 
i n ~ I  

~n 
where i is composite or flexible according to ~hether e belongs 
to a composite or to an iterative descriptor, i is said to point 

to e o 11~..~ ~In are pointer locations° lel~°° ~len point to 

e 1~ . ~ ~ ~e n~ respectivelyo 
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There ia an operation cons{d~ap) on storage~ ~here d is a 
descriptor and ap an argument parts An argument part is an elem- 
entary entity or a list of argument parts° cons(d~ap) represen%s 
ap in storage according to the description d~ it is. defined as 
follows under the assumption that ap has been tested to be re- 
presentable with d~ and that d is elementary~ composite~ or flex- 
ible : 

cons(d~ap)(SST) : f(d~ap~l)(allocate i(SST)) 

where i is a location not in the domain of SS,_ which is elemen- 
tary~ composite~ or flexible according to whe%'her d is elemen- 
tary~ composite~ or iterative~ and f is defined as 

f(d~ap~l)(SsT) : 

if d is elementary: (I::ap)(SsT) 

if d = <d I ~o o o ~dn> ~ ap : <apl ~ o o o ~aPn> : 

(allocate 11~ o ~a!locate I n i o o ~I ::i ~ o o o ~l ::i n 
n 

f(dl ~aPl ~ll)~°°°~f(dn~aPn~in))(SsT) 

if d = repl d' ~ap : <ap ~ o o ~aPn>: 

11 (allocate ~ o o o ~allocate in~l:=<l i ~ ~ ° ~in>$ 

f(d I I I) ooo  f(a n0ap n01n)) (SsT) 
i 

i ~ooo ~l n are new locations not yet in the domain of S 
ST ° 

A variable~ when declared~ becomes associated with a left- 
hand value by a mapping ~denotes~ The left-hand value is a poin- 
ter location~ whose value is the location pointing to the entity 
currently associated with the variable~ This gives the possibili- 
ty of sharing between variables: 

X 

SS T 

i -~ i 

Y 

Variables described as composite or iterative may be sub- 
scripted° The left-hand value of a reference x[ii~o~o ~i k] is 
given by : 

1 v(l,<ilo o,ik>)(Ss ) -- 

i f k=O : 1 

otherwise: 2hV~SsT(i i )~<i2~ooo ~ik>)(SsT) 
I 

where: i = denotes(.x). The right-hand value of a reference is 
given by SST(1) ~ if i is its left-hand value. 
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T h ~ ° ........ re ZS the possibility of s.yntactically controlling the 
num~her of indirect steps° If ref is a reference with left-hand 
value i~ then the right--hand value of --~ ref is io If r is the 
right-hand value of ref~ then the right~hand value of <ref> is 

The way from a,n identifier x to a component value v can. be 
depicted as 

S i. SST 12 S denotes ST I k ST 
1 

which shows the greater variability with respect to LISP, It is 
gained~ of coursed through partially abandoning the consequent 
simplicity of LISP~ In particular~ there are flexible locations 
again~ thouglh of a very special type. 

There are various assignment operations defined. Let i I be 
the left-hand value of refl~ and i~ the right-hand value of 
ref2o The assignment ref i ~-- ref22is defined by 

(11 ~-- 12)(SST) = (1 l := l~ (SsT)  
Note that this assignment does not imply a data transfers but 
just a pointer operation, 

Overlay assignment ref I ~ 4--ref 2 is defined by 

( 1 1 ~  ~-12) (SsT)  = (SsT ( l l )  := SST(12))(SsT) 
Note that if ref I .is described as iterative~ this operation may 
cause a restructuring of the flexible location S S (ii) ~ 

Copying of entities in storage (assignment ~oes not imply 
copying) can be induced by copy functions° Let I point to an 

entity in storage° 
The function copy(l) returns a new location i ~ with 

range(l ~ ) = range(l) and changes SST to 

(copy i) (SsT) = (allocate i ~ ~i ~ := SST(1))(SsT ) o 

The entire entity is copied by the function copy-all(1)o It 
also returns a new location i~o Its operation on storage is de- 

fined by 

copy_all(1)(SsT ) = (allocate i ~ ~cons-copy(l~l))(SsT) 

and 

cons-copy£1 ~ ~i)(.SsT) = 

if SST(1) is elementary~ (17:=SsT(1))(SsT) 

if SST(1) is. composite or flexible ~ith n components~ 

I I (l~:=SsT(1)~alloca~ e ~ o.o~alloca~e i n 

:=i I ~, o , ~ l  ~ :=I n 
11 n 

cons-copy(l I~SST(I1)) ~, o o ~cons-copy(l n,ssT(1))) (SsT) 

11 ° where ~o,o ~I n are new locations ~ith range(li)=range(SsT(ll)) 



Note: the assignment 1 ~ ::Ss~(1) jus.t serves the purpose of creat- 
rang correctly the active component locations of 1 ~ , if .it is 

f l e x i b l e  

R E M A R K  

Zn conciusion~ we point out a subject which is not elabo- 
rated at all in this paper~ but which is significant for the 
economic representation and handling of data in storage° Follow- 
ing Wegner(1970)~ we call it the variabili~ of information 

structures° Its investigation would shed light on a variety of 
features of programming languages~ and may lead to an at least 

semi-quantitative treatment of storage problems° 
Consider the relation 

S 

where we had required that v is within a range R determined by 
i t R=range(1)o Whatever the result of an updating of this rela- 
tion may bed we know that a new value~ v' ~ again will be within 
R~ Claiming that u~pdatin~ is costl~ we can utilize this redun- 
dancy by associating not the value v with i~ but a derivative of 
v which we call value representation Vro It is given by a func- 
tion rep: 

vr = rep(v~R) 

with the condition that there exists a function val such that 
v can be retrieved: 

v = val(vr~R). 

The amount of information reduction that can be achieved 
depends on the size of the set of values and of R0 Of coursed the 
information about R still must be in i~ but this is a relation 
which needs not to be updated~ 

In Lucas~Walk(1969) a storage model is described which is 
based on value representations~ and which thus is closer to a 
real implementation than the model presented here~ 

Another relation whose variability is significant is that 
between identifiers and locations. In languages where identifiers 
are declared~ they may be associated with locations only of the 
specific types described in the declarations For exampled the 
range of the locations may be fixed in a declaration. In the case 
of PL/I locations for example, we could instead of 

den 
id --~ i 

have 
den 

i d --~ p 

attr 
id ~ R 
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where i can he reconstructed from th, e pointer p and thee range R: 

i : construct (~p~R) 

and attr is a relation which needs to be established only once° 
Looking for relations which remain fixed during certain seg- 

ments of computations is precisely the problem of implementations 
• to find actions that can be performed once and for all during 
compile timer or at block activation time etco It is the key also 
for understanding the difference between compiler and interpreter 
oriented languages° 
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