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Throughout their lifetimes, all cells experience force. These

forces are sensed by cell surface adhesion receptors, such as

the cadherins and integrins. Much attention has focused on

identifying how these adhesion receptors transmit force. In

contrast, less is known regarding how these force-activated

pathways are integrated with other cellular processes. In this

review, we describe how cadherins and integrins transmit

force, and discuss how these adhesion receptors are linked to

cell metabolism. We focus on understanding this connection by

highlighting how the cadherins and integrins interact with a

master regulator of energy homeostasis, AMP-activated

protein kinase (AMPK) and its upstream activator, Liver Kinase

B1 (LKB1). We consider why there is a need for force

transmission to be coupled to metabolism and highlight the

major unanswered questions in the field.
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Introduction
Cells respond to numerous forces, such as shear stress,

compression, stretching, as well as internally generated

tension. These forces are sensed by cell surface adhesion

receptors, such as cadherins and integrins, which are

physically connected to the cytoskeleton through inter-

actions with actin associated proteins. In response to

force, both integrins and cadherins: cluster and recruit

a similar repertoire of proteins, and initiate signaling

cascades that culminate in activation of the small

GTPase, RhoA. Active RhoA indirectly regulates myosin

II activity, which in conjunction with actin filaments,

allows cells to respond to mechanical stimuli (Figure 1).

This response includes generation of internal contractile

forces, reorganization of the actin cytoskeleton, and
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growth of the associated adhesion complex-a process

known as cell stiffening [1,2].

How the cadherin and integrin adhesion complexes stim-

ulate cell stiffening has been the subject of intense

scrutiny. Integrins are heterodimers of alpha and beta

subunits that bind to the extracellular matrix on the

outside of the cell. On the inside of the cell, the integrin

cytoplasmic tails recruit various actin binding proteins,

such as talin and vinculin (Figure 1). In response to

mechanical force, the integrin tails undergo conforma-

tional changes. These changes promote talin binding

which in turn stimulates the integrins to adopt an active

conformation, associating with the extracellular matrix.

Force also causes integrins to stimulate transduction

cascades on the inside of the cell. Key among the

force-activated cascades is a FAK/Ras/ERK signaling

pathway that culminates in activation of the RhoA acti-

vator, GEF-H1. In addition, stimulation of a Fyn signal-

ing pathway leads to activation of another RhoA activator,

LARG [3��]. Both GEF-H1 and LARG are guanine

nucleotide exchange factors that promote RhoA activa-

tion by stimulating the exchange of GDP for GTP.

E-cadherin responds similarly to force by undergoing

conformational changes. These rearrangements allow

for recruitment of actin binding proteins, such as alpha

catenin (Figure 1). Alpha-catenin then binds centralspin-

dlin — a protein complex that links the mitotic spindle to

the plasma membranes during cytokinesis [4��]. Central-

spindlin, in turn, recruits Ect2 — a guanine nucleotide

exchange factor for RhoA [4��]. Taken together these

observations indicate that cadherins and integrins

respond to force by activating RhoA guanine nucleotide

exchange factors. It is important to note that there other

GTPase regulatory proteins that have been shown to be

regulated by force, such as b-Pix, Vav2, FilGAP, Arh-

GAP22, and p190RhoGAP (reviewed in Lawson and

Burridge) [5]. There are also many GTPase regulatory

proteins involved in cadherin and integrin adhesion

whose force sensitivity remains unexplored. Hence it is

likely that the list of force-activated Rho regulatory

proteins will continue to increase.

Another protein critical for integrins and cadherins to

respond to force is vinculin. Force stimulates vinculin

recruitment to and accumulation in cell-cell and cell-

matrix adhesions. Vinculin binds actin and bears the force

[6], suggesting that vinculin function in cell–cell and cell–

matrix adhesions is redundant. However, the behavior of

these adhesions is often distinct, suggesting that mecha-

nisms exist to achieve site-specific functions. Insight into
www.sciencedirect.com
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Integrin-mediated and cadherin-mediated mechanotransduction pathways. At sites of cell-cell contact, the extracellular domains of E-cadherin

bind to E-cadherins on neighboring cells to provide strong cell–cell adhesion, while the cytoplasmic domain recruits catenins, which in turn

associate with additional cytoskeletal and regulatory proteins, such as vinculin and centralspindlin. In response to force, cadherin induces the

activation of Abelson tyrosine kinase (Abl) which leads to the phosphorylation of vinculin at Y822. This signaling event is necessary for the

activation of the Rho GTPase pathway, ultimately leading to cadherin-mediated cell stiffening. At cell-matrix adhesions activated integrins interact

with the extracellular matrix on the outside of the cell, which triggers activation of intracellular signaling and recruitment of actin binding proteins,

such as talin and vinculin. In response to force, the integrins recruit and activate two distinct signaling pathways that trigger recruitment of two

RhoA guanine nucleotide exchange factors, LARG and GEF-H1. These integrin-mediated signaling events are critical for the force-induced

activation of RhoA and the reinforcement of integrin–actin linkages at the cell-matrix adhesions. Abl = Abelson tyrosine kinase; ROCK = Rho

associated protein kinase; MLCK = myosin light chain kinase; MLC = myosin light chain; GEF-H1 = guanine nucleotide exchange factor H1;

LARG = leukemia-associated Rho-GEF; ECM = extracellular matrix.
how vinculin function can be distinguished is emerging,

and it is now appreciated that force on E-cadherin sti-

mulates Abelson (Abl) tyrosine kinase to phosphorylate

vinculin Y822 [7]. This phosphorylation event is unique

to cadherin-mediated mechanotransduction and allows

for vinculin binding to b-catenin, recruiting vinculin to

the cadherin complexes (but not integrin complexes) and

inducing cell stiffening [7]. Recent investigations of the

upstream regulators of vinculin Y822 have revealed that

the cadherin adhesion complex is coupled to cell metab-

olism. This review will highlight recent advances in

understanding how signals arising from cadherin-

containing and integrin-containing adhesions are linked

to the metabolic machinery.

Signal transduction mechanisms for
regulating cell metabolism
All organisms need energy to grow, reproduce, maintain

homeostasis, and respond to their environments. The

preferred energy sources for humans are carbohydrates,
www.sciencedirect.com 
fat, and protein. In contrast, cells in culture rely on two

primary energy sources: glucose and glutamine [8,9]. As

the glucose concentration decreases, glutamine becomes

the sole energy source for cultured cells [9]. Conse-

quently, the effects of glucose deprivation are visible

quite quickly; cell cycle arrest begins shortly after glucose

starvation [9]. Cultured cells and organisms have evolved

mechanisms for stimulating or depressing their metabolic

pathways to allow their energy sources to be consumed in

quantities that match their energy demands. For exam-

ple, the expression and abundance of metabolic enzymes

and regulatory factors are tightly controlled. Additionally,

post-translational modifications and allosteric effectors

confer an additional level of regulation. At the signal

transduction level, AMPK is a key regulator of energy

metabolism. AMPK is a serine/threonine kinase that is

activated when AMP levels are high or in response to

physiological stimuli, such as muscle contraction and

hormones [10]. Activation of AMPK is further enhanced

by phosphorylation of its activation loop by upstream
Current Opinion in Cell Biology 2018, 54:114–120
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kinases. In mammals, the major upstream kinase phosphor-

ylating AMPK is LKB1 [11]. Once active, AMPK stimu-

lates energy generating processes (glucose uptake and fatty

acid oxidation) and decreases energy consuming processes

(protein and lipid synthesis) [12]. The ability to monitor the

energy status and shift metabolism to maintain homeostasis

in cells and organisms has allowed AMPK to emerge as a

master regulator of mammalian metabolism.

Links between cell-cell adhesion and AMPK
Links between energy metabolism and cell adhesion have

remained largely unexplored. A recent study revealed that

treatment of epithelial monolayers with shear stress or

application of force directly to E-cadherin stimulates

AMPK activation and recruitment to the E-cadherin adhe-

sion complex [13��]. AMPK activation, and its localization

to cell-cell junctions, requires LKB1 [13��]. Furthermore,

AMPK is a component of a signal transduction cascade

culminating in contractility. In this signal transduction
Figure 2
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cascade, E-cadherin triggers Abl-mediated phosphoryla-

tion of Y822 vinculin leading to RhoA activation and

phosphorylation and activation of myosin II (Figure 2).

Inhibition of LKB1 or AMPK prevents force-induced Abl

activation, vinculin phosphorylation, GTP-loading of

RhoA, and myosin II phosphorylation. These observations

validate AMPK as an upstream modulator of contractility at

cell–cell contacts [13��].

While we highlight the role of AMPK in E-cadherin

mechanotransduction, other evidence links AMPK and

LKB1 to E-cadherin. First, AMPK activators suppress the

loss of E-cadherin and subsequent cell–cell adhesion that

accompanies the transition of cancer cells from an epi-

thelial to mesenchymal phenotype [14–18]. Second,

AMPK is required to maintain two E-cadherin dependent

processes in epithelial cells-polarity and barrier function

[19–21]. Third, the idea that AMPK lies downstream of

E-cadherin is also supported by studies of the role of
erin
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ergy production. Force on E-cadherin triggers the recruitment of LKB1

t, it stimulates a signal transduction cascade that includes Abl-

nt activation of a RhoA-ROCK-MLCK pathway that leads to increased

glucose uptake and oxidation to ATP to provide energy to allow the

or cell stiffening. LKB1 = liver kinase B1; AMPK = AMP-activated

in kinase; MLCK = myosin light chain kinase; MLC = myosin light
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folliculin — a protein associated with the Birt–Hogg–

Dube — a disease characterized by lung collapse and

tumor formations in the kidney, colon and skin. Folliculin

binds AMPK [27], and disease mutations in the folliculin

gene produce truncated proteins that do not bind AMPK

[28]. Interestingly, AMPK cannot be activated in epithe-

lial cells in the absence of folliculin. The mechanism for

the lack of AMPK activity is not well understood but is

linked to changes in E-cadherin expression and localiza-

tion to cell–cell adhesions. Also of note, deletion of

folliculin in the lung epithelium leads to cellular apopto-

sis, alveolar enlargement, and impaired alveolar epithelial

barrier function [29]. All of these events are linked to

aberrant force transmission, suggesting the folliculin stud-

ies may warrant reconsideration in light of the newer

studies. Taken together, the observations establish

AMPK and LKB1 are bonafide E-cadherin effectors.

Why do cell adhesion molecules activate
AMPK?
In response to force, E-cadherin activates AMPK culmi-

nating in the uptake of glucose and its oxidation to ATP.

Many cellular processes require ATP, and older work

suggests the actin cytoskeleton is one of them. Studies of

resting platelets indicate approximately 50% of the total

ATP consumed in cells is needed to support the actin

cytoskeleton [30]. It could be argued that this estimate

might be too high as platelets have a higher turnover of

cytoplasmic ATP than most cells. However, similar stud-

ies of live neurons verified the 50% requirement [31]. The

latter study went a step further to demonstrate the

requirement for ATP is independent of the energy used

by the Na+-K+-ATPase — a major energy consumer in

ionic homeostasis [31]. All of these measurements were

made in cells in culture which are not expected to be

actively rearranging their actin cytoskeletons. In contrast,

cells experiencing force undergo robust actin cytoskeletal

polymerization and rearrangements [32,33]. Hence, cells

under force are expected to need vast amounts of ATP to

support the polymerization and rearrangement of actin,

and the amount required is likely to be higher than the

estimates from platelets and neurons suggest.

Estimates for the amount of energy the actin cytoskeleton

consumes to respond to force are not available. However,

epithelial cells exposed to shear stress exhibit a 3.8-fold

increase in actin deposition in cell–cell junctions [13��].
This increase in F-actin enrichment requires AMPK. Inhi-

biting either AMPK or the AMPK-derived energy prevents

cells from reinforcing their actin cytoskeletons [13��].
Thus, epithelial cells under force activate AMPK to inten-

sify their metabolism to provide the energy necessary to

allow for F-actin reinforcement at cell–cell junctions.

It is tempting to speculate that the ATP could also be

used to support the sliding of myosin along actin fila-

ments. In non-muscle, mammalian cells, myosin II is the
www.sciencedirect.com 
major isoform. Upon phosphorylation at serine 19, myosin

II generates force by binding to and sliding along actin

filaments — a process that requires the hydrolysis of

ATP. In muscle cells, vast amounts of ATP are needed

to support contraction. However, myosin is unlikely to be

a major energy drain in non-muscle cells as they contain

very little myosin and far less of it is bound to actin

filaments. In support of this notion, estimates of the molar

ratio of actin to myosin in muscle cells are 6:1. In stark

contrast, this molar ratio increases to 100:1 in non-muscle

cells [34]. Hence, the sliding of non-muscle myosin II

along actin filaments is not expected to represent a major

energy drain in non-muscle cells.

It is also plausible that AMPK has effects independent of

its ability to stimulate energy production. AMPK is a

serine/threonine kinase that can phosphorylate many

targets. Some of these targets are regulators of RhoA or

myosin — two proteins critical for responding to force.

For example, in a dividing cell, myosin II and actin

accumulate midway between the poles of the spindle

and align into a contractile ring which generates the

constricting force to separate one cell into two cells. Both

active AMPK and serine 19 phosphorylated myosin II

localize to the mitotic spindle [35]. AMPK depletion

reduces the amount of phosphorylated myosin associated

with the spindle pole and decreases spindle alignment. In

addition, there is some evidence that indicates AMPK

directly phosphorylates myosin regulatory light chains

[19]. However, this work has been called into question

because the myosin light chain regulatory subunits do not

have a consensus phosphorylation site for AMPK [36].

Furthermore, other studies reveal that the commercially

available recombinant AMPK used to demonstrate direct

phosphorylation of the myosin light chain regulatory

subunits is contaminated with other kinases. In support

of this notion, pure AMPK did not efficiently phosphory-

late myosin light chains [36]. Alternatively, AMPK could

control the dephosphorylation of the myosin regulatory

light chains. An AMPK-related kinase, known as NUAK1,

phosphorylates and inactivates the myosin phosphatase,

suggesting that AMPK could perform a similar type of

regulation [37]. Finally, it is equally plausible that AMPK

affects myosin by modulating the function of its upstream

activators. In support of this possibility, LKB1, an

upstream AMPK activator, binds to the guanine nucleo-

tide exchange factor, p114RhoGEF [38], and AMPK

phosphorylates RhoA at Ser188, thereby reducing Rho-

Rock signaling [39]. Taken together these observations

indicate that AMPK can directly or indirectly modulate

the phosphorylation of myosin II.

Links between cell–matrix adhesions and
AMPK
AMPK is also emerging as a modulator of integrin-

mediated events. AMPK is a component of the integrin

adhesome [40]. In addition, AMPK localizes to the
Current Opinion in Cell Biology 2018, 54:114–120
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leading edge of migrating cells — a locale where integrin

function is well characterized [41�]. Cells respond to

migratory cues by extending a leading edge or protrusion

in the direction of the migratory cue. These protrusions

contain thin, sheet-like membrane protrusions known as

lamellipodia. The lamellipodia are rich in a dense

branched network of actin filaments. The leading edge

protrudes by polymerizing new actin filaments and dis-

assembling older filaments behind the leading edge. The

growing actin filaments are thought to provide the force

necessary to protrude and push the cell membrane for-

ward [42]. In addition to actin networks, the leading edge

also contains small nascent integrin adhesions. These

adhesions turnover rapidly or give rise to focal complexes,

which anchor the protrusion to the extracellular matrix

behind the leading edge. In turn, the adhesions develop

into more mature adhesions known as focal adhesions

which assemble from near the front of the cell to its rear.

In addition, some cells form fibrillar adhesions — stable

and elongated adhesive structures that are not prominent

in rapidly migrating cells [43].

Intense effort devoted towards understanding how cells

migrate has revealed a role for AMPK. The exact nature
Figure 3
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of this role remains to be determined. Accumulating

evidence indicates that AMPK modulates integrins

directly and indirectly through effects on the actin cyto-

skeleton. The leading edge of migrating cells has

increased levels of mitochondria and mitochondrial-

derived ATP when compared to the cell body [41�].
The increased ATP levels are accompanied by a signifi-

cantly lower ATP:ADP ratio which triggers activation of

AMPK. In this cellular region, active AMPK increases

mitochondrial flux, ATP levels, and cytoskeletal dynam-

ics; its inhibition suppresses cell migration and invasion.

Another study describes a requirement for AMPK in

integrin-mediated events. In this study, AMPK is

required for the reorganization of the actin cytoskeleton

that supports monocyte adhesion to adhere to endothelial

cells (Figure 3) [44]. Hence, AMPK positively modulates

actin dynamics and protrusive events that occur in

actively adhering and migrating cells.

Other studies indicate that AMPK inhibits integrins and

cell migration. In support of an inhibitory role, AMPK was

identified in an RNAi screen of proteins negatively regu-

lating integrin activity [45]. Subsequent studies con-

firmed increases in integrin activation, fibrillar adhesion
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formation and mechanotransduction when AMPK is

inhibited [45,46]. AMPK also modulates actin and micro-

tubule polymerization and decreases the rate and persis-

tence of cell migration by phosphorylating the actin

binding proteins VASP [47]and PDlim5, and the micro-

tubule binding protein CLIP-170 [48,49]. Additionally,

AMPK phosphorylates and targets the endosomal traf-

ficking protein — sorting nexin 17 (SNX17) — for degra-

dation, culminating in decreased b1 and b5 integrins at

the plasma membrane [50,51]. Taken together, these

observations indicate that AMPK inhibits integrins and

integrin-mediated events and are in contrast to the role of

AMPK in modulating integrin function in the leading

edge of migrating cells.

There is a possible explanation for the discrepancy in the

requirement for AMPK in integrin-mediated events. The

evidence supporting a role for AMPK in cell migration

comes from studies of AMPK in the leading edge of cells or

inactivelyadheringcells. In thesesettingsenergy isneeded

to support actin polymerization and membrane protrusion.

In contrast, the data demonstrating AMPK plays an inhibi-

tory role are largely confined to mature focal adhesions and

fibrillar adhesions which are absent from the leading edge

and are not expected to increase the energy burden. Taken

together these findings suggest AMPK positively regulates

integrin events and the actin cytoskeleton in the leading

edge of cells and inhibits these processes in more distal

regions of the cell where the more mature adhesive struc-

tures reside. Hence, it ispossible that AMPKplaysdifferent

roles depending on its subcellular localization and its

mechanical environment. Different subcellular functions

for other proteins have been described in migrating cells.

Most well characterized among these is RhoA, which must

be inhibited at the leading edge to allow for membrane

protrusion and activated at the rear of the cell to promote

migration. An alternative and equally plausible possibility

is the different cell types contribute to the phenotypic

differences. Numerous studies have shown that AMPK

does not function similarly, or through identical targets, in

different cells [52]. More work is needed to resolve these

complexities.

Conclusions and future directions
Progress in the field of mechanotransduction has been

substantial in the recent years. This work reveals a

surprising connection between the adhesive machinery

and the enzymes that regulate mammalian metabolism.

These new findings precipitated a closer inspection of

older work and have revealed that other connections

between cell adhesion and cell metabolism exist. Fur-

thermore, it is increasingly apparent that a cells response

to force requires energy — with significant amounts of

energy being used to reinforce the actin cytoskeleton.

With these new findings, exciting questions linking cel-

lular mechanics and metabolism are open for discussion.
www.sciencedirect.com 
Key among these questions is whether other cellular

processes that involve acute actin polymerization activate

AMPK to provide energy to sustain these events. Addi-

tionally, it remains unclear how many linkages there are

between the adhesive and metabolic machineries. The

integrin adhesome contains 43 gene products with meta-

bolic function [40], and the cadherin adhesome contains

52 metabolic proteins [53]. Hence, it is likely that AMPK

is only a small perceptible component of pathways that

remain to be uncovered. Finally, metabolism is

experiencing a renaissance because disturbances in met-

abolic regulation are increasingly appreciated as a cause of

disease. Hence, it will be important to investigate the

linkages between cell metabolism and mechanotransduc-

tion in diseases such as cancer, diabetes and obesity which

are accompanied by losses in cell adhesion and metabolic

reprogramming.
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