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Abstract

In recent months a machine learning based free software
tool has made it easy to create believable face swaps in
videos that leaves few traces of manipulation, in what are
known as “deepfake” videos. Scenarios where these real-
istic fake videos are used to create political distress, black-
mail someone or fake terrorism events are easily envisioned.
This paper proposes a temporal-aware pipeline to automat-
ically detect deepfake videos. Our system uses a convolu-
tional neural network (CNN) to extract frame-level features.
These features are then used to train a recurrent neural net-
work (RNN) that learns to classify if a video has been sub-
ject to manipulation or not. We evaluate our method against
a large set of deepfake videos collected from multiple video
websites. We show how our system can achieve competitive
results in this task while using a simple architecture.

1. Introduction
The first known attempt at trying to swap someone’s

face, circa 1865, can be found in one of the iconic por-
traits of U.S. President Abraham Lincoln. The lithography,
as seen in Figure 1, mixes Lincoln’s head with the body
of Southern politician John Calhoun. After Lincoln’s as-
sassination, demand for lithographies of him was so great
that engravings of his head on other bodies appeared almost
overnight [27].

Recent advances [21, 42] have radically changed the
playing field of image and video manipulation. The de-
mocratization of modern tools such as Tensorflow [6] or
Keras [12] coupled with the open accessibility of the re-
cent technical literature and cheap access to compute infras-
tructure have propelled this paradigm shift. Convolutional
autoencoders [38, 37] and generative adversarial network
(GAN) [17, 7] models have made tampering images and
videos, which used to be reserved to highly-trained pro-
fessionals, a broadly accessible operation within reach of
almost any individual with a computer. Smartphone and
desktop applications like FaceApp [1] and FakeApp [2] are
built upon this progress.
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Figure 1. Face swapping is not new. Examples such as the swap
of U.S. President Lincoln’s head with politician John Calhoun’s
body were produced in mid-19th century (left). Modern tools like
FakeApp [2] have made it easy for anyone to produce “deepfakes”,
such as the one swapping the heads of late-night TV hosts Jimmy
Fallon and John Oliver (right).

FaceApp automatically generates highly realistic trans-
formations of faces in photographs. It allows one to change
face hair style, gender, age and other attributes using a
smartphone. FakeApp is a desktop application that allows
one to create what are now known as “deepfakes” videos.
Deepfake videos are manipulated videoclips which were
first created by a Reddit user, deepfake, who used Ten-
sorFlow, image search engines, social media websites and
public video footage to insert someone else’s face onto pre-
existing videos frame by frame.

Although some benign deepfake videos exist, they
remain a minority. So far, the released tools [2] that
generate deepfake videos have been broadly used to create
fake celebrity pornographic videos or revenge porn [5].
This kind of pornography has already been banned by sites
including Reddit, Twitter, and Pornhub. The realistic nature
of deepfake videos also makes them a target for generation
of pedopornographic material, fake news, fake surveillance
videos, and malicious hoaxes. These fake videos have
already been used to create political tensions and they are
being taken into account by governmental entities [4].



As presented in the Malicious AI report [11], researchers
in artificial intelligence should always reflect on the dual-
use nature of their work, allowing misuse considerations to
influence research priorities and norms. Given the severity
of the malicious attack vectors that deepfakes have caused,
in this paper we present a novel solution for the detection of
this kind of video.

The main contributions of this work are summarized as
follows. First, we propose a two-stage analysis composed
of a CNN to extract features at the frame level followed by a
temporally-aware RNN network to capture temporal incon-
sistencies between frames introduced by the face-swapping
process. Second, we have used a collection of 600 videos to
evaluate the proposed method, with half of the videos being
deepfakes collected from multiple video hosting websites.
Third, we show experimentally the effectiveness of the de-
scribed approach, which allows use to detect if a suspect
video is a deepfake manipulation with 94% more accuracy
than a random detector baseline in a balanced setting.

2. Related Work
Digital Media Forensics. The field of digital media

forensics aims to develop technologies for the automated as-
sessment of the integrity of an image or video. Both feature-
based [35, 16] and CNN-based [18, 19] integrity analysis
methods have been explored in the literature. For video-
based digital forensics, the majority of the proposed so-
lutions try to detect computationally cheap manipulations,
such as dropped or duplicated frames [40] or copy-move
manipulations [9]. Techniques that detect face-based ma-
nipulations include methods that distinguish computer gen-
erated faces from natural ones such as Conotter et al. [13] or
Rahmouni et al. [33]. In biometry, Raghavendra et al. [32]
recently proposed to detect morphed faces with two pre-
trained deep CNNs and Zhou et al. [41] proposed detection
of two different face swapping manipulations using a two-
stream network. Of special interest to practitioners is a new
dataset by Rössler et al. [34], which has about half a million
edited images that have been generated with feature-based
face editing [38].

Face-based Video Manipulation Methods. Multi-
ple approaches that target face manipulations in video se-
quences have been proposed since the 1990s [10, 14]. Thies
et al. demonstrated the first real-time expression transfer for
faces and later proposed Face2Face [38], a real-time fa-
cial reenactment system, capable of altering facial move-
ments in different types of video streams. Alternatives to
Face2Face have also been proposed [8].

Several face image synthesis techniques using deep
learning have also been explored as surveyed by Lu et al.
[29]. Generative adversarial networks (GANs) are used for
aging alterations to faces [7], or to alter face attributes such
as skin color [28]. Deep feature interpolation [39] shows

remarkable results in altering face attributes such as age, fa-
cial hair or mouth expressions. Similar results of attribute
interpolations are achieved by Lample et al. [24]. Most of
these deep learning based image synthesis techniques suffer
from low image resolution. Karras et al. [22] show high-
quality synthesis of faces, improving the image quality us-
ing progressive GANs.

Recurrent Neural Networks. – Long Short Term Mem-
ory (LSTM) networks are a particular type of Recurrent
Neural Network (RNN), first introduced by Hochreiter and
Schmidhuber [20] to learn long-term dependencies in data
sequences. When a deep learning architecture is equipped
with a LSTM combined with a CNN, it is typically con-
sidered as “deep in space” and “deep in time” respectively,
which can be seen as two distinct system modalities. CNNs
have achieved massive success in visual recognition tasks,
while LSTMs are widely used for long sequence process-
ing problems. Because of the inherent properties (rich vi-
sual description, long-term temporal memory and end-to-
end training) of a convolutional LSTM architecture, it has
been thoroughly studied for other computer vision tasks in-
volving sequences (e.g. activity recognition [15] or human
re-identification in videos [30]) and has lead to significant
improvements.

3. Deepfake Videos Exposed

Due to the way that FakeApp [2] generates the manipu-
lated deepfake video, intra-frame inconsistencies and tem-
poral inconsistencies between frames are created. These
video anomalies can be exploited to detect if a video under
analysis is a deepfake manipulation or not. Let us briefly
explain how a deepfake video is generated to understand
why these anomalies are introduced in the videos and how
we can exploit them.

3.1. Creating Deepfake Videos

It is well known that deep learning techniques have been
successfully used to enhance the performance of image
compression. Especially, the autoencoder has been applied
for dimensionality reduction, compact representations of
images, and generative models learning [26]. Thus, autoen-
coders are able to extract more compressed representations
of images with a minimized loss function and are expected
to achieve better compression performance than existing
image compression standards. The compressed represen-
tations or latent vectors that current convolutional autoen-
coders learn are the first cornerstone behind the faceswap-
ping capabilities of [2]. The second insight is the use of
two sets of encoder-decoders with shared weights for the
encoder networks. Figure 2 shows how these ideas are used
in the training and generation phases that happen during the
creation of a deepfake video.



Figure 2. What makes deepfakes possible is finding a way to force
both latent faces to be encoded on the same features. This is solved
by having two networks sharing the same encoder, yet using two
different decoders (top). When we want to do a new faceswapp, we
encode the input face and decode it using the target face decoder
(bottom).

3.1.1 Training

Two sets of training images are required. The first set only
has samples of the original face that will be replaced, which
can be extracted from the target video that will be manipu-
lated. This first set of images can be further extended with
images from other sources for more realistic results. The
second set of images contains the desired face that will be
swapped in the target video. To ease the training process
of the autoencoders, the easiest face swap would have both
the original face and target face under similar viewing and
illumination conditions. However, this is usually not the
case. Multiple camera views, differences in lightning con-
ditions or simply the use of different video codecs makes
it difficult for autencoders to produce realistic faces under
all conditions. This usually leads to swapped faces that are
visually inconsistent with the rest of the scene. This frame-
level scene inconsistency will be the first feature that we
will exploit with our approach.

It is also important to note that if we train two autoen-
coders separately, they will be incompatible with each other.
If two autoencoders are trained separately on different sets
of faces, their latent spaces and representations will be dif-
ferent. This means that each decoder is only able to decode
a single kind of latent representations which it has learnt
during the training phase. This can be overcome by forc-
ing the two set of autoencoders to share the weights for
the encoder networks, yet using two different decoders. In
this fashion, during the training phase these two networks
are treated separately and each decoder is only trained with
faces from one of the subjects. However, all latent faces are

produced by the same encoder which forces the encoder it-
self to identify common features in both faces. This can be
easily accomplished due to the natural set of shared traits
of all human faces (e.g. number and position of eyes, nose,
. . . ).

3.1.2 Video Generation

When the training process is complete, we can pass a latent
representation of a face generated from the original subject
present in the video to the decoder network trained on faces
of the subject we want to insert in the video. As shown
in Figure 2, the decoder will try to reconstruct a face from
the new subject, from the information relative to the orig-
inal subject face present in the video. This process is re-
peated for every frame in the video where we want to do
a faceswapping operation. It is important to point out that
for doing this frame-level operation, first a face detector is
used to extract only the face region that will be passed to
the trained autoencoder. This is usually a second source of
scene inconsistency between the swapped face and the re-
set of the scene. Because the encoder is not aware of the
skin or other scene information it is very common to have
boundary effects due to a seamed fusion between the new
face and the rest of the frame.

The third major weakness that we exploit is inherent to
the generation process of the final video itself. Because
the autoencoder is used frame-by-frame, it is completely
unaware of any previous generated face that it may have
created. This lack of temporal awareness is the source of
multiple anomalies. The most prominent is an inconsis-
tent choice of illuminants between scenes with frames, with
leads to a flickering phenomenon in the face region com-
mon to the majority of fake videos. Although this phe-
nomenon can be hard to appreciate to the naked eye in
the best manually-tuned deepfake manipulations, it is easily
captured by a pixel-level CNN feature extractor. The phe-
nomenon of incorrect color constancy in CNN-generated
videos is a well known and still open research problem in
the computer vision field [31]. Hence, it is not surprising
that an autoencoder trained with very constrained data fails
to render illuminants correctly.

4. Recurrent Network for Deepfake Detection
In this section, we present our end-to-end trainable re-

current deepfake video detection system (Figure 3). The
proposed system is composed by a convolutional LSTM
structure for processing frame sequences. There are two
essential components in a convolutional LSTM:

1. CNN for frame feature extraction.

2. LSTM for temporal sequence analysis.



Figure 3. Overview of our detection system. The system learns and infers in an end-to-end manner and, given a video sequence, outputs a
probability of it being a deepfake or a pristine video. It has a convolutional LSTM subnetwork, for processing the input temporal sequence.

Given an unseen test sequence, we obtain a set of fea-
tures for each frame that are generated by the CNN. After-
wards, we concatenate the features of multiple consecutive
frames and pass them to the LSTM for analysis. We finally
produce an estimate of the likelihood of the sequence being
either a deepfake or a nonmaninpulated video.

4.1. Convolutional LSTM

Given an image sequence (see Figure 3), a convolutional
LSTM is employed to produce a temporal sequence descrip-
tor for image manipulation of the shot frame. Aiming at
end-to-end learning, an integration of fully-connected lay-
ers is used to map the high-dimensional LSTM descrip-
tor to a final detection probability. Specifically, our shal-
low network consists of two fully-connected layers and one
dropout layer to minimize training over-fitting. The convo-
lutional LSTM can be divided into a CNN and a LSTM,
which we will describe separately in the following para-
graphs.

CNN for Feature Extraction. Inspired by its success in
the IEEE Signal Processing Society Camera Model Identi-
fication Challenge, we adopt the InceptionV3 [36] with the
fully-connected layer at the top of the network removed to
directly output a deep representation of each frame using
the ImageNet pre-trained model. Following [3], we do not
fine-tune the network. The 2048-dimensional feature vec-
tors after the last pooling layers are then used as the sequen-
tial LSTM input.

LSTM for Sequence Processing. Let us assume a se-
quence of CNN feature vectors of input frames as input and
a 2-node neural network with the probabilities of the se-
quence being part of a deepfake video or an untampered
video. The key challenge that we need to address is the de-
sign of a model to recursively process a sequence in a mean-
ingful manner. For this problem, we resort to the use of a
2048-wide LSTM unit with 0.5 chance of dropout, which
is capable to do exactly what we need. More particularly,
during training, our LSTM model takes a sequence of 2048-
dimensional ImageNet feature vectors. The LSTM is fol-
lowed by a 512 fully-connected layer with 0.5 chance of

dropout. Finally, we use a softmax layer to compute the
probabilities of the frame sequence being either pristine or
deepfake. Note that the LSTM module is an intermediate
unit in our pipeline, which is trained entirely end-to-end
without the need of auxiliary loss functions.

5. Experiments

In this section we report the details about our experi-
ments. First, we describe our dataset. Then, we provide
details of the experimental settings to ensure reproducibil-
ity and end up by analyzing the reported results.

5.1. Dataset

For this work, we have collected 300 deepfake videos
from multiple video-hosting websites. We further incorpo-
rate 300 more videos randomly selected from the HOHA
dataset [25], which leads to a final dataset with 600 videos.
We selected the HOHA dataset as our source of pristine
videos since it contains a realistic set of sequence samples
from famous movies with an emphasis on human actions.
Given that a considerable number of the deepfake videos are
generated using clips from major films, using videos from
the HOHA dataset further ensures that the overall system
learns to spot manipulation features present in the deepfake
videos, instead of memorizing semantic content from the
two classes of videos present in the final dataset.

5.2. Parameter Settings

First, we have used a random 70/15/15 split to generate
three disjoints sets, used for training, validation and test re-
spectively. We do a balanced splitting, i.e., we do the split-
ting first for the 300 deepfake videos and then we repeat
the process for the 300 nonmanipulated videos. This guar-
antees that each final set has exactly 50% videos of each
class, which allows use to report our results in terms of ac-
curacy without having to take into account biases due to the
appearance frequency of each class or the need of using reg-
ularizing terms during the training phase. In terms of data
preprocessing of the video sequences, we do:



• Subtracting channel mean from each channel.

• Resizing of every frame to 299×299.

• Sub-sequence sampling of length N controlling the
length of input sequence – N = 20, 40, 80 frames. This
allows use to see how many frames are necessary per
video to have an accurate detection.

• The optimizer is set to Adam [23] for end-to-end train-
ing of the complete model with a learning rate of 1e−5
and decay of 1e−6.

5.3. Results

It is not unusual to find deepfake videos where the ma-
nipulation is only present in a small portion of the video (i.e.
the target face only appears briefly on the video, hence the
deepfake manipulation is short in time). To account for this,
for every video in the training, validation and test splits, we
extract continuous subsequences of fixed frame length that
serve as the input of our system.

In Table 1 we present the performance of our system in
terms of detection accuracy using sub-sequences of length
N = 20, 40, 80 frames. These frame sequences are ex-
tracted sequentially (without frame skips) from each video.
The entire pipeline is trained end-to-end until we reach a
10-epoch loss plateau in the validation set.

Model Training
acc. (%)

Validation
acc. (%)

Test
acc. (%)

Conv-LSTM,
20 frames 99.5 96.9 96.7

Conv-LSTM,
40 frames 99.3 97.1 97.1

Conv-LSTM,
80 frames 99.7 97.2 97.1

Table 1. Classification results of our dataset splits using video sub-
sequences with different lengths.

As we can observe in our results, with less than 2 seconds
of video (40 frames for videos sampled at 24 frames per
second) our system can accurately predict if the fragment
being analyzed comes from a deepfake video or not with an
accuracy greater than 97%.

6. Conclusion
In this paper we have presented a temporal-aware system

to automatically detect deepfake videos. Our experimental
results using a large collection of manipulated videos have
shown that using a simple convolutional LSTM structure we
can accurately predict if a video has been subject to manip-
ulation or not with as few as 2 seconds of video data.

We believe that our work offers a powerful first line of
defense to spot fake media created using the tools described
in the paper. We show how our system can achieve compet-
itive results in this task while using a simple pipeline archi-
tecture. In future work, we plan to explore how to increase
the robustness of our system against manipulated videos us-
ing unseen techniques during training.
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