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niobium films have produced units with low breakdown
strength. Further work is being done with these other
film-forming metals as well as with tantalum.

CONCLUSIONS
A new tantalum capacitor, essentially two-dimen-

sional in structure, has been made and has properties
superior to other types of tantalumn capacitors.

Capacitances obtained are comparable to the capaci-
tance-area relationships for tantalum electrolytic ca-
pacitors formed to the same voltages. Using counter
electrodes of 95 mils to 250 mils in diameter and the
single-layered structure, capacitors have been prepared
with capacitances ranging between about 2000 ,Af and
0.25 ,uf.
DC leakages measured at three-quarters the forma-

tion voltages are of the order of 4X10i- a for 250-mil
diameter electrodes. Expressed in terms of insulation re-
sistance, this amounts to about 60,000 ohm farads.

Dissipation factors are in the neighborhood of 0.008
at 100 c and increase to between 0.1 and 0.8 at 100 kc.

The relatively high losses at the higher frequencies are
caused by the high series resistance of the tantalum
filns. Thicker films of tantalum should reduce these
losses.
Room temperature breakdown voltages approximate

the formation, voltages for these utnits, anid successful
models have been formed to 5, 10, 20, 30, 40, 50, 100,
150, anid 200 v. A suggested working voltage is one half
the formation voltage for temperatures up to 650C. Volt-
age derating characteristics for elevated temperatujre
operation have not been determinled as yet. The units
operate well at very low temperatures, however, even
downi to -1960C.

This type of capacitor should find many applications
in the lower capacitance areas, anid seems ideally suited
for printed circuit applications.
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Summary-This paper provides analyses of three types of di-
versity combining systems in practical use. These are: selection
diversity, maximal-ratio diversity, and equal-gain diversity systems.
Quantitative measures of the relative performance (under realistic
conditions) of the three systems are provided. The effects of various
departures from ideal conditions, such as non-Rayleigh fading and
partially coherent signal or noise voltages, are considered. Some dis-
cussion is also included of the relative merits of predetection and
postdetection combining and of the problems in determining and
using long-term distributions. The principal results are given in
graphs and tables, useful in system design. It is seen that the sim-
plest possible combiner, the equal-gain system, will generally yield
performance essentially equivalent to the maximum obtainable from
any quasi-linear system. The principal application of the results is to
diversity communication systems and the discussion is set in that
context, but many of the results are also applicable to certain radar
and navigation systems.
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1. INTRODUCTION
Wa HEN a steady-state, single-frequency radio

wave is tranismitted over a long path, the en-
velope amplitude of the received signal is ob-

served to fluctuate in time. This phenomenon is known
as fading, and its existence con'stitutes one of the bound-
ary conditions of radio system design. It is observed
that if two or more radio channels are sufficiently sepa-
rated in space, frequency, or time, and sometimes inr
polarization, then the fading on the various channels is
more or less independent; i.e., it is then relatively rare
for all the channels to fade together. The standard tech-
niques for reducing the effect of fading--known as di-
versity techniques-make use of this fact. The object
of these techniques is to make use of the several received
signals to improve the realized signal-to-noise ratio, or
to improve some other performance criterioni.

Several diversity combining anid switching techniques
are known., and there have been numerous papers onz
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this subject in recenlt years. (A sample of these with
comments, is indicated in a Bibliography at the enid;
these papers will be referen-iced by inumiibers in square
brackets, runninig footnotes by supericript.) However,
very few of these have provided quantitative coimipara
tive data on the relative perfor:-manice of the various
techn-iques, especially the two significant techniques
(maximal-ratio and equal-gain) iinvestigated sifice 1954.
The major exceptioni to this is a paper by Altman-. anid
Sichak [81, which is not widely kniown anid eveni less
understood.

Furthermore, there has been little attempt to explain
the fundamental concepts and principles involved For
such reasons, therefore, it appeared desirable to provide
an expository treatment of a comparative anialysis,
within a unified frarmework, of the three most promisin-g
diversity techniiques presently knowni. Ani earlier metno-
randuml aimed at these objectives indicated that such a
treatment might be of fairly general initerest.
Of course, in aii utidertaking of this kind, several

previously published results are naturally iincluded as in-
dividual cases, though the available information will
also be rounded out in a number of ways. Specifically,
this paper inicludes the following material that the au-
thor has not seen- published elsewhere:

1) A careful statemenit of the idealized circumstances
required for canjoniical performiianice of coherent comr
biu1ers (Section I),

2) Simple expressionis for the ml-ean signal-to- noise
power ratios of various combiners [(18), (28), anld (44);
Fig. 8; Table I ],

3) Probability distribution curves for equal-gain
comubineers for 3, 4, 6, anid 8 channels (Figs. 10--13,
Table If),

4) Estimates of the relative perforni-iance of three
standard combiners for non-Rayleigh fading (Section
VII1),

5) A discussion of the relative performance of three
standard combiners for correlated fading (Sectioni VI II),

6) Estimates of the degradationi of the average per-
fornmance of equal-gain and maximal-ratio combiniers
caused by correlated noise voltages (Section X),

7) A bound (due to Stein) on the degradation of
coherent-type combiners with i'mperfectly coherenit sig-
nals (Section XII),

8) Certain aspects of the determination, meaning, and
use of long-term distributions (Section XIII).
In additioni, some previously published material has
been- simplified or otherwise clarified.

It should be mentioned that the criteria employed be
low are expressed entirely in terms of SNR. This has
sometimes been taken to mean that the results were
principally applicable to continuous signals, although
they are also applicable to certain binary or other dis-

1 D. G. Breniniani, "Liinear techiniquLes in diversity conininica-
tion," Marchi, 19,56 (Unpublished meniorandLiMr.)

crete signals anid caii be tranislated into error rates ounce
a suitable detectioi characteristic is either theoretcaally
or exper-imreentally ktiowIi, But in, the case of bin.ary Sys*
tens, it is possible to obtai-ni miiore specitic ati(ipdrecis
results oni error rates for specific systeni:s. Such :results
have been extensively sttudied by Pierce [fiq, [15s] and
others anid are not considered below. Neither us there a
discussioii of the considerable beniefits obtaiiiable bv
codinig or other signial. preprocessiIug techniques designed
to countiteract fadiiig, several of iNhich are currently
unider investigationi by other wxorkers.
On the other hand, it should be i-ioted that radar axid

navigationi systenms in which a repetitive-addition] signal.
enhancement technique is emnployed are closely similar,
in some respects, to certaini diversity systemi:s. Althoulgh
radar atnd ulavigatio i systen:ms are niot discussedl ini detail
below, many of the results anid discuss:ions set fortlh
there are directly applicable to such syste nis,

II. BASic AssUxMPTIONS AND OTInER PIRELIMINARTES
The principal background required of the reader isa

basic acquaiiitaiice with certain eleniietary n-otions of
probability and statistics, essentially equivalent to those
developed iii the first six pages of a highlycreadable
tutorial paper given by Benlnett2 No advantced tech
niques are required here. However, we shall miiake fre-
quent use of a few ideas aind techn-iques that were not
particularly emphasized, by .Bennett, amid a brief exposi
tionI of these is giveii in Appendix I1. All probabiltv
distributions used in this paper will be int-LerpIreted as
explainied there.
We shall be concerned throughout vith raimdom va -i

ables given as functionis of timlae (waveform s) in various
intervals In this settinig, tim-le anid distributmoti averages
are one an-d the same thiiig sot or (f) or a or (x) for such
averages will be writteu-m interchanigeably, buit it iS mii--
portant to note at the outset that our averages will refem
to imitervals of differenit duratioris Specifically, iiitervals
of three different durations will be considered: 1) Short
intervals, whose duration will be denioted by 7 t'The re-
quirement for T is that it must be short in comparison to
the time required for the fadiiig amplitude to chanige ap
preciably, but long in comparison to the period of the
lowest frequency of initerest in the sigmial. Specific repre
sentative values of I' wxould mange froml'l a few micro
seconds to a few mi-ilhisecoclds. 2) Intermmediate iimtei-vals,
whose duration will be deiioted by; 1, I he requiremients
T1 must satisfy are rather complicatedcland will be ex-
plained at various poimnts below. Specific suitable valcies
of T) would range from a few milinutes to a few hours. 3)
Long intervals, whose dIui-ationi -x7ill be deniot-ed by TF.
Values of IT would ran-ge froml- oime nmloiith to omtme ,eacr or
moire
These intervals will be employed as follows. The short

intervals of lenigth T will be usecd to form "local" statis-

2 W. R. Bennett, "Methods of solvinig nioise problem1-s, " Plzoc. IIRE,
vol. 44, pp. 609 638; Man, 1956.
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tics. For example, suppose ei(t) is the instantaneous
signal voltage and e2(t) is the instantaneous noise voltage
on some circuit. Then

~~ 1 r t lle~~~1

x(t)= [ ef(T) dj = V(el2) (1)T -T

and

y() = T [e2(r)]2dr = V(e22) (2)

would be the local rms signal and local rms noise, re-
spectively, and x2 and y2 would be the local mean-square
signal and noise voltages. Letting R denote the circuit
resistance, x2IR would be the local average signal power
at time t, obtained by averaging e12 over the last T
seconds to find x2(t). This averaging could be performed,
for example, by feeding e12 into a suitable linear filter.
Alternatively, one could determine the distribution of e1
in the interval ft -T, tj and obtain x2(t) as the second
moment of the distribution, though distributions in
initervals of length T will not actually be of concern here.

Local statistics such as (1) and (2) will generally
fluctuate in time because of fading and other effects.
For example, the local rms SNR x(t)/y(t) and the local
signal-to-noise power ratio

x2(t)
P(t)

y (t) (3)

will usually vary over wide limits, though they will be
much better behaved than the (meaningless) instan-
taneous ratio el(t)le2(t). The behavior of variables such
as the local statistic (3) in intervals of length T1, where
T1>>T, will be studied. In particular, various distribu-
tions and averages relative to intervals of length T, will
be considered. Such Ti-distributions and Ti-averages
will also change with time, in ways discussed in Sections
VII and XIII. Performance relative to T1-intervals uii-
der standard conditions is summarized in Section VI.

Finally, the variability of certain Ti-averages will be
considered in intervals of length T2, where T2>>T1. This
is done in Section XIII. It is usually assumed in system
design that, for suitable values of T2, all distributions for
the system in question will be essentially the same in
every corresponding interval of length T2. (A suitable
value might be one year, for example.) This is in marked
contrast to the situation for Ti-distributions. However,
it is found experimentally that this assumption is a
reasonable first approximation; moreover, if this as-
sumption were not satisfied, there would be no method
available for predicting the performance of the system,
at least at the present time.
By concentrating on system behavior relative to such

prescribed lengths of intervals, it is possible to keep the
relation between theory and experiment clearly visible,
including, in particular, the practicable experiments re-
quired to verify theoretical predictions. This procedure
is therefore vital to a complete and realistic analysis of

communication systems in getneral and diversity systems
in particular.

In general, the term "diversity system" refers to a
system in which one has available two or more closely
similar copies of some desired signial. For example, cer-
tain radar systems operate by storing the signal received
durling one scan and adding this to the signal received
during the next scan. If fi(t) is written for the output
of the storage device and f2(t) for the signal currently
being received, then the composite signal is simply
fl(t) +f2(t) =f(t). Now, fi(t) may consist of a desired
message component sl(t) and ani undesired additive
noise component ni(t), so that fi(t) =si(t) +nl(t), and
similarly f2(t) s2(t) +n2(t).FHence, the composite signal
may be written

(4)
i.e., in the form of a resultant message component
(SI+S2) plus a resultant noise component (ni+n2). If the
message components si and S2 are closely similar, their
sum s1+s2 will simply approximate an enlarged copy of
either si or S2* On the other hand, the lnoise components
ni and n2 may be quite dissimilar; one may be negative
part of the time the other is positive, and vice versa,
so they may partially cancel for part of the time. The
sum (4) may then be a better signal than either f' or f2
alone; in particular, f(t) may have a higher local SNR
p(t), defined as in (1)-(3), with ei=si+s2, e2=nli+n2
than either fi or f2 alone. Thus, one way of usinlg two
similar or suitably related copies, fi and f2, miay be
simply to add them together. Certain navigation sys-
tems in which a periodic signal is transmitted also use
this storage-and-addition principle.
More generally, one may have N such copies fi(t),

f2(t)? * f*,fN(t), each of the form fj(t) =sj(t) +nj(t), and
one may form the sum

N

f(t) = fl(t) + f2(t) + * . * + fNv(t) = E fjQ(),
J3L

(5)

which may outperform, in some sense, the individual fj.
However, in view of the fact that the fj will have fluctu-
ating local statistics, it will be convenient to consider
weighted sums of the fj; that is, the general linear com-
bination will be considered:

N

f(t) = aifi(t) + * * + aNfN(t) = E ajfj(t),
j-l

(6)

in which each f; is weighted by a combining coefficient
a1, which is proportional to the channel gain and miay
be allowed to vary in accordance with the fluctuating
local statistics of the fj(t). However, the cases to be
considered will be those in which the aj are locally con-
stant, or at least approximately so. The adjective
"linear" in the title of this paper stems from (6). Since
the aj may be allowed to vary, depending on the fj,
one should perhaps speak of (6) as locally linear or
"4quasi-linear." Evidently (4) is simply the case of (6) in
which N-2, a, :=a2=-1

1959 1077

f(t) = [Sl (1) + S2 (t) ] + [nl (t) + n2 (t) ] I



7PROCEEDINGS OF THE IRE

In diversity communication systems, there are several
known methods of obtaining two or more signals fA,
and several kiiown methods of comrbining these to ob-
tain an improved signal. However, all of the latter meth-
ods in current practical use are special cases of (6). Let
us first consider briefly niethods of obtaining several
suitableAj. The simplest of these is that in which a single
transmitting antenna furnishes a sign-ial to several well
separated remote receiving antennas; this method is
called space diversity. A variant of this, suitable for use
in systems operating at UHF and above, uses two sepa-
rated transmitting antennas, one of which transmits
vertically polarized radiation and the other of which
tranismits horizontally polarized radiation, anid a single
receiving reflector with two feed horns or dipoles to
separate the vertical and horizoontal received signals. By
combining these two methods, Altman and Sichak [81
obtained a fourth-order, bidirectional, full duplex space
diversity system that requires orly two reflectors at
each end, as inLdicated iin Fig. 1. (However, it should
be added that recenit experimental evidence irldicates
that the fading on. the crossed pair of paths is m-ore
highly correlated than oni the other pairs of paths.) In
one form oi- aniother, space diversity has been the most
commonIly used form of diversity comuinuiicationi.

Fig. 1-Foour-chann-iel bidirectional space diversity system suitable
for UHF and SHF systems. Signal paths are iiidicated for one
directioii only. The circles marked D deiiote diplexing filters.
The transniitters are on) different freqiieicies.

Another method, called frequeiicy diversity, iniivolves
transmitting the sanme informnation on two or more

carrier frequencies If these are sufficiently separated,
the fading on the various chainnels is approximately
in-idependent, as in the case of space diversity. This
tnethod. is economical in termLs of antennas and real
estate, but expensive in terms of transmitters anid re-

quired bandwidth. It has been discussed more ofteii
than used. (However, there are circumstances in which
it is uiseful and has actually beetn used.) This is also true
of the method called time diversity, so far as coemiiniuni-
cation systems are conlcerned; however, it is not true of
radar and navigation systems, as the method discussed
in the opening paragraph of this sectionr is essentially
time diversity, although this ternminology has not been
much used in the radar field. In radio communication
systems, time diversity involves transmittinig the same

information two or mnore distinct times. When this is ir-
strumented foi automatic operation, its chief disad-
vanitage is equipmient complexity; however, the simple

practice of sending each word twice, as used by many
commercial CW stations, is actually a primil-live but
useful form of time diversity At the other extremee a
very sophisticated communication systemn, currently
un-der development,3 which is designed to eliminate
effects due to multiple transm-nLission paths between fixed
antennas, actually sorts out the various multipath con
tributions and recombines them with suitable delays
and may be regarded as a form. of time diversity in which
the diversity is provided by the tranusmission mediumn
itself.
A miethod that will sometim-ies yield two approxi-

mately inidependent fadiiig signials is called polar-izatioii
diversity. In I-iormal ionospheric transmission at Ire-
quenicies of a few mnegacycles, it is founid that the re
ceived signial includes both vertically arod horizointally
polarized coimponeints, and the fading of these compo
lnents is approximately ii]dependent" Hlowever, in
tropospheric transmission at UHF aiid above, the polar-
ization of the transmitted signal is quite well preservedJ'
and very little effect of this type takes place. Further
more, even if both horizontal and vertical conlipon.ents
are transmitted and separately received, the fadinig of
th-e twlo com-lponients is far from-i indepeniden-t if only a

sin-igle transmissioii patli is involved.6
Another method that has been used (in-ifrequently) in

the high-frequei-icy regioii inivolves the coimbination of
sign-ials arriving with different anigles of ai-rival (the
Mlusa system).' A sonmewhat similar approach at J3fll
and above is currently uinder investigatioii by seveeral
workers,8 10 but the efficacy of this technlique is niot yet
firmly established.

Whichever of these methods is used, the signials ob-
tained will initially be at radio frequentcy. 'Fhe diversity
combining techniquies employed subsequen-it to this stage
may be classed in twlo groups: predetectioi conmbinriiig

I R. Price and P. E. Greein Jr., "A communication technlique for
iultipath channels," PnOC. IRE, vol. 46, Pp. 555-570; March,

1958.
4 J. L. Glaser and L. P Faber, 'Evaluation of polarization diver

sity performance," PRoc. IRE, vol. 41, PP.1p7741778; Deceniber,
1953.

G. L Grisdale, J G. Morris, and D. S. P'almiier, "Fadling of
long-distance radio signals and a comparison of space an-d polariza-
tion-diversity reception in the 6 18 nic ranige,' Proc. IEE, pt. 13,
vol. 104, pp. 39--51; january, 19570

1J. H. Chisholm, P. A. Portma in, J. T. deBettencourt ancd J. F,
Roche, "Investigations of the angular scattering aid nmultipath
properties of tropospheric propagationi of short radio waves beyonid
the horizon," PROC. IRE, vol. 43, pp. 1317-1335; October 1955c See
especially Fig. 20, p. 1331.

'7 F. E. Teirman, "Radio Eingineers IIandbook,'7 McGraw-Hill
Bool Co., Iec., New Yorlc, N.Y., pp. 660-661, 1943. See also papers
by Polkiiigton- and Friis and Feldman cited thereii.

I R. Bolgialno, Jr., N. H Bryant, and W. E. GordonL, "Diversity
Receptionn in. Scatter Corrmmunication with Emphasis on Angle
Diversity," Cornell 4Jniv., Ithaca, N. Y., Elec. EF grg 1es Rep. 359
Janiuary, 1958.

A. T. Waterman, Jr, "A rapid bearaimswinginig experim.ent in
transhorizon propagation," IRE I RANS. ON AN'TENNAS AND PROPA-
GATION, vol. AP-6, pp. 338-340^ O)ctober, 1958.

10 J. H. Chisholm, L. P. Rainville, J. F. Roche, and H. G. Root,
"Angular diversity reception at 2290 mcps over a 188-mile path,"pre-
sei,ted at Symp. on LExtendLed Ran-ge and Space Comi-ntiiiication s
George Washington Univ., Washiiigton, D. C.; October 68, 1958.
(Published in the Symp. Rec.)
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methods aiid postdetection combining methods. In
those methods in which, at any given time, only one of
the aj in (6) is different from zero, i.e., a switch of some
kind, the distinction is basically unimportant. However,
important differences arise wheni the conmbining method
is one in which two or more of the aj may be different
from zero at the same time. For example, it is clear that
the simple addition scheme (4) can fail grievously if the
message components si(t) and s2(t) are not in the same
phase, and RF or IF diversity signals will niot usually
be in the same phase unless special measures are taken
to insure this. Consequently, such combining methods
require special phase-control provisions when used in
predetection applications, while this is not always the
case in postdetection applications. An even more im-
portant difference arises in the case of FM or other
bandwidth-exchange systems, where predetection com-
bining can lead to substalntial improvement over post-
detection methods, as will be seen.
Once the method of providing a multiplicity of sig-

nals is decided, the basic problem confronting the de-
signer of a diversity system becomes one of choosing
the most appropriate method of combining these sig-
nals on the basis of reasonably accurate quantitative
estimates of the performance of the various techniques.
The balance of this paper is principally devoted to this
problem. Instrumentation problems as such are not
considered here; however, papers which describe certain
instrumentation techniques are indicated.
We shall find it most econoniical to consider first a

particular class of circumstances, and then indicate the
way in which the results are modified by other circum-
stances or, in some cases, indicate where such modifica-
tions are treated elsewhere in the literature. The circum-
stances initially considered are those often applicable to
postdetection combining in an AM system, or a single-
sideband system in which provision is made for main-
tainiing coherence of the postdetection signals.ii These
conditions are as follows: assume that N simultaneous
functions, fi(t), f2(t), * - , fN(t) represent the signals
received in N different diversity channels as corrupted
by noise and fading; each f, j = 1, 2, N represents
the corrupted signal in the jth channel containing the
originally transmitted signal m(t). For convenience, sup-
pose that m(t) is a steady test tonie at a representative
midband frequency. or some other steady test signal
with a constant local mean square m2 =1. That the fol-
lowing conditions are approximately satisfied is also
assumed:

(A) The noise in each channel is independent of the
signal, and additive: fj(t) =sj(t) +nj(t) where si and nj
are the signial and noise components, respectively, in the
jth channel.

(B) The signals sj(t) are locally coherent; i.e., sj(t)

11 V. E. Morrow, Jr., C. L. Mack, Jr., B. E. Nichols, and J. Leon-
hard, "Single-sideband techniques in UHF long-range communica-
tions," PROC. IRE, vol. 44, pp. 1854-1873; December, 1956.

= xjm(t), where the xi are positive real numbers that
change with time because of fading, but at a rate that
is very slow in comparison to the instantaneous varia-
tions of m(t). More precisely, assunie that the xj do not
change appreciably within any period of duration T,
where T is the duration of the interval emiployed for the
local averages. Then, siiice m2= 1,

I '
2 S--f ,j[52(T) ]2dT =

T -T
Xj2 [M(T) ]2dT

= Xj2.iT [m(T)]2dT = xi2,
t -T

(7)

so that xj= xj(t) is simply the local rms value of s, takeii
over the last T seconds before the present time, t. It is
clear that T muist be short in comparison to the time
required for the fading amplitude to change appre-
ciably, but long in comparison to the period of m(t).

(C) The noise components nj(t) are locally incoherent
(i.e., uncorrelated) and have zero means: nini=nj ni
if ifj, where the duration of the averages is the same as
in (7). We shall also assume that the local mean square
noises nj2 are slowly varying, or, sometimes, constant.

(D) The local rms values of the signals, xj(t) -\(Sj2)
are statistically independent. Note that this assumption
automatically implies that at least two intervals are
considered: first, the period T [of (7) ] involved In the
definition of the xi; and second, an interval of duration
TF in which we observe the xj(t) as new random vari-
ables. Evidently T»>>T; in practical cases, T might be a
few milliseconds and T1 approximately 30 minutes. A
discussioni of the requirements on T1 is provided in
Section XI II. It is important that T1 cannot be too long.
Assumption (D) is that, when observed in intervals with
a duration on the order of Ti, the variables xj(t) are
statistically independent.
The circumstances characterized by assumptions

(A)-(D) are illustrated in exploded fashion in Fig. 2 for
N= 2. By "exploded," we mean that the actual signals
given would be fj(t)= s(t) +nj(t), j = 1, 2, while the sj
and nj are shown separately. The meaning of the
locally coherent assumption (B) is that, over periods of
length T, the signals si and S2 are essentially idenitical
except in amplitude, which is approximately constant
over such periods. The local rms values xj(t) are indi-
cated by the dashed curves. Note that the assumption
sj(t) -xjm(t) implies that the sj(t) have the same zero
crossings, and are in phase. If the sj are RF or IF signals,
the period F might be several microseconds or more, in
which case no variation of the xj would be perceptible
within the scale of Fig. 2. If the sj represent base-band
signals, T might be a few milliseconds.

In contrast to the sj, it will often be required that
the noises nj(t) be essentially different; this is the nmean-
ing of (C), as suggested by the waveforms n1(t) and
n2(t) of Fig. 2. In particular, it will often be assumed
that (njnj)=O (if i j) over every interval of length T.
In addition, however, it will sometimes also be as-
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sumed that the noises nj have constant local average
powei, i.e., that

n2 = 1-J 1[nj(Kr) jIdr (8)
T ;d-T

is a constant, independent of t and j. This woulc
teast approximatekv true of the waveforms vi an-U
Fig. 2.

lbe at
d M,2 0f

case the local amplituede ratio is simriply xt nuniercally,
and p - x42

It will frequently be assuined. tha-t the varimbles xv
follow a Rayleigh distributton wath den'sity aml dis
tribut01n functions

p(xj) 2xve- P(X) = 2-$ri (9)

respectively. A plot of the Rayleigh deinsity furwctioi is
given in Fig. 15 All distributions considered. in this
paper are zero for negative values, and expressiois such

i(t) as (9) are to be understood as referring to positive valuLes
x1t only. Writiing the Rayleigh distribution in the to ru (9)

i -mplies a particular cioice of scale; in pairticular, it iuri
plies that (axj) 1 The Rayleigh distr bt;X.lion osoften
Wriitten with an iarbitrary scale factor, sav

P(y) 1 e -y /R t(y) _2;PS
.RI

(10)

(t)

ng(t)l|lis *P 4 plli-.MJj .Ifd ilh A AA AIM11 ah

Fig. 2--Signals ai-nd noises in two diversity cha-in ies

Assumption (D) is not particularly illustrated in Fig.
2, and could not be successfully illustrated there because
the period TF required for approximate indepeiidence of
the xj is much greater than the total scale length of Fig.
2. If the xj were plotted throughout an interval of
length Ti and the graph were then compressed to the
lenigth of Fig. 2, the resultinig cuLrves would resemible the
waveforms illustrated for vi and a2, except that the xj
would be non-negative and would niot usually be symn-
metric about their mean values. In particular, the xj are
not locally coherent in the sense of (B), where this
"locally" refers to intervals of length 7 l. Note that dis
tributions or averages of the xj or quantities dlerived
therefrom, e.g ., (X2), refer to intervals of lerigth 7P,
Such averages could be distiniguished by suitable nota-
tionr e.g. ( )1, but it will simnplify the appearanice of
various expressioins if the context is relied tiupo to miiake
elear whether a short-terfim or intermediate-term aver
age or distribution is min-eanit.
Most of the work below is concerned with signaL.

noise-ratios, and from here on the word "ratio," is to
meani "SNR." This will be qualified as ai amplitude
ratio or a power ratio as the context requires. pjxj2/ni 2

will be written for the local power ratio in the jth chan-
nel, and xjVa\ ;), is, sininilarly, the local amplitude
ratio. We shall often- take nin2 1,j 1, 2, ,* -

, in which

in which case ty2) 2R. However, the data below are
given in a formi that is completely independent of such
scale factors, un-til Section XIII. This saves conside,rable
clutterinig of the lammdscapc below. Simnilarly, a.2
will often be taken instead of nj12- no, for exanipIe.
For, when a) 1, thee yj.is exactly the local amplitude
ratio, wvhich has the distribution (9), and ,x,=X2 has the
simple distribution

G(pj) 1#- e-P' g(p a'e r )(I.1)
(Distributioni funictions wvill always be written with up
per case letters, density functions with lower case
letters.)
There are four pritncipal types of diversity combiiimug

systemis in practical use. Many of the combiners an
actual use are not puie examples of one of these types,
e., they involve approximations to, or nodificatiois

of oine of these types. However, the effect of such nmodi
fications can often, be estimated, at etast oughly. (T1e
termiin.ology uised heme is niot entirely standard.i-iideed
there is n-o generally accepted standard terminoloprgy
but is the result of careful consideration anid discussion
xirith several colleagnes ) 'Ihe ourin pre" tecihiique1s are
as follows:

1) Scanniniig Diversity. this techitque s of the
switc hed type, ie, at. any tinie, o01 o -re of tihe aj in
(6) is differemit fromi zero, an-d that onie is eqlual t'to . A
selector device scans the channels n a fxed seqnuecec
un-til finding a sigmial ahoyeA _t preset threshold, uses that
signal on-ily until it drops below threshold, atid then
seains the other than iels iri the sanme fixed sequence
until it again fiuids a signal abuove tthreshold t is often
applied to the case of two antennas supplyinmg a simugle
receiver through the switch, whichi is whv it s some-
times called aitenna selection divesisty. It does not me-
quire a separate receiver for each channel, but at least
one of the following techniques will always outperform
nt We shall not consider this type in the piesent paper,
confining our attentioni to the next three. This technique
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has been analyzed (for N = 2) by Hausman [41 and most
recently and most extensively by Henze [13].

2) Selection Diversity. This is also a switched tech-
nique, but of a more sophisticated sort. The design cri-
terion here is that, at any given time, the system simply
picks out the best of the N noisy signals fi, f2, * * * , fv
and uses that one alone; the others do not then contrib-
ute to f(t). More precisely, let k denote the index of a
channel for which Pki.Pj, j= 1, 2, * * , N; then this
type of system is characterized by the design criterion

O1, for j = k, (12)
aj- 0o for j#5k,

in terms of (6). This is essentially the classical form of
diversity communication [1 ], [2 ]. Very often, the selec-
tion in suclh systems is by electronic means (e.g., by
usinig a common detector in such a way that the stron-g-
est signal cuts the others off) and is not quite as sharp as
(12) would indicate; however, (12) is often a good
approximation to such cases. A three-channel selection
diversity system is depicted in Fig. 3.

3) Maximal-Ratio Diversity. This system is defined
by the property that, among all systems of the type (6),
it yields the maximum SNR of the output signal f(t),
provided assumptions (A), (B), and (C) are satisfied.
More precisely, let p denote the local power ratio of
f(t). Then a maximal-ratio system realizes

N

P = Ep;
j3l

was actually a maximal-ratio systemn. However, the au-
thors made it clear that they were thinking in terms of
selection diversity, whatever their actual inistrumenta-
tion may have realized.) Maximal-ratio diversity has
sometinmes been called ratio squarer diversity, optimum-r
diversity, and combiner diversity. Radar systems of the
type discussed in connection with (4) and which employ
square-law detection are essentially maximal-ratio sys-
tems. The general arrangement of a two-chaniiel maxi-
mal-ratio system suitable for postdetection combiniing is
shown in Fig. 4; a predetection combiner would require
the additioni of phase-control circuitry to satisfy as-
sumption (B).

Fig. 3-Selection diversity. The fr may be predetection or
postdetection signals.

(13)

i.e., the miaximum power ratio realizable from any linear
combination (6) is equal to the sum of the individual
power ratios. Furthermore, the result (13) is equivalent
to the requireement that the coefficients in (6) be propor-
tiotnal to Fig. 4-Maximal-ratio diversity.

(14)

i.e., the nmaximum output ratio (13) is realized if and
only if the gain of each channel is proportional to the
rms signal and inversely proportional to the mean
square noise in that channel, with the same propor-
tionality constant for all channels. This will be proven
below.

(This result has several times been quoted in the
literature as requiring the weighting to be proportional
to the amplitude ratio. It should be noted that this is
correct only in the case where the local noise powers are
all equal, in which case it would be less misleading to
speak of weighting proportional to the rms signal.)

It is clear that (13) is a definite improvement over
either scanning diversity or selection diversity, which
can yield only one of the terms in the sum Epj as the
output power ratio. This observation is essentially due
to Kahn [5 ], although the form stated here can be traced
to [6], and closely similar results have been used in
radar systems for some time. (It is quite possible that
the diversity system discussed by Petersoni, et at. [2]

4) Equal-Gain Diversity. This is probably the sirm-
plest possible linear diversity technique; it is character-
ized by the property that all channels have exactly the
same gain. Thus, in terms of (6),

aj = 1,j = 1, 2, * *,, (15)

i.e., the noisy signalsfj(t) are simply added together. In
applications of this technique, the channel gains can be
made to vary in such a way that the resultant signial
level is approximately constant; however, this is irrele-
vant to the performance of the system. The imnportant
feature is that the channel gains are all equal. Note: it
is inmportant to observe that this is not the case with
conventional common-detector type diversity systems;
a common-detector combiner is essentially a selectiorn
diversity system, and an equal-gain system is decidedly
different both in instrumiientation and performance.
However, an equal-gain system- lmay well use a comnioni
AGC detector but not a common signal detector of the
usual type, as is also the case with mnaximal-ratio sys-
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tems [5 ]. A basic two-channel equal-gaiii system is illus-
trated in Fig4 5. Note that the blank boxes representing
receiveis must have the same gains, inclutdinlg coiiver-
sion and detection gains, which, therefore, must be fixed;
they could i-iot include separate, independen t AGC
systems. Also, they could not be conventional FMXl (or
similar) receivers, as the detection gain of an F1M re-
ceiver depends on the signal level. However, it is pos-
sible to instrument unconiven-tional FM detectors for
postdetection equal-ga in combining.) An arrangement
suitable for use with AGC is shown in Fig. 6. As i the
case of Fig. 4, the application of an. equal-gain combiner
before detection would require the addition of phase
control provisions to Figs. 5 anid, 6.

Fig. 5-Basic equal-gallZ riiversity.

veloped In particular, distribution functioiis will be ob
tamned for the local power ratio p of the composite
sigiial f(t), and mean values of' p, under the co iditions
discussed. Then, in Sections VI I to I1f the results will
be colmpared ard evaluatedg and the wa in whi6ythK
results5are alteied by various m todifcations of tthe ccn-
dlioIns as they occui in practieu will be ildcated

III. S LECTION DIVERSITrY

TFhe distributioni funct ion for an. N-channel selection
diversity system is particularly siniplc to obtain, pnio
vided the local njoise powers a) are monstari t Let
a) ,y j 1T 2, N and assume tha " the xi are
Rayleigh-distributed. then. the individual channel
power ratios p1 have the distribution G(p,) of (11). By
(12), the output power ratdo of the conibiniei- is sim-iply
the largest of the individual pj. Now, it the largest power
ratio is <p, then the power ratio of every cha nel is
.p- conversely, if the power ratio of every chaiJnln- is
<p, then so is -the power ratio of f Hence, the probabil-
ity of havinig the power ratio of f be <p is precisely the
probability of having the individual channel ratios adll
<p simultaneously. Since the xj are independent, by
(D) so are the p, X 2 and, henee, the piobabifity tait
all channels have power ratio <p s simply the product
of the separate probabilities that each channel in.divid
ually has a power ratio <p. Thus,

SN(P) G(p) G(p)

Fig. 6-Equal-gain diversity. The boxes "variable gain" must have
the same gain, which may include conversion and detection gain.

G(p) - [G(p) (16)
(1 - e7p)N

is the distribution function of p, the realized local power
ratio, for an, Norder selection diversity system.
The average value p of p will be required for this

system. In this case, it is most easily obtained fronm the
distribution (16). Thus,

It has been pointed out by Sichak [8]ii that, under
coniditions often- occurring in practice, equal-gain sys
tems will outperform selection diversity, and will per-
form almost as well as maximal-ratio systems. In view
of the simplicity of the instrumentation required for (15)
as compared to (14) (equivalently, see Figs. S and 4),
this fact is of great practical importance. The conditions
required are that assumptions (A)-(D) mrust be satisfied;
in additionl, the xj must be Rayleigh-distributed, and
the local meani square fioises n j2 must be approximately
conistant. Under other conditions, it m-iiay not perform
as well as selection- diversity, as will be seen. Sincee
however, these conditionis are often (approximately)
satisfied, it follows that equal-gain diversity should be
more widely known than is presently the case.

In the following three sections, the principal features
of diversity combiners of types 2)-4) above will be de-

12 R. T. Adams, private communication; December, 1958.
13 W. Sichak, Fed. Telecommun. Labs., Nutley, N. J., private

communication; August 19, 1955

p(f) ppdSN (p) pY(I- e-)N e-tdp (17)

rhis integral is evaluated in Appendix VI where it is

showvn to reduce to the remarkably siniple formi

p(N) E
,,-= ,

(18)

Thus, p(') '+2 t ^+) i --) U 9 L1/6 etc.;
these values will be used below. It is clear at on-ce froin
(18) that iinLcreasing the number of' chiafiiiels in a selec-
ltion diversity systeni. yields rapidly dinlinishing returlns,
adding the Nth chantnel increases p bv only 1/N. It will
be seen, that the next two systems to be considered can
perform much better in this respect, in conisequenice of
(B) and (C). HFowever, it should be noted here that
neither the functioning of a selectiofi diversity systemn
nor the statistics developed in this sectioni depenrd on
assumiptions (B) or (C), which are not required here The
significance of this fact will be discussed.
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IV. MAXIMAiL-RATIO DIVERSITY

The first order of business is to establish (13) and (14).
In order to do this, it will be convenient to use a
mathematical device known as the Schwarz inequality.
This is not specifically related to statistics, but is a gen-
eral result of great importance in many fields of pure
anld applied mathematics. One form of this states that
if ul, u2, * * *, uUN are any N real numbers and v1, V2,

VN are any N real numbers, then
-N - 2 N N -

[ ]2jVj [ Uj22][ vi2]. (19)
j-I1 j-l j-1

The proof of this, which is quite short, is given in Ap-
pendix II. Note that if uj1-aj\V(nj2), v1j=x1j/V(nj2),
then (19) takes the form

- iN -i 2 N _ --N -

. - < E a32nj2 E; (Xj2/ 2)
j==l j-=1 j-1

which, since pj =xj2/n;2, can be written

LE ajxj < E aj2n,,2J L _
==l j-1l j=1

NowN, inl (6), let us write
N

s(t) = E asj (1) 7
1l

N

nQ() =E a n1j(t),

so that f(t) == s(t) +In(t), and p -= 2ln2 is the local power
ratio of f. But (all sum1s from I to N)

S2= ([Z a3j2)

and by assumption (B)
= (M2[ ajxj]2)
= (mK)l [ E ajxjI2

anid since [ Eajxj ]2 iS locally constant and can be taken
outside the average, and sinlce m2= 1,

v =[E aajx1j. (23)

Furthermore,

J2 2([ a31)

= E3 ad2rt,nj2 (24)

by (61) and assumption (C). Thus, using (21),

_(S) _ L atil< Zpax (25)
K
=2)E- a X

which proves that p canniot exceed fpj On the other
hand, if aj=xjnj2, then

[E Xj
2 /;/3i]2 [E pi]2

A,Xj2/P; 2 L pj
= E pi,

so that p= I:pj if a, =xj/nl2, anrd similarly if a3

(26)

(20)

-tk(xjInj2) for any k7-0, thus provinig (13) and (14).
[Readers acquainted with the Schwarz inequality for
complex numbers will recognize that it may be used to
include the case of positive or negative xj, or even com-
plex xj. This is, however, only a more formal way of in-
cluding assumption (B). ]

It is interesting to note that the only purely statis-
tical fact used in this development is that averaging is a
linear operation, as discussed in Appendix 1. No use was
made of distribution functions or any similar apparatus.
However, it is important to observe that each of the as-
sunmptions (A)-(C) entered in a very vital way.
We now consider the statistical properties of the local

power ratio p. The first point to be nioticed is that
p -= p implies

(27)
f-il

without regard to the distribution of the pj or the pos-
sible dependence of these variables. If, in particula-,
pj=1, j-1, 2, * *, N, then

(21) N(AT) = N. (28)

This behavior is in marked contrast to the correspond-
ing relationship (18) for selection diversity, whicl in-
creases much less rapidly with N than (28) does." (It
should be clear that the notation p(N) is used in a some-
what flexible way; fi(N) is a different function of N il
(18) than it is here.) The average value of the local
power ratio of the output of an N-order maximal-ratio
system is simply 10 logio N db above a single channel.

In order to obtain an explicit distributioni of p, we
shall employ the same assumptiolns used for the selection
diversity case, namely, that the xj are independent Ray-
leigh variables and that n12 1, j- 1, 2, * ' ', N, so that
the pj have the exponential distribution (11). Thus we
are interested in the distribution of the sum p=Ipj of
N independent ranidom variables, each with the dis-
tribution (11). This problem canl be treated by a sinmple
application of characteristic functions,2 as indicated in
Appenidix III. Alternatively, it can easily be solved by
usinig the geometric approach mentioned in Appendix I,
without referenace to characteristic functions. (Onie inl
tegrates the joinit density funictioni

exp [-(Pl + P2 +- * l + PA)j
over the N-dimensionial volume bounded by the hyper-
plane PI+P2+ +pN- p anid the coordinate hyper-
planes.) In either case, the result, writing GN(p) for the
desired distribuLtioll fuinction anid gAr(p) for the associ-
ated density function, is

1
gN(P) - -- pN-'e- ',

(N-1)!

GN(p) iJ yNlteNdy.
(AN -

H For large N,', (18) is approximately loge NV.

(29)

(30)

1959 1083



PROCEEDINGS OF TIHE IRE

By using G1(p) 1 -e-P and the recursion relation
GN(P) =GN (p) -gN(p), easily verified by an integra-
tion by parts, we have

G2(p) 1 ( + p)e,

G3(p) 1(+ p + _p er-PI

G4(p) +-(t+± + p+e-a)

and, in general,
N-1 pk\

GN(P) 1 Ee(P (31)
kzO k /

which can also be written

GN(P) = 2( (32)

The utility of the form (32) is that it indicates the ap-
proxi-iiations

pN pN

GN (P)-ct N
eP

N
(33)

are accurate for sufficiently small p. The distribution
(31), kniown as the gamma distribution, is easily com-l
puted for the integral values of N of interest here and
has also been tabulated." It can also be identified with
the chi-square distribution with 2N degrees of free
donm "

The origin of the maxiinal-ratio distribution (31) has
sometimnes been incorrectly attributed (in Pierce [i5]
anLd Packard [14] among others). That (31) is the dis-
tribution function of sums of squares of Rayleigh var
ables has been known in radar circles for quite some
time. In. the conLtext of liaximal-ratio diversity coin
biners, the result (31) for arbitrary N was first pub-
lished in March, 1956, by Altmn anrd Sichak.)' (It also
appeared independently in an unpublished memoran
dumi at about the same time.) Curves of (31) for several
values of N were subsequentlv published by Staras [9].

V. EQUAL-GAIN DIVERSITY

Recalling that the relations s2 [ ajXj]2 of (23) and
E j2p_2 of (24) did not depend on a choice of the

i K. Pearson (ed.), "Tables of the Incomplete r Function,"
Cambridge University Press, Cambridge, Eng.; 1946. In his notation,
he tabulates

1( ,P) Itwedtj
so that his p is here N 1, and his u is here p/lVN.

18 E. S. Pearson and H. 0. Hartley (eds.), "Biometrika Tables
for Statisticians," Cambridge University Press, Cambridge, Erg.,
Table 7, p. 122 if.; 1954. Short tables of the x2 distribution are given
in many other statistical tables and in most textbooks on statistics.
See, for example, H. Cram6r, "Mathematical Methods of Statistics,"
Princeton University Press, Princetoni, N. J.; 1946

17Altman and Sichak, [81, p. 55, -middle of right hand column,
with (aL)2 p

aj [i.e., they hold for any combin-er of the tvpe (6), pro-
vided. assumiptions (A)-(C) are satisfied, anid bence hold
in pariticulai foi aj- 1, j 1, 2, 9 , NII we have

(34)

anid
.n

-t2 snu2
j i'

(35)

for an equal-gain system. The relation V(s2) =2xj fLiom
(34) is simply the well-known fact that the rms value
of a sum of coherent signals is equal to the sun of
the individual rms values, while (35) similarly expresses
the fact that the average power of a sum of uncorrelated
signals is equal to the sum of the individual average
powers. Some communicatioi engineers express (34) by
saying that coherent signaals 'add linearly"; however,
this lan-guage is both formally neaningless anid cot2
ducive of an irmperfect understanding of the situatior,
anid is better replaced by "add coherea tly "if some such
expression is necessary.

From (34) and (35), we havc

(36)

for an equal-gai system. In order to develop compara-
tive statistics for this, it is again assumed that the
tj2 lj- T 29 . . . N and that the x jare independent
and Rayleigh-distributed. Since n/2 1,p [ "'xj]2/N.
Put

I
at=- VN-\Y X (37)j

It is clear that the distribution function of p will follow
immiediately from that for u. The distribution of a sum

of N Rayleigh variables, each with the distribution (9)
is accordirigly of initerest. Unfortuniately, this problem
is not nearly as tractable as in the maxinal ratio case.
The characteristic function of a Rayleigh variable is
not expressible in an irnmediately useftil formii We are
here essentially forced to rely oii the geometric ap-
proach mention-ed in Appendix I. Let BN(v) denote the
distribution funiction of (37). For N-2, say u=-x+y
it can be seen that B2(U) is giveni by the irtegiral of the
joint density fun-ction 4xye- (2'+Y) ovcr the region of the
x-y plane bounded by the line x+yj uaand the co-
ordinate axes (FIig 7). (We can stay in, the first quadrant
because the density function is zero ini all other quad
rants.) It is casy to see that this is

B23(U) 4xye (x+82)dxdy
O x

(38)
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x
Fig. 7-Region of integration for (38).

By completing the square in the exponent and making a
few other routine manipulations, this becomes [8]

B2(u) = I e-- (-,/r/2)ueu 2fjH( 2)' (39)

where

2= .rH(x) =-= -I2di
V/r 0

is the error function and is tabulated."8 Thus the dis-
tribution function of p=u2/2, A2(p), is B2(V/2p), i.e.,

A2(p) = 1e- 2P - /pe-PH(Vp), (40)

and is readily plotted.
Corresponding to (38), it is easy to see that t:he distri-

bution function of the sum of N indepeiident Rayleigh
variables is

Bit u)-.f iv

BN (X) = 2NJ

x x x ~e-(x,2+, +x r2)d x (

which is simply the integral of the joint density function
over the N-dimensional volume bounded by the hyper-
plane X+X±2+ * ' * +XN=t and the coordinalte hyper-
planes, as in Fig. 7 for N=2. Unfortunately, the inte-
gral (41) is quite as frightful as it appears; numerous

workers-going back to Lord Rayleigh himself-have
tried to express B (u) in terms of tabulated functions,
but with no success if N>3. However, BN(u) has re-

cently been tabulated,19 and curves ofA N(P) = BN( VNp)

18 "Tables of the Error Function and its Derivative," Natl. Bur.
Stand., Washington, D. C., Appl. Math. Ser. No. 41; 1954. The error
function or, for that matter, (39) itself, can also be expressed in terms
of the much tabulated normal (Gaussian) probability distribution
function. See "Tables of the Normal Probability Functions," Natl.
Bur. Stand., Appl. Math. Ser. No. 23; 1953. Brief tables of the
normal distribution function appear in most statistical texts, e.g.,
Cramer, op. cit.

19 W. C. MIason, M. Ginsburg, an-d D. G. Brennan, "Tables of 'the
distribution functions of sums of Rayleigh variables, " td be published.

lhave beern constructed from these tables for the present
paper (in Section VI) for N-=2, 3, 4, 6, and 8. An oLt-
line of the method of computation is sketched in Ap-
pendix IV.
We shall next obtain the average values p(N) for the

equal-gain case. Although these averages depend on the
distribution of p and the distribution of p is niot given
in a particularly explicit form, it is nevertheless easy,
following Appendix I, to obtain the P(N). Sin-ce ni2= 1,
(36) becomes

- [ Xj=] AT[ E Xj +-E XiXjX

Since the xj are independent, xjxj =xxj if i-j, so

E x 2+ Z~j

=N1 -jZ
T [ E XjN
Nj=l i

usilng the fact that xj2=1, j-1, 2, . N. Let '3 = r,
j-1, 2, . ., N. By considering the terms of the sum

1j54j ujj as the entries from an N by N matrix with
the main diagonal deleted, it is seen that there are
N2.-N=N(N--1) such terms, each equal to r2, and so

the desired average value. The constant r2=(j)2 de-
pends on the distribution of the xj. For the Rayleigh
distribution, r2= 7r/4-O0.785. For aniy distribution,
r2- 2/X2 is a dimensionless constant between 0 and 1,
but values of r2 much less than 0.785 are relatively in-
frequent in observed fading distributions.

It is thus seen that p increases linearly with N, as was

also the case for maximal-ratio systems. The only dif-
ference is that (28) increases with slope 1 while (44) in-
creases with slope r2= 7r/4 for Rayleigh fading. But the
absolute maximum by which (28) can exceed (44) is 10
logio(4/r) = 1.05 db, aiid this only in the limit of an in-
finite number of channels.

VI. CANONICAL ONE-HOUR PERFORMANCE

The three systems will first be compared simply on

the basis of the average values of the local power ratio
p of the output. This is done first in Fig. 8, for N 1,
2, 3, , 10 channels. The maximal-ratio points are

values of 10 logio N from (28), the equal-gain points are

10 logio [1 +(N- 1) (r/4)] from (44), and the selection
diversity values are

1
N

10 logio E (Il/k)
i ~~~~~~~~~k=l

from (18). Since Pj = 1, these give the increase in decibels
in the average local power ratio over a single channel.
The data of Fig. 8 for N= 2, 3, 4, 6, and 8 are presented
from a different point of view in Table I, lwhich gives

y

x + y -U-

(42)

(43)

2(N) = I + (N -)rl, (44)
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NUMBER 0F CHQANNELS

Fi;ge 8-Diversity iLmproveinent (in decibels) in ivTerage SNR,
fcor inldepenadenltly fading 3Rayleigh-distribulted locally (lcihe flt
signsals in locally inlcoherent nloises wiih constan:t local rmis nvalues.

TABLE I
ZOMPARkTLVE AVERAGE SNR (SAMSECoNETIONsD s IFII. 8)

Numnber of Numnber of DB3 by whichl Maximal-Raltio Lxsceeds
ChanLnels -
N Equal-Ga.in - ~Selectionl One Clha mlel

2 O.~049 1.25 Cl0
3 0.67 214L 4177
4 0.* t76 2 8)3 6 02
6 t)~085 3 879 7178

8 Oa9O~NUBE OF CIIANNELS

tshgedifferences betwe nosthe moaximsal-ratio values ad
thLe lower: curves of Fig. 8, oultilng the zero axxs as a
CurveAThe last entry iSN te equal-gaiM cOlumnDiS essen-

tially the assertion that noc mxattcr how\ far the culrves
of Fig. 8 werecofNtinmued the toptwiowoMPd neio difer
by more thLan 105 db, although they would get farther
ad fartheN away flroa the selectio 1 diversity curvc aied
the base axis.
A brief (liscussionl of the signxificanlce of these data is

inl oider4 These results are usefu6l fo - example, i0 esti
mating relative ave8age system 7apacities, oi in other
circufmstaences where the average valure aloe of p is of
interesteMost recentyt diversity systelms havne beeisde-
signed for a specified percentage of reliabilityc.ev, a

90 70 50 30 10

PERCENT OF TIME LECVE EXCEEDED

Fig. 9-DuIal diversity distributionls conditions of Fig. 8.

specified percentage of time duriig whith the systtem
performance will exceed some given criterion I This re
quires information about probability distributiouis. '11hi5
approach is appropriate whenever high reliability is a
primary requisite, e.g., in iniportanit military comnmunii
cation systems, or in relay systems carrying commercial
televlisiori programs However it should be poiuted out
here that solme svstems do iiot require very high locat
reliability or they may effectively achieve it by other
neanls, such as coding. In suclh crcumstaicess the data
of Table I may be more meaninlgful thIran iesilts based
oil the distributions to be presenited.

Let us next compare the probability distrilbhtions of p
realized by the three systems for different ordeis of di
versity. the case N 2 (dual diversity) is illust sated in
Fig. 9, together wvth te distribution of p for single
channel with Rayleigh fading foi comparison. I he terxn
4 iiediani in the designation of tlie oi iit scale o

Fig. 9re)ers to a valtix0 of a ra(d10m varable x fcr
whichl 1P(x()) i, e., a value xo for witich x < sx for A0
per cent of the tim-e aid x>xi for 50 pr (it of the
time. 3I hus, ttie ledian pi of the one channel disti ibu-
tioil (11) is obtained bs settis1g G(po) and solving for
po, from1 which polog,2-0.693. The crdiiateca1 of
Fig. 9 is expressed in decibels relative to tfhs pos That
is, tlle N 2 curres of Fig. 9 are plots of 10 logis(p/po) vs
100 [1 D2(p)]j where D2(p) is respectively,12(P) Of
(31) (inaxinal-ratio), A/2(p) of (40) (equal gami) and
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L SELELTION DIVERSITY, N - |-I - - -

-RAYLEIGH FADING

0 , , / A r -28db AT 99.9%
3 /v , / / t -38db AT 99.99%

39999 99,9 99.5 98 90 TO 50 30 10 2 0.5 0.1 0.01
PERCENT OF TIME LEVEL ES FEDED

Fig. 10-N=3.

999 99.8 99 95 o0 60 40 D0 5 0.0 0.05

MAXIMAL-RATIO DIVERSITY, N 4

| EOUAL- GAIN DIVERSITY, N=4

L
III IVV V IA SELECTION DIVERSITY, N =4||

o V X/1 / | ~RAYLEIGH FADING

o | l l l ] + | { ~38db AT 99 99%|

99.99 99. S995 98 90 TO 50 30 i0 0 0.3 0.1 0@04
PERCENT OF TIME LEVEL EXCEEDED

Fig. 11 N=4.

Fig. 12-N=6.

Fig. 13 N=8.
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S,2(p) of (.16) (selectioni). 100 [I -D2(P) j is the pei cenlt
of time orduinate cxceeded. The Ravleigh fadirg curve
is 100 [i G(p)] of (11). (IFor the distiibutious coii
sidered here, the miedian values of p do not differ from
the coiresponding mi-ean values by miore tha i about
1_.6 db. The reasoii. for usling the median value of the
Rayleigh distribu-Lion as a rcteren-ce hieire is that this is
commionly presen-ted as an- cxperimien-tal datum, siince
median values can be read directly from the distiibution-
function determinied by a totalizer. )

It is clear that the uifferences bet iwecn -thie vairinns
dual diversity curves of Fig. 0 are quite smi-all, especially
in, com-parison- to thie differei-ice betwecni any7 o i-e of their
and the Rayleigh fading curve. Foi example, the 99.99
per cent exceeded level of the selection- diversity cuirve
i's almost 20 db above the Rayleigh curve, whilc the
maximal-ratio curve is only 1.4 db above the selectioni
curve at the 99.99 per cenit point. Evidently one would
choose am-onig the three types of two-chann-el systemis
on the basis of Fig. 9 onily if onie were fighting for the
last decibel. Eveni theai, one would wrish to make
very sure that that last decibel. could actually be realized,
the selectioii diversity curve does niot depenid on thc
importanit assumption-s (B) and (C), which miust be
satisfied. for the equal-gain and maximal-ratio systems
to work properly, as will be seeii.

However, the differences in the performiance of the
various combining techniques become moire imiportanti
as the n-umbei N of chaniiiel-s is inicrcased. The m-iaximal-
ratio, and equal-gain systems improve iiiuch mnore
rapidly thani selectioni diversity does, as cani be seen- in.
Figs. 10- 13, which give the dlistributions for N = 3, 4, 6,
and 8, respectively.20 (Note that the ordinate scales of
Figs. 9 13 cover different ranges.) Flowever, the niaxi-
mral-ratio and equal gain curves remiaini quite close to-
gether; indeed, the difference between. them is hardly
significant eveni for N 8. This is on-e of th-e tarts that
makes equal-gain diversity quite attractive anid sug-
gests that there are man-y applications where it should
be exploited. It can- be seen that the maximial-ratio anid
equal-gain curves diffei approximately by the constants
in the equal-gain column- of Trable I, that is, the equal-
gain. diveisity distributions can- be approximated quite
well by tran-slatin-g the maximal-ratio distributions
downiiward by the values in the second colunni. of Table I.
The data of Figs. 9-13 are useful in the designi of

radio commun-ication systems and radar and i1avigation
systems of the type discussed ini the Introduction. Ginc
such applicationi is as follows. Suppose a high-i eliability
commiunicationi systemi is to be designied for afixed in-
formation rate, which canniot be maintained whenyene
the ieceived local power ratio p drops below a certain
value. That is, it is dcsiied to mainitaini the localt power

20 High-resolution graphs of the curves of Figs. 9 13 are available
hrorn the author to those having serious need of such graphs. Letters
requiestinig the same should describe the nature of said need, Re-
quiests on postal cards or form letters will not be honored. This offer
may be withdrawn at aniy time.

ratio above a certain value for, nay, 99 pet- cent of the
timie during ai interval of length TB for which thc
curves of Fgs. 9 13 are applia ble if the rlevait (02.
Icitions aic satisfied, Referring to thi99 pci cintx
~ceeded values of Fig. 9, it cian he seeci that thi diffcreiice
hetw ern tue Rayleigh fadcing curve and the dlual selec-
tion diversity curve is about 1.0 d-b at the 99 pci ceat
poin.t But this implies that whatever tiani-ismitter powci
wiva required for a single-chaniicl systemai transniitte
of 10 db less power ironIc he adequate if dnua1 select io-i
diversity were eniployed at the recei.ving tecin oal. uf
course, pairt, of the reductiooi could be applied to the
anitennia gains, etc. Similarly, referei ce to the 99 pe
cent values of Fig. I11 shoxv that- the use of fourth-ordcr
maxin-ial-ratio diversity would en-able a reductioii irl
trai-isnitter powrve of 19 db relative to that rveqniicd for
a single-channel system-i
This reduictioni in transmitter powver icquiied fooi a,

giveimi grade of local reliability has been- called 'diversity
gail." Thie termi was apparently initroduced by ,jelonc,k,
et a1. [3). Here the term. "local reliability diversit yain,"
or simiply "local reliability gaiii," is used to emipha.size
the fact that it i-s i-iot again in thie usual se ise aiid that
it depen-ds very heavily on the local, reliability perceit-
age chosen. The depen-dence of the local reliability gainis
ot'i the perceritage selected. can' Fe seev ii1 -Tal
which gives the values realized by -the three types of
systems foi, N=- 2, 3, 4, 6, and 8 corresponcding tc locai
reliability percentages of 99 per cenit an-d 99 )puci cenit

TABLL 11
LOCAL RELiAB311ITY GAINS (IN DB), CONDITIONS OF FIcG. S, F01

99 PER CENT AND 9909 PER CENT LOCALc RELIABILcrY

N

2
3
4.
6
S

Selection-

99 99.9
per cent per cc ]t

to
14
16
18
19

14.5
201
22, 5
25 5
27

Equal Gain Mlaximal-Ratio

99 199,9 99 399

per cecit per ce'nt per ient per centt

I11 15.5 1 2 16

16 21 5 16,5 22
So,, 25 19.5 26

21.,5 29 22,5 30

23~5 i315 24,5 32 II

It can, be seen that the values of 'Fable 1I aic initch-
larger than those of Fig. 8. 'They cani be made to appeai
event larger by coi-iputinig the local reliability gains cor
responding to 99.99 per cent oi- highier percentagcs; how-
yener conisidering thec uresenit or iinniediatcly foreseeable

state of the art, such valujes would n-ot he menica fuil
Among other things, the Rayleigh distribution does iioat
provide ani accurate yiodel for actual fading distribif-
tion-s outside of the 0.1 per cenit to 99.9 per cent range.

Various modification-s anid extensions of these c oi -

sideratisons as they occur 'in practice wivll be eon-sidered
next. However, it should be noted that there arc m2iny
practical situations ifi which the conditionis aesunmed
above are realistic appioximations, and for which the
results cai-i be used without significant nodificatdois.

June



9Brennan: Linear Diversity Combining Techniques

VI I. N ON-RAYLEIGH FADING DISTRIBUTIONS

Only iti the case of long-range UHF and SHF tropo-
spheric transmission does it appear that observed fading
distributions are most often Rayleigh, wheni observed
in intervals of length T1. For short-range UHF circuits
and normal or scatter ionospheric transmission at
VHF atnd below, other distributions are often observed.
Indeed, at frequencies of a few megacycles and below,
atn accurate fit to the Rayleigh distribution is more
nearly the exception than the rule. It is therefore of in-
terest to discuss the way in which these results are modi-
fied by other distributions, assuming that the other
conditions still hold.

Certain of these results are easily discussed. The
maximal-ratio curve of Fig. 8 and the last column of
Table I do not in any way depend on the fading distri-
bution and are not modified at all. In order to discuss
the effect on the distributions of Figs. 9-13, it will be
convenient to return to the geometric approach nien-
tioned in Appendix I and consider the case N 2 chan-
nels. Let x - xi and y- X2 be the local amplitude ratios
of the two channels. The probability that a miaximal-
ratio system has a local power ratio <p, i.e., the maxi-
mal-ratio distribution function G2(P), is obtained by
integrating the joint density function of x and y over
the interior of the quarter circle x2+y2-p in the x-y
plane. Similarly, the equal-gain distribution function
A2(p) is obtained by integrating the same density func-
tion over the triangle bounded by the line x+y =-2p.
The corresponding region for the selection diversity dis-
tribution S2(p) is the square bounded by x=VPp
y - Vp. These three regions are shown together in Fig.
14. Now, the fact that the maximal-ratio system out-
performs the other two is intimately connected with the
fact that, for any fixed p, the probability that the maxi-
mal-ratio output ratio is <p is smaller than it is for the
others, that is, G2(p) <A2(p) and G2(p) < S2(p). This is
reflected in Fig. 9 in the fact that the maximal-ratio
curve is strictly above the others. The reason for this
can be seen at once in Fig. 14; the region of integration
for the maximal-ratio system is smaller than it is for the
others and interior to both of the others. Hence, no
matter what fading distribution is involved, the joint
density function will still be non-negative and, therefore,
its integral over the maximal-ratio region of Fig. 14,
i.e., G2(P), will still be smaller than for the others. Thus,
the maximal-ratio curve of Fig. 9 would be above the
others for any fading distribution.

Of course, this result could also be seen from the fact
that the maximal-ratio system yields an output power
ratio that is indeed maximal. But there is no similar
fact to use as a guide in comparing the other two, for
which we must rely on Fig. 14. It can be seen there
that the areas of the selection and equal-gain regions
are identical and that neither region includes the other.
This would lead one to suspect that the relative per-
formance of selection diversity and equal-gain diversity

depends on the form of the fading distributioni. In order
to discuss this, consider the nature of the possible de-
partures from the Rayleigh distribution.

For purposes here, two cases may be distinguished:
fading distributions more disperse (broader or more
smieared-out) than the Rayleigh distribution, which are
associated with frequent or persistent deep fades, and
distributions less disperse (niarrower or shallower) than
the Rayleigh distribution, which are associated with
shallow fading. These cases are illustrated in Fig. 15,
together with the Rayleigh distribution. Curve (b), one
of a family of distributions given by Rice, illustrates the
less disperse or shallow fading often encountered at fre-
quencies below UHF.21 Curve (c) illustrates the more
disperse case sometimes found in short-ran-ge UHF cir-
cuits and in high- and medium-frequen-cy systenms.

y
/2 _ L /EQUAL-GAIN

SELECTION''':5P yy, yS p

/ \1 MAXIMAL- RATIO

0 X

Fig. 14-Regions of integrationi for three types of dual diversity
systems, after Altman and Sichak [81.

Fig. 15-Representative fading distributions. (a) Rayleigh density
function. (b) Representative Rice distributiont. (c) Typical dis-
tribution of the unpleasant sort often observed at frequencies
below UHF.

Returning now to Fig. 14, it is not difficult to see that
independent shallow fading will tend to improve the
performance of an equal-gain system. This is because
the height of the joint density function will be small in
the region near the origin commion to both the equal-
gain and selection regions, and the bulk of the density
fuiiction will be "pushed out" along the diagonal where

21 R. WV. E. McNicol, "The fading of radio waves of medium and
high frequencies," Proc. IEE, vol. 96, pp. 517-524; October, 1949.

1959 1089



PROCEEDINGS OF I'HE IRE

it will contribute more to the integral over the selection
region than to the integral over the equal-gain region.
Thus, an equal-gaini combiner will con-itinue to mtitper-
forml selection diversity in the presence of shallow fad
ing; indeed, its performiance will more iiearlv approxi-
mate a maximal-ratio system. Ehis can also be seen
directly by considering the basic operation- of a two
channel equal-gain system, anid visualiziiig the case
where the two signals are approxiimately constanit.

However, this is not true for the miore disperse distri-
butions. Consider first the case where the inidividual
amplitude ratios x and y are rectangularly distributed,2
say on 0.x< A and 0<y.A, with a joint deinsity func-
tion p(x, y) = 17A on the square x<A, y<!A. It is then
easy to see that for values of p for which both the equal-
gain and selection regions fit iniside this square (i.e, for
V/2p< A, or p<A2/2), their distribution funictlions are
identical. That is, with respect to the smaller values of
p, the equal-gain and selection systems yield identical
performance. Next, suppose the independeent amplitude
ratios are exponientially distributed, say e and e -, so
that their joint density function is e(x+y) Noting that
the contours of constant height of this denisity function
are the lines x+y=constantt, parallel to the bountdary
of the equal-gain region, it is easy to see that the integral
of this density function over the equal-gain region- is
strictly larger thani it is over the selection region. T1his
can also be verified by direct computation, as the rele-
vant distribution functions are easily evaluated Hence,
for exponential amplitude fading, the local reliability
gain, of dual equal-gain diversity is, for any percenitage,
strictly less than it is for dual selection diversity.

It is thus seen that the relative performance of selec-
tion diversity and equal-gain-i diversity depends to some
extent on the fading distribution involved. Conse-
quenitly, the application of equal-gain diversity should
be viewed with a miodicum of caution in cases where
very disperse fading distributions might be encountered.
However, the exponential distribution used above is
probably extreme in this respect,22 and eveir for this
case, the equal-gain systenm is aiot significantly poorer
thatn selection diversity. For high reliability percentages,
the local reliability gain of the dual maximal-ratio system
over either the selection systemi or the equal-gaii system
is exactly (approximrately) 10 loglo (4/7r) 1.05 db for
rectangular (exponential) fadinig.

It was noted above that the maximal-ratio data of
Fig. 8 were independen-t of the fading distribution. How-
ever, the mean power ratios of equal-gain systems do
depend oni the distribution, but only to the extent of the
parameter r2= (j) 2/xm of (44). For the rectangular and
exponential distributions considered above, r2=4 and
r2 -= , respectively, indicating that the average local

22 So far as conventional applications are concerned. It should be
noted that it is not extreme, or even sufficient, for postdetection dis-
tributions in FM systems, or special applications, such as that of
Price and Green, op. cit.

power ratio of an equal-gain system is not substantialy
degraded by evem very disperse fad iig distributions.
fUnfortunately, iio sucth simple andctler dependeince of

the selection cdivesity mean values on the rfoini of the
distributioni exists. T'he result p >17 (.lk) of (1$)
isis tnin]ately wrapped ui withtihe Rayleigh distrmbt
tion, not merely the first two nionvi ntts. But it is cer
tainly clear that moderate chan-iges in. the fotrn f tIe
fading-distribution could not lead to substarntial changes
in the selection dimerscity vatlues of Fig. 8

VIII. RE,LATirVV EFFECTS OF CORRELrTEhD FAIDING
Two smoothly varying randoni variables such as the

xj cannot, ir general, be strictly independent. Of course,
they may fail to be even- approximately independent,, It
is therefore of i.nterest to estimate the effect of do
pendent fading.

It is convenient to estimate this in terms of a paratinie
ter called the correlation coefficient. For two racndom
variables x and y with positive variances' c and ,2,
this s defined by

Px
(x x)(y - ))

0xo-y0'

which reduces readily to

Pxy
xy 4x

0. o,g

If x and y are independen-t, then xy =Xvy Hence, f x
and y are independent, then p, =0 It is known" that
-1<p,.1, and p, +1 if and only if y =ax
+-b (a> 0)e x and y are said to be correlated if p#0, uan-
correlated if p = 0 and partially correlated if 0< |p <1
The problem of correlated fading in selection diversity

systems has beetn studied by Staras [71 and otherss3 1,
[11] [13] (See Appeirdix V for certain questionis re
lated to this sujbject.) Packard [141 and Bolgianio, et
W.i' have studied this problerr for two-chabunel maxi-
vial-ratio systemvs. uite recently, Piere"24 and Stein"
independently studied correlated fadirng ir N-channel
imiaximal-ratio systems,iand their results will be pub
lished in the mvear futunre. Sort e of Staras' results wvill
stiply be reproduced here in Fig 16, in a forni suttable
for direct comparison with Fig. 9. The ciurve p 1 is the
Rayleigh fading curve of ig 9 while p - 0 (denotes t.he
dual selection diveisity curve of that figure. It cam be
seen that approximx ately half of the uncorrelated local
reliability gain is realized eveen for p 0 8, and tIhat the
effect is negligible for 0 <p <0 3
To consider the relative effect of conrelated fading on

23 Crametr, op. cit., p. 265, or other standard sources. It is also
known that the vanishing of p, does not necessarily imply that x and
y are independent.

24 J. N. Pierce, Air Force Cambridge Res. Center, Bedford, Mass.
private communication.

25 S. Stein, Hycon Eastern, Inc., Cambridge, Mass., private
communication.

1090 Ifune

(45



Brennan: Linear Diversity Combining Techniques

0

-2

-4

-j
w
z -6

0

W -8
0

LLi
0

-10

o

LU

0
m

-14
.0

-16

-18

9995 99.8 99

K/ife
99.99 99.9

tX~~~~~~~~pt
2// j t/ (RAYLEIGH FADING)

99.5
l

98

PERCENT OF TIME LEVE

Fig. 16 Dual selectioni diversity distribu
for various degrees of corr

the other systems, refer once again
terms of the joint density function,
effects of correlation: first, the n
function tends to concentrate arou
y - x; second, the mass tends to b(
the origin. The first effect is simply
fact that as the correlation increa
that y can differ appreciably froi
creases. (Variables with the same d
considered here.) The second fact c
the behavior of Fig. 16. Given thes4
cult to see from Fig. 14 that appreci
if anything, tend to improve the p-
gain diversity, relative to selection c
all three systems degrade in an abs
creasing correlation.) Indeed, as p
the density funiction approaches zer
y =x, it is clear that the equal-gair
the maximal-ratio system in perfori
be seen by considering the basic C
systems. From these considerations
visualize the way in which the maxi
gain curves of Fig. 9 follow the selec
of Fig. 16. At p= 1, the dual maxii
gain curves coincide and are unifor
selection curve for p = 1.
With respect to the average vw

maximal-ratio data are unaltered t

The equal-gain values actually increase toward the
maximnal-ratio values with increasing correlation. This
can be seen either from physical considerations, or by
noting that the terms xicj of (42) are replaced by xixj;
for p>O, xixx>xixj, and in fact xixj approaches 1 as
pij approaches 1. In contrast, the selection diversity
values of Fig. 8 approach zero as the pij approach 1, as
is easily seen.

In space-diversity communication systems, an an-
tenna separation of 30 to 50 wavelengths is typically
required to obtain correlation coefficients consistently
less than 0.3. However, 10 to 15 wavelengths will ofteni
yield coefficients less than 0.6. Van Wambeck and
Ross26 measured the performance of certainiHF selec-
tionl diversity systems directly, without measuring cor-
relation coefficients, and apparently found that even
shorter spacings led to useful results. More recenitly,
Grisdale, et al.,5 have obtained numerous data bearing
on this question in the 6- to 18-mc region.

IX. VARIABLE LOCAL NOISE POWERS

Many of the data above were obtained on the assump-
tion nj2 ==constant. This will not be usually strictly true

90_7050 and in many cases will not even be approximately true.

L EXCEEDED If the noises are principally due to interference fromremote sources, the V/(nj2) themselves may well follow
tionis, Rayleigh fading, the Rayleigh distribution, a case that has recently been
relation.

studied by Bond and Meyer [12] for dual selection di-
versity. Related material has also been given by Clarke

to Fig. 14. Now, in and Cohn.27 If the nj are principally due to receiver
there are two major front end noise, then the nj2 may be approximately con1-
rsass of the density stant; the actual amount of fluctuation to be expected
nd the diagonal line is a function of the noise bandwidth and the duration T
pulled back nearer of the local averages. This fluctuation has been studied
an expression of the by Rice,28 whose results are quite useful in determining

Lses, the probability a suitable value of T.
m x necessarily de- In terms of the analysis above, the principal effect of
istribution are being variable nj2 is to modify the distribution of the
an be inferred from pg- xj2 n12 with results as discussed in Section VII
e facts, it is not diffi- above. (The distribution of the pj becomes more dis-
able correlation will, perse as the noise power fluctuations increase.) It is not
erformance of equal- difficult to obtain quantitative estimates of the degra-
liversity. (Of course, dation in particular cases. It should be pointed out that
solute sense with in- extreme fluctuations in noise power can lead to very
approaches 1, when poor performance of an equal-gain system, which has no
ro except on the line provision for cutting off a very noisy channel, in cot-
i system approaches trast to the maximal-ratio and selection systemiis.
maance. This can also
)peration of the two
, it is not difficult to
imal-ratio and equal-
tion diversity curves
mal-ratio and equal-
rmly 3 db above the

ilues of Fig. 8, the
)y correlated fading.

26 S. H. Van Wambeck and A. H. Ross, "Performance of diversity
receiving systems," PROC. IRE, vol. 39, pp. 256-264; March, 1951.

27 K. K. Clark and J. Cohn, "Carrier-to-noise statistics for various
carrier and interference characteristics," PROC. IRE, vol. 46, pp.
889-895; May, 1958.

28 S. 0. Rice, "Filtered thermal noise fluctuation of energy as a
function of interval length." J. Acoust. Soc. Amer., vol. 14, pp. 216-
227; April, 1943. For additional results, see also, "Mathemuatical
analysis of random noise," Bell Sys. Tech. J., vol. 24, pp. 46-156;
January, 1945. (Section 3.9, p. 87 if.) These results have recently been
extended by D. Slepian, "Fluctuations of random noise power," Bell
Sys. Tech. J., vol. 37, pp. 163-184; Jantuary, 1958.
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X.FAILURE OF THE NOISES To BE LoCA\LLY IN~COHERENT

The failure of assumption (C) would have- no effect
on selection diversity systems, for which the assumptioi
nin~O if #5zj has no relevance whatever. Hovwever,
this assumption is of vital importance for the maximial-
ratio and equal-gain. systems, as will be seen.

There are essenitially twxo ways in which n1nj may fail
to be identically zero, the first of which is simply due to
the fact that the average ninj is over a short interval of
durationl T and the local average ninj will fluctuate
about zero if the noises are basically unrelated. The
amounit of fluctuationi will decrease as F is increased and
will be small if the lowest frequency of the noise is large
in.comparison to 1/P In this case, thc nji1j termis wAill
be negative as often as positiye and will simply con-trib-
ute a smiall perturbation- to the output noise powcr U2 0f
a maximal-ratio or equai-gaiin system. This case is niot
troublesomie.

The troublesom-e case arises when the nioises havea
definite positive correlation, as can happen, foi exaniiple,
in a postdetection coniibiner wheni the Aiosesse
largely from sources of external interferenice. To coni
sider this, let n,j2 ==1 and n1 0; then p- njm is the cor-
relation of ni~ai d nj3 (Note that thc local coirrelationx
over intervals of length T, in contrast to the correlation
over length 71 of the xj discussed in Sec~tion V~III above,
is conisidered here.) Let pij= p if r#;!j. Thenx the outpvt
local noise power of an equal-gain system becomies

N 2

/== i ~ 6

instead of n2=N Hfence, the local noise power is iii-
creased by the factor [I. l-(N - 1)pj], which is to say the
output power ratio p of (42) is decreased by this facti-o,
which may not be tr-ivial. To see how un'trivial it can be,
consider for ani equal-gain system. Eqs. (45) arid (46)
become

NV[ - V(V - fIrp

1[ + (.AT -I1)p248
I ± (V - t)p

which reduces to (46) w-hen p= 0 Hence ,if p > r2a
situationl by no means impossible-it would follow that
p(1) > fi(2); i.e., the average local power ratio of a two-
chaninel equal-gain system would be less than for a
single channel, and the performance gets worse as the
n~umber of channels is increased. It is probably gratai-
tons to poirm t out explicitly that, in such a case, it would

be mnueh better to use a selectioi niveisity systemnfor
.Which (18) would still hold. Similar considerations show
that the average local noise power of a i aximial ratio
systei-by which is ma ri one fo whic th cef
ficienits are given by (1.), though tbis is no longei
i'maxima1"--is increased by thLac tCor I -1 (,N- J)pr2 ]

It follows that the use of max iial-ratio or eqnal-gain
diversity in circumstances where the noiSe voltages may
be highly correlated is hazardous.

XI. PREDETECTION VS POSTI)ETECTION COMBINING
In systems where the power ratio at th ou)tput- of the

deteetor is essenitially the same as at the ilput, there is
no fundamental chanige required in the conclusioims de-
veloped above. Of course, there are alway practical d if
ferenice between predetection and postdet~ectiii com-

bininig; e.g., a predetection miaximal-ratio or equal-gain
COrflier wilil require lie additiol- of phase-conrmol cir
cuitiy in order -to satisfy the local coheeience assumption01
(). Oni the oilier hand, predeteetion selection- diversity

will somietim~es produice si ialer switchiii trai sic 1t
thaii postdetection- selection Onice plxase conitroli
establisheel it is easier to satisfy the coiiditioiis () and
(C required f'or i--ix iniaIiatio ami eciualgami CoFmi
bitiers in the case of a predetection syste iii
However, substaixtial chaniges arc requnred in the case

ofFM systeirns vith a larg deviation raioiorii othem
ban.dwidth-exchange system-s with a pro0i ounieed thresh-
old effect. In such, syste uis, ai- SNR at the deteetor in-
put that is m-toie thaia,ifew db above tl reshold yields a
lairge outputL -atio, IA7file an m iniput ratio that is mumor than
a few db below threshold yields a very sniall oxi put
raito. That is, the outpu ra-itio chrh ges mroiii 'coni-
phetely useful" to "completley tiseless" ivith a few db
change oil iiput ratio. Phis fiact hais impoirtant consec
quences.

T1o begin with, a Rayleigh distributiom-i of input sigmial
strcngth for aii 1FM syste ii will iiplatically not lead
to a Payleigh distribution of the postde'tectioii ai'fiplim
turk ratio. Hlence, the distrihtution-sensitivcresults of
Fi gs 813~adiTablesl mIad I are notrealisti fo post
detectioni combinimig in FMIsystem.s. Fiurthe~rmore,
equal-gamin combinmers are m-iot even- sutitable for post-
detectioi combxining in convivctionxa FMIsystemni this
mnay be regarded as a consequence of the fact that the
detectioii gain of such systenrs is not ernstart. Aix al
termnative poittot view would bethat the distribution, of
the amplitude ratios at the input of the coiiibiiier would
be such as to eliminate the eoual-gaii nomnbirer froni
conisideratior; cf. (36), ad note the U1fortunte ecft
if any one of -the U 2~becomes large.

Om course, a maxirnal ratmo system cani be used for
postdetection combiniiig in an 'FM systen. [he re-
quirei-nent aj = xj/ ij22 for the colefficients iiisvres that any
chain ef with large r32 contributes cery little to the onrt-
put. However, a maximal-ratio system will not yield
iiyiucli imrvmn over selection diverity iti sucl cir
cui-istarces. It wil climiat switchii tiranisents bt
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otherwise will not usually make a significant difference
in the operation of the system. This can be seen oni the
basis of various qualitative considerations. When deal-
ing with postdetection combination in sharp-threshold
FM systems, at least for N<8, it would probably be
best to use only the selection diversity values of Table
II, whether selection or maximal-ratio diversity is actu-
ally used. In any event, the actual local reliability gains
of such maximal-ratio systems-which could be conm-
puted from specific detector characteristics, such as
those given by Middleton"9 or obtained by nmeasure-
ment- would certainly be less than the maximal-ratio
values in Table II. A specific distribution computed on
the basis of a highly simplified detector characteristic
has been given. [1 6 ]

If the local reliability gain is defined in terms of the
transmitter power required to maintain the input level
of the detector above a certain value for more than a
specified percentage of time, then the selection diversity
values of Table 1I are applicable whether the selection
is predetection or postdetection. It is clear that the
operation is identical in either case. Furthermore, the
maximal-ratio an-id equal-gain data of Table II are com-
pletely applicable to predetection combining, as is easily
seen. Accordingly, the full advantages of maximal-ratio
and equal-gain combiners can be realized in FM systems
when and only when they are employed before detec-
tion. Taking the selection values of Table II as being the
gains obtained by a postdetection maximal-ratio com-
biner, the differences between the maximal-ratio and
selection values of Table II then illustrate the added
advantage of predetection maximal-ratio or equal-gain
combining. This may be regarded as due to an effective
lowering of the detector threshold resulting from these
techniques.

An additional advantage of predetection combining
in FM systems is that FM multipath distortion can be
reduced by this method. It has been shown by Adams
and Mindes [16], both theoretically and experimentally,
that a predetection equal-gain combiner yields sub-
stantially less multipath distortion than is obtained
with a postdetection maximal-ratio combiner, when
both are operated under the same circumstances.

Instrunmentation for postdetection maximal-ratio
combining has been discussed by Kahn [6] and by
Morrow, et al.," for what amount to AM systems, and
by Mack9O for FM systems. An ingenious predetection
maximal-ratio combiner has been devised by Gran-
lund.3' A particularly elegant predetection equal-gain
combiner has been developed by the Federal Telecom-
munication Laboratories (now the ITT Laboratories),

29 D. Middleton, "On theoretical signal-to-noise ratios in FM
receivers: a comparison with amplitude modulation," J. Appl. Phys.,
vol. 20, pp. 334-351; April, 1949.

30 C. L. Mack, "Diversity reception in UHF long-range communi-
cations," PROC. IRE, vol. 43, pp. 1281-1289; October, 1955.

31 J. Granlund, "Topics in the Design of Antennas for Scatter,"
Lincoln Lab., M.I.T., Lexington, Mass., Tech. Rep. No. 135, pp. 105
113; November, 1956. See also recent Quarterly Progress Reports of
the M.I.T. Res. Lab. of Electronics.

iindicated in Fig. 17. This combiner, called simnply a
phase combiner in FTL literature, is the same one used
in the experiments reported by Adams an-d Mindes [16].
The phase control and adder circuits require only two
semiconductor diodes and 16 passive linear elements.
Phase control is established via a phase discriminator,
the output of which is applied as a bias voltage to one
of the local oscillators. This corrects the phase of the
local oscillator via Miller-effect changes in the oscillator
tube capacity.

Fig. 17-FTL predetection equal-gain combiner. This can be
used with any type of modulation.

The problem of adequate phase control for predetec-
tion maximal-ratio or equal-gain combining leads
naturally to the next topic, namely

XII. FAILURE OF THE LOCAL-COHERENCE CONDITION (B)

It is obviously of interest to estimiate the possible
degradation in performance of maximal-ratio and equal-
gain combiners when the local-coherence condition (B)
is not satisfied. The following treatment is due to
Stein."

Recall that (B) was the assumption sj(t) =xjm(t)
where xj was the slowly varying local rmns value of sj.
If the sj are not all in phase, we must write s3(t) = Cjlj(t),
where the mj have different phases. Consider the case
mj(t) = 2 cos (ct - /j) where the 4j are locally constant
in the sense that the xj are. Thenm(m2) = 1 and (si') =Cx,
as before, averaging over a few cycles (or more) of wt.
Then, for any locally linear combiner of the type (6),

=- K[ E aisi] 2

K > aj2xj'2 cos' (cot - 0j)

+ Z aiajxixj 2cos (cot- () cos (cot - j

- Z a'j2Xj + E, aiajxixj(2 cos (wt - oi) cos (wt -j))
ioj

-E aj2xj2 + E aiajxxj cos (5 - j),
i.i

(49)

where the last step used 2 cos A cos B =cos (A +B)

32 S. Stein, private communication; August, 1957.
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+cos (A -B) anid the fact that (cos (2wt¢9 )> 0
Eq. (49) may also be written

- aiajxxj cos (q, - 40) (50)

since cos (j-0j) = 1, and this reduces to

S a3xj2ZI aiajxaxx (23')
i,

when (/i -0j) 0. Let p deniote the output power ratio
of the general comnbiner (6) wheni (23') holds, atnd p'
denotes the same for the phase-degraded case (50) Then
(assuming (C) still holds, so that n2- Zainj 2)

E agiaxix cos (Oi - 0)
''

EZ2j2cs(a
E aiajxixjcos (0i - j) [ ajx'

E ajxjII an2 2~

kp, (51)

wvhere

ZainjxixjcosQ (o j

k=~ ~ -(52)

is the "phase degradation-i ratio" p'/p.

Apart from the fact that 0< k < I, not much can be

said about k in the geiieral case (52) in the absenice
of additional informationi about the j. It is easy to see

that k may actually vanish; e.g., N-2, anm=n XI a2

1, 41-q2 1800. Then p'=-k-0, which is entirely to
be expected wlhen addiiig two sign-als of equal nmagni

tudes and opposite phases. This illustrates the fact that
the condition (B) cannot be ignored. On the other hard,
it is not necessary that it should be satisfied with great
precision. Suppose that the mragnitudes of the phase
differenices, -j do not exceed 900, and let
A =maximuiium of i-0j, j 1, 2, , N,

0<A <900. Then 0<cos A<cos(,i-0), so

E anajnxij cos A

Cos A,

IE ajxjP2
or

p' > pcosA (54)

That is, the local power ratio is inot reduced by more

than cos A, or - 10 logio cos A db, in any combi;ner
whatever of the geiieral type (6), provided A<900, In
particular, this conclusion holds for equal-gain an-id
maximal-ratio combitners. Thus, to restrict the reduction
in p due to imperfect phase control to 1 db or less, it is
only necessary to maintain the phases withini 37.5° of
each other, while 510 is sufficient to guarantee a maxi-

mi1uIm loss of 2 db. Furthermore, it is clear that the
estim-nate p cos A is actually conlservative.

XIII. LoNG-TERM \VRIAB1IXATY
Recall that the distributions of the xj anid p, aid tmean

valtues of these quantitties, were to be deteri-nined in int
tervals of lenigth Tf, relative towhich the xj were asstined
to be approximately Rayleigh-distributed and approxi
mately inidependent. It is important to understano the
nature of this situation.

It is atn experimental fact that, for a suitable choice
of Ti, both of these assumptions are oftern satisfied. It is
also an experimental fact that if Ti is made too long or
too short, neither assumption is satisfied. Hence, the
approach used above and all of the results developed
above depend en-tirely oni the use of finiite in-tervals of
observation that are neither too long nor too short.

Specific suitable values of Tl depend on. the circui-i
stances, primarily the carrier frequeicuy ard transmis-
sion distaiice. Of course, it is necessary to uniderstand
that the results of Figs. 8 13, etc., refer only to intervals
of length Ti, whatever this may be Specific values ar-e
rouglhly as follows for long-range transmission.. At fre
quencies below VHF, inteirvals of 30 miniutes to ai-i howur
are usually suitable. In VHF ioniospheric scatter sys
tems, values of onie or two miniutes usually seerim to be
appropriate, in UHF and SHF tropospheric systeirs,
intervals of five to 30 minnutes are often1 used.

It is manifestly necessary to con.sider the behavior of
diversity systems over loInger intervals than those of
lenigth Ti. This may be donc as follows. The previous
resu1lts were obtained using a Rayleigh distributioni (9)
of unit m-lean square, with a defiuiite median value
MOf -</log, 2 Now, the experimetntal fact is that t11e
fadin-g distributionis observed over differenit intervals of
length TJi will not usually have the same median- values.
However, the medians obtainied itii two adjacent or
overlapping intervals of length P-1 will not usually
differ by very mnuch. One way to represent this fact is
to let M M(t) deiiote the mediani of the distributioin
obtained in the interval from t-T to the presefit time
I. Then this median functioni is a continuous function of
time anld the experimental fact is that M(t) is usuallx
approximately con-stant over itntervals of lefigth TI. ft
should be clear that this does not depend oni haviiig the
distributions, for which the values of A3(t) are the i-nedi-
ais, all be of the same form, Rayleigh or other

This may be used as follows If x is any raildoi var
able with a nonzero median-i Mo atnd Al is airy nonizero
constant, then it is easy to see that y (MIMo)x has a
distributioim of the same form as that of x differing only
in the scale factor MIMo, and that the median value of
y is IV. (The only reason for writing this scale factor ini
terms of the medians is that these are easily determmitied
experimental quantities.) Then, instead of takinig 'the
local rims signals to be the xj with a fixed median MOVf
the actual local rms signals may be written as
y=(Mj/lMo)xj, with mediani values M3, relative to a
period of length Ti. Here, however, aniother experi
mental fact enters. [he medians A4 are usually ap-
proximxlately the same for different chaimnels, aimd we
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may write Mi1-M, j= 1, 2, * ^, N. If the median
function M(t), above, is approximately constant over in-
tervals of length T1, we may take M = M(t).
To apply this to our previous results, note that the

local linearity of (6) implies that any common scale
factor multiplying the signal components sj may be
taken outside the sum s = Esj. Hence, the combined
output signal s(t) is simply multiplied by M/Mo and
the local power ratio becomes (M/Mo) 2p wherever p
was before. This becomes even simpler when expressed
in decibels. Let

w = 10 log1o [(A/AMo)2p]
= 20 log1o A + 10 logio (P/Ao2)
= u + v (55)

be the local power ratio in db, where u =20 log10 M anid
v = 10 logjo (p/Mo2). Then this expresses the actual local
power ratio delivered by any combiner of the type (6)
as the sum of a variable v whose T1 median does not
depend on time and a variable u that is approximately
constant over every interval of length T1. Now, the
distributions plotted in Figs. 9-13 are precisely the dis-
tributions of the variable v for the conditions of Fig. 8,
for different combiners and orders of diversity. Henice,
to apply the results of Figs. 9-13 to any particular inter-
val of length T1, it is only necessary to translate their
ordinate scales by u =20 logjoM where M is the median
of the single-channel fading distribution for the interval
concerned.

In order to describe the long-term variability of the
actual local power ratio w, it is necessary to have in-
formation about the long-term variability of the (T1-)
median u. Distributions of u are usually studied in in-
tervals of length T2= one month to one year; such dis-
tributions are often called distributions of hourly
medians, though they should properly be distributions
of Ti-medians. Several such distributioiis for frequencies
at VHF and above have been given.33 Unfortunately,
no comparable single source of information for MF and
HF systems presently exists; the relevant data are
largelyscattered in (generally unobtainable) Signal Corps
reports, FCC hearing transcripts, and URSI and CCIR
documents, though a few such data have been published.
Observed distributions of u are sometimes approxi-
mately Gaussian (normal) in form, especially at the
higher frequencies, which is why the distributions of M
are often said to be log-normal.
Once a distribution of u pertinent to the proposed

circuit is available, there are two ways it may be used.
The first method, which is applicable to high-reliability
systems at VHF and above, is to estimate the lowest T1-
median likely to be encountered on the circuit. (The
great virtue of these systems is that this minimum value
of u is not - oc.) The ordinate scales of Figs. 9-13 are
then traqnslated to this value, after which a rational

1"Scatter Propagation Issue, PROC. IRE, vol. 43; October,
1955.

choice among the various possibilities of transmitter
power, order and type of diversity system, etc., may be
made on the basis of economic and other factors, and on
the basis of the local reliability percentage it is desired
to maintain during such worst hours. Of course, the data
of Figs. 9-13 must be modified in accordance with the
discussion of Sections VII to XII if the circumstances so
dictate.
The second method is applicable in circumstances

where all distributions of v in all intervals of length T3
are approximately the same.34 It is then easy to see that
the distribution of v in an interval of length T2=one
year would also be the same; furthermore, the variables
u and v of (55) would then be independent, relative to
T2, to a very high degree of accuracy. Then the T2-dis-
tribution of the local power ratio w would be the dis-
tribution of the sum of two independent variables with
known distributions, and could be computed. It would
usually be found that the "exact" deternmination of the
T2-distribution of w would require numerical methods of
integration in (67). Such distributions have been com-
puted by Shimony35 and Sichak36 among others. How-
ever, Staras [9] has observed that, for the larger values
of N, the relevant distributions of v are approximately
normal (cf. the N=6 and N=8 curves of Figs. 12 and
13, on which figures a normal distribution would be a
straight line) and since the distribution of u is approx-
imately normal, the T2-distribution of w would there-
fore2 approximate a normal distribution with a median
and variance respectively equal to the sunms of the
medians and variances of the u and v distributions. But
this approximation is not very accurate for N<4.

It should be added, however, that this second method
has not been universally accepted by designers of high-
reliability systems, for the following reasons. Computing
the long-term distribution of w serves to obscure the
question of whether the periods of very low signal are a
few long periods or many short ones. This question can
be important; e.g., there are systems in operation in
which the loss of two hours in a year would not be
troublesome if split into a number of separated intervals
of a minute or two each, but which could be disastrous
if concentrated in a single interval of two hours. Since
two hours in a year corresponds to the 99.98 per cent
exceeded level, it would be necessary to compute the
T2-distribution of w down to something like the 99.999
per cent exceeded level in order to insure approxinmately
the reliability obtained by the first method. However,
the empirical distributions on which this computation
must ultimately rest are not known to anything ap-
proaching this degree of accuracy, and the validity of
such a computation would seem to be open to question.
In addition, the problem mentioned in footnote 34

34 It should be noted that such circumstances, however, are not
too common in practice.

35 A. Shimony, Final Rep. MU-156, Evans Signal Lab., Fort
Monmouth, N. J., (cited in footnote 36).

36 W. Sichak, Fed. Telecommun. Labs., Nutley, N. J., Tech.
Memo. 619; December, 1956. See Appendix D, "Diversity Theory."
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would often infect such a computation.
Two additional points should also be noted in con-

nection with ltong-termn distributions of w. The first is
that the variability or dispersioin of w will increase as
the dispersiotn of the Ti-median u increases. In other
words, the variability of v will tend to be obscured by
that of u. However, it is precisely the variability of v

that can be reduced by diversity techniques, while that
of u cannot. It has been noted"6 that w distributions
for different orders of diversity show less difference than
would be indicated by Table 1II but this is simply a
reflection of the dispersion contribution by u. Thus,
computing long-term distributions of w tends to obscure
the gains (Table II) that actually are realized by di-
versity techniques.
The second point to be noted is that any long-term

distribution of w is highly specific to the circuit for
which it was computed, because u distributionis are
hiighly specific. This is indicated in Fig. 18,37 which
shows percentage points of a distributions as a funiction
of distance at 400 mc. (Note that Fig. 18 gives onily the
distributions of the T, median "scatter" loss; the free-
space loss has been subtracted out) It can be seen that
the dispersion of u decreases with distance; e.g., the
interdecile ranige is about 12.5 db at 200 miles, but only
5 db at 600 miles. This indicates that a long-term dis-
tribution of w would only be valid for the distance onl
wxhich the distribution of u was based.

401 - i
et60 tw

% OF TIME THAT LOSS S, EXCEEDED~~~~~~~~1.0
0 00 200 300 400 500' 600 7rD

MILES (statute) BEYOND THE HORIZON

Fig. 18 -Distributions of houirly medianis as a futnictioni of distalnce,
wixitertimie propagationi at 400 nmc, experimental datla fromL
sexveral Lincoln- Laboratorv circuits. (After MorroW37.)

XIV. CASE OF UNEQUAIL AIFDIAN SIGNALS

Most of the material above presupposed that the T[-
medians for the several chaninels were all the sam-fe. Ex-
perimentally, this is foutnd to be a reasonable approxi-
mation in most cases, provided that the itnterval length
TP is niot made too short. However, there are cases, most
especially angle diversity,8'- in which it is not a reason-
able approximation. The first treatmienit of this problemal
appareintly was given in [3]. It is quite simple to plot

37 W. E. Morrow, Jr., 'Ettude de system-nes de radiocotmr5Mnica-
tion- troposph6riqule UHF a lon0gLie cdistance,' Onde Elect., vol. 37,
pp. 444-449; Max, 1957.

selection diversity distributionss for unequal iedians or
even- for dissimilar distributiois; the ideiitical factoI-s
G(p) of (16) are simply replaced by the p)roper distribu
tion funictionis. Maximal-iatio distributions for unequalI
miedian Rayleigh signals catn also be expressed explicitly_
Unfortunately, this is not true of coimplete equal-gaima
distributions (cf. Appenidix IV). However, it would be
possible to obtain the low-siginal ends of such distribu,
tions by taking the first few terms of a power series,
but a detailed analysis of this problem-i would appear to
be prem-lature at the presetnt tiiTie.

XV. EXPERIMENTAL RESULTS

Experimenital data relati3ng to diversity systemns have
been given by several workers, includinig Glaser an-id
Van Wambeck,$ Van Wrambeck and Ross,2" Glaser and
Faber,4 and Grisdale, et al5 It is unfortunate for otur
presenit purposes that mnost of these data rela-te to selec-
tion diversity only; clear-cut and unambiguous experi-
mental data bearing on the comparative performance of
the three combininxg techniques studied above are so
rare to be as essentially nonexistentt It is hoped that
some comparative experimental results will be available
within the next year.

Perhaps the best single datum presenitly available
was obtained in unpublished experiments conducted by
the Signal Corps a few years ago. Two high-frequenc-v
systenms were compared, one of which used dual maxi
inal-ratio diversity and the other used somiethiug ap-
proximating selectioii diversity. It appeared that thte
maximal-ratio system yielded aii average power ratio of
1.0 to 1.5 db above the selection- system when averaged
over periods of about 30 minutes.9 This compares very
favorably with the value l.25 db enitered in the "selec
tion'" column of Table I for N 2. However there were
many periods during which the perform-lance of the rnax-
imal-ratio system was itiferior to the other. This could
probably be traced to the failure of oiie or both of thic
conditions (B) and (C) during such periods, which
AxOuld i-iot affect a selection sy stein

XV'I CONCLUeSIONS
Perhaps the rmost important coonclusioni to be draw u

is that, all things considered, no on-e of the diversity
combining techniques studied deserves to be called "tlie
optimum system." All three have their merits and de
fects, and the one to be used will depend oni the circutin
stan-ces. However, the simplicity and efficacy of the
equal-gaini systemn suggest that this may well becotmie
the prinLcipal standard of the art. In additioii to the data
set forth aboxe it should be especially noted that the
instrumentation for an equal-gain- combinLer is cons-
pletely inidependeent of what otne chooses to think of as
a SNR. The importance of this fac-t is considerable.

38 J. L. Glaser atid S. H. Van Wa/tambeclk, "Experimnental evaluatiotn
of diversity receiving systems," PROc. IRE, vol. 39 pp. 252-255;
March, 1951.

11 F. E. Bond and H. F. Mexler, Sigiial Corps Luig, Labs., Forc
Montilotith, N. J., pri ate communication;ItsJe, 1957.
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APPENDIX I
CERTAIN FACTS ABOUT PROBABILITY THEORY

It will be recalled2 that, in general, a distribution
function P(x) is the probability that (some random vari-
able) is less than or equal to x. A particularly simple
special case of this arises when the random variable in
question is some voltage or current waveform given as
a function of time, say f(t), and the probability that
f.x is simply the fraction of some interval t- T.t.t
in which f<:x. In this case, P(x) is determined, for any
given value of x, simply by adding up the lengths of the
t intervals for which f(t) < x and dividing their sum by
the total duration of the observation, as indicated in
Fig. 19. Instruments for measuring P(x) at selected
values of x are known as "totalizers" or "level distribu-
tion recorders" and exist in various forms. Another
method of obtaining the distribution function of some
random variable is to sample it at discrete intervals and
count the fraction of sampled values that are <x; how-
ever, it is niot difficult to see that this will lead to the
same P(x) as defined aTove. The associated density
function2 p(x) dP(x)/dx, so that p(x)dx dP(x).

px 6(k1+*2)/T
f (t)

I I t

X I I J1 ~ t
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Fig. 19-DefinLition of P(x) =fraction of the time of observation
that f(t) <x.

The central purpose in using such distribution func-
tions in radio engin-ieering stems from the fact that many
different individual waveforms have approximately the
same distribution function, or at least have distribution
functions that differ in describable ways, as in Section
XIII. This is ani experimental fact, no more, but, what
is important, nio less. Thus, in circumstances where the
distribution function of some waveform can be approxi-
m-ately predicted from either theoretical or empirical
grounds, one has available a method of predicting many
important facts about the situation.
One such fact, of the first importance, is that all time

averages off in the interval t1- T<t<ti are given by the
moments2 of the distributioln function P(x). For exam-
ple, suppose one is interested in the average value of
f(t). Then

f(t)dtif xp(x) dx f xdP(x); (56)
T t- n

i.e., f is the first moment of the distribution. More
generally, for any value of n, the time average of

[f(t) ]' is given by the nth momcnt of the distribution:

(57)t[f(t)] dt - xndP(x),
T Il-T oto

a result that is especially useful in computing the aver-
age power when f is a voltage or current and n =2. In
the light of (57), fn or (fn) or x or (x8) can be and is
written- interchangeably for such averages, using which-
ever notation seems most convenient for the expression
inlvolved.

It is important to understand the sense in which (57)
is applicable. No theory or representation or mathe-
matical model whatever can predict the particular dis-
tribution function of a particular waveform in a par-
ticular initerval exactly, but to the extent it can be pre-
dicted by whatever means, (57) is applicable, In many
applications, one uses a specific mathematical model
distribution (e.g., the Rayleigh distribution, much used
in the body of this paper) for predicting facts such as
averages of the form (57), but with a clear understanid-
iin-g that any realized distribution function- can. only ap-
proximate the Rayleigh distribution, however lonig or
short the interval of observation. But the approximation
may be very close. In cases where the nature of the
possible departures from the model distribution can be
estimated, aiid there are many such cases, the possible
departures in the corresponding time averages can simi-
ilarly be estimated via (57). [Some statisticians and
noise theorists may be bothered by the absence from this
discussion of any reference to the classical notions of
sample and population. The reason for this is that a par-
ent population in the classical sense does not usually
exist in this environment. (See Section XIII.) No fixed
distributioni can serve as a population distributioni for
any non-stationary process. In the notation of Section
XIII, it would be possible, but not n-ecessarily desirable,
to discuss parent populations for T2-distributions, buit
certainly not T1-distributions. One may, however, dis-
cuss a "distribution." of distributions, as is done in engi-
neering language in. that sectiofi. It would be a simiple
matter to provide a more formal framework for this Im1a-
terial by defining suitable classes of funictionsf; e.g., all
those f whose half-hour local distribution functions (in
thLe senise of Fig. 19) were all within a specified distance
(in. the sense of Levy's metric) of some Rayleigh distribu-
tion function, and whose half-hour medians (ipso facto
unique) had yearly distribution functions within a
specified distance of a fixed log-niormal distribution
fun-iction. This class is nion-empty for positive distances,
and would suffice for most of the purposes of Section-is II
through VI. One could similarly replace our heuristic
language about approximate constants with a more
formal treatment that was liberally seasoned with epsi-
lois and deltas and rigorous inequalities. However,
there is probably little to be gained by this formalism in
the present context. I
These considerations above extend directly to several

random variables given as in Fig. 1 and their corre-
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sponding multidimensional distribution functions. Thus,
all of the multidim-iensional probability theory given by
Bennett2 can be directly applied to our presetnt circun-ii-
stanices. Of course, such distribution-s will genierally de-
pend on the present time ti and the duration T, but for
suitable (not necessarily long) values of the durationi 1,
this dependence may be considered to be negligible for
certaiir engineering purposes.

It is quite well known that averaging is a linear opera-
tioni; i.e., if x and y are random variables atld a and b
are constants, then (ax +by)= ax+ by. This is clear
wvhen con-sidered as time averages and, as an immediate
conisequenice of (56), also holds for the corresponding
distribution averages. (Let P1 P2, aind P3, deniote the dis-
tribution functions of f, g, and f+g, respectively, aiid
wiite (56) three times. This does not require inidepend-
ence off and g.)

Although this fact is well knlown, such exteiisive use
of it is made in the body of the papei that it is advisable
to menltionI a few consequen-ces here. First, if xi,
X22 * x7 are ranidom variables, not necessairilv iiide-
peniden-t, and a,, a2, , a, are conistan-lts anLd

_Il

y E akcXl,ath-n

akk19
In order to consider higher momenits thani the first, iitote
the simple algebraic fact that (aixl+a2X2)2= a12X2
+a22Xi2+ 2a1a9xIX2 can be writteni ai2Xd2-a22X22 +-Faa2aXX2
+a2a1I2X1. M\ore generally, onie cani write

F2 akXijk=-1

tion2 p(x, y) of two raiidom variables caii be integrated
over a regioi-i in the plane to obtain the probability of
the regioii Thus, the probabilitv tlIt-I i x
Y<y<YY2 is given by

A(x y)dydx, (63

and the joitnt distribution- funiction P(x, y) is simply

(X (64)

Notice that both (63) and (64) cai be wVrittcn in the
form

sf (x, 3dxdy (65)
of anl in-tegral of p(x, y) over a certaini regioni E in the
x-y plane. In the case of (63), the region is tLn1 ordinary
rectangle, wxhile in the case of (64), it is a semni-infinite
iectanigle. The virtue of this geometric approach is that
it ofteni enables the expressioii of an evetit of practical
initerest in terms of suc h a region, niot inecessai ily a
"'rectangle," after which the probability of the evefit inl
question cain be computed by integratinig the joint
deiisity function over the region. Joint deiisity futic-
tions of three or more variables can- simlilarly be inkte
grated over regions iri space of three or more dimensioiis.
This is used at several places in the body of the paper.

Finally, a few words oni coniiputing the distribution
functions of sums of independeint ranidoml variables mtay
be useful. It was poiiited out by Bennett2 that if x anid
y are inidepenident ranidomi variables with density, fun-c
tionis pi and P2, respectively, the density funIiction-l pX Of
the sti zr x+y is given bxy

Z ak2Xk2 + aiaaxix..
k i

h-Ience, by (59),

- Z Ji2Xk2 + aaia(xixj)
k=l 4#.J

If the xi are in-dependent, theni (xi.xj)=i xj
Then (61) becomes

yG a,/22 +Z aa1cx-x
k=1 1 3

P3(z) PI( y)p2(y)dy,(603
(66)

which is called the "convolution-" or 'comipositioni" of
the density functiotns pi ai-id p2. (This has sometinies
been referred to as "combininig"' the x and y distribu-

(61) tions.) However, in mai y-possibly most-practicaml
application-s, the distributioii funiction of z, i.e. the

if i#jti1 probability that z<u is of more initerest than the
demisitv funiction. This cani be expressed in. tern-is of the
componienLt distributioni functions as

(62)
6(u) -= PQi( - y)dP2(y) (67)

Hlence, if the first two moments xj and a,2 of the xi are
kinCown, the average square of y canl be computed with-
out even knowing the distribution of the Xi, much less
the explicit distribution of y. It will be seeti in several
sections of this paper that these sin-iple facts can lead to
initeresting and important results, some of which are by
1io means obvious.

An-other well-kiiown fact is that a joint denisity func-
40 Betinett, footnlote 2, p. 619.

wxhich cani be seeni from (66) by writing P2(y)dy =dP2(y)
and initegrating (66) oil z frorm - o to u. The integial
(67), which is well kiowxn amioiig niathematicians,4' may
be defined as the linit of approximating sums of th-ie
forum

P( - yk)fP2(yk) - P2(Yk1) I,

41 Ciatie op. It p. 190, 5152 *2), and other soM-Cec

(68)
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where the yk form a suitably fine partition of the range
of interest. This and other numerical integration tech-
niques may be used to evaluate (67) numerically, at
least as easily as a numerical evaluation of (66). (See
Appendix IV.) Hence, if the distribution functions of
two variables are given numerically and the distribution
function of the sum is required, there is no need to
transform the given distribution functions into approxi-
mate density functions, evaluate (66) numerically, and
then sum the resulting approximate density function, a
procedure unnecessarily involved, but fairly commonly
used.

APPENDIX I I

THE SCHWARZ INEQUALITY

There are several ways of proving the inequality

-N -2 - N N
,xjvj <!~ E u, L' Vj2
j=l j=l ,=l

(19)

where i== V-l is not an index. The characteristic
function of p is then simply

(72)ON(t) = [+(t)] N 1
(I - it)N

so that the density function of
N

p E pi
j:-1

is

17 e -pt
gN(p) =-je ptONQ() dt ( - j_ di. (73)

The integral (73) is easily evaluated by contour integra-
tion and the residue theorem. The result is

I1
pNe)!

of which the simplest is perhaps to notice the algebraic
identity

[ N ]2 - N ] [ N ]
E kVk _ Gk2 _E Vk2_

kGl k=1 k_=1
iN

E (uiZj- Vuj)2, (69)
2 jj=1

which can be verified at once simply by expanding both
sides. It is clear that (19) follows immediately from (69),
for the term

N
EVj(uvij -V)

is obviously non-negative. However, more precise in-
formation can be extracted from this. Evidently there
is equality holding in (19) if anid only if every term in
the double sum on the right in (69) vanishes, i.e., if and
only if

uiv; - viuj = 0, i, j = 1, 2, . . ., 1N, (70)

and it is not difficult to see that this will happen if and
only if there are constants a and b, not both zero, such
that au0=bvi, i-1, 2, N. That is, equality holds
in (19) if and only if the u's and v's are proportionial.
It is this fact that accounts for the "and only if" asser-
tion following (14); the material of Section IV does not
JUstify this assertion.

APP:ENDIX III

X HE MAXIMAL-RATIO DISTRIBUTION

The characteristic function2 of the pj is
00 ,00

+(t)-J eit"ig(pj)dpj fe-P±+tPidPj

1
1- 7t (71)

for p>0, while gN(p) =0 for p<0. This is precisely the
result (29).

APPENDIX IV

COMPUTATION OF THE EQUAL-GAIN DISTRIBUTION

The function BAN(i) of (41) is given recursively by

BN(u) f0BN-l(U - t)dB1(t)

f BN1(U-t)Bl(t)dt (75)

as can be seen from (67), where Bl'(t) -2te- ' is the
Rayleigh density function. Tables of BN(u) have been-i
constructed19 from (75) for N=2, 3, , 8, usinig an
IBM 704 computer. Tables were constructed for various
increments A of u, ranging from A = 0.2 down to = 0.02,
and for the range 0<u<17. The Rayleigh density anid
distribution functions were generated in the computa-
tion program by rational approximations accurate to
six decimals. Each value BN(Uk), where U,k= kA, was
then computed from

k111(A

BN(Uk) = E
1== 1 ( I-I)A

(76)

where each integral over the range of length A was com-
puted by a 16-point Gaussian quadrature formula.
The values of BN_1(t) for this integration were obtained
from the previously constructed table of BN-1 by a
modified Tchebycheff-Everett interpolation formiula.
Tables of B2(i) constructed by this method agreed with
(39) (separately tabulated) to six decimals. For all
N<8, tables for the smaller values of A were consistent
to four decimals for the entire range of u.
An additional check was provided. The function de-

fined by (41) for all complex values of u is an entire
function, which therefore admits a power series,
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BN(u) bb;Nu (77)

validIfor all values of u, an-d which coin-icides wAith the
desired distributioni funlction for positive real values of
i. It is not especially difficult to show that b4N 0 for all
odd k and for k<2N. It can-i be shown otn the basis of
extensive computationls from (41) that for eveni k>2N,

2k/2 1=(k12)+1-N
bkN - W01k2-N Z- Pi X

^1i ( 1)k 1=1

jl+1 +Ij_, k/2i1
Pil P3? .. P.P ,

where

pl (21 - 1)(21 - 3) . . 53.1.

In particular, the coefficieint b2ANN of
b2NN 2 /(2N) !, i.e.,

the leading termr is

BNQu) i--1A2 + ,(80)
(2YN) !

but this term alone is inot sufficiently accurate for useful
values of u. For larger values of k, (78), which has re-
sisted strenuous attempts at siniplificationi, is not as

useful for the explicit coi-nputatioun of coefficieits as the
recursioin relation

j (k/2)--I
b,f-r 1)4k2N E 2pjk - 2j)! bb2j i,-- (81)

v,rhich can also be established from (41). In connection
with (81), one uses b.1=(lj)(I2i 1(kl2)!.

It cani be shown from (78) that for Iu <i o and for

(N ( (18I21ki>.2yNt-1 N -2 (82)

the terms of (77) are monotonically decreasing in mag-
iiitude. Since the terms alternate ini signl, this means that
the error in terminating (77) at the kth term is less
than the magnitude of the kth term, provided (82) is
satisfied. This was used to construct a table of BN(u) for
N-21 3, 8 for O<u<1.5 with a guaranteed
accuracy of six decimals. This table agreed in this range
with that coinstructed from (76) to six decitmals 0r
better.
The results (78), (81), and (82) are principally due to

MIichael Ginisburg.

paper by Booker, Ratcliffe and Shinn: U blebteck's
result rests in turn on -the joitnt distribution of two
Rayleigh variables give by Rice. However, meaning
ful sufficient conditions uitder which this distribution
is applicable to correlated Rayleigh faditng do niot ap-
pear to be known. It is essentially certain that it is
applicable to narrow-banid rando-m noise of the type
originally studied by Rice and Uhlenbeck, but it is far
frioini clear that it is equally applicable to fading radio
waves in general. For example, if Uhlenbeck's result
always neld, then the correlation of two Rayleigh
variiables could not be negative; however, several in-
vestigators, including Grisdale, et al,5 anid MVfcNicol45
have foutnd such n-egative correlation. It seems very
probable that Uhlenbeck's result is satisfactory as a
first approxiiiation for eigiiieeriiig purposes. TEhis is
why Fig 16 was unlhesitatingly included in Section VII;
however, such results should be understood as repre
sentative, rather than- absolute. In other words, the
correlation coefficient does not uniquely determiine
diversity performanace, evenl when p and the separate
inpuit distributions are known.
A closely related problem that sometimes arises in

this con-nection is the assumption, which has not always
been recognized as such, that two iandom variables
that are indixidually Gaussiain or niormal have a join-it
distribution that is a two-dimensional normal distribu-
tion. This assumptionl is the basis of the common state
ment that "'uncorrelated normnal variables are inide
pendent As a mathematical matter, this ineed n:iot be
true it is rnot difficult to give counter-examples. The
prevalerce of the quoted statement probably stems in
part from some iinsufficiently explicit laniguage of
Crame(rA 'The two-dimensional form of the central
limit theorem-1 suggests that this assumption would
often be verv reasonable, but should be recogiized als atn
assumip-tioni

APPENDIX VI

SELECTION DIVERSITY MEAN POWER RATIOS

In the in-tegral (17) for p(N),

0AT p(I p)N1e Pdp3 (1,

we make the chan.ge of variable y 1I e F obtaining

APPENDIX V

CERTAIN QUESTIONS RELATED TO THE PROBLEM OF
CORRELATED FADING

All of the presently published treatments of cor-
related fading knlown to the presenit writer rely oni a
result due to Uhlenbeck,42 which was reproduced in a

42 G. E. Uhletnbeck, Rad. Lab., M.I.T., Cambridge, Mass., Rep.
No. 454; Octobet- 15, 1943.

P(Qv) = [-log (I y)jy/-ldy. (83)

43 H. G. Booker, J. A. Ratcliffe, anid D. H. Shmiinn, "Diffraction
from an- irregular screen with applications to ion-ospheric probleims,'
Phil. Trans. Royal Soc. (London) A, vol. 242, pp. 579--607; Septet-
ber, 1950.

44 S. 0. Rice, "Mathematical an-alysis of ran-dom noise," Bell Sys.
Tech. J., vol. 24, pp. 46 156; January, 1945. See (3.7-13).

McNicol, op. cit., Fig. 4.:
46Cramer, o6. cit., p. 289.
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Using the series
O0

-log (1-y)-E yVk for I y I < 1,

k==i

l _ X yk+N-1-
p(N) N _ dy

O k==1 k
00 N

k-i k(k + N)

k=, Kk N+k/

li E
1

E
1]Mrnoo 7u-k1 k k,o1 m + k-

Ni

= E-, (84)
k=l k

which is the result (18). The termwise integration
from the first to second line of (84) is easily justified.
The result p(N) = ,-1 1/k was originally found

essentially by accident and verified by induction on N.47
Another direct approach was also suggested by Stein,
who pointed out that (17) could be written

p(N) =- i(1 -e-P)N-1e-xPdp|1 (85)
dxo

which, integrating by parts (N-1) times, becomes

j3(N)
- (x8- 1) !N 1

P(X) la= d (i + Al1 -$1 (86)

Stein remarked that this is

fi(N) - N- 3(N, x) x-1 (87)
ax

where A(N, x) is the Beta function [substitute t=eP in
(85) ], and that higher moments of p are given by succes-

sive derivatives of the same function. The differentia-
tion indicated in (86) is straightforward.
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Physical Principles of Avalanche Transistor
Dulse Circuitst

D). J. lHAMILTONt, ASSOCIATE MEMBER, IRE, J. F. GIBBONSt, AND W. SHOC)(KLEYt-, FEL9.LOW, IRE

Summary-A simple physical theory is developed which permits
a calculation of the significant points of avalanche transistor tran-
sient behavior.

A model for the transistor is defined in terms of charge variables
and the physical parameters of the device. The transient perform-
ance of the model is calculated by focusing attention on the minority
carrier charge stored in the base region and the influence of base-
width modulation upon this stored charge. In the charge formulation
of the problem, the physical details of the avalanche multiplication
process need not be considered; multiplication is accounted for by
the boundary conditions which it imposes upon the stored charge.

Good agreement has been obtained between calculated and ex-
perimentally observed data for a simple avalanche transistor relaxa-
tion oscillator,

1. INTRODUCTION

RANSISTORS exhibiting avalanche multiplica-
tion have receiitly been shown1 to be useful for the
generation of millimicrosecond pulses. These de-

vices thus provide a new an-d simple solution to a prob-
len which previously taxed the ingenuity of both cir-
cui-t anid device designers.

* Oiiginal manutscript received by the IRE, December 28, 1959
revised manuscript received, March 6, 1959. This work was sup-
ported in part by the U. S. Army Signal Corps, the U. S. Air Force,
an-d the U. S. Navy, through ONR Contract Nonr 225(24) at Stati-
ford Electronics Laboratories,

t Stanford Electronics Labs, Stanford University, Staniford,
Calif.

I G. B. B. Chaplin, "A mnethod of designing transistor avalanche
circuits with application to a sensitive transistor oscilloscope, paper
preseIited at 1958 Solid-State Circuits Conference, Philadelphia, Pa.
February, 1958.

As is frequently the case, however, a simple empirical
solution poses difficult analytical problems. These
analytical difficulties arise prinimarily fromii a failure to
recognize the important physical principles which
govern the terminal behavior of the device. Whei-i the
problem is properly formnulated, mrlany of the analytical
complications are removed, and a simple unified theory
is obtained. It is the purpocse of this paper to preseit
such a theory.
The most significant aspect of the theory is the con-

cept of rriinority carrier charge stored in the base regioni
during the transietnt period, a con-cept which results in
a considerable simplification of the problemn by permit-
ting titne to be eliminated in several of the calculations.2
A relaxation oscillator (Fig. I) is used to illustiate the
theory.

Section 1I of the paper deals with the circuit model
for the relaxationi oscillator, together with a physical
model for the avalanche tratnsistor, the concept of
stored minority carrier charge is also introduced

In Section1 III, the stored charge concept is used to
deterrmiine the two critical values of external capaci
tanuce: the capacitanice reqtiired to start regeneratioli
anid the capacitamice required to forwatid bias the collec-
tor j unctiont.

2 W. Shockley and J. Gibbouis, 'Theory of traiisient build-up ii
avalaiiche transistors," Trans AIEE (Conymun. a id Electronics),
no. 40, pp 993-998; Janiuary, 1959,
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