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niobium films have produced units with low breakdown
strength. Further work is being done with these other
film-forming metals as well as with tantalum.

CONCLUSIONS

A new tantalum capacitor, essentially two-dimen-
sional in structure, has been made and has properties
superior to other types of tantalum capacitors.

Capacitances obtained are comparable to the capaci-
tance-area relationships for tantalum electrolytic ca-
pacitors formed to the same voltages. Using counter
electrodes of 95 mils to 250 mils in diameter and the
single-layered structure, capacitors have been prepared
with capacitances ranging between about 2000 uuf and
0.25 uf.

DC leakages measured at three-quarters the forma-
tion voltages are of the order of 4 X107 a for 250-mil
diameter electrodes. Expressed in terms of insulation re-
sistance, this amounts to about 60,000 ohm farads.

Dissipation factors are in the neighborhood of 0.008
at 100 ¢ and increase to between 0.1 and 0.8 at 100 kc.
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The relatively high losses at the higher frequencies are
caused by the high series resistance of the tantalum
films. Thicker films of tantalum should reduce these
losses.

Room temperature breakdown voltages approximate
the formation voltages for these units, and successful
models have been formed to 5, 10, 20, 30, 40, 50, 100,
150, and 200 v. A suggested working voltage is one half
the formation voltage for temperatures up to 65°C. Volt-
age derating characteristics for elevated temperature
operation have not been determined as yet. The units
operate well at very low temperatures, however, even
down to —196°C.

This type of capacitor should find many applications
in the lower capacitance areas, and seems ideally suited
for printed circuit applications.
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Summary—This paper provides analyses of three types of di-
versity combining systems in practical use. These are: selection
diversity, maximal-ratio diversity, and equal-gain diversity systems.
Quantitative measures of the relative performance (under realistic
conditions) of the three systems are provided. The effects of various
departures from ideal conditions, such as non-Rayleigh fading and
partially coherent signal or noise voltages, are considered. Some dis~
cussion is also included of the relative merits of predetection and
postdetection combining and of the problems in determining and
using long-term distributions. The principal results are given in
graphs and tables, useful in system design. It is seen that the sim-
plest possible combiner, the equal-gain system, will generally yield
performance essentially equivalent to the maximum obtainable from
any quasi-linear system. The principal application of the results is to
diversity communication systems and the discussion is set in that
context, but many of the results are also applicable to certain radar
and navigation systems.
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I. INTRODUCTION

HEN a steady-state, single-frequency radio
&;&/ wave is transmitted over a long path, the en-
velope amplitude of the received signal is ob-
served to fluctuate in time. This phenomenon is known
as fading, and its existence constitutes one of the bound-
ary conditions of radio system design. 1t is observed
that if two or more radio channels are sufficiently sepa-
rated in space, frequency, or time, and sometimes in
polarization, then the fading on the various channels is
more or less independent; <.e., it is then relatively rare
for all the channels to fade together. The standard tech-
niques for reducing the effect of fading—known as di-
versity techniques—make use of this fact. The object
of these techniques is to make use of the several received
signals to improve the realized signal-to-noise ratio, or
to improve some other performance criterion.
Several diversity combining and switching techniques
are known, and there have been numerous papers on
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this subject in recent years. (A sample of these, with
comments, is indicated in a Bibliography at the end;
these papers will be referenced by numbers in square
brackets, running footnotes by superscript.) However,
very few of these have provided quantitative compara-
tive data on the relative performance of the various
techniques, especially the two significant techniques
(maximal-ratio and equal-gain) investigated since 1954.
The major exception to this is a paper by Altman and
Sichak [8], which is not widely known and even less
understood.

Furthermore, there has been little attempt to explain
the fundamental concepts and principles involved. For
such reasons, therefore, it appeared desirable to provide
an expository treatment of a comparative analysis,
within a unified framework, of the three most promising
diversity techniques presently known. An earlier memo-
randum® aimed at these objectives indicated that such a
treatment might be of fairly general interest.

Of course, in an undertaking of this kind, several
previously published results are naturally included as in-
dividual cases, though the available information will
also be rounded out in a number of ways. Specifically,
this paper includes the following material that the au-
thor has not seen published elsewhere:

1) A careful statement of the idealized circumstances
required for canonical performance of coherent com-
biners (Section IT),

2) Simple expressions for the mean signal-to-noise
power ratios of various combiners [(18), (28), and (44);
Fig. 8; Table 1],

3) Probability distribution curves for equal-gain
combiners for 3, 4, 6, and 8 channels (Figs. 10-13,
Table 11),

4) Estimates of the relative performance of three
standard combiners for non-Rayleigh fading (Section
Vi),

5) A discussion of the relative performance of three
standard combiners for correlated fading (Section VIII),

6) Estimates of the degradation of the average per-
formance of equal-gain and maximal-ratio combiners
caused by correlated noise voltages (Section X),

7) A bound (due to Stein) on the degradation of
coherent-type combiners with imperfectly coherent sig-
nals (Section XII),

8) Certain aspects of the determination, meaning, and
use of long-term distributions (Section XIII).

In addition, some previously published material has
been simplified or otherwise clarified.

It should be mentioned that the criteria employed be-
low are expressed entirely in terms of SNR. This has
sometimes been taken to mean that the results were
principally applicable to continuous signals, although
they are also applicable to certain binary or other dis-

1 D. G. Brennan, “Linear techniques in diversity communica-
tion,” March, 1956, (Unpublished memorandum.)
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crete signals and can be translated into error rates once
a suitable detection characteristic is either theoretically
or experimentally known. But in the case of binary sys-
tems, it is possible to obtain more specific and precise
results on error rates for specific systems. Such results
have been extensively studied by Pierce [10], [15] and
others and are not considered below. Neither is there a
discussion of the considerable benefits obtainable by
coding or other signal preprocessing techniques designed
to counteract fading, several of which are currently
under investigation by other workers.

On the other hand, it should be noted that radar and
navigation systems in which a repetitive-addition signal-
enhancement technique is employed are closely similar,
in some respects, to certain diversity systems. Although
radar and navigation systems are not discussed in detail
below, many of the results and discussions set forth
there are directly applicable to such systems.

II. Basic ASSUMPTIONS AND OTHER PRELIMINARIES

The principal background required of the reader is a
basic acquaintance with certain elementary notions of
probability and statistics, essentially equivalent to those
developed in the first six pages of a highly readable
tutorial paper given by Bennett.? No advanced tech-
niques are required here. However, we shall make fre-
quent use of a few ideas and techniques that were not
particularly emphasized by Bennett, and a briefl exposi-
tion of these is given in Appendix I. All probability
distributions used in this paper will be interpreted as
explained there.

We shall be concerned throughout with random vari-
ables given as functions of time (waveforms) in various
intervals. In this setting, time and distribution averages
are one and the same thing so 7 or (f) or & or {x) for such
averages will be written interchangeably, but it is im-
portant to note at the outset that our averages will refer
to intervals of different durations. Specifically, intervals
of three different durations will be considered: 1) Short
intervals, whose duration will be denoted by 7". The re-
quirement for 7" is that it must be short in comparison to
the time required for the fading amplitude to change ap-
preciably, but long in comparison to the period of the
lowest frequency of interest in the signal. Specific repre-
sentative values of 7" would range from a few micro-
seconds to a few milliseconds. 2) Intermediate intervals,
whose duration will be denoted by 7. The requirements
71 must satisfy are rather complicated and will be ex-
plained at various points below. Specific suitable values
of Ty would range from a few minutes to a few hours. 3)
Long intervals, whose duration will be denoted by 7%.
Values of 7 would range from one month to one vear or
more.

These intervals will be employed as follows. The short
intervals of length 7" will be used to form “local” statis-

* W. R. Bennett, “Methods of solving noise problems,” Proc. IRE,
vol. 44, pp. 609-638; May, 1956.
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tics. For example, suppose e (f) is the instantaneous
signal voltage and ey(f) is the instantaneous noise voltage
on some circuit. Then

<[] peore]”

50 =[5 [ leto) s "

would be the local rms signal and local rms noise, re-
spectively, and x? and y? would be the local mean-square
signal and noise voltages. Letting R denote the circuit
resistance, x¥?/R would be the local average signal power
at time #, obtained by averaging e over the last T
seconds to find x%(¢). This averaging could be performed,
for example, by feeding e;® into a suitable linear filter.
Alternatively, one could determine the distribution of ¢
in the interval [¢— T, t] and obtain x2(f) as the second
moment of the distribution, though distributions in
intervals of length 7" will not actually be of concern here.

Local statistics such as (1) and (2) will generally
fluctuate in time because of fading and other effects.
For example, the local rms SNR x(¢) /y(f) and the local
signal-to-noise power ratio

Vit )

and

Ve (2

x*(t)
¥} () ;
will usually vary over wide limits, though they will be
much better behaved than the (meaningless) instan-
taneous ratio e;(#) /ex(t). The behavior of variables such
as the local statistic (3) in intervals of length 7%, where
T:>T, will be studied. In particular, various distribu-
tions and averages relative to intervals of length 77 will
be considered. Such T)-distributions and Tj-averages
will also change with time, in ways discussed in Sections
VII and XIII. Performance relative to Ti-intervals un-
der standard conditions is summarized in Section VI.

Finally, the variability of certain Tj-averages will be
considered in intervals of length T%, where 75>> 1. This
is done in Section XIII. It is usually assumed in system
design that, for suitable values of T5, all distributions for
the system in question will be essentially the same in
every corresponding interval of length 7%. (A suitable
value might be one year, for example.) This is in marked
contrast to the situation for Ti-distributions. However,
it is found experimentally that this assumption is a
reasonable first approximation; moreover, if this as-
sumption were not satisfied, there would be no method
available for predicting the performance of the system,
at least at the present time.

By concentrating on system behavior relative to such
prescribed lengths of intervals, it is possible to keep the
relation between theory and experiment clearly visible,
including, in particular, the practicable experiments re-
quired to verify theoretical predictions. This procedure
is therefore vital to a complete and realistic analysis’of

p() = &)
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communication systems in general and diversity systems
in particular.

In general, the term “diversity system” refers to a
system in which one has available two or more closely
similar copies of some desired signal. For example, cer-
tain radar systems operate by storing the signal received
during one scan and adding this to the signal received
during the next scan. If fi(¢) is written for the output
of the storage device and f»(¢) for the signal currently
being received, then the composite signal is simply
fi(®) +f2(t) =f(f). Now, fi(t) may consist of a desired
message component s;(f) and an undesired additive
noise component #:(f), so that fi(¥) =s1(¢) +un,(f), and
similarly fa() = s2(f) +n2(¢). Hence, the composite signal
may be written

& = [s:() + (0] + [m() + m@®], (4)

i.e., in the form of a resultant message component
(s1-+s9) plus a resultant noise component (n;+n,). If the
message components s; and s, are closely similar, their
sum s;-+se will simply approximate an enlarged copy of
either s; or s,. On the other hand, the noise components
ny and #n; may be quite dissimilar; one may be negative
part of the time the other is positive, and vice versa,
so they may partially cancel for part of the time. The
sum (4) may then be a better signal than either f; or f;
alone; in particular, f(f) may have a higher local SNR
p(t), defined as in (1)-(3), with e; =545, ea=mn1+us
than either f; or f; alone. Thus, one way of using two
similar or suitably related copies, fi and f,, may be
simply to add them together. Certain navigation sys-
tems in which a periodic signal is transmitted also use
this storage-and-addition principle.

More generally, one may have N such copies fi(f),
fa(t), - - -, fw(t), each of the form f;(¢) =s;(t) +n,;(f), and

one may form the sum

N
O =10 +£O + - -+ @0 = 2 L0, O

=1
which may outperform, in some sense, the individual f;.
However, in view of the fact that the f; will have fluctu-
ating local statistics, it will be convenient to consider
weighted sums of the f;; that is, the general linear com-

bination will be considered:
N

JO) = afi® + - -+ anf(®) = 22 afi0, ()
j=1

in which each f; is weighted by a combining coefficient
a;, which is proportional to the channel gain and may
be allowed to vary in accordance with the fluctuating
local statistics of the f;({). However, the cases to be
considered will be those in which the a; are locally con-
stant, or at least approximately so. The adjective
“linear” in the title of this paper stems from (6). Since
the a; may be allowed to vary, depending on the f;,
one should perhaps speak of (6) as locally linear or
“quasi-linear.” Evidently (4) is simply the case of (6) in
which N=2, g;=0a,=1.
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In diversity communication systems, there are several
known methods of obtaining two or more signals f;,
and several known methods of combining these to ob-
tain an improved signal. However, all of the latter meth-
ods in current practical use are special cases of (6). Let
us first consider briefly methods of obtaining several
suitable f;. The simplest of these is that in which a single
transmitting antenna furnishes a signal to several well-
separated remote receiving antennas; this method is
called space diversity. A variant of this, suitable for use
in systems operating at UHF and above, uses two sepa-
rated transmitting antennas, one of which transmits
vertically polarized radiation and the other of which
transmits horizontally polarized radiation, and a single
receiving reflector with two feed horns or dipoles to
separate the vertical and horizontal received signals. By
combining these two methods, Altman and Sichak [8]
obtained a fourth-order, bidirectional, full duplex space
diversity system that requires only two reflectors at
each end, as indicated in Fig. 1. (However, it should
be added that recent experimental evidence indicates
that the fading on the crossed pair of paths is more
highly correlated than on the other pairs of paths.) In
one form or another, space diversity has been the most
commonly used form of diversity communication.

Fig. 1—Four-channel bidirectional space diversity system suitable
for UHF and SHF systems. Signal paths are indicated for one
direction only. The circles marked D denote diplexing filters.
The transmitters are on different frequencies.

Another method, called frequency diversity, involves
transmitting the same information on two or more
carrier frequencies. If these are sufficiently separated,
the fading on the wvarious channels is approximately
independent, as in the case of space diversity. This
method is economical in terms of antennas and real
estate, but expensive in terms of transmitters and re-
quired bandwidth. It has been discussed more often
than used. (However, there are circumstances in which
it is useful and has actually been used.) This is also true
of the method called time diversity, so far as communi-
cation systems are concerned; however, it is not true of
radar and navigation systems, as the method discussed
in the opening paragraph of this section is essentially
time diversity, although this terminology has not been
much used in the radar field. In radio communication
systems, time diversity involves transmitting the same
information two or more distinct times. When this is in-
strumented for automatic operation, its chief disad-
vantage is equipment complexity; however, the simple
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practice of sending each word twice, as used by many
commercial CW stations, is actually a primitive but
useful form of time diversity. At the other extreme, a
very sophisticated communication system, currently
under development,® which is designed to eliminate
effects due to multiple transmission paths between fixed
antennas, actually sorts out the various multipath con-
tributions and recombines them with suitable delays
and may be regarded as a form of time diversity in which
the diversity is provided by the transmission medium
itself.

A method that will sometimes yield two approxi-
mately independent fading signals is called polarization
diversity. In normal ionospheric transmission at fre-
quencies of a few megacycles, it is found that the re-
ceived signal includes both vertically and horizontally
polarized components, and the fading of these compo-
nents is approximately independent.*s However, in
tropospheric transmission at UHF and above, the polar-
ization of the transmitted signal is quite well preserved®
and very little effect of this type takes place. Further-
more, even if both horizontal and vertical components
are transmitted and separately received, the fading of
the two components is far from independent if only a
single transmission path is involved.?

Another method that has been used (infrequently) in
the high-frequency region involves the combination of
signals arriving with different angles of arrival (the
Musa system).” A somewhat similar approach at UHF
and above is currently under investigation by several
workers,5 1 but the efficacy of this technique is not yet
firmly established.

Whichever of these methods is used, the signals ob-
tained will initially be at radio frequency. The diversity
combining techniques employed subsequent to this stage
may be classed in two groups: predetection combining

# R. Price and P. E. Green, Jr., “A communication technique for
multipath channels,” Proc. IRE, vol. 46, pp. 555-570; March,
1958. :

4 J. L. Glaser and L. P. Faber, “Evaluation of polarization diver-
sity performance,” Proc. 1RE, vol. 41, pp. 1774-1778; December,
1953.

» G. L. Grisdale, J. G. Morris, and D. S. Palmer, “Fading of
long-distance radio signals and a comparison of space- and polariza-
tion-diversity reception in the 6-18 mc range,” Proc. IEE, pt. B,
vol. 104, pp. 39-51; January, 1957.

6 J. H. Chisholm, P. A. Portmann, J. T. deBettencourt, and J. F.
Roche, “Investigations of the angular scattering and muitipath
properties of tropospheric propagation of short radio waves beyond
the horizon,” Proc. IRE, vol. 43, pp. 1317-1335; October, 1955. See
especially Fig. 20, p. 1331.

7F. E. Terman, “Radio Engineers Handbook,” McGraw-Hill
Book Co., Inc., New York, N.Y., pp. 660-661; 1943. See also papers
by Polkington and Friis and Feldman cited therein.

8 R. Bolgiano, Jr., N. H. Bryant, and W. E. Gordon, “Diversity
Reception in Scatter Communication with Emphasis on Angle
Diversity,” Cornell Univ., Ithaca, N. Y., Elec. Engrg. Res. Rep. 359;
January, 19358,

¢ A, T. Waterman, Jr., “A rapid beam-swinging experiment in
transhorizon propagation,” IRE TrRANS. ON ANTENNAS AND ProOPA-
GATION, vol. AP-6, pp. 338-340; October, 1958.

10 J, H. Chisholm, L. P. Rainville, J. F. Roche, and H. G. Root,
“Angular diversity reception at 2290 mcps over a 188-mile path,” pre-
sented at Symp. on Extended Range and Space Communications,
George Washington Univ., Washingten, D. C.; October, 6-8, 1958.
(Published in the Symp. Rec.)
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methods and postdetection combining methods. In
those methods in which, at any given time, only one of
the a; in (6) is different from zero, i.e., a switch of some
kind, the distinction is basically unimportant. However,
important differences arise when the combining method
is one in which two or more of the a¢; may be different
from zero at the same time. For example, it is clear that
the simple addition scheme (4) can fail grievously if the
message components s;(¢) and sq(f) are not in the same
phase, and RF or IF diversity signals will not usually
be in the same phase unless special measures are taken
to insure this. Consequently, such combining methods
require special phase-control provisions when used in
predetection applications, while this is not always the
case in postdetection applications. An even more im-
portant difference arises in the case of FM or other
bandwidth-exchange systems, where predetection com-
bining can lead to substantial improvement over post-
detection methods, as will be seen.

Once the method of providing a multiplicity of sig-
nals is decided, the basic problem confronting the de-
signer of a diversity system becomes one of choosing
the most appropriate method of combining these sig-
nals on the basis of reasonably accurate quantitative
estimates of the performance of the various techniques.
The balance of this paper is principally devoted to this
problem. Instrumentation problems as such are not
considered here; however, papers which describe certain
instrumentation techniques are indicated.

We shall find it most economical to consider first a
particular class of circumstances, and then indicate the
way in which the results are modified by other circum-
stances or, in some cases, indicate where such modifica-
tions are treated elsewhere in the literature. The circum-
stances initially considered are those often applicable to
postdetection combining in an AM system, or a single-
sideband system in which provision is made for main-
taining coherence of the postdetection signals.!* These
conditions are as follows: assume that N simultaneous
functions, fi(#), fa(8), - - -, fy(¢) represent the signals
received in N different diversity channels as corrupted
by noise and fading;each f;, j=1, 2, - - -, N represents
the corrupted signal in the jth channel containing the
originally transmitted signal m(¢). For convenience, sup-
pose that m(¢) is a steady test tone at a representative
midband frequency, or some other steady test signal
with a constant local mean square m2?=1. That the fol-
lowing conditions are approximately satisfied is also
assumed:

(A) The noise in each channel is independent of the
signal, and additive: f;{) =s;(¢) +n;() where s; and #n;
are the signal and noise components, respectively, in the
jth channel.

(B) The signals s;(#) are locally coherent; z.e., s;(f)

W, E. Morrow, Jr., C. L. Mack, Jr., B. E. Nichols, and J. Leon-
hard, “Single-sideband techniques in UHF long-range communica-
tions,” Proc. [RE, vol. 44, pp. 1854-1873; December, 1956.
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=x;m(f), where the x; are positive real numbers that
change with time because of fading, but at a rate that
is very slow in comparison to the instantaneous varia-
tions of m(f). More precisely, assume that the x; do not
change appreciably within any period of duration T,
where 7" is the duration of the interval employed for the
local averages. Then, since m?=1,

sz =

S o = [ st

i

t
wr [ o) ar = ™)
TJ i1
so that x; =ux;(¢) is simply the local rms value of s;, taken
over the last 7" seconds before the present time, ¢£. It is
clear that 7" must be short in comparison to the time
required for the fading amplitude to change appre-
ciably, but long in comparison to the period of m(z).

(C) The noise components #;(¢) are locally incoherent
(i.e., uncorrelated) and have zero means: ng;=n; n;
if 2%, where the duration of the averagesis the same as
in (7). We shall also assume that the local mean square
noises #;2 are slowly varying, or, sometimes, constant.

(D) The local rms values of the signals, x;(f) =~/(s;?),
are statistically independent. Note that this assumption
automatically implies that at least two intervals are
considered: first, the period 7" [of (7)] involved in the
definition of the x;; and second, an interval of duration
77 in which we observe the x;(f) as new random vari-
ables. Evidently 77>>T; in practical cases, 7' might be a
few milliseconds and 73 approximately 30 minutes. A
discussion of the requirements on 7% is provided in
Section XIII. It is important that 7 cannot be too long.
Assumption (D) is that, when observed in intervals with
a duration on the order of 74, the variables x;(f) are
statistically independent.

The circumstances characterized by assumptions
(A)—(D) are illustrated in exploded fashion in Fig. 2 for
N=2. By “exploded,” we mean that the actual signals
given would be f;() =s;(t) +n,(), j=1, 2, while the s;
and #; are shown separately. The meaning of the
locally coherent assumption (B) is that, over periods of
length 7', the signals s; and s» are essentially identical
except in amplitude, which is approximately constant
over such periods. The local rms values x;(f) are indi-
cated by the dashed curves. Note that the assumption
s;(t) =x;m(¢) implies that the s;(¢) have the same zero
crossings, and are in phase. If the s; are RF or IF signals,
the period 7" might be several microseconds or more, in
which case no variation of the x; would be perceptible
within the scale of Fig. 2. If the s; represent base-band
signals, 7" might be a few milliseconds.

In contrast to the s;, it will often be required that
the noises #;(f) be essentially different; this is the mean-
ing of (C), as suggested by the waveforms n:(f) and
ns(f) of Fig. 2. In particular, it will often be assumed
that (nn;)=0 (if 157) over every interval of length T.
In addition, however, it will sometimes also be as-
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sumed that the noises #; have constant local average
power, t.e., that

— 1 ¢
n2 = 7 f; » [n,(r) J2d7 (8)

is a constant, independent of ¢ and j. This would be at
feast approximately true of the waveforms #; and #, of
Fig. 2.

]
s4(1) l \'I" X{(t)

Fig. 2—Signals and noises in two diversity channels.

Assumption (D) is not particularly illustrated in Fig.
2, and could not be successfully illustrated there because
the period 7 required for approximate independence of
the x; is much greater than the total scale length of Fig.
2. If the x; were plotted throughout an interval of
length 7 and the graph were then compressed to the
length of Fig. 2, the resulting curves would resemble the
waveforms illustrated for #n; and #,, except that the x;
would be non-negative and would not usually be sym-
metric about their mean values. In particular, the x; are
not locally coherent in the sense of (B), where this
“locally” refers to intervals of length 73. Note that dis-
tributions or averages of the x; or quantities derived
therefrom, e.g., {x;%), refer to intervals of length 7.
Such averages could be distinguished by suitable nota-
tion, e.g. { ), but it will simplify the appearance of
various expressions if the context is relied upon to make
clear whether a short-term or intermediate-term aver-
age or distribution is meant.

Most of the work below is concerned with signal-
noise-ratios, and from here on the word “ratio” is to
mean “SNR.” This will be qualified as an amplitude
ratio or a power ratio as the context requires. pj =x,2/n?
will be written for the local power ratio in the jth chan-
nel, and x;/+/(n;?), is, similarly, the local amplitude
ratio. We shall often take n2=1,7=1,2, - - -, in which
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case the local amplitude ratio is simply x; numerically,
and pj=x,~2,

It will frequently be assumed that the variables x,
follow a Rayleigh distribution with density and dis-
tribution functions

plx;) = 2@9@'“2, P(x;) = 1 — i’ (9)

respectively. A plot of the Rayleigh density function is
given in Fig. 15. All distributions considered in this
paper are zero for negative values, and expressions such
as (9) are to be understood as referring to positive values
only. Writing the Rayleigh distribution in the form (9)
implies a particular choice of scale; in particular, it im-
plies that {x;%)=1. The Rayleigh distribution is often
written with an arbitrary scale factor, say

PG) =1 = e,

2y,
o(y) = e (10)

in which case {(y?)=R?2 However, the data below are
given in a form that is completely independent of such
scale factors, until Section XIII. This saves considerable
cluttering of the landscape below. Similarly, n2=1
will often be taken instead of n;2=n% for example.
For, when #;>=1, then x; is exactly the local amplitude
ratio, which has the distribution (9), and p;=x,? has the
simple distribution

Gp)) =1 —eri,  glp;) = e, (11)

(Distribution functions will always be written with up-
per case letters, density functions with lower case
letters.)

There are four principal types of diversity combining
systems in practical use. Many of the combiners in
actual use are not pure examples of one of these types;
i.e., they involve approximations to, or modifications
of, one of these types. However, the effect of such modi-
fications can often be estimated, at least roughly. (The
terminology used here is not entirely standard——indeed,
there is no generally accepted standard terminology-—
but is the result of careful consideration and discussion
with several colleagues.) The four “pure” techniques are
as follows:

1) Scanning Diversity. This technique is of the
switched type: t.e., at any time, only one of the a; in
(6) is different from zero, and that one is equal to 1. A
selector device scans the channels in a fixed sequence
until finding a signal above a preset threshold, uses that
signal only until it drops below threshold, and then
scans the other channels in the same fixed sequence
until it again finds a signal above threshold. It is often
applied to the case of two antennas supplying a single
receiver through the switch, which is why it is some-
times called antenna selection diversity. I't does not re-
quire a separate receiver for each channel, but at least
one of the following techniques will always outperform
it. We shall not consider this type in the present paper,
confining our attention to the next three. This technique
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has been analyzed (for N =2) by Hausman [4] and most
recently and most extensively by Henze [13].

2) Selection Diversity. This is also a switched tech-
nique, but of a more sophisticated sort. The design cri-
terion here is that, at any given time, the system simply
picks out the best of the N noisy signals fi, fz, - - -, fw,
and uses that one alone; the others do not then contrib-
ute to f(f). More precisely, let £ denote the index of a
channel for which p,>p;, j=1, 2, - -, N; then this
type of system is characterized by the design criterion

{1, for j = %,
a; =

12
0, for j # k, (12

in terms of (6). This is essentially the classical form of
diversity communication [1], [2]. Very often, the selec-
tion in such systems is by electronic means (e.g., by
using a common detector in such a way that the strong-
est signal cuts the others off) and is not quite as sharp as
(12) would indicate; however, (12) is often a good
approximation to such cases. A three-channel selection
diversity system is depicted in Fig. 3.

3) Maximal-Ratio Diversity. This system is defined
by the property that, among all systems of the type (6),
it yields the maximum SNR of the output signal f(¢),
provided assumptions (A), (B), and (C) are satisfied.
More precisely, let p denote the local power ratio of
f(®. Then a maximal-ratio system realizes

A7
b= 2. b5
j=1

i.e., the maximum power ratio realizable from any linear
combination (6) is equal to the sum of the individual
power ratios. Furthermore, the result (13) is equivalent
to the requirement that the coefficients in (6) be propor-
tional to

(13)

a; = x;/n?; (14)
i.e., the maximum output ratio (13) is realized if and
only if the gain of each channel is proportional to the
rms signal and inversely proportional to the mean
square noise in that channel, with the same propor-
tionality constant for all channels. This will be proven
below.

(This result has several times been quoted in the
literature as requiring the weighting to be proportional
to the amplitude ratio. It should be noted that this is
correct only in the case where the local noise powers are
all equal, in which case it would be less misleading to
speak of weighting proportional to the rms signal.)

It is clear that (13) is a definite improvement over
either scanning diversity or selection diversity, which
can yield only one of the terms in the sum )_p; as the
output power ratio. This observation is essentially due
to Kahn [5], although the form stated here can be traced
to [6], and closely similar results have been used in
radar systems for some time. (It is quite possible that
the diversity system discussed by Peterson, et al. [2]
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was actually a maximal-ratio system. However, the au-
thors made it clear that they were thinking in terms of
selection diversity, whatever their actual instrumenta-
tion may have realized.) Maximal-ratio diversity has
sometimes been called ratio squarer diversity, optimum
diversity, and combiner diversity. Radar systems of the
type discussed in connection with (4) and which employ
square-law detection are essentially maximal-ratio sys-
tems. The general arrangement of a two-channel maxi-
mal-ratio system suitable for postdetection combining is
shown in Fig. 4; a predetection combiner would require
the addition of phase-control circuitry to satisly as-
sumption (B).

FADING
SIGNALS Y f(1)

¥ f5(1) _/

MEANS OF DETERMIN-
ING MAXIMUM pj

(1)

Fig. 3—Selection diversity. The f; may be predetection or
postdetection signals.

Y A0 GAIN a, fi(1)
PROPORTIONAL
TO ay
FADING MEASUREMENT __...__.J
| ENT
SIGNALS oF a;=x,/ n} suM LGN
\ o fyt oty
v £,01) GAIN
PROPORTIONAL
Toa, PRAT)
MEASUREMENT ___—___J

1 2
OF 0,%X5 / n3

Fig. 4—Maximal-ratio diversity.

4) Equal-Gain Diversity. This is probably the sim-
plest possible linear diversity technique; it is character-
ized by the property that all channels have exactly the
same gain. Thus, in terms of (6),

aj:1)j=1)2;"'7Z\'T7 (15)

i.e., the noisy signals f;() are simply added together. In
applications of this technique, the channel gains can be
made to vary in such a way that the resultant signal
level is approximately constant; however, this is irrele-
vant to the performance of the system. The important
feature is that the channel gains are all equal. Note: it
is important to observe that this is not the case with
conventional common-detector type diversity systems;
a common-detector combiner is essentially a selection
diversity system, and an equal-gain system is decidedly
different both in instrumentation and performance.
However, an equal-gain system may well use a common
AGC detector, but not a common signal detector of the
usual type, as is also the case with maximal-ratio sys-



1082

tems [5]. A basic two-channel equal-gain system is illus-
trated in Fig. 5. Note that the blank boxes representing
receivers must have the same gains, including conver-
sion and detection gains, which, therefore, must be fixed;
they could not include separate, independent AGC
systems. Also, they could not be conventional FM (or
similar) receivers, as the detection gain of an FM re-
ceiver depends on the signal level. However, it is pos-
sible to mstrument unconventional FM detectors for
postdetection equal-gain combining.’? An arrangement
suitable for use with AGC is shown in Fig. 6. As in the
case of Fig. 4, the application of an equal-gain combiner
before detection would require the addition of phase
control provisions to Figs. 5 and 6.

\4 f,(1)
(1)
SUM el
=f, (1) +1,(1)
Y f,(1)

Fig. 5—DBasic equal-gain diversity.

Y rront | 94 T variaeLe (1)
END GAIN
L
(1)
A6C DETERMINES sum
CONTROL AGC —f, +1p
Y rronT | 921 | variasLe f2(1] E
END GAIN

Fig. 6—Equal-gain diversity. The boxes “variable gain” must have
the same gain, which may include conversion and detection gain.

It has been pointed out by Sichak [8]® that, under
conditions often occurring in practice, equal-gain sys-
tems will outperform selection diversity, and will per-
form almost as well as maximal-ratio systems. In view
of the simplicity of the instrumentation required for (15)
as compared to (14) (equivalently, see Figs. 5 and 4),
this fact is of great practical importance. The conditions
required are that assumptions (A)—(ID) must be satisfied;
in addition, the x; must be Rayleigh-distributed, and
the local mean square noises 7,;* must be approximately
constant. Under other conditions, it may not perform
as well as selection diversity, as will be seen. Since,
however, these conditions are often {(approximately)
satisfied, it follows that equal-gain diversity should be
more widely known than is presently the case.

In the following three sections, the principal features
of diversity combiners of types 2)—4) above will be de-

12 R, T. Adams, private communication; December, 1958.
18 W. Sichak, Fed. Telecommun. Labs., Nutley, N. J., private
communication; August 19, 1955.
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veloped. In particular, distribution functions will be ob-
tained for the local power ratio p of the composite
signal f(£), and mean values of p, under the conditions
discussed. Then, in Sections VII to X 11 the results will
be compared and evaluated, and the way in which the
results are altered by various modifications of the con-
ditions as they occur in practice will be indicated.

I1I. SrLECcTION DIVERSITY

The distribution function for an N-channel selection
diversity system is particularly simple to obtain, pro-
vided the local noise powers x,2 are constant. Let
n2=1, j=1, 2, -+, N, and assume that the x; are
Rayleigh-distributed. Then the individual channel
power ratios p; have the distribution G(p;) of (11). By
(12), the output power ratio of the combiner is simply
the largest of the individual p;. Now, if the largest power
ratio 1s <p, then the power ratio of every channel is
<p; conversely, if the power ratio of every channel is
<p, then so is the power ratio of f. Hence, the probabil-
ity of having the power ratio of f be < is precisely the
probability of having the individual channel ratios all
<p simultaneously. Since the x; are independent, by
(D), so are the p;=ux,% and, hence, the probability that
all channels have power ratio <p is simply the product
of the separate probabilities that each channel individ-
ually has a power ratio <p. Thus,

Sx(p) = G(p)-G(p) - - - G(p) = [G(p)]¥
(1 — e )W

il

(16)

I

is the distribution function of p, the realized local power
ratio, for an N-order selection diversity system.

The average value § of p will be required for this
system. In this case, it is most easily obtained from the
distribution (16). Thus,

pN) = [ PpaSn(p) = f PN(L — e ")V temrdp. (17)
¥ —c0 0

This integral is evaluated in Appendix VI, where it is
shown to reduce to the remarkably simple form

o1

SOV) = v
AN) 2a

(18)

Thus, p2)=1+%=% pB)=1+(H+@) =11/6, etc.;
these values will be used below. It is clear at once from
(18) that increasing the number of channels in a selec-
tion diversity system yields rapidly diminishing returns;
adding the Nth channel increases § by only 1/N. It will
be seen that the next two systems to be considered can
perform much better in this respect, in consequence of
(B) and (C). However, it should be noted here that
neither the functioning of a selection diversity system
nor the statistics developed in this section depend on
assumptions (B) or (C), which are not required here. The
significance of this fact will be discussed.
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IV. MaxmaL-RaTio DIVERSITY

The first order of business is to establish (13) and (14).
In order to do this, it will be convenient to use a
mathematical device known as the Schwarz inequality.
This is not specifically related to statistics, but is a gen-
eral result of great importance in many fields of pure
and applied mathematics. One form of this states that
if w1, 4, - - -, uy are any N real numbers and vy, 03,

-, vy are any N real numbers, then

(el <[ 2w][2v]

The proof of this, which is quite short, is given in Ap-
pendix II. Note that if u;=ajv/(n;%), vi=x;//(n;*),
then (19) takes the form

(19)

N 2 N ] N .
[Zow] <[ Somt| Savin] e
=1 j=1 j=1
which, since p;=x;/n?, can be written
N 2 N r N
I: > aij:l < l: 2 dﬁ"ﬂ][ > Pi]- (21)
=1 =1 =1
Now, in (6), let us write
N N
s(t) = 2 asi0),  n() = 2 ami(®), (22)
=1

so that f(£) =s(t) +n(t), and p=s?/n? is the local power
ratio of f. But (all sums from 1 to N)

st = ([ 2 as]h
and by assumption (B)

= (m*[ 22 a;]?)
= (m?)-[ 22 ajx;]?

and since | D_a;x;]? is locally constant and can be taken
outside the average, and since m?=1,

£ =2 el (23)
Furthermore,
nt = {22 am]?)
=2 o, (24)
by (61) and assumption (C). Thus, using (21),
Lo Sl e, oo

r= (n*) - Z ajW
which proves that p cannot exceed > p;. On the other
hand, if a;=x;/n, then
[ 2/ n?]? _ (20 2]
2wt n? 2 b
=2 pi (26)

so that p= D p; if a;=x;/n? and similarly if a;

H =
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=k(x;/n;%) for any k#0, thus proving (13) and (14).
[Readers acquainted with the Schwarz inequality for
complex numbers will recognize that it may be used to
include the case of positive or negative x;, or even com-
plex x;. This is, however, only a more formal way of in-
cluding assumption (B). ]

It is interesting to note that the only purely statis-
tical fact used in this development is that averaging is a
linear operation, as discussed in Appendix I. No use was
made of distribution functions or any similar apparatus.
However, it is important to observe that each of the as-
sumptions (A)—(C) entered in a very vital way.

We now consider the statistical properties of the local
power ratio p. The first point to be noticed is that
p= D p; implies

15=Zﬁjy

J=1

(27)

without regard to the distribution of the p; or the pos-
sible dependence of these variables. If, in particular,
pi=1,7=1,2,- -+, N, then

P(N) = N. (28)

This behavior is in marked contrast to the correspond-
ing relationship (18) for selection diversity, which in-
creases much less rapidly with N than (28) does.! (It
should be clear that the notation (V) is used in a some-
what flexible way; p(N) is a different function of N in
(18) than it is here.) The average value of the local
power ratio of the output of an N-order maximal-ratio
system is simply 10 logiy N db above a single channel.

In order to obtain an explicit distribution of p, we
shall employ the same assumptions used for the selection
diversity case, namely, that the x; are independent Ray-
leigh variables and that n2=1, j=1,2, - - -, N, so that
the p; have the exponential distribution (11). Thus we
are interested in the distribution of the sum p=Yp; of
N independent random variables, each with the dis-
tribution (11). This problem can be treated by a simple
application of characteristic functions,? as indicated in
Appendix [II. Alternatively, it can easily be solved by
using the geometric approach mentioned in Appendix I,
without reference to characteristic functions. (One in-
tegrates the joint density function

exp [ — (1 +po+ - + pw)]

over the N-dimensional volume bounded by the hyper-
plane pi+ps+ - - - +py=p and the coordinate hyper-
planes.) In either case, the result, writing Gy(p) for the
desired distribution function and gx(p) for the associ-
ated density function, is

1
ey - KN—1,—p
av(p) v =1 P e,

1 v
Gu(p) = ——— | y¥levdy.
~(2) (N_mfoy evdy

4 For large N, (18) is approximately log. N.

(29)

(30)



1084

By using Gi(p)=1—¢? and the recursion relation
Gy (p) =Gn_a(p) —gn(p), easily verified by an integra-
tion by parts, we have

G(p) = 1= (1 + p)e,

——<1+p+~1;~,z)e“”

2 3
<1+p+p+p)

Ga(P) =

G4(I7) =

and, in general,

N—-1 Pk
ot =1~ (Z L) e (31)
k=0 k!
which can also be written
o0 Pk
Gh(p) = (Z —) €. (32)
n k!

The utility of the form (32) is that it indicates the ap-
proximations
N N

o=t (33)
are accurate for sufficiently small p. The distribution
(31), known as the gamma distribution, is easily com-
puted for the integral values of NV of interest here and
has also been tabulated.’s It can also be identified with
the chi-square distribution with 2N degrees of free-
dom.

The origin of the maximal-ratio distribution (31) has
sometimes been incorrectly attributed (in Pierce [15]
and Packard [14] among others). That (31) is the dis-
tribution function of sums of squares of Rayleigh vari-
ables has been known in radar circles for quite some
time. In the context of maximal-ratio diversity com-
biners, the result (31) for arbitrary N was first pub-
lished in March, 1956, by Altman and Sichak.'” (It also
appeared independently in an unpublished memoran-
dum! at about the same time.) Curves of (31) for several
values of N were subsequently published by Staras [9].

V. EQUAL-GAIN DIVERSITY

Recalling that the relations s?= [ p_a;x;]? of (23) and
ni= Yy a;*n;® of (24) did not depend on a choice of the

1 K. Pearson (ed.), “Tables of the Incomplete T Function,”
Cambridge University Press, Cambridge, Eng.; 1946. In his notation,
he tabulates

° p+1
Ty p) = — f e,

so that his p is here N—1, and hlS u is here p/+/N.

B E, S, Pearson and H O. Hartley (eds.), “Blometrl ka Tables
for Statisticians,” Cambridge University Press, Cambridge, Eng.,
Table 7, p. 122 ff.; 1954. Short tables of the x* distribution are given
in many other statistical tables and in most textbooks on statistics.
See, for example, H. Cramér, “Mathematical Methods of Statistics,”
Princeton University Press, Prmceton N. J.; 1946.

17 Altman and Sichalk, [8], p. 55,-middle of right-hand column,
with (eL)?=2p.
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a; [i.e., they hold for any combiner of the type (6), pro-
vided assumptions (4)—(C) are satisfied, and hence hold
in particular for a;=1, j=1, 2, , N|, we have

o= Za] (34)
and
=3 (35)

for an equal-gain system. The relation v/(s?) =Zx, from
(34) is simply the well-known fact that the rms value
of a sum of coherent signals is equal to the sum of
the individual rms values, while (35) similarly expresses
the fact that the average power of a sum of uncorrelated
signals is equal to the sum of the individual average
powers. Some communication engineers express (34) by
saying that coherent signals “add linearly”; however,
this language is both formally meanmgless and con-
ducive of an imperfect understanding of the situation
and is better replaced by “add coherently” if some such
expression is necessary.
From (34) and (35), we have
2
- Z »

Z ”3'2

for an equal-gain system. In order to develop compara-
tive statistics for this, it is again assumed that the
nit=1,j=1, 2, , N, and that the x; are independent
and Rayleigh-distributed. Since nZ=1, p=[ > x;|>/N.
Put

N
u=+Nb=, . (37)

el
It is clear that the distribution function of p will follow
immediately from that for %. The distribution of a sum
of N Rayleigh variables, each with the distribution (9),
is accordingly of interest. Unfortunately, this problem
is not nearly as tractable as in the maximal-ratio case.
The characteristic function of a Rayleigh variable is
not expressible in an immediately useful form. We are
here essentially forced to rely on the geometric ap-
proach mentioned in Appendix I. Let By(u) denote the
distribution function of (37). For N=2, say u=x-y,
it can be seen that By(u) is given by the integral of the
joint density function 4xye ¢* gver the region of the
x—7 plane bounded by the line x-+y=u and the co-
ordinate axes (Fig. 7). (We can stay in the first quadrant
because the density function is zero in all other quad-
rants.) [t is easy to see that this is

u Ty
Bo(u) = f f 4xye @+ dudy
0 =0

(38)

Il

Zf ye ' [1 — w0’ |dy,
0



/X"I'y =u

Fig. 7—Region of integration for (38).

By completing the square in the exponent and making a
few other routine manipulations, this becomes [8]

2 S 2 u
&@=1-ru—WWMWWH&@,<M

where

2 e,
H(x) =37:rf03 dt

is the error function and is tabulated.'® Thus _tpe dis-
tribution function of p=wu?/2, As(p), is Ba(/2p), t.e.,

As(p) = 1 = e — \/mperH(VP),

and is readily plotted.

‘Corresponding to (38), it is easy to see that the distri-
bution function of the sum of IV independent Rayleigh
variables is

( ) . u U—IN u-—ZkN=3 @, u— ZkN=2 @,
T W A A
0 0 0 0 .

XN e—(112+"‘+¢]\’2)dxl .

(40)

X1kp - codey,  (41)

which is simply the integral of the joint density function
over the N-dimensional volume bounded by the hyper-
plane x;+x.+ - - - +xy=u and the coordinate hyper-
planes, as in Fig. 7 for N=2. Unfortunately, the inte-
gral (41) is quite as frightful as it appears; numerous
workers—going back to Lord Rayleigh himself—have
tried to express By(u) in terms of tabulated functions,
but with no success if N>3. However, By(u) has re-
cently been tabulated,® and curves of 4 x(p) = By(+/Np)

18 “Tables of the Error Function and its Derivative,” Natl. Bur.
Stand., Washington, D. C., Appl. Math. Ser. No. 41; 1954. The error
function or, for that matter, (39) itself, can also be expressed in terms
of the much tabulated normal (Gaussian) probability distribution
function. See “Tables of the Normal Probability Functions,” Natl.
Bur. Stand., Appl. Math. Ser. No. 23; 1953. Brief tables of the
normal distribution function appear in most statistical texts, e.g.,
Cramér, op. cit.

19 W, C. Mason, M. Ginsburg, and D. G. Brennan, “Tables of 'the
distribution functions of sums of Rayleigh variables,” to be published.

Brennan: Linear Diversity Combining Techniques

1085

have been constructed {rom these tables for the present
paper (in Section VI) for N=2, 3, 4, 6, and 8. An out-
line of the method of computation is sketched in Ap-
pendix [V.

We shall next obtain the average values p(V) for the
equal-gain case. Although these averages depend on the
distribution of p and the distribution of p is not given
in a particularly explicit form, it is nevertheless easy,
following Appendix I, to obtain the $(N). Since n,2=1,
(36) becomes

p=i[%xf]2=—]1\;[éxf+2xm]- (42)

NL = oy

Since the x; are independent, x;;=&%; if 1], so

1 N o
b= “[ 2+ 2 93z%:|
NL = oy
1
=14+ — 2 &k, (43)
N iny
using the fact that x2=1, j=1, 2, - - - , N. Let &;=r,
j=1,2,-- ., N. By considering the terms of the sum

> - ixj @@ as the entries from an N by N matrix with
the main diagonal deleted, it is seen that there are
N2—N=N(N-1) such terms, each equal to 7%, and so

PN) =1+ (N — 1)r?, (44)

the desired average value. The constant 72=(%,)? de-
pends on the distribution of the x;, For the Rayleigh
distribution, 72=m/4220.785. For any distribution,
r2=(&)2/x? is a dimensionless constant between 0 and 1,
but values of 72 much less than 0.785 are relatively in-
frequent in observed fading distributions.

It is thus seen that p increases linearly with NV, as was
also the case for maximal-ratio systems. The only dif-
ference is that (28) increases with slope 1 while (44) in-
creases with slope r?=m/4 for Rayleigh fading. But the
absolute maximum by which (28) can exceed (44) is 10
log10(4/m) =1.05 db, and this only in the limit of an in-
finite number of channels.

VI. CanoNicaL ONE-HOUR PERFORMANCE

The three systems will first be compared simply on
the basis of the average values of the local power ratio
p of the output. This is done first in Fig. 8, for N=1,
2, 3, - - -, 10 channels. The maximal-ratio points are
values of 10 logio N from (28), the equal-gain points are
10 logyy [14+(N—1)(7/4)] from (44), and the selection
diversity values are

10 logio [ % (l/k)]

k=1

from (18). Since $;=1, these give the increase in decibels
in the average local power ratio over a single channel.
The data of Fig. 8 for N=2, 3, 4, 6, and 8 are presented
from a different point of view in Table I, which gives -
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Fig. 8—Diversity improvement (in decibels) in average SNR,
for independently fading Rayleigh-distributed locally coherent
signals in locally incoherent noises with constant local rms values.

TABLE 1
CoMPARATIVE AVERAGE SNR (Samr CoNDITIONS AS IN FiG. 8)

Number of | Number of DB by which Maximal-Ratio Exceeds
Channels
Equal-Gain Selection One Channel

2 0.49 1.25 3.01
3 0.67 2.14 4.77
4 0.76 2.83 6.02
6 0.85 3.89 7.78
8 0.90 4.69 9.03
;c 1.05 0 @

the differences between the maximal-ratio values and
the lower curves of Fig. 8, counting the zero axis as a
curve. The last entry in the equal-gain column is essen-
tially the assertion that no matter how far the curves
of Fig. 8 were continued, the top two would never differ
by more than 1.05 db, although they would get farther
and farther away from the selection diversity curve and
the base axis.

A brief discussion of the significance of these data is
in order. These results are useful, for example, in esti-
mating relative average system capacities, or in other
circumstances where the average value alone of p is of
interest. Most recent diversity systems have been de-
signed for a specified percentage of reliability, i.e., a

PERCENT OF TIME LEVEL EXCEEDED

Fig. 9—Dual diversity distributions, conditions of Fig. 8.

specified percentage of time during which the system
performance will exceed some given criterion. This re-
quires information about probability distributions. This
approach is appropriate whenever high reliability is a
primary requisite, e.g., in important military communi-
cation systems, or in relay systems carrying commercial
television programs. However, it should be pointed out
here that some systems do not require very high local
reliability or they may effectively achieve it by other
means, such as coding. In such circumstances, the data
of Table I may be more meaningful than results based
on the distributions to be presented.

Let us next compare the probability distributions of p
realized by the three systems for different orders of di-
versity. The case N=2 (dual diversity) is illustrated in
Fig. 9, together with the distribution of # for a single
channel with Rayleigh fading for comparison. The term
“median” in the designation of the ordinate scale of
Fig. 9 refers to a value x4 of a random variable x for
which P(xo) =1, i.e., a value x, for which ¥ <x, for 50
per cent of the time and x>ux, for 50 per cent of the
time. Thus, the median py of the one-channel distribu-
tion (11) is obtained by setting G{po) = § and solving for
pe, from which pg=10g.2220.693. The ordinate scale of
Fig. 9 is expressed in decibels relative to this po. That
is, the V=2 curves of Fig. 9 are plots of 10 logio(p/po) vs
100 [1—Dy(p) |, where Dy(p) is, respectively, Ga(p) of
(31) (maximal-ratio), 4.(p) of (40) (equal-gain) and
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So(p) of (16) (selection). 100 [1—Dy(p) | is the per cent
of time ordinate exceeded. The Rayleigh fading curve
is 100 [1—G(p)] of (11). (For the distributions con-
sidered here, the median values of p do not differ from
the corresponding mean values by more than about
1.6 db. The reason for using the median value of the
Rayleigh distribution as a reference here is that this is
commonly presented as an experimental datum, since
median values can be read directly from the distribution
function determined by a totalizer. )

It is clear that the differences between the various
dual diversity curves of Fig. 9 are quite small, especially
in comparison to the difference between any one of them
and the Rayleigh fading curve. For example, the 99.99
per cent exceeded level of the selection diversity curve
is almost 20 db above the Rayleigh curve, while the
maximal-ratio curve is only 1.4 db above the selection
curve at the 99.99 per cent point. Evidently one would
choose among the three types of two-channel systems
on the basis of Fig. 9 only if one were fighting for the
last decibel. Even then, one would wish to make
very sure that that last decibel could actually be realized,
the selection diversity curve does not depend on the
important assumptions (B) and (C), which must be
satisfied for the equal-gain and maximal-ratio systems
to work properly, as will be seen.

However, the differences in the performance of the
various combining techniques become more important
as the number N of channels is increased. The maximal-
ratio and equal-gain systems improve much more
rapidly than selection diversity does, as can be seen in
Figs. 10-13, which give the distributions for N =3, 4, 6,
and 8, respectively.?® (Note that the ordinate scales of
Figs. 9-13 cover different ranges.) However, the maxi-
mal-ratio and equal-gain curves remain quite close to-
gether; indeed, the difference between them is hardly
significant even for N =28. This is one of the facts that
makes equal-gain diversity quite attractive and sug-
gests that there are many applications where it should
be exploited. It can be seen that the maximal-ratio and
equal-gain curves differ approximately by the constants
in the equal-gain column of Table I; that 1s, the equal-
gain diversity distributions can be approximated quite
well by translating the maximal-ratio distributions
downward by the values in the second column of Table I.

The data of Figs. 9-13 are useful in the design of
radio communication systems and radar and navigation
systems of the type discussed in the Introduction. One
such application is as follows. Suppose a high-reliability
communication system is to be designed for a fixed in-
formation rate, which cannot be maintained whenever
the received local power ratio p drops below a certain
value. That is, it is desired to maintain the local power

20 High-resolution graphs of the curves of Figs. 9-13 are available
from the author to those having serious need of such graphs. Letters
requesting the same should describe the nature of said need. Re-
quests on postal cards or form letters will not be honored. This offer
may be withdrawn at any time.
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ratio above a certain value for, say, 99 per cent of the
time during an interval of length 7%, for which the
curves of Figs. 9-13 are applicable if the relevant con-
ditions are satisfied. Referring to the 99 per cent ex-
ceeded values of Fig. 9, it can be seen that the difference
between the Rayleigh fading curve and the dual selec-
tion diversity curve is about 10 db at the 99 per cent
point. But this implies that whatever transmitter power
was required for a single-channel system, a transmitter
of 10 db less power would be adequate if dual selection
diversity were employed at the receiving terminal. Of
course, part of the reduction could be applied to the
antenna gains, etc. Similarly, reference to the 99 per
cent values of Fig. 11 shows that the use of fourth-order
maximal-ratio diversity would enable a reduction in
transmitter power of 19 db relative to that required for
a single-channel system.

This reduction in transmitter power required ior a
given grade of local reliability has been called “diversity
gain.” The term was apparently introduced by Jelonek,
etal. |3]. Here the term “local reliability diversity gain,”
or simply “local reliability gain,” is used to emphasize
the fact that it is not a gain in the usual sense and that
it depends very heavily on the local reliability percent-
age chosen. The dependence of the local reliability gains
on the percentage selected can be seen in Table 11,
which gives the values realized by the three types of
systems for N=2, 3, 4, 6, and 8§ corresponding to local
reliability percentages of 99 per cent and 99.9 per cent.

TABLE 11

LocaL ReviaBmity Gains (in DB), Conpitions or FiG. 8, For
99 PER CENT AND 99.9 PER CiENT LOCAL RELIABILITY

Selection Equal-Gain Maximal-Ratio

N 99 99.9 99 99.9 99 99.9
per cent | per cent | per cent | per cent | per cent | per cent

7 10 4.5 | 11 15.5 | 12 16
3 14 20 16 21.5 16.5 22.5
4 16 22.5 18.5 25 19.5 26
6 18 25.5 21.5 29 22.5 3G
8 19 27 23.5 i 31.5 24.5 32.5

It can be seen that the values of Table Il are much
larger than those of Fig. 8. They can be made to appear
even larger by computing the local reliability gains cor-
responding to 99.99 per cent or higher percentages; how-
ever, considering the present or immediately foreseeable
state of the art, such values would not be meaningful.
Among other things, the Rayleigh distribution does not
provide an accurate model for actual fading distribu-
tions outside of the 0.1 per cent to 99.9 per cent range.
Various modifications and extensions of these con-
siderations as they occur in practice will be considered
next. However, it should be noted that there are many
practical situations in which the conditions assumed
above are realistic approximations, and for which the
results can be used without significant modifications.
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VII. NonN-RAYLEIGH FADING DISTRIBUTIONS

Only in the case of long-range UHF and SHF tropo-
spheric transmission does it appear that observed fading
distributions are most often Rayleigh, when observed
in intervals of length T3;. For short-range UHF circuits
and normal or scatter ionospheric transmission at
VHF and below, other distributions are often observed.
Indeed, at frequencies of a few megacycles and below,
an accurate fit to the Rayleigh distribution is more
nearly the exception than the rule. It is therefore of in-
terest to discuss the way in which these results are modi-
fied by other distributions, assuming that the other
conditions still hold.

Certain of these results are easily discussed. The
maximal-ratio curve of Fig. 8 and the last column of
Table I do not in any way depend on the fading distri-
bution and are not modified at all. In order to discuss
the effect on the distributions of Figs. 9-13, it will be
convenient to return to the geometric approach men-
tioned in Appendix I and consider the case N =2 chan-
nels. Let x=x; and y=ux. be the local amplitude ratios
of the two channels. The probability that a maximal-
ratio system has a local power ratio <p, 7.e., the maxi-
mal-ratio distribution function Gs(p), is obtained by
integrating the joint density function of x and y over
the interior of the quarter circle x24y2=p in the x—y
plane. Similarly, the equal-gain distribution function
As(p) is obtained by integrating the same density func-
tion over the triangle bounded by the line x+vy=+/2p.
The corresponding region for the selection diversity dis-
tribution Su(p) is the square bounded by x=+/p,
y=+/p. These three regions are shown together in Fig.
14. Now, the fact that the maximal-ratio system out-
performs the other two is intimately connected with the
fact that, for any fixed p, the probability that the maxi-
mal-ratio output ratio is <p is smaller than it is for the
others, that is, Go(p) < Asx(p) and Ga(p) < So(p). This is
reflected in Fig. 9 in the fact that the maximal-ratio
curve is strictly above the others. The reason for this
can be seen at once in Fig. 14; the region of integration
for the maximal-ratio system is smaller than it is for the
others and interior to both of the others. Hence, no
matter what fading distribution is involved, the joint
density function will still be non-negative and, therefore,
its integral over the maximal-ratio region of Fig. 14,
i.e., Go(p), will still be smaller than for the others. Thus,
the maximal-ratio curve of Fig. 9 would be above the
others for any fading distribution.

Of course, this result could also be seen from the fact
that the maximal-ratio system yields an output power
ratio that is indeed maximal. But there is no similar
fact to use as a guide in comparing the other two, for
which we must rely on Fig. 14. It can be seen there
that the areas of the selection and equal-gain regions
are identical and that neither region includes the other.
This would lead one to suspect that the relative per-
formance of selection diversity and equal-gain diversity
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depends on the form of the fading distribution. In order
to discuss this, consider the nature of the possible de-
partures from the Rayleigh distribution.

For purposes here, two cases may be distinguished:
fading distributions more disperse (broader or more
smeared-out) than the Rayleigh distribution, which are
associated with frequent or persistent deep fades, and
distributions less disperse (narrower or shallower) than
the Rayleigh distribution, which are associated with
shallow fading. These cases are illustrated in Fig. 15,
together with the Rayleigh distribution. Curve (b), one
of a family of distributions given by Rice, illustrates the
less disperse or shallow fading often encountered at fre-
quencies below UHF.?! Curve (c) illustrates the more
disperse case sometimes found in short-range UHF cir-
cuits and in high- and medium-frequency systems.

y

7z | EQUAL-GAIN
/x+y5«/2p
SELECTION
~/p /xs-\/ Y3 p
MAXIMAL - RATIO
x2+y2<p
0
Jo o Jep

Fig. 14—Regions of integration for three types of dual diversity
systems, after Altman and Sichak [8].

pix)

x

Fig. 15—Representative fading distributions. (a) Rayleigh density
function. (b) Representative Rice distribution. (c) Typical dis-
tribution of the unpleasant sort often observed at frequencies
below UHF.

Returning now to Fig. 14, it is not difficult to see that
independent shallow fading will tend to improve the
performance of an equal-gain system. This is because
the height of the joint density function will be small in
the region near the origin common to both the equal-
gain and selection regions, and the bulk of the density
function will be “pushed out” along the diagonal where

2 R. W. E. McNicol, “The fading of radio waves of medium and
high frequencies,” Proc. IEE, vol. 96, pp. 517-524; October, 1949,
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it will contribute more to the integral over the selection
region than to the integral over the equal-gain region.
Thus, an equal-gain combiner will continue to outper-
form selection diversity in the presence of shallow fad-
ing; indeed, its performance will more nearly approxi-
mate a maximal-ratio system. This can also be seen
directly by considering the basic operation of a two-
channel equal-gain system, and visualizing the case
where the two signals are approximately constant.

However, this is not true for the more disperse distri-
butions. Consider first the case where the individual
amplitude ratios x and y are rectangularly distributed,?
say on 0<x<4 and 0<y< 4, with a joint density func-
tion p(x, ¥) =1/A4% on the square x <4, y< 4. It is then
easy to see that for values of p for which both the equal-
gain and selection regions fit inside this square (i.e., for
V2p< A, or p<A?/2), their distribution functions are
identical. That is, with respect to the smaller values of
p, the equal-gain and selection systems yield identical
performance. Next, suppose the independent amplitude
ratios are exponentially distributed, say e=*and eV, so
that their joint density function is e+, Noting that
the contours of constant height of this density function
are the lines x-+vy=constant, parallel to the boundary
of the equal-gain region, it is easy to see that the integral
of this density function over the equal-gain region is
strictly larger than it is over the selection region. This
can also be verified by direct computation, as the rele-
vant distribution functions are easily evaluated. Hence,
for exponential amplitude fading, the local reliability
gain of dual equal-gain diversity is, for any percentage,
strictly less than it is for dual selection diversity.

It is thus seen that the relative performance of selec-
tion diversity and equal-gain diversity depends to some
extent on the fading distribution involved. Conse-
quently, the application of equal-gain diversity should
be viewed with a modicum of caution in cases where
very disperse fading distributions might be encountered.
However, the exponential distribution used above is
probably extreme in this respect,?? and even for this
case, the equal-gain system is not significantly poorer
than selection diversity. For high reliability percentages,
the local reliability gain of the dual maximal-ratio system
over either the selection system or the equal-gain system
is exactly (approximately) 10 logyo (4/7) =1.05 db for
rectangular (exponential) fading.

It was noted above that the maximal-ratio data of
Fig. 8 were independent of the fading distribution. How-
ever, the mean power ratios of equal-gain systems do
depend on the distribution, but only to the extent of the
parameter #?=(&)2/x? of (44). For the rectangular and
exponential distributions considered above, r>=% and
r2=1 respectively, indicating that the average local

22 So far as conventional applications are concerned. It should be
noted that it is not extreme, or even sufficient, for postdetection dis-
tributions in FM systems, or special applications, such as that of
Price and Green, op. cit.
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power ratio of an equal-gain system is not substantially
degraded by even very disperse fading distributions.
Unfortunately, no such simple and clear dependence of
the selection diversity mean values on the form of the
distribution exists. The result §= EQL, (1/k) of (18)
is intimately wrapped up with the Rayleigh distribu-
tion, not merely the first two moments. But it is cer-
tainly clear that moderate changes in the form of the
fading distribution could not Jead to substantial changes
in the selection diversity values of Fig. 8.

VIII. Rerative ErrecTts OF CORRELATED FADING

Two smoothly varying random variables such as the
x; cannot, in general, be strictly independent. Of course,
they may fail to be even approximately independent. It
is therefore of interest to estimate the effect of de-
pendent fading.

It is convenient to estimate this in terms of a parame-
ter called the correlation coefficient. For two random
variables ¥ and y with positive variances’ ¢,> and a,?,
this is defined by

_{x = D - 9)

Py {45)
T Ty
which reduces readily to
ry— & ,
pay = o (46)
O 40y

If x and y are independent, then xy=d7.2 Hence, if x
and y are independent, then p,,=0. It is known® that
—1<py <1, and pgy=+1 if and only if y=tax
4+b (@>0). x and y are said to be correlated if p5#0, un-
correlated if p =0, and partially correlated if 0< |p| <1.

The problem of correlated fading in selection diversity
systems has been studied by Staras [7] and others [3],
[11], [13]. (See Appendix V for certain questions re-
lated to this subject.) Packard [14] and Bolgiano, et
al.,® have studied this problem for two-channel maxi-
mal-ratio systems. Quite recently, Pierce?** and Stein?
independently studied correlated fading in N-channel
maximal-ratio systems, and their results will be pub-
lished in the near future. Some of Staras’ results will
simply be reproduced here in Fig. 16, in a form suitable
for direct comparison with Fig. 9. The curve p=1 is the
Rayleigh fading curve of Fig. 9, while p =0 denotes the
dual selection diversity curve of that figure. It can be
seen that approximately half of the uncorrelated local
reliability gain is realized even for p=0.8, and that the
effect is negligible for 0 <p <0.3.

To consider the relative effect of correlated fading on

2 Cramér, op. cit., p. 265, or other standard sources. It is also
known that the vanishing of p,, does not necessarily imply that x and
y are independent.

2 J, N. Pierce, Air Force Cambridge Res. Center, Bedford, Mass.,
private communication.

% S, Stein, Hycon Eastern, Inc., Cambridge, Mass., private
communication.
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Fig. 16—Dual selection diversity distributions, Rayleigh fading,
for various degrees of correlation.

the other systems, refer once again to Fig. 14. Now, in
terms of the joint density function, there are two major
effects of correlation: first, the mass of the density
function tends to concentrate around the diagonal line
y=x; second, the mass tends to be pulled back nearer
the origin. The first effect is simply an expression of the
fact that as the correlation increases, the probability
that y can differ appreciably from x necessarily de-
creases. (Variables with the same distribution are being
considered here.) The second fact can be inferred from
the behavior of Fig. 16. Given these facts, it is not diffi-
cult to see from Fig. 14 that appreciable correlation will,
if anything, tend to improve the performance of equal-
gain diversity, relative to selection diversity. (Of course,
all three systems degrade in an absolute sense with in-
creasing correlation.) Indeed, as p approaches 1, when
the density function approaches zero except on the line
y=x, it is clear that the equal-gain system approaches
the maximal-ratio system in performance. This can also
be seen by considering the basic operation of the two
systems. From these considerations, it is not difficult to
visualize the way in which the maximal-ratio and equal-
gain curves of Fig. 9 follow the selection diversity curves
of Fig. 16. At p=1, the dual maximal-ratio and equal-
gain curves coincide and are uniformly 3 db above the
selection curve for p=1.

With respect to the average values of Fig. 8, the
maximal-ratio data are unaltered by correlated fading.
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The equal-gain values actually increase toward the
maximal-ratio values with increasing correlation. This
can be seen either from physical considerations, or by
noting that the terms x;x; of (42) are replaced by xux;;
for p>0, xx;>xx; and in fact xx; approaches 1 as
pij approaches 1. In contrast, the selection diversity
values of Fig. 8 approach zero as the p;; approach 1, as
is easily seen.

In space-diversity communication systems, an an-
tenna separation of 30 to 50 wavelengths is typically
required to obtain correlation coefficients consistently
less than 0.3. However, 10 to 15 wavelengths will often
yield coefficients less than 0.6. Van Wambeck and
Ross® measured the performance of certain HF selec-
tion diversity systems directly, without measuring cor-
relation coefficients, and apparently found that even
shorter spacings led to useful results. More recently,
Grisdale, et al.,® have obtained numerous data bearing
on this question in the 6- to-18-mc region.

IX. VARIABLE LocaAL Noise POwERS

Many of the data above were obtained on the assump-
tion n;2=constant. This will not be usually strictly true
and in many cases will not even be approximately true.
If the noises are principally due to interference from
remote sources, the 1/(n;2) themselves may well follow
the Rayleigh distribution, a case that has recently been
studied by Bond and Meyer [12] for dual selection di-
versity. Related material has also been given by Clarke
and Cohn.?” If the #; are principally due to receiver
front end noise, then the 7,2 may be approximately con-
stant; the actual amount of fluctuation to be expected
is a function of the noise bandwidth and the duration T"
of the local averages. This fluctuation has been studied
by Rice,?® whose results are quite useful in determining
a suitable value of T.

In terms of the analysis above, the principal effect of
variable #;2 is to modify the distribution of the
pi=x;2/n;* with results as discussed in Section VII
above. (The distribution of the p; becomes more dis-
perse as the noise power fluctuations increase.) It is not
difficult to obtain quantitative estimates of the degra-
dation in particular cases. It should be pointed out that
extreme fluctuations in noise power can lead to very
poor performance of an equal-gain system, which has no
provision for cutting off a very noisy channel, in con-
trast to the maximal-ratio and selection systems.

2 S, H. Van Wambeck and A. H. Ross, “Performance of diversity
receiving systems,” Proc. IRE, vol. 39, pp. 256-264; March, 1951.

27 K. K. Clark and J. Cohn, “Carrier-to-noise statistics for various
carrier and interference characteristics,” Proc. IRE, vol. 46, pp.
889-895; May, 1958.

% S. 0. Rice, “Filtered thermal noise—fluctuation of energy as a
function of interval length.” J. Acoust. Soc. Amer., vol. 14, pp. 216—
227; April, 1943. For additional results, see also, “Mathematical
analysis of random noise,” Bell Sys. Tech. J., vol. 24, pp. 46-156;
January, 1945. (Section 3.9, p. 87 ff.) These results have recently been
extended by D. Slepian, “Fluctuations of random noise power,” Bell
Sys. Tech. J., vol. 37, pp. 163-184; January, 1958.
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X. FAILURE oF THE NoOISES T0 BE LOCALLY INCOHERENT

"The failure of assumption (C) would have no effect
on selection diversity systems, for which the assumption
nmn;=0 if 1] has no relevance whatever. However,
this assumption is of vital importance for the maximal-
ratio and equal-gain systems, as will be seen.

There are essentially two ways in which #;z; may fail
to be identically zero, the first of which is simply due to
the fact that the average .z, is over a short interval of
duration 7 and the local average nm; will fluctuate
about zero if the noises are basically unrelated. The
amount of fluctuation will decrease as 7 is increased and
will be small if the lowest frequency of the noise is large
in comparison to 1/7. In this case, the ngm; terms will
be negative as often as positive and will simply contrib-
ute a small perturbation to the output noise power 72 of
a maximal-ratio or equal-gain system. This case is not
troublesome.

The troublesome case arises when the noises have a
definite positive correlation, as can happen, for example,
in a postdetection combiner when the noises stem
largely from sources of external interference. To con-
sider this, let #;2=1 and #n;=0; then p;;=nn; is the cor-
relation of #z; and n;. (Note that the local correlation
over intervals of length T, in contrast to the correlation
over length 77 of the x; discussed in Section VIII above,
is considered here.) Let p;;=p if 27j. Then the output
local noise power of an equal-gain system becomes

#=([5-])

N
S+ 2 nm
i=1

)

il

= fV[l + (N — 1)p],

instead of #*=N. Hence, the local noise power is in-
creased by the factor [14 (N —1)p], which is to say the
output power ratio p of (42) is decreased by this factor,
which may not be trivial. To see how untrivial it can be,
consider p for an equal-gain system. Eqs. (45) and (46)
become

(47)

RN 3
PN @ - 1)
N+ NW =)
CN[L A+ (V ~ 1))
1+ —r

(48)

which reduces to (46) when p=0. Hence , if p>¢%—a
situation by no means impossible—it would follow that
H(1) > p(2); i.e., the average local power ratio of a two-
channel equal-gain system would be less than for a
single channel, and the performance gets worse as the
number of channels is increased. It is probably gratui-
tous to point out explicitly that, in such a case, it would
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be much better to use a selection diversity system, for
which (18) would still hold. Similar considerations show
that the average local noise power of a maximal-ratio
system—Dby which is meant one for which the coef-
ficients are given by (14), though this is no longer
“maximal”-—is increased by the factor [1-+(N —1)pr2].

It follows that the use of maximal-ratio or equal-gain
diversity in circumstances where the noise voltages may
be highly correlated is hazardous.

XI. PREDETECTION VS POSTDETECTION COMBINING

In systems where the power ratio at the output of the
detector is essentially the same as at the input, there is
no fundamental change required in the conclusions de-
veloped above. Of course, there are always practical dif-
ferences between predetection and postdetection com-
bining; e.g., a predetection maximal-ratio or equal-gain
combiner will require the addition of phase-control cir-
cuitry in order to satis{y the local-coherence assumption
(B). On the other hand, predetection selection diversity
will sometimes produce smaller switching transients
than postdetection selection. Once phase control is
established, it is easier to satisfy the conditions (B) and
(C) required for maximal-ratio and equal-gain com-
biners in the case of a predetection system.

However, substantial changes are required in the case
of FM systems with a large deviation ratio, or in other
bandwidth-exchange systems with a pronounced thresh-
old effect. In such systems, an SNR at the detector in-
put that is more than a few db above threshold yields a
large output ratio, while an input ratio that is more than
a few db below threshold yields a very small output
ratio. That is, the output ratio changes from “com-
pletely useful” to “completely useless” with a few db
change of input ratio. This fact has important conse-
quences,

To begin with, a Rayleigh distribution of input signal
strength for an FM system will emphatically not lead
to a Rayleigh distribution of the postdetection ampli-
tude ratio. Hence, the distribution-sensitive results of
Figs. 8-13 and Tables I and 1 are not realistic for post-
detection combining in FM systems. Furthermore,
equal-gain combiners are not even suitable for post-
detection combining in conventional FM systems; this
may be regarded as a consequence of the fact that the
detection gain of such systems is not constant. An al-
ternative point of view would be that the distribution of
the amplitude ratios at the input of the cormbiner would
be such as to eliminate the equal-gain combiner from
consideration; cf. (36), and note the unfortunate effect
if any one of the #;* becomes large.

Of course, a maximal-ratio system can be used for
postdetection combining in an FM system. The re-
quirement a;=x;/n;* for the coefficients insures that any
channel with large # contributes very little to the out-
put. However, a maximal-ratio system will not yield
much improvement over selection diversity in such cir-
cumstanees. It will eliminate switching transients, but
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otherwise will not usually make a significant difference
in the operation of the system. This can be seen on the
basis of various qualitative considerations. When deal-
ing with postdetection combination in sharp-threshold
FM systems, at least for N<8, it would probably be
best to use only the selection diversity values of Table
11, whether selection or maximal-ratio diversity is actu-
ally used. In any event, the actual local reliability gains
of such maximal-ratio systems—which could be com-
puted from specific detector characteristics, such as
those given by Middleton?® or obtained by measure-
ment—would certainly be less than the maximal-ratio
values in Table II. A specific distribution computed on
the basis of a highly simplified detector characteristic
has been given. [16]

If the local reliability gain is defined in terms of the
transmitter power required to maintain the input level
of the detector above a certain value for more than a
specified percentage of time, then the selection diversity
values of Table II are applicable whether the selection
is predetection or postdetection. It is clear that the
operation is identical in either case. Furthermore, the
maximal-ratio and equal-gain data of Table II are com-
pletely applicable to predetection combining, as is easily
seen. Accordingly, the full advantages of maximal-ratio
and equal-gain combiners can be realized in FM systems
when and only when they are employed before detec-
tion. Taking the selection values of Table II as being the
gains obtained by a postdetection maximal-ratio com-
biner, the differences between the maximal-ratio and
selection values of Table II then illustrate the added
advantage of predetection maximal-ratio or equal-gain
combining. This may be regarded as due to an effective
lowering of the detector threshold resulting from these
techniques.

An additional advantage of predetection combining
in FM systems is that FM multipath distortion can be
reduced by this method. It has been shown by Adams
and Mindes [16 ], both theoretically and experimentally,
that a predetection equal-gain combiner yields sub-
stantially less multipath distortion than is obtained
with a postdetection maximal-ratio combiner, when
both are operated under the same circumstances.

Instrumentation for postdetection maximal-ratio
combining has been discussed by Kahn [6] and by
Morrow, et al.,*! for what amount to AM systems, and
by Mack?® for FM systems. An ingenious predetection
maximal-ratio combiner has been devised by Gran-
lund.?* A particularly elegant predetection equal-gain
combiner has been developed by the Federal Telecom-
munication Laboratories (now the ITT Laboratories),

2% D. Middleton, “On theoretical signal-to-noise ratios in FM
receivers: a comparison with amplitude modulation,” J. Appl. Phys.,
vol. 20, pp. 334-351; April, 1949.

30 C. L. Mack, “Diversity reception in UHF long-range communi-
cations,” Proc. IRE, vol. 43, pp. 1281-1289; October, 1955.

3 J. Granlund, “Topics in the Design of Antennas for Scatter,”
Lincoln Lab., M.I.T., Lexington, Mass., Tech. Rep. No. 135, pp. 105—
113; November, 1956. See also recent Quarterly Progress Reports of
the M.L.T. Res. Lab. of Electronies.
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indicated in Fig. 17. This combiner, called simply a
phase combiner in FTL literature, is the same one used
in the experiments reported by Adams and Mindes [16].
The phase control and adder circuits require only two
semiconductor diodes and 16 passive linear elements.
Phase control is established via a phase discriminator,
the output of which is applied as a bias voltage to one
of the local oscillators. This corrects the phase of the
local oscillator via Miller-effect changes in the oscillator
tube capacity.

PRESE-
LECTOR

PHASE COMBINED
DISCRIM~ ADDER
INATOR I-F [ouTPUT

.

PRESE-
LECTOR

AGC
DETECTOR

AGC CONTROL VOLTAGE

Fig. 17—FTL predetection equal-gain combiner. This can be
used with any type of modulation.

The problem of adequate phase control for predetec-
tion maximal-ratio or equal-gain combining leads
naturally to the next topic, namely

XI1I. Fa1LurE oF THE LocAL-CoHERENCE ConNpITION (B)

It is obviously of interest to estimate the possible
degradation in performance of maximal-ratio and equal-
gain combiners when the local-coherence condition (B)
is not satisfied. The following treatment is due to
Stein.3?

Recall that (B) was the assumption s;(¢) =xm(f)
where x; was the slowly varying local rms value of s;.
If the s; are not all in phase, we must write s;(f) =x;m;(%),
where the m; have different phases. Consider the case
m;(t) = /2 cos (wt—¢;) where the ¢, are locally constant
in the sense that the x; are. Then (m;2) =1and {(s;2) =x,2,
as before, averaging over a few cycles (or more) of wi.
Then, for any locally linear combiner of the type (6),

()

g=1

= < > a2 cos? (wf — @)

+ Z a;ax:x;- 2c08 (b — ¢;) cos (wb — ¢,-)>

i7]

= Z a?x? + Z aiajxx;(2 cos (wt — ¢;) cos (wt — ¢;))
i

= 3 a0 + D aawax; cos (i — ),

i#f

(49)

where the last step used 2 cos A cos B=cos (4-+B)

2 S, Stein, private communication; August, 1957.
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+cos (4 —B) and the fact that {(cos 2wt—¢;—d;))=0.
Eq. (49) may also be written
st = ) aaxixg cos (¢ — &;) (50
i
since cos (¢;—@;) =1, and this reduces to
= [ e ]t = 2 g (23)
7,5
when (¢;—¢;) =0. Let p denote the output power ratio
of the general combiner (6) when (23’) holds, and p’
denotes the same for the phase-degraded case (50). Then
(assuming (C) still holds, so that n%= > an?)
Z @;A;X;X; COS (d)@ - ¢J)

.5

r= 2 afn?

> awawax; cos (¢ — ;) [ D, am;]?

@5
[Z d.fo'P Z a:iz%?

= kp, (51)
where

Z a;a;x:%; cos (p; — ;)

po= (52)

[ am;]?

is the “phase degradation ratio” p’/p.

Apart from the fact that 0<%k <1, not much can be
said about % in the general case (52) in the absence
of additional information about the ¢,. It is easy to see
that & may actually vanish; e.g., N=2, ai=as=x1=1x,
=1, ¢p1—¢=180°. Then p' =k =0, which is entirely to
be expected when adding two signals of equal magni-
tudes and opposite phases. This illustrates the fact that
the condition (B) cannot be ignored. On the other hand,
it is not necessary that it should be satisfied with great
precision. Suppose that the magnitudes of the phase
differences, ’¢7ﬁ“¢j‘ , do not exceed 90° and let
A=maximum of [dn—-qu , 4, g=1, 2,---, N,
0<A<90° Then 0<cos A<Lcos(p;—o;), so

Z @;a;%:%; €os A
o = cos A, (33)

[22 au,]?

k2>

or

P > pcosA. (54)

That is, the local power ratio is not reduced by more
than cos A, or —10 log cos A db, in any combiner
whatever of the general type (6), provided A <90°. In
particular, this conclusion holds for equal-gain and
maximal-ratio combiners. Thus, to restrict the reduction
in p due to imperfect phase control to 1 db or less, it is
only necessary to maintain the phases within 37.5° of
each other, while 51° is sufficient to guarantee a maxi-
mum loss of 2 db. Furthermore, it is clear that the
estimate p cos A is actually conservative.
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XIII. LoNG-TERM VARIABILITY

Recall that the distributions of the x; and $, and mean
values of these quantities, were to be determined in in-
tervals of length T4, relative to which the x; were assumed
to be approximately Rayleigh-distributed and approxi-
mately independent. It is important to understand the
nature of this situation.

It is an experimental fact that, for a suitable choice
of 74, both of these assumptions are often satisfied. It is
also an experimental fact that if 7% is made too long or
too short, neither assumption is satisfied. Hence, the
approach used above and all of the results developed
above depend entirely on the use of finite intervals of
observation that are neither too long nor too short.

Specific suitable values of 7' depend on the circum-
stances, primarily the carrier frequency and transmis-
sion distance. Of course, it is necessary to understand
that the results of Figs. 8-13, etc., refer only to intervals
of length 7%, whatever this may be. Specific values are
roughly as follows for long-range transmission. At fre-
quencies below VHF, intervals of 30 minutes to an hour
are usually suitable. In VHF ionospheric scatter sys-
tems, values of one or two minutes usually seem to be
appropriate; in UHF and SHF tropospheric systems,
intervals of five to 30 minutes are often used.

It is manifestly necessary to consider the behavior of
diversity systems over longer intervals than those of
length 75. This may be done as follows. The previous
results were obtained using a Rayleigh distribution (9)
of unit mean square, with a definite median value
My=+/log, 2. Now, the experimental fact is that the
fading distributions observed over different intervals of
length 7% will not usually have the same median values.
However, the medians obtained in two adjacent or
overlapping intervals of length 737 will not usually
differ by very much. One way to represent this fact is
to let M = M(#) denote the median of the distribution
obtained in the interval from ¢— 73 to the present time
¢. Then this median function is a continuous function of
time and the experimental fact is that M (?) is usually
approximately constant over intervals of length 773. It
should be clear that this does not depend on having the
distributions, for which the values of M(¢) are the medi-
ans, all be of the same form, Rayleigh or other.

This may be used as follows. If x is any random vari-
able with a nonzero median M, and M is any nonzero
constant, then it is easy to see that y=(M/My)x has a
distribution of the same form as that of x, differing only
in the scale factor M/ M,, and that the median value of
vy is M. (The only reason for writing this scale factor in
terms of the medians is that these are easily determined
experimental quantities.) Then, instead of taking the
local rms signals to be the x; with a fixed median My,
the actual local rms signals may be written as
yi=(M;/ My)x; with median values M;, relative to a
period of length 7. Here, however, another experi-
mental fact enters. The medians M, are usually ap-
proximately the same for different channels, and we
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may write M;=M, j=1, 2, .-+, N. If the median
function M (¢), above, is approximately constant over in-
tervals of length Ty, we may take M= M(2).

To apply this to our previous results, note that the
local linearity of (6) implies that any common scale
factor multiplying the signal components s; may be
taken outside the sum s= »_s;, Hence, the combined
output signal s(¢) is simply multiplied by M/M, and
the local power ratio becomes (M/My)?*p wherever p
was before. This becomes even simpler when expressed
in decibels. Let

w

10 logyo [(M/Mo)?p]
= 20 logio M + 10 logio (p/M¢?)
=u+v

be the local power ratio in db, where =20 logyy M and
v=10 logo (p/M,?). Then this expresses the actual local
power ratio delivered by any combiner of the type (6)
as the sum of a variable v whose 77 median does not
depend on time and a variable u that is approximately
constant over every interval of length 77. Now, the
distributions plotted in Figs. 9-13 are precisely the dis-
tributions of the variable v for the conditions of Fig. 8,
for different combiners and orders of diversity. Hence,
to apply the results of Figs. 9-13 to any particular inter-
val of length T, it is only necessary to translate their
ordinate scales by u =20 logi1oM where M is the median
of the single-channel fading distribution for the interval
concerned.

In order to describe the long-term variability of the
actual local power ratio w, it is necessary to have in-
formation about the long-term variability of the (7%-)
median #. Distributions of # are usually studied in in-
tervals of length 7,=one month to one year; such dis-
tributions are often called distributions of hourly
medians, though they should properly be distributions
of Ti-medians. Several such distributions for frequencies
at VHF and above have been given.*® Unfortunately,
no comparable single source of information for MF and
HF systems presently exists; the relevant data are
largelyscatteredin (generally unobtainable) Signal Corps
reports, FCC hearing transcripts, and URSI and CCIR
documents, though a few such data have been published.
Observed distributions of # are sometimes approxi-
mately Gaussian (normal) in form, especially at the
higher frequencies, which is why the distributions of M
are often said to be log-normal.

Once a distribution of # pertinent to the proposed
circuit is available, there are two ways it may be used.
The first method, which is applicable to high-reliability
systems at VHF and above, is to estimate the lowest T-
median likely to be encountered on the circuit. (The
great virtue of these systems is that this minimum value
of # is not — «.) The ordinate scales of Figs. 9—13 are
then translated to this value, after which a rational

(55)

3 Scatter Propagation Issue, Proc. IRE, vol. 43; October,
1955.
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choice among the various possibilities of transmitter
power, order and type of diversity system, etc., may be
made on the basis of economic and other factors, and on
the basis of the local reliability percentage it is desired
to maintain during such worst hours. Of course, the data
of Figs. 9-13 must be modified in accordance with the
discussion of Sections VII to XII if the circumstances so
dictate.

The second method is applicable in circumstances
where all distributions of v in all intervals of length 73
are approximately the same.? It is then easy to see that
the distribution of v in an interval of length T,=one
year would also be the same; furthermore, the variables
u and v of (55) would then be independent, relative to
T, to a very high degree of accuracy. Then the T.-dis-
tribution of the local power ratio w would be the dis-
tribution of the sum of two independent variables with
known distributions, and could be computed. It would
usually be found that the “exact” determination of the
T»-distribution of w would require numerical methods of
integration in (67). Such distributions have been com-
puted by Shimony® and Sichak® among others. How-
ever, Staras [9] has observed that, for the larger values
of N, the relevant distributions of v are approximately
normal (cf. the N=6 and N=8 curves of Figs. 12 and
13, on which figures a normal distribution would be a
straight line) and since the distribution of « is approx-
imately normal, the T-distribution of w would there-
fore? approximate a normal distribution with a median
and variance respectively equal to the sums of the
medians and variances of the » and v distributions. But
this approximation is not very accurate for N<4.

It should be added, however, that this second method
has not been universally accepted by designers of high-
reliability systems, for the following reasons. Computing
the long-term distribution of w serves to obscure the
question of whether the periods of very low signal are a
few long periods or many short ones. This question can
be important; e.g., there are systems in operation in
which the loss of two hours in a year would not be
troublesome if split into a number of separated intervals
of a minute or two each, but which could be disastrous
if concentrated in a single interval of two hours. Since
two hours in a year corresponds to the 99.98 per cent
exceeded level, it would be necessary to compute the
Ts-distribution of w down to something like the 99.999
per cent exceeded level in order to insure approximately
the reliability obtained by the first method. However,
the empirical distributions on which this computation
must ultimately rest are not known to anything ap-
proaching this degree of accuracy, and the validity of
such a computation would seem to be open to question.
In addition, the problem mentioned in footnote 34

3 It should be noted that such circumstances, however, are not
too common in practice.

% A. Shimony, Final Rep. MU-156, Evans Signal Lab., Fort
Monmouth, N. J., (cited in footnote 36).

% W. Sichak, Fed. Telecommun. Labs., Nutley, N. J., Tech.
Memo. 619; December, 1956. See Appendix D, “Diversity Theory.”
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would often infect such a computation.

Two additional points should also be noted in con-
nection with long-term distributions of w. The first is
that the variability or dispersion of w will increase as
the dispersion of the Ti-median # increases. In other
words, the variability of » will tend to be obscured by
that of #. However, it is precisely the variability of v
that can be reduced by diversity techniques, while that
of u cannot. It has been noted® that w distributions
for different orders of diversity show less difference than
would be indicated by Table II, but this is simply a
reflection of the dispersion contribution by #. Thus,
computing long-term distributions of w tends to obscure
the gains (Table IT) that actually are realized by di-
versity techniques.

The second point to be noted is that any long-term
distribution of w is highly specific to the circuit for
which it was computed, because # distributions are
highly specific. This is indicated in Fig. 18,*” which
shows percentage points of # distributions as a function
of distance at 400 mc. (Note that Fig. 18 gives only the
distributions of the 77 median “scatter” loss; the free-
space loss has been subtracted out.) It can be seen that
the dispersion of # decreases with distance; e.g., the
interdecile range is about 12.5 db at 200 miles, but only
5 db at 600 miles. This indicates that a long-term dis-
tribution of w would only be valid for the distance on
which the distribution of # was based.
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Fig. 18—Distributions of hourly medians as a function of distance,
wintertime propagation at 400 mc, experimental data from
several Lincoln Laboratory circuits. (After Morrow?".)

X1V. Cask orF UNEQUAL MEDIAN SIGNALS

Most of the material above presupposed that the 73-
medians for the several channels were all the same. Ex-
perimentally, this is found to be a reasonable approxi-
mation in most cases, provided that the interval length
7' is not made too short. However, there are cases, most
especially angle diversity,® % in which it is not a reason-
able approximation. The first treatment of this problem
apparently was given in [3]. It is quite simple to plot

37 W. E. Morrow, Jr., *Etude de systemes de radiocommunica-
tion troposphérique UHF a longue distance,” Onde Elect., vol. 37,
pp. 444-449; May, 1957,

PROCEEDINGS OF THE IRE

June

selection diversity distributions for unequal medians or
even for dissimilar distributions; the identical factors
G(p) of (16) are simply replaced by the proper distribu-
tion functions. Maximal-ratio distributions for unequal-
median Rayleigh signals can also be expressed explicitly.
Unfortunately, this is not true of complete equal-gain
distributions (¢f. Appendix 1V). However, it would be
possible to obtain the low-signal ends of such distribu-
tions by taking the first few terms of a power series,
but a detailed analysis of this problem would appear to
be premature at the present time.

XV. EXPERIMENTAL RESULTS

Experimental data relating to diversity systems have
been given by several workers, including Glaser and
Van Wambeck,*® Van Wambeck and Ross,? Glaser and
Faber,* and Grisdale, et al’ It is unfortunate for our
present purposes that most of these data relate to selec-
tion diversity only; clear-cut and unambiguous experi-
mental data bearing on the comparative performance of
the three combining techniques studied above are so
rare to be as essentially nonexistent. It is hoped that
some comparative experimental results will be available
within the next year.

Perhaps the best single datum presently available
was obtained in unpublished experiments conducted by
the Signal Corps a few years ago. Two high-frequency
systems were compared, one of which used dual maxi-
mal-ratio diversity and the other used something ap-
proximating selection diversity. It appeared that the
maximal-ratio system yielded an average power ratio of
1.0 to 1.5 db above the selection system when averaged
over periods of about 30 minutes.?* This compares very
favorably with the value 1.25 db entered in the “selec-
tion” column of Table I for N =2. However, there were
many periods during which the performance of the max-
imal-ratio system was inferior to the other. This could
probably be traced to the failure of one or both of the
conditions (B) and (C) during such periods, which
would not affect a selection system.

XVI. CoNCLUSIONS

Perhaps the most important conclusion to be drawn
is that, all things considered, no one of the diversity
combining techniques studied deserves to be called “the
optimum system.” All three have their merits and de-
fects, and the one to be used will depend on the circum-
stances. However, the simplicity and efficacy of the
equal-gain system suggest that this may well become
the principal standard of the art. In addition to the data
set {forth above, it should be especially noted that the
instrumentation for an equal-gain combiner is com-
pletely independent of what one chooses to think of as
a SNR. The importance of this fact is considerable.

3 J. L. Glaser and S. H. Van Wambeck, “Experimental evaluation
of diversity receiving systems,” Proc. IRE, vol. 39, pp. 252-255;
March, 1951.

3 F. E. Bond and H. F. Mever, Signal Corps Eng. Labs., Fort
Monmouth, N. J., private communication; June, 1957.
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ApPENDIX |
CERTAIN FAacts ABoUT PrOBABILITY THEORY

It will be recalled® that, in general, a distribution
function P(x) is the probability that (some random vari-
able) is less than or equal to x. A particularly simple
special case of this arises when the random variable in
question is some voltage or current waveform given as
a function of time, say f(¢), and the probability that
f<ux is simply the fraction of some interval t— T <t<#
in which f<x. In this case, P(x) is determined, for any
given value of x, simply by adding up the lengths of the
¢ intervals for which f() <x and dividing their sum by
the total duration of the observation, as indicated in
Fig. 19. Instruments for measuring P(x) at selected
values of x are known as “totalizers” or “level distribu-
tion recorders” and exist in various forms. Another
method of obtaining the distribution function of some
random variable is to sample it at discrete intervals and
count the fraction of sampled values that are <x; how-
ever, it is not difficult to see that this will lead to the
same P(x) as defined above. The associated density
function? p(x) =dP(x)/dx, so that p(x)dx =dP(x).

pix) =(Ly+L2)/T

Fig. 19—Definition of P(x)=fraction of the time of observation
that f(z) Sx.

The central purpose in using such distribution func-
tions in radio engineering stems from the fact that many
different individual waveforms have approximately the
same distribution function, or at least have distribution
functions that differ in describable ways, as in Section
XIII. This is an experimental fact, no more, but, what
is important, no less. Thus, in circumstances where the
distribution function of some waveform can be approxi-
mately predicted from either theoretical or empirical
grounds, one has available a method of predicting many
important facts about the situation.

One such fact, of the first importance, is that all time
averages of f in the interval {, — 7'<¢<t; are given by the
moments? of the distribution function P(x). For exam-
ple, suppose one is interested in the average value of
J(@). Then

_111 ft :Tf(t)dt - f:’xp(x)dx - f:xdp(x); (56)

i.e., [ is the first moment of the distribution. More
generally, for any value of #, the time average of
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[f(®)]" is given by the #nth moment of the distribution:

1 ty » 0
= hora = [ wirw,
T ty—T —w
a result that is especially useful in computing the aver-
age power when f is a voltage or current and #=2. In
the light of (57), f* or (f*) or x* or (x") can be and is
written interchangeably for such averages, using which-
ever notation seems most convenient for the expression
involved.

It is important to understand the sense in which (57)
is applicable. No theory or representation or mathe-
matical model whatever can predict the particular dis-
tribution function of a particular waveform in a par-
ticular interval exactly, but to the extent it can be pre-
dicted by whatever means, (57) is applicable. In many
applications, one uses a specific mathematical model
distribution (e.g., the Rayleigh distribution, much used
in the body of this paper) for predicting facts such as
averages of the form (57), but with a clear understand-
ing that any realized distribution function can only ap-
proximate the Rayleigh distribution, however long or
short the interval of observation. But the approximation
may be very close. In cases where the nature of the
possible departures from the model distribution can be
estimated, and there are many such cases, the possible
departures in the corresponding time averages can sim-
ilarly be estimated via (57). [Some statisticians and
noise theorists may be bothered by the absence from this
discussion of any reference to the classical notions of
sample and population. The reason for this is that a par-
ent population in the classical sense does not usually
exist in this environment. (See Section XIII.) No fixed
distribution can serve as a population distribution for
any non-stationary process. In the notation of Section
X111, it would be possible, but not necessarily desirable,
to discuss parent populations for Ts-distributions, but
certainly not 7i-distributions. One may, however, dis-
cuss a “distribution” of distributions, as is done in engi-
neering language in that section. It would be a simple
matter to provide a more formal framework for this ma-
terial by defining suitable classes of functions f; e.g., all
those f whose half-hour local distribution functions (in
the sense of Fig. 19) were all within a specified distance
(in the sense of Lévy’s metric) of some Rayleigh distribu-
tion function, and whose half-hour medians (ipso facto
unique) had yearly distribution functions within a
specified distance of a fixed log-normal distribution
function. This class is non-empty for positive distances,
and would suffice for most of the purposes of Sections 11
through VI. One could similarly replace our heuristic
language about approximate constants with a more
formal treatment that was liberally seasoned with epsi-
lons and deltas and rigorous inequalities. However,
there is probably little to be gained by this formalism in
the present context. |

These considerations above extend directly to several
random variables given as in Fig. 1 and their corre-

(57)



1098

sponding multidimensional distribution functions. Thus,
all of the multidimensional probability theory given by
Bennett? can be directly applied to our present circum-
stances. Of course, such distributions will generally de-
pend on the present time # and the duration 77, but for
suitable (not necessarily long) values of the duration 7,
this dependence may be considered to be negligible for
certain engineering purposes.

It is quite well known that averaging is a linear opera-
tion; 7.e., if x and v are random variables and a and b
are constants, then (ax-by)=ai+by. This is clear
when considered as time averages and, as an immediate
consequence of (56), also holds for the corresponding
distribution averages. (Let Py, P, and P3, denote the dis-
tribution functions of f, g, and f+4g, respectively, and
write (56) three times. This does not require independ-
ence of fand g.)

Although this fact is well known, such extensive use
of it is made in the body of the paper that it is advisable
to mention a few consequences here. First, if x,
X, + + -, X, are random variables, not necessarily inde-
pendent, and a1, @, - - -, @, are constants and

y =2 aay, (58)
fe=1
then
§= D aw. (59)
k=1

In order to consider higher moments than the first, note
the simple algebraic fact that (@i+aawe)?=a12x
F a0+ 2a1a0x1x2 can be written a2+ as¥xe? 4 a1a0x 10
+axa1x0x1. More generally, one can write

¥ = [ Z (lkxk:'

fe=1

= 2 a0l + D aar. (60)
k=1 154 ]
Hence, by (59),
=20 et + 2 wiava) - (61)
k=1 3

If the x; are independent, then (xq;)=x,8; if 15£7.9
Then (61) becomes

n
;5 = Z 0152952" + Z aia]-,@ixj. (62)
=1 i

Hence, if the first two moments & and x;2 of the x; are
known, the average square of y can be computed with-
out even knowing the distribution of the x;, much less
the explicit distribution of y. It will be seen in several
sections of this paper that these simple facts can lead to
interesting and important results, some of which are by
no means obvious.

Another well-known fact is that a joint density func-

4 Bennett, footnote 2, p. 619.
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tion? p(x, ¥) of two random variables can be integrated
over a region in the plane to obtain the probability of

the region. Thus, the probability that x<x<w,
1<y <y, is given by
y Y2
f f p(x, y)dydz, (63)
R Yi

and the joint distribution function P(x, v) is simply

Plx, v) = f; f; p(s, t)dids.

Notice that both (63) and (64) can be written in the

form
[ [ 9wy
B

of an integral of p(x, ¥) over a certain region £ in the
x-y plane. In the case of (63), the region is an ordinary
rectangle, while in the case of (64), it is a semi-infinite
rectangle. The virtue of this geometric approach is that
it often enables the expression of an event of practical
interest in terms of such a region, not necessarily a
“rectangle,” alter which the probability of the event in
question can be computed by integrating the joint
density function over the region. Joint density func-
tions of three or more variables can similarly be inte-
grated over regions in space of three or more dimensious.
This is used at several places in the body of the paper.

Finally, a few words on computing the distribution
functions of sums of independent random variables may
be useful. It was pointed out by Bennett® that if x and
y are independent random variables with density func-
tions p1 and ps, respectively, the density function p; of
the sum z=x-+y is given by

(64)

(65)

p) = [ n = Dpay, (66)
which is called the “convolution” or “composition” of
the density functions $ and p.. (This has sometimes
been referred to as “combining” the x and v distribu-
tions.) However, in many—possibly most—practical
applications, the distribution function of z, <.e., the
probability that z<u, is of more interest than the
density function. This can be expressed in terms of the
component distribution functions as
P = [ P = pipty), (67)
which can be seen from (66) by writing po(y)dy =d P2(y)
and integrating (66) on z from —c to #. The integral
(67), which is well known among mathematicians,* may

be defined as the limit of approximating sums of the
form

Z Pi(u — yi) [Pa(ye) — Pa(ye-d) ], (68)

# Cramer, op. cit., p. 190, (15.12.2), and other sources.
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where the y;, form a suitably fine partition of the range
of interest. This and other numerical integration tech-
niques may be used to evaluate (67) numerically, at
least as easily as a numerical evaluation of (66). (See
Appendix IV.) Hence, if the distribution functions of
two variables are given numerically and the distribution
function of the sum is required, there is no need to
transform the given distribution functions into approxi-
mate density functions, evaluate (66) numerically, and
then sum the resulting approximate density function, a
procedure unnecessarily involved, but fairly commonly
used.

ArpENDIX Il
THE SCHWARZ INEQUALITY

There are several ways of proving the inequality

[é“ﬂj]zﬁ [ é %jz][:vglvf],

of which the simplest is perhaps to notice the algebraic

identity
N 2 N N
[Zee] [ 2w 2]
k=1 k=1 k=1

(wiv; —

(19)

I

(69)

v,-uj)z,

|
o | =
™M=

It
~

U

which can be verified at once simply by expanding both
sides. It is clear that (19) follows immediately from (69),
for the term

N

Z (ww; — viuz)?

%,7=1
is obviously non-negative. However, more precise in-
formation can be extracted from this. Evidently there
is equality holding in (19) if and only if every term in
the double sum on the right in (69) vanishes, z.e., if and
only if

(70)

and it is not difficult to see that this will happen if and
only if there are constants ¢ and b, not both zero, such
that au,=bv,, 1=1, 2, - - -, N. That is, equality holds
in (19) if and only if the #’s and 9’s are proportional.
It is this fact that accounts for the “and only if” asser-
tion following (14) ; the material of Section I'V does not
justify this assertion.

wiv; — vau; = 0,4,5=1,2,+-+ N,

ArrENDIX III
Tur MaxiMAL-RATIO DISTRIBUTION
The characteristic function? of the p; is

8) = [ emtpiip, = [ emrimap,
0

—00

1
= ’
1—

(71)
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where ¢i=+/—1 is not an index. The characteristic
function of p is then simply

1
N
) =l =—--, 72
w0 = b0V = s (12)
so that the density function of
N
P =20
=1
is
1 0 1 0 —ipt
= — —irtgn (D)dl = — — di. (73
v(p) = - f_,f oot = a9

The integral (73) is easily evaluated by contour integra-
tion and the residue theorem. The result is
PN—le-—p

gv(p) = (74)

(N — 1!
for p>0, while gy(p) =0 for p<0. This is precisely the
result (29).

ArpENDIX IV
CoMPUTATION OF THE EQUAL-GAIN DISTRIBUTION

The function By(u) of (41) is given recursively by

BN(’M/) = f uBN_l(M - t)dB](t)

=ffm4m~n&ww, (75)
0

as can be seen from (67), where By (f) =2te=" is the
Rayleigh density function. Tables of By(u#) have been
constructed? from (75) for N=2, 3, - - -, 8, using an
IBM 704 computer. Tables were constructed for various
increments A of u, ranging from A =0.2 down to A =0.02,
and for the range 0<% <17. The Rayleigh density and
distribution functions were generated in the computa-
tion program by rational approximations accurate to
six decimals. Each value By(u#:), where u,=FkA, was
then computed from

1A

BN(Mk) = i BN_I(t)Bl’(uk — Z)dt, (76)

I=1v (I-HA

where each integral over the range of length A was com-
puted by a 16-point Gaussian quadrature formula.
The values of By_1(f) for this integration were cbtained
from the previously constructed table of By by a
modified Tchebycheff-Everett interpolation formula.
Tables of Bs(#) constructed by this method agreed with
(39) (separately tabulated) to six decimals. For all
N <8, tables for the smaller values of A were consistent
to four decimals for the entire range of «.

An additional check was provided. The function de-
fined by (41) for all complex values of # is an entire
function, which therefore admits a power series,
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By(u) = Y, but,

k=0

(77)

valid for all values of #, and which coincides with the

desired distribution function for positive real values of

u. It is not especially difficult to show that ;¥ =0 for all

odd % and for 2<2N. It can be shown on the basis of

extensive computations from (41) that for even 222N,
2812 1=(k[2)+1-N

BN = (—1)k/N

P X
wooa b

=1

Z ...... Piv_p»

dibe iy =k 2

(78)

where

pr=(2—1)(2—3) ---531. (79)

In particular, the coefficient bsx¥ of the leading term is
bey¥=2%/(2N)!, t.e.,

Al

Br(u) = ——— ¥ 4 -

(2W)! (80)

but this term alone is not sufficiently accurate for useful
values of u. For larger values of k&, (78), which has re-
sisted strenuous attempts at simplification, is not as
useful for the explicit computation of coefficients as the
recursion relation

=k /2)—1

b = (=1 2

=1

2].PJ'(k - 2.7')" blc—‘le—-l‘ ] (81)
which can also be established from (41). In connection
with (81), one uses by!=(—1)*2=1/(k/2)1.

It can be shown from (78) that for |u| <u, and for

kZ2(N—1+~Z%>u02—2, (82)

the terms of (77) are monotonically decreasing in mag-
nitude. Since the terms alternate in sign, this means that
the error in terminating (77) at the kth term is less
than the magnitude of the kth term, provided (82) is
satisfied. This was used to construct a table of By(u) for
N=2 3 -, 8 for 0<u<1.5 with a guaranteed
accuracy of six decimals. This table agreed in this range
with that constructed from (76) to six decimals or
better.

The results (78), (81), and (82) are principally due to
Michael Ginsburg.

ArrPENDIX V

CERTAIN QUESTIONS RELATED TO THE PROBLEM OF
CORRELATED FaADING

All of the presently published treatments of cor-
related fading known to the present writer rely on a
result due to Uhlenbeck,®? which was reproduced in a

42 G, E. Uhlenbeck, Rad. Lab., M.L.T,, Cambridge, Mass.,
No. 454; October 15, 1943,

Rep.
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paper by Booker, Ratcliffe, and Shinn.* Uhlenbeck’s
result rests in turn on the joint distribution of two
Rayleigh variables given by Rice.* However, meaning-
ful sufficient conditions under which this distribution
is applicable to correlated Rayleigh fading do not ap-
pear to be known. It is essentially certain that it is
applicable to narrow-band random noise of the type
originally studied by Rice and Uhlenbeck, but it is {ar
from clear that it is equally applicable to fading radio
waves in general. For example, if Uhlenbeck’s result
always held, then the correlation of two Rayleigh
variables could not be negative; however, several in-
vestigators, including Grisdale, et al.’ and McNicol®
have found such negative correlation. It seems very
probable that Uhlenbeck’s result is satisfactory as a
first approximation for engineering purposes. This is
why Fig. 16 was unhesitatingly included in Section VII;
however, such results should be understood as repre-
sentative, rather than absolute. In other words, the
correlation coefficient does not uniquely determine
diversity performance, even when p and the separate
input distributions are known.

A closely related problem that sometimes arises in
this connection is the assumption, which has not always
been recognized as such, that two random wvariables
that are individually Gaussian or normal have a joint
distribution that is a two-dimensional normal distribu-
tion. This assumption is the basis of the common state-
ment that “uncorrelated normal variables are inde-
pendent.” As a mathematical matter, this need not be
true; it is not difficult to give counter-examples. The
prevalence of the quoted statement probably stems in
part from some insufficiently explicit language of
Cramér.® The two-dimensional form of the central
limit theorem suggests that this assumption would
often be very reasonable, but should be recognized as an
assumption.

ArrPENDIX VI
SeLecTIiON DiveErsiTy MEAN POwER RATIOS

In the integral (17) for p(V),

ﬂm=pru—wwwwm an
0

we make the change of variable y=1—¢™?, obtaining

p(N) =N f [—log (1 — y)]y"dy. (83)

# H. G. Booker, J. A. Ratcliffe, and D. H. Shinn, “Diffraction
from an irregular screen with applications to 1onospher1c problems,”
Plil. Trans. Royal Soc. (London) A, vol. 242, pp. 579-607; Septem-
ber, 1950.

S Q. Rice, “Mathematical analysis of random noise,’
Tech. J., vol. 24 pp. 46-156; ]anuary 1945, See (3.7-13).

i MchcoI op cit.; Fig. 4

%: Cramér, op cit., p. 789,

" Bell Sys.
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Using the series

0

—log (1 —y) = 2 y¥/k for | y| <1,
k=
1 © yk+N—1
BOV) = N [Z . Py
0 k=1
© N
- EI Bk + N)
®» /1 1
- El TN+ k)

) (84)

which is the result (18). The termwise integration
from the first to second line of (84) is easily justified.

The result p(N)= D+, 1/ was originally found
essentially by accident and verified by induction on N.¥
Another direct approach was also suggested by Stein,
who pointed out that (17) could be written

W) = == f N( = enNtemrdp |, (85)
dxd o

which, integrating by parts (N~—1) times, becomes

5(V) = 0 l: (x — 1)IN! ] (86)
Y= le s v ol
Stein remarked that this is
0
PN) = — N — BN, @) [oms (87)
dx

where B(XV, x) is the Beta function [substitute {=¢? in
(85) ], and that higher moments of p are given by succes-
sive derivatives of the same function. The differentia-
tion indicated in (86) is straightforward.
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Physical Principles of Avalanche Transistor
Pulse Circuits”
D. J. HAMILTONT, ASSOCIATE MEMBER, IRE, J. F. GIBBONSY, ano W. SHOCKLEY {, FELLOW, IRE

Summary—A simple physical theory is developed which permits
a calculation of the significant points of avalanche transistor tran-
sient behavior.

A model for the transistor is defined in terms of charge variables
and the physical parameters of the device. The transient perform-
ance of the model is calculated by focusing attention on the minority
carrier charge stored in the base region and the influence of base-
width modulation upon this stored charge. In the charge formulation
of the problem, the physical details of the avalanche multiplication
process need not be considered; multiplication is accounted for by
the boundary conditions which it imposes upon the stored charge.

Good agreement has been obtained between calculated and ex-
perimentally observed data for a simple avalanche transistor relaxa-
tion oscillator.

[. INTRODUCTION
TRANSISTORS exhibiting avalanche multiplica-

tion have recently been shown? to be useful for the

generation of millimicrosecond pulses. These de-
vices thus provide a new and simple solution to a prob-
lem which previously taxed the ingenuity of both cir-
cuit and device designers.

* Original manuscript received by the IRE, December 28, 1959;
revised manuscript received, March 6, 1959. This work was sup-
ported in part by the U. S. Army Signal Corps, the U. S. Air Force,
and the U. S. Navy, through ONR Contract Nonr 225(24) at Stan-
ford Electronics Laboratories.

1 Stanford Electronics Labs., Stanford University, Stanford,
Calif.

1 G, B. B. Chaplin, “A method of designing transistor avalanche
circuits with application to a sensitive transistor oscilloscope,” paper
presented at 1958 Solid-State Circuits Conference, Philadelphia, Pa.;
February, 1958.

As is frequently the case, however, a simple empirical
solution poses difficult analytical problems. These
analytical difficulties arise primarily from a failure to
recognize the important physical principles which
govern the terminal behavior of the device, When the
problem is properly formulated, many of the analytical
complications are removed, and a simple unified theory
is obtained. It is the purpose of this paper to present
such a theory.

The most significant aspect of the theory is the con-
cept of minority carrier charge stored in the base region
during the transient period, a concept which results in
a considerable simplification of the problem by permit-
ting time to be eliminated in several of the calculations.?
A relaxation oscillator (Fig. 1) is used to illustrate the
theory.

Section II of the paper deals with the circuit model
for the relaxation oscillator, together with a physical
model for the avalanche transistor; the concept of
stored minority carrier charge is also introduced.

In Section III, the stored charge concept is used to
determine the two critical values of external capaci-
tance: the capacitance required to start regeneration
and the capacitance required to forward bias the collec-
tor junction.

2 W. Shockley and J. Gibbons, “Theory of transient build-up in
avalanche transistors,” Trans. AIEE (Commun. and Electronics),
no. 40, pp. 993-998; January, 1959,



