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If we are threatened with existential catastrophe as the default outcome of 
an intelligence explosion, our thinking must immediately turn to the search 
for countermeasures. Is there some way to avoid the default outcome? Is it 
possible to engineer a controlled detonation? In this chapter we begin to 
analyze the control problem, the unique principal‐agent problem that arises 
with the creation of an artificial superintelligent agent. We distinguish two 
broad classes of potential methods for addressing this problem – capability 
control and motivation selection – and we examine several specific 
techniques within each class. We also allude to the esoteric possibility of 
“anthropic capture.”

Two Agency Problems

If we suspect that the default outcome of an intelligence explosion is existen­
tial catastrophe, our thinking must immediately turn to whether, and if so 
how, this default outcome can be avoided. Is it possible to achieve a 
“controlled detonation”? Could we engineer the initial conditions of an 
intelligence explosion so as to achieve a specific desired outcome, or at least 
to ensure that the result lies somewhere in the class of broadly acceptable 
outcomes? More specifically: how can the sponsor of a project that aims to 
develop superintelligence ensure that the project, if successful, produces a 
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superintelligence that would realize the sponsor’s goals? We can divide this 
control problem into two parts. One part is generic, the other unique to the 
present context.

This first part – what we shall call the first principal–agent problem – 
arises whenever some human entity (“the principal”) appoints another (“the 
agent”) to act in the former’s interest. This type of agency problem has been 
extensively studied by economists.1 It becomes relevant to our present 
concern if the people creating an AI are distinct from the people commis­
sioning its creation. The project’s owner or sponsor (which could be anything 
ranging from a single individual to humanity as a whole) might then worry 
that the scientists and programmers implementing the project will not act in 
the sponsor’s best interest.2 Although this type of agency problem could 
pose significant challenges to a project sponsor, it is not a problem unique to 
intelligence amplification or AI projects. Principal–agent problems of this 
sort are ubiquitous in human economic and political interactions, and there 
are many ways of dealing with them. For instance, the risk that a disloyal 
employee will sabotage or subvert the project could be minimized through 
careful background checks of key personnel, the use of a good version con­
trol system for software projects, and intensive oversight from multiple 
independent monitors and auditors. Of course, such safeguards come at a 
cost – they expand staffing needs, complicate personnel selection, hinder 
creativity, and stifle independent and critical thought, all of which could 
reduce the pace of progress. These costs could be significant, especially for 
projects that have tight budgets, or that perceive themselves to be in a close 
race in a winner‐takes‐all competition. In such situations, projects may 
skimp on procedural safeguards, creating possibilities for potentially cata­
strophic principal‐agent failures of the first type.

The other part of the control problem is more specific to the context of an 
intelligence explosion. This is the problem that a project faces when it seeks 
to ensure that the superintelligence it is building will not harm the project’s 
interests This part, too, can be thought of as a principal–agent problem – the 
second principal–agent problem In this case, the agent is not a human agent 
operating on behalf of a human principal. Instead, the agent is the superin­
telligent system. Whereas the first principal–agent problem occurs mainly in 
the development phase, the second agency problem threatens to cause 
trouble mainly in the superintelligence’s operational phase.

Exhibit I Two agency problems

The first principal–agent problem
●● Human v. Human (Sponsor → Developer)
●● Occurs mainly in developmental phase
●● Standard management techniques apply
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The second principal–agent problem (“the control problem”)
●● Human v. Superintelligence (Project → System)
●● Occurs mainly in operational (and bootstrap) phase
●● New techniques needed

This second agency problem poses an unprecedented challenge. Solving it 
will require new techniques. We have already considered some of the diffi­
culties involved. We saw, in particular, that the treacherous turn syndrome 
vitiates what might otherwise have seemed like a promising set of methods, 
ones that rely on observing an AI’s behavior in its developmental phase and 
allowing the AI to graduate from a secure environment once it has accumu­
lated a track record of taking appropriate actions. Other technologies can 
often be safety‐tested in the laboratory or in small field studies, and then 
rolled out gradually with a possibility of halting deployment if unexpected 
troubles arise. Their performance in preliminary trials helps us make reason­
able inferences about their future reliability. Such behavioral methods are 
defeated in the case of superintelligence because of the strategic planning 
ability of general intelligence.3

Since the behavioral approach is unavailing, we must look for alternatives. 
We can divide potential control methods into two broad classes: capability 
control methods, which aim to control what the superintelligence can do; 
and motivation selection methods, which aim to control what it wants to do. 
Some of the methods are compatible while others represent mutually 
exclusive alternatives. In this chapter we canvass the main options. …

It is important to realize that some control method (or combination of 
methods) must be implemented before the system becomes superintelligent. 
It cannot be done after the system has obtained a decisive strategic advan­
tage. The need to solve the control problem in advance – and to implement 
the solution successfully in the very first system to attain superintelligence – 
is part of what makes achieving a controlled detonation such a daunting 
challenge.

Capability Control Methods

Capability control methods seek to prevent undesirable outcomes by limiting 
what the superintelligence can do. This might involve placing the superintel­
ligence in an environment in which it is unable to cause harm (boxing 
methods) or in which there are strongly convergent instrumental reasons 
not to engage in harmful behavior (incentive methods). It might also involve 
limiting the internal capacities of the superintelligence (stunting). In addition, 
capability control methods might involve the use of mechanisms to 
automatically detect and react to various kinds of containment failure or 
attempted transgression (tripwires).
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Boxing Methods

Boxing methods can be subdivided into physical and informational 
containment methods.

Physical containment aims to confine the system to a “box,” i.e. to prevent 
the system from interacting with the external world otherwise than via 
specific restricted output channels. The boxed system would not have access 
to physical manipulators outside of the box. Removing manipulators (such 
as robotic arms) from inside the box as well would prevent the system from 
constructing physical devices that could breach the confinement.

For extra security, the system should be placed in a metal mesh to prevent 
it from transmitting radio signals, which might otherwise offer a means of 
manipulating electronic objects such as radio receivers in the environment. 
Note, by the way, how easy it might have been to overlook the need for this 
precaution. One might naively have assumed that an agent without a manip­
ulator could not affect the external world. But it might be possible for a 
machine intelligence to generate radio waves even when it lacks access to 
external manipulators, simply “by thinking” (that is, by shuffling the 
electrons in its circuitry in particular patterns).4 Once pointed out, this 
vulnerability can be patched by enclosing the system in a Faraday cage – but 
we are left wondering how many other similarly subtle vulnerabilities might 
exist. Each time we hear of a seemingly foolproof security design that has an 
unexpected flaw, we should prick up our ears. These occasions grace us with 
the opportunity to abandon a life of overconfidence and resolve to become 
better Bayesians.5

Physical confinement has several advantages. It is easy to implement. It can 
be applied to many machine intelligence architectures, even ones that were 
not initially designed with safety as an objective. It can be used in combina­
tion with most other control methods. And it seems unlikely to go wrong by 
backfiring: that is, while it might fail to ensure safety, it is unlikely to cause a 
catastrophe that would not otherwise have occurred. The main disadvantage 
with physical confinement is that it reduces the functionality of the superin­
telligence. … Another concern is that it might encourage a false sense of 
security, though this is avoidable if we regard physical confinement as icing 
on the cake rather than the main substance of our precautions.

Informational containment aims to restrict what information is allowed 
to exit the box. We have already seen how a superintelligence that has access 
to an Internet port, such that it can message outside entities, is potentially 
unsafe: even if it starts out without access to physical actuators, it may use 
its information output channel to get human beings to do its bidding. An 
obvious informational containment method, therefore, is to bar the system 
from accessing communications networks.

Unplugging an AI from the Internet does not, however, ensure safety if 
there are one or more humans serving as the system’s gatekeepers and 
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remaining in communication with it. During the development phase, the 
programmers serve as gatekeepers; during the operational phase, the 
system’s owner might play this role. If the AI can persuade or trick a 
gatekeeper to let it out of the box, resulting in its gaining access either to the 
Internet or directly to physical manipulators, then the boxing strategy has 
failed. Human beings are not secure systems, especially not when pitched 
against a superintelligent schemer and persuader.6

Although routing the outbound communications of a machine intelli­
gence to a human gatekeeper does not guarantee safety, it could serve as an 
auxiliary safety measure. There are precautions that might reduce the risk of 
the AI escaping through the gatekeeper. The AI could be allowed to 
communicate only via a low‐bandwidth teletype interface. This would make 
it slightly harder to psychologically manipulate the gatekeepers (precluding 
the use of emotive sound and imagery and tricks such as flashing hypnotic 
patterns to induce a trancelike state).7 Going further, the content (not just 
the mode of presentation) of the output could be restricted; so that, for 
example, the AI would be constrained to giving single‐bit answers to yes/no 
questions. …

The limiting case of the boxing approach would be a system kept in 
complete physical and informational isolation. Even if achievable, however, 
such an isolated system would be rather useless since it would have no effect 
on the external world. It might perhaps be thought that some scientific 
purpose could be served by creating a superintelligence and keeping it in 
isolation: by studying a self‐contained model system, one could learn about 
its internal dynamics and its behavior patterns. But this would be an error. 
As soon as the system is observed, it ceases to be informationally isolated.8 
Information can be transmitted not only via messages that an AI sends out 
through a designated “output channel” but also via any observation an 
outsider makes of some causal consequence of the AI’s workings, direct or 
indirect – its power consumption, its CPU and memory usage, its computa­
tional states, or indeed any traces left behind after it has been shut down. 
An AI anticipating that it might be observed in any of these ways could 
strategically adopt behaviors designed to influence the hypothesized observ­
ers. For example, the AI could “malfunction” in whichever way would most 
increase the probability that it will ultimately be reactivated or that another 
superintelligence will be created with goals similar to its own.

Incentive Methods

Incentive methods involve placing an agent in an environment where it finds 
instrumental reasons to act in ways that promote the principal’s interests.

Consider a billionaire who uses her fortune to set up a large charitable 
foundation. Once created, the foundation may be powerful – more powerful 
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than most individuals, including its founder, who might have donated most 
of her wealth. To control the foundation, the founder lays down its purpose 
in articles of incorporation and bylaws, and appoints a board of directors 
sympathetic to her cause. These measures constitute a form of motivation 
selection, since they aim to shape foundation’s preferences. But even if such 
attempts to customize the organizational internals fail, the foundation’s 
behavior would remain circumscribed by its social and legal milieu. 
The foundation would have an incentive to obey the law, for example, lest it 
be shut down or fined. It would have an incentive to offer its employees 
acceptable pay and working conditions, and to satisfy external stakeholders. 
Whatever its final goals, the foundation thus has instrumental reasons to 
conform its behavior to various social norms.

Might one not hope that a machine superintelligence would likewise be 
hemmed in by the need to get along with the other actors with which it 
shares the stage? Though this might seem like a straightforward way of 
dealing with the control problem, it is not free of obstacles. In particular, it 
presupposes a balance of power: legal or economic sanctions cannot restrain 
an agent that has a decisive strategic advantage. Social integration can there­
fore not be relied upon as a control method in fast or medium takeoff 
scenarios that feature a winner‐takes‐all dynamic.

How about in multipolar scenarios, wherein several agencies emerge 
post‐transition with comparable levels of capability? Unless the default 
trajectory is one with a slow takeoff, achieving such a power distribution 
may require a carefully orchestrated ascent wherein different projects are 
deliberately synchronized to prevent any one of them from ever pulling 
ahead of the pack.9 Even if a multipolar outcome does result, social integra­
tion is not a perfect solution. By relying on social integration to solve the 
control problem, the principal risks sacrificing a large portion of her poten­
tial influence. Although a balance of power might prevent a particular AI 
from taking over the world, that AI will still have some power to affect 
outcomes; and if that power is used to promote some arbitrary final goal – 
maximizing paperclip production – it is probably not being used to advance 
the interests of the principal. Imagine our billionaire endowing a new foun­
dation and allowing its mission to be set by a random word generator: not 
a species‐level threat, but surely a wasted opportunity.

A related but importantly different idea is that an AI, by interacting freely 
in society, would acquire new human‐friendly final goals. Some such process 
of socialization takes place in us humans. We internalize norms and 
ideologies, and we come to value other individuals for their own sakes in 
consequence of our experiences with them. But this is not a universal 
dynamic present in all intelligent systems. As discussed earlier, many types of 
agent in many situations will have convergent instrumental reasons not to 
permit changes in their final goals. (One might consider trying to design a 
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special kind of goal system that can acquire final goals in the manner that 
humans do; but this would not count as a capability control method. …)

Capability control through social integration and balance of power relies 
upon diffuse social forces rewarding and penalizing the AI. Another type of 
incentive method would involve creating a setup wherein the AI can be 
rewarded and penalized by the project that creates it, and thereby incentiv­
ized to act in the interests of the principal. To achieve this, the AI would be 
placed in a surveillance context that allows its behavior to be monitored and 
evaluated, either manually or by some automated process. The AI would 
know that a positive evaluation would bring about some outcome it desires 
and that a negative evaluation would fail to do so. Theoretically, the reward 
could be the fulfillment of some convergent instrumental goal. Without 
knowing anything specific about the AI’s motivation system, however, it 
might be difficult to calibrate the reward mechanism. For example, we could 
end up with an AI that would be willing to take extreme risks for the sake 
of a small chance of eventually obtaining control of a large share of the 
universe. It could be expensive to offer the AI a higher expected utility as 
reward for cooperation than the AI could hope to achieve by defecting and 
trying to escape.10

A better alternative might be to combine the incentive method with the 
use of motivation selection to give the AI a final goal that makes it easier to 
control. Suppose that an AI were designed to have as its final goal that a 
particular red button inside a command bunker never be pressed. Since the 
pressing of the button is disvalued intrinsically and not because of its causal 
consequences, the button could be completely inert: it could be made of 
Play‐Doh. Furthermore, it is irrelevant whether the AI can ever know 
whether the button had been pressed. What is essential is that the AI believes 
that the button will more likely remain unpressed if the AI continuously acts 
in the principal’s interest than if it rebels.

Refinements to this setup are possible. Instead of trying to endow an AI 
with a final goal that refers to a physical button, one could build an AI that 
places final value on receiving a stream of “cryptographic reward tokens.”11 
These would be sequences of numbers serving as keys to ciphers that would 
have been generated before the AI was created and that would have been 
built into its motivation system.12 These special number sequences would be 
extremely desirable to the AI, constituting a special kind of reward token 
that the AI could not attain though wireheading.13 The keys would be stored 
in a secure location where they could be quickly destroyed if the AI ever 
made an attempt to seize them. So long as the AI cooperates, the keys are 
doled out at a steady rate.

The AI could then be given a bounded utility function, and matters could 
be arranged so that the AI would get (for instance) 99% of its maximum util­
ity from the first reward token; 99% of its remaining utility potential from 
the second reward token; and so on. By keeping the “discount rate” high, and 
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by transmitting reward tokens to the AI at a reasonably high rate, one would 
dissuade the AI from attempting to carry out long‐term plans that would 
increase the expected number of reward tokens in the distal future at the 
expense of some risk that its reward stream will be cut short or that the next 
reward token will be cancelled and destroyed. If the AI always believes that 
defecting (i.e. doing anything other than its best to look after the principal’s 
interests) would incur at least a 2% risk of forfeiting the next reward token, 
whereas cooperating would reduce the risk of forfeiting the  next reward 
token to below 1%, then a utility‐maximizing AI would always cooperate.

What might go wrong with such an incentive scheme? One possibility is 
that the AI will not trust the human operator to deliver the promised 
rewards. The track record of human reliability is something other than a 
straight line of unerring perfection. The AI would reasonably worry that the 
operator will change his mind, or raise the performance bar, or fail to 
recognize that the AI has done its part. The AI would also worry about the 
operator becoming incapacitated. The combined risk of such failures might 
exceed the risk of attempting to seize control of the reward mechanism. 
Even a boxed AI possessing the panoply of superpowers is a strong force. 
(For an AI that is not boxed to begin with, hijacking the human‐governed 
reward mechanism may be like taking candy from a baby.)

Another problem with the incentive scheme is that it presupposes that we 
can tell whether the outcomes produced by the AI are in our interest. … this 
presupposition is not innocuous.

A full assessment of the feasibility of incentive methods would also have 
to take into account a range of other factors, including some esoteric 
considerations that might conceivably make such methods more viable than 
a preliminary analysis would suggest. In particular, the AI may face inelimi­
nable indexical uncertainty if it could not be sure that it does not inhabit a 
computer simulation (as opposed to “basement‐level,” non‐simulated physi­
cal reality), and this epistemic predicament may radically influence the AI’s 
deliberations (see Box 23.1).

Box 23.1  Anthropic Capture

The AI might assign a substantial probability to its simulation hypothesis, 
the hypothesis that it is living in a computer simulation. Even today, many 
AIs inhabit simulated worlds – worlds consisting of geometric line draw-
ings, texts, chess games, or simple virtual realities, and in which the laws of 
physics deviate sharply from the laws of physics that we believe govern the 
world of our own experience. Richer and more complicated virtual worlds 
will become feasible with improvements in programming techniques and 
computing power. A mature superintelligence could create virtual worlds 
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that appear to its inhabitants much the same as our world appears to us. 
It might create vast numbers of such worlds, running the same simulation 
many times or with small variations. The inhabitants would not necessarily 
be able to tell whether their world is simulated or not; but if they are intel-
ligent enough they could consider the possibility and assign it some prob-
ability. In light of the simulation argument (a full discussion of which is 
beyond the scope of this book) that probability could be substantial.14

This predicament especially afflicts relatively early‐stage superintelli-
gences, ones that have not yet expanded to take advantage of the 
cosmic endowment. An early‐stage superintelligence, which uses only 
a small fraction of the resources of a single planet, would be much less 
expensive to simulate than a mature intergalactic superintelligence. 
Potential simulators – that is, other more mature civilizations – would 
be able to run great numbers of simulations of such early‐stage AIs 
even by dedicating a minute fraction of their computational resources 
to that purpose. If at least some (non‐trivial fraction) of these mature 
superintelligent civilizations choose to use this ability, early‐stage AIs 
should assign a substantial probability to being in a simulation.

How an AI would be affected by the simulation hypothesis depends 
on its values.15 Consider first an AI that has a “resource‐insatiable” final 
goal, such as the goal of maximizing a utility function that is linear in 
the number of paperclips caused by the AI to exist – twice as many 
paperclips, twice as good. Such an AI might care less about the simula-
tion hypothesis, on grounds that its ability to influence how many 
paperclips are produced looks much more limited if the AI is in a simula-
tion than if it is in basement‐level physical reality. The AI might accord-
ingly behave much as if it were certain that the simulation hypothesis is 
false, even if it assigned a fairly high probability to the simulation 
hypothesis being true.16 The AI would reason that it does not much 
matter how it acts if the simulation hypothesis is true, whereas its 
actions make a great difference if the hypothesis is false; so it would 
select actions mainly by reference to how good they are conditional on 
the simulation hypothesis being false.

By contrast, consider an AI that has a more modest final goal, one 
that could be satisfied with a small amount of resources, such as the 
goal of receiving some pre‐produced cryptographic reward tokens, or 
the goal of causing the existence of forty‐five virtual paperclips. Such 
an AI should not discount those possible worlds in which it inhabits a 
simulation. A substantial portion of the Al’s total expected utility might 
derive from those possible worlds. The decision‐making of an AI with 
goals that are easily resource‐satiable may therefore – if it assigns a 
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Stunting

Another possible capability control method is to limit the system’s intellec­
tual faculties or its access to information. This might be done by running the 
AI on hardware that is slow or short on memory. In the case of a boxed 
system, information inflow could also be restricted.

Stunting an AI in these ways would limit its usefulness. The method thus 
faces a dilemma: too little stunting, and the AI might have the wit to figure 
out some way to make itself more intelligent (and thence to world 
domination); too much, and the AI is just another piece of dumb software. 
A radically stunted AI is certainly safe but does not solve the problem of 
how to achieve a controlled detonation: an intelligence explosion would 
remain possible and would simply be triggered by some other system instead, 
perhaps at a slightly later date.

One might think it would be safe to build a superintelligence provided it 
is only given data about some narrow domain of facts. For example, one 
might build an AT that lacks sensors and that has preloaded into its memory 
only facts about petroleum engineering or peptide chemistry. But if the AI is 

high probability to the simulation hypothesis – be dominated by con-
siderations about which actions would produce the best result if its 
perceived world is a simulation. Such an AI (even if it is, in fact, not in 
a simulation) might therefore be heavily influenced by its beliefs about 
which behaviors would be rewarded in a simulation.

In particular, if an AI with resource‐satiable final goals believes that in 
most simulated worlds that match its observations it will be rewarded if it 
cooperates (but not if it attempts to escape its box or contravene the inter-
ests of its creator) then it may choose to cooperate. We could therefore 
find that even an AI with a decisive strategic advantage, one that could in 
fact realize its final goals to a greater extent by taking over the world than 
by refraining from doing so, would nevertheless balk at doing so.

Thus Conscience does make Cowards of us all,
And thus the Native hue of Resolution
Is sicklied o’er, with the pale cast of Thought,
And enterprises of great pith and moment,
With this regard their Currents turn away,
And lose the name of Action.

(Shakespeare, Hamlet, Act III. Sc. i)

A mere line in the sand, backed by the clout of a nonexistent simulator, 
could prove a stronger restraint than a two‐foot‐thick solid steel door.17
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superintelligent – if it is has a superhuman level of general intelligence – such 
data deprivation does not guarantee safety.

There are several reasons for this. First, the notion of information being 
“about” a certain topic is generally problematic. Any piece of information 
can in principle be relevant to any topic whatsoever, depending on the 
background information of a reasoner.18 Furthermore, a given data set 
contains information not only about the domain from which the data was 
collected but also about various circumstantial facts. A shrewd mind look­
ing over a knowledge base that is nominally about peptide chemistry might 
infer things about a wide range of topics. The fact that certain information 
is included and other information is not could tell an AI something about 
the state of human science, the methods and instruments available to study 
peptides, the fabrication technologies used to make these instruments, and 
the nature of the brains and societies that conceived the studies and the 
instruments. It might be that a superintelligence could correctly surmise a 
great deal from what seem, to dull‐witted human minds, meager scraps of 
evidence. Even without any designated knowledge base at all, a sufficiently 
superior mind might be able to learn much by simply introspecting on the 
workings of its own psyche – the design choices reflected in its source code, 
the physical characteristics of its circuitry.19 Perhaps a super‐intelligence 
could even deduce much about the likely properties of the world a priori 
(combining logical inference with a probability prior biased toward simpler 
worlds, and a few elementary facts implied by the superintelligence’s 
existence as a reasoning system). It might imagine the consequences of 
different possible laws of physics: what kind of planets would form, what 
kind of intelligent life would evolve, what kind of societies would develop, 
what kind of methods to solve the control problem would be attempted, 
how those methods could be defeated.20

For these reasons it would be imprudent to rely on information depriva­
tion as the main check on a superintelligence’s power. Some forms of stunting 
however, including limiting hardware capacity and preventing the develop­
ment of specific cognitive faculties, might find use as auxiliary control meth­
ods in the developmental phase. They could be used, for instance, to regulate 
the rate of capacity gain in an intermediary AI and to allow tests to be run at 
different levels of capability short of full‐throttled superintelligence.

Tripwires

A tripwire is a mechanism that performs diagnostic tests on the system 
(possibly without its knowledge) and effects a shutdown if it detects signs of 
dangerous activity. Programmers can then scrutinize recordings of the suspi­
cious activity at their leisure, and make changes to the AI’s code base or 
environment before restarting it. If they find that the problem is sufficiently 
deep‐rooted, they could decide to abort the entire project.
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Tripwires differ from incentive methods in that they do not rely on the 
system being aware of the consequences of engaging in forbidden activities. 
Tripwires are more closely related to stunting methods. Like stunting, 
tripwires could be used as a temporary safeguard, providing a degree of 
protection during the development phase. In principle, tripwires can also be 
used during the operational phase, particularly for a boxed system. However, 
the ability of tripwires to constrain a full‐fledged superintelligence must 
remain very much in doubt, since it would be hard for us to assure ourselves 
that such an agent could not find ways to subvert any tripwire devised by 
the human intellect.

As an adjunct safety measure in the development phase, though, tripwires 
are important. It would be good practice for the AI’s designers to codify 
their expectations about how the system is supposed to function, and then 
to circumscribe the AI with tripwires that would be activated if any of these 
expectations is violated. To make the tests more stringent, “honeypots” 
could be strategically placed to create temptations for a malfunctioning AI 
to commit some easily observable violation. For instance, if an AI has been 
designed in such a way that it is supposed not to want to access the internet, 
a fake Ethernet port could be installed (leading to an automatic shutdown 
switch) just to see if they AI tries to use it. (Some examples of tripwires are 
given in Table 23.1.)

It should be emphasized that the value of a tripwire depends not only on 
the mechanism itself but also – critically – on how a project reacts when a 
tripwire is triggered. If the programmers or project managers, impatient to 
make progress, simply switch the system back on again – or if they do so 
after making some token modification to prevent the tripwire being triggered 
on the next run – then no safety has been gained even if the tripwire itself 
works exactly as intended.

Motivation Selection Methods

Motivation selection methods seek to prevent undesirable outcomes by 
shaping what the superintelligence wants to do. By engineering the agent’s 
motivation system and its final goals, these methods would produce a 
superintelligence that would not want to exploit a decisive strategic advan­
tage in a harmful way. Since a superintelligent agent is skilled at achieving 
its ends, if it prefers not to cause harm (in some appropriate sense of “harm”) 
then it would tend not to cause harm (in that sense of “harm”).

Motivation selection can involve explicitly formulating a goal or set of 
rules to be followed (direct specification) or setting up the system so that it 
can discover an appropriate set of values for itself by reference to some 
implicitly or indirectly formulated criterion (indirect normativity). One 
option in motivation selection is to try to build the system so that it would 
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Table 23.1  Different kinds of tripwires

Type of 
monitoring Description and examples

Behavior Detectors could be placed around a boxed AI to detect attempts to 
breach the containment. For example, detectors could intercept 
attempts at radio communication or at accessing internal 
computational resources intended to be off limits. An “Ethernet 
port of Eden” could be installed: an apparent connection to the 
internet that leads to a shutdown switch.

Ability Automated capability testing could be performed at frequent
intervals to determine the AI’s skill in various domains. If either 

the rate of improvement is unexpectedly high or the AI attains a 
level of competence that brings it close to the potential 
danger zone, the system could be slowed down or paused, in 
order to allow the programmers to monitor further developments 
more closely.

Content The AI’s internal processes could be monitored for suspicious activity. 
For example, any change to the AI’s representation of its final 
values might trigger an automatic shutdown and review. The AI’s 
resource use and algorithmic methods may also be also be 
monitored for unexpected patterns.

More ambitiously, the AI’s beliefs, plans, subgoals, and justifications 
may be continuously scrutinized, to ensure they conform to the 
programmers’ expectations. Such monitoring of the AI’s intentional 
states would enable a particularly powerful form of content 
monitoring: the scanning of the AI’s cognitive processes for a 
conception of deception – that vulnerable moment when an 
unfriendly AI first forms the intention to conceal its true 
intentions.a

Content monitoring that requires that the AI’s intentional states be 
transparent to the programmers or to an automatic monitoring 
mechanism may not be feasible for all kinds of AI architectures. 
(Some neural networks, for instance, are opaque, as they represent 
information holistically and in ways that do not necessarily match 
up with human concepts.) This may be a reason to avoid using 
such architectures.

a  The moment after the conception of deception, the AI might contrive to erase the trace of its 
mutinous thought. It is therefore important that this tripwire operate continuously. It would 
also be good practice to use a “flight recorder” that stores a complete trace of all the AI’s 
activity (including exact timing of keyboard input from the programmers), so that its trajectory 
can be retraced or analyzed following an automatic shutdown. The information could be stored 
on a write‐once‐read‐many medium.
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have modest, non‐ambitious goals (domesticity). An alternative to creating 
a motivation system from scratch is to select an agent that already has an 
acceptable motivation system and then augment that agent’s cognitive 
powers to make it superintelligent, while ensuring that the motivation 
system does not get corrupted in the process (augmentation). Let us look at 
these in turn.

Direct Specification

Direct specification is the most straightforward approach to the control 
problem. The approach comes in two versions, rule‐based and consequen­
tialist, and involves trying to explicitly define a set of rules or values that 
will cause even a free‐roaming superintelligent AI to act safely and benefi­
cially. Direct specification, however, faces what may be insuperable obstacles, 
deriving from both the difficulties in determining which rules or values we 
would wish the AI to be guided by and the difficulties in expressing those 
rules or values in computer‐readable code.

The traditional illustration of the direct rule‐based approach is the “three 
laws of robotics” concept, formulated by science fiction author Isaac Asimov 
in a short story published in 1942.21 The three laws were: (1) A robot may 
not injure a human being or, through inaction, allow a human being to come 
to harm; (2) A robot must obey any orders given to it by human beings, 
except where such orders would conflict with the First Law; (3) A robot 
must protect its own existence as long as such protection does not conflict 
with the First or Second Law. Embarrassingly for our species, Asimov’s laws 
remained state‐of‐the‐art for over half a century: this despite obvious 
problems with the approach, some of which are explored in Asimov’s own 
writings (Asimov probably having formulated the laws in the first place 
precisely so that they would fail in interesting ways, providing fertile plot 
complications for his stories).22

Bertrand Russell, who spent many years working on the foundations of 
mathematics, once remarked that “everything is vague to a degree you do 
not realize till you have tried to make it precise.”23 Russell’s dictum applies 
in spades to the direct specification approach. Consider, for example, how 
one might explicate Asimov’s first law. Does it mean that the robot should 
minimize the probability of any human being coming to harm? In that case 
the other laws become otiose since it is always possible for the AI to take 
some action that would have at least some microscopic effect on the prob­
ability of a human being coming to harm. How is the robot to balance a 
large risk of a few humans coming to harm versus a small risk of many 
humans being harmed? How do we define “harm” anyway? How should 
the harm of physical pain be weighed against the harm of architectural 
ugliness or social injustice? Is a sadist harmed if he is prevented from 
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tormenting his victim? How do we define “human being”? Why is no 
consideration given to other morally considerable beings, such as sentient 
nonhuman animals and digital minds? The more one ponders, the more the 
questions proliferate.

Perhaps the closest existing analog to a rule set that could govern the 
actions of a superintelligence operating in the world at large is a legal system. 
But legal systems have developed through a long process of trial and error, 
and they regulate relatively slowly changing human societies. Laws can be 
revised when necessary. Most importantly, legal systems are administered by 
judges and juries who generally apply a measure of common sense and 
human decency to ignore logically possible legal interpretations that are 
sufficiently obviously unwanted and unintended by the lawgivers. It is 
probably humanly impossible to explicitly formulate a highly complex set of 
detailed rules, have them apply across a highly diverse set of circumstances, 
and get it right on the first implementation.24

Problems for the direct consequentialist approach are similar to those for 
the direct rule‐based approach. This is true even if the AI is intended to serve 
some apparently simple purpose such as implementing a version of classical 
utilitarianism. For instance, the goal “Maximize the expectation of the 
balance of pleasure over pain in the world” may appear simple. Yet express­
ing it in computer code would involve, among other things, specifying how 
to recognize pleasure and pain. Doing this reliably might require solving an 
array of persistent problems in the philosophy of mind – even just to obtain 
a correct account expressed in a natural language, an account which would 
then, somehow, have to be translated into a programming language.

A small error in either the philosophical account or its translation into 
code could have catastrophic consequences. Consider an AI that has hedon­
ism as its final goal, and which would therefore like to tile the universe with 
“hedonium” (matter organized in a configuration that is optimal for the 
generation of pleasurable experience). To this end, the AI might produce 
computronium (matter organized in a configuration that is optimal for 
computation) and use it to implement digital minds in states of euphoria. 
In order to maximize efficiency, the AI omits from the implementation any 
mental faculties that are not essential for the experience of pleasure, and 
exploits any computational shortcuts that according to its definition of 
pleasure do not vitiate the generation of pleasure. For instance, the AI 
might confine its simulation to reward circuitry, eliding faculties such as 
memory, sensory perception, executive function, and language; it might 
simulate minds at a relatively coarse‐grained level of functionality, omitting 
lower‐level neuronal processes; it might replace commonly repeated 
computations with calls to a lookup table; or it might put in place some 
arrangement whereby multiple minds would share most parts of their 
underlying computational machinery (their “supervenience bases” in 
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philosophical parlance). Such tricks could greatly increase the quantity of 
pleasure producible with a given amount of resources. It is unclear how 
desirable this would be. Furthermore, if the AI’s criterion for determining 
whether a physical process generates pleasure is wrong, then the AI’s opti­
mizations might throw the baby out with the bathwater: discarding some­
thing which is inessential according to the AI’s criterion yet essential 
according to the criteria implicit in our human values. The universe then 
gets filled not with exultingly heaving hedonium but with computational 
processes that are unconscious and completely worthless – the equivalent 
of a smiley‐face sticker xeroxed trillions upon trillions of times and 
plastered across the galaxies.

Domesticity

One special type of final goal which might be more amenable to direct speci­
fication than the examples given above is the goal of self‐limitation. While it 
seems extremely difficult to specify how one would want a superintelligence 
to behave in the world in general – since this would require us to account for 
all the trade‐offs in all the situations that could arise – it might be feasible to 
specify how a super‐intelligence should behave in one particular situation. 
We could therefore seek to motivate the system to confine itself to acting on 
a small scale, within a narrow context, and through a limited set of action 
modes. We will refer to this approach of giving the AI final goals aimed at 
limiting the scope of its ambitions and activities as “domesticity.”

For example, one could try to design an AI such that it would function as 
a question‐answering device (an “oracle” …). Simply giving the AI the final 
goal of producing maximally accurate answers to any question posed to it 
would be unsafe. … (Reflect …. that this goal would incentivize the AI to 
take actions to ensure that it is asked easy questions.) To achieve domestic­
ity, one might try to define a final goal that would somehow overcome these 
difficulties: perhaps a goal that combined the desiderata of answering 
questions correctly and minimizing the AI’s impact on the world except 
whatever impact results as an incidental consequence of giving accurate and 
non‐manipulative answers to the questions it is asked.25

The direct specification of such a domesticity goal is more likely to be 
feasible than the direct specification of either a more ambitious goal or a 
complete rule set for operating in an open‐ended range of situations. 
Significant challenges nonetheless remain. Care would have to be taken, for 
instance, in the definition of what it would be for the AI to “minimize its 
impact on the world” to ensure that the measure of the AI’s impact coincides 
with our own standards for what counts as a large or a small impact. A bad 
measure would lead to bad trade‐offs. There are also other kinds of risk 
associated with building an oracle, which we will discuss later.
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There is a natural fit between the domesticity approach and physical 
containment. One would try to “box” an AI such that the system is unable 
to escape while simultaneously trying to shape the AI’s motivation system 
such that it would be unwilling to escape even if it found a way to do so. 
Other things equal, the existence of multiple independent safety mechanisms 
should shorten the odds of success.26

Indirect Normativity

If direct specification seems hopeless, we might instead try indirect norma­
tivity. The basic idea is that rather than specifying a concrete normative 
standard directly, we specify a process for deriving a standard. We then build 
the system so that it is motivated to carry out this process and to adopt 
whatever standard the process arrives at.27 For example, the process could 
be to carry out an investigation into the empirical question of what some 
suitably idealized version of us would prefer the AI to do. The final goal 
given to the AI in this example could be something along the lines of “achieve 
that which we would have wished the AI to achieve if we had thought about 
the matter long and hard.”

… Indirect normativity is a very important approach to motivation selec­
tion. Its promise lies in the fact that it could let us offload to the superintel­
ligence much of the difficult cognitive work required to carry out a direct 
specification of an appropriate final goal.

Augmentation

The last motivation selection method on our list is augmentation. Here the 
idea is that rather than attempting to design a motivation system de novo, 
we start with a system that already has an acceptable motivation system, 
and enhance its cognitive faculties to make it superintelligent. If all goes 
well, this would give us a superintelligence with an acceptable motivation 
system.

This approach, obviously, is unavailing in the case of a newly created 
seed AI. But augmentation is a potential motivation selection method for 
other paths to superintelligence, including brain emulation, biological 
enhancement, brain–computer interfaces, and networks and organizations, 
where there is a possibility of building out the system from a normative 
nucleus (regular human beings) that already contains a representation of 
human value.

The attractiveness of augmentation may increase in proportion to our 
despair at the other approaches to the control problem. Creating a motivation 
system for a seed AI that remains reliably safe and beneficial under recursive 
self‐improvement even as the system grows into a mature superintelligence 
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is a tall order, especially if we must get the solution right on the first attempt. 
With augmentation, we would at least start with a system that has familiar 
and human‐like motivations.

On the downside, it might be hard to ensure that a complex, evolved, 
kludgy, and poorly understood motivation system, like that of a human 
being, will not get corrupted when its cognitive engine blasts into the strato­
sphere. As discussed earlier, an imperfect brain emulation procedure that 
preserves intellectual functioning may not preserve all facets of personality. 
The same is true (though perhaps to a lesser degree) for biological enhance­
ments of cognition, which might subtly affect motivation, and for collective 
intelligence enhancements of organizations and networks, which might 
adversely change social dynamics (e.g. in ways that debase the collective’s 
attitude toward outsiders or toward its own constituents). If  superintelli­
gence is achieved via any of these paths, a project sponsor would find 
guarantees about the ultimate motivations of the mature system hard to 
come by. A mathematically well‐specified and foundationally elegant AI 
architecture might – for all its non‐anthropomorphic otherness  – offer 
greater transparency, perhaps even the prospect that important aspects of its 
functionality could be formally verified.

In the end, however one tallies up the advantages and disadvantages of 
augmentation, the choice as to whether to rely on it might be forced. If super­
intelligence is first achieved along the artificial intelligence path, augmentation 
is not applicable. Conversely, if superintelligence is first achieved along some 
non‐AI path, then many of the other motivation selection methods are inap­
plicable. Even so, views on how likely augmentation would be to succeed do 
have strategic relevance insofar as we have opportunities to influence which 
technology will first produce superintelligence.

Synopsis

A quick synopsis might be called for before we close this chapter. We distin­
guished two broad classes of methods for dealing with the agency problem 
at the heart of AI safety: capability control and motivation selection. 
Table 23.2 gives a summary.

Each control method comes with potential vulnerabilities and presents 
different degrees of difficulty in its implementation. It might perhaps be 
thought that we should rank them from better to worse, and then opt for the 
best method. But that would be simplistic. Some methods can be used in 
combination whereas others are exclusive. Even a comparatively insecure 
method may be advisable if it can easily be used as an adjunct, whereas a 
strong method might be unattractive if it would preclude the use of other 
desirable safeguards.
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It is therefore necessary to consider what package deals are available. We 
need to consider what type of system we might try to build, and which con­
trol methods would be applicable to each type. [...]

Notes

1.	 E.g., Laffont and Martimort (2002).
2.	 Suppose a majority of voters want their country to build some particular kind of 

superintelligence. They elect a candidate who promises to do their bidding, but 

Table 23.2  Control methods

Capability control

Boxing methods The system is confined in such a way that it can affect 
the external world only through some restricted,  
pre‐approved channel. Encompasses physical and 
informational containment methods.

Incentive methods The system is placed within an environment that 
provides appropriate incentives. This could involve 
social integration into a world of similarly powerful 
entities. Another variation is the use of 
(cryptographic) reward tokens. ’Anthropic capture” is 
also a very important possibility but one that involves 
esoteric considerations.

Stunting Constraints are imposed on the cognitive capabilities of 
the system or its ability to affect key internal 
processes.

Tripwires Diagnostic tests are performed on the system (possibly 
without its knowledge) and a mechanism shuts down 
the system if dangerous activity is detected.

Motivation selection

Direct specification The system is endowed with some directly specified 
motivation system, which might be consequentialist 
or involve following a set of rules.

Domesticity A motivation system is designed to severely limit the 
scope of the agent’s ambitions and activities.

Indirect normativity Indirect normativity could involve rule‐based or 
consequentialist principles, but is distinguished by its 
reliance on an indirect approach to specifying the 
rules that are to be followed or the values that are to 
be pursued.

Augmentation One starts with a system that already has substantially 
human or benevolent motivations, and enhances its 
cognitive capacities to make it superintelligent.
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they might find it difficult to ensure that the candidate, once in power, will fol­
low through on her campaign promise and pursue the project in the way that the 
voters intended. Supposing she is true to her word, she instructs her government 
to contract with an academic or industry consortium to carry out the work; but 
again there are agency problems, the bureaucrats in the government department 
might have their own views about what should be done and may implement the 
project in a way that respects the letter but not the spirit of the leader’s instruc­
tions. Even if the government department does its job faithfully, the contracted 
scientific partners might have their own separate agendas. The problem recurs 
on many levels. The director of one of the participating laboratories might lie 
awake worrying about a technician introducing an unsanctioned element into 
the design – imagining Dr. T. R. Eason sneaking into his office late one night, 
logging into the project code base, rewriting a part of the seed AI’s goal system. 
Where it was supposed to say “serve humanity,” it now says “serve Dr. T. R. 
Eason.”

3.	 Even for superintelligence development, though, there could be a role for behav­
ioral testing – as one auxiliary element within a wider battery of safety meas­
ures. Should an AI misbehave in its developmental phase, something is clearly 
awry – though, importantly, the converse does not hold.

4.	 In a classic exploit from 1975, Steven Dompier wrote a program for the Altair 
8800 that took advantage of this effect (and the absence of shielding around the 
microcomputer’s case). Running the program caused the emission of electro­
magnetic waves that would produce music when one held a transistor radio 
close to the computer (Driscoll 2012). The young Bill Gates, who attended a 
demo, reported that he was impressed and mystified by the hack (Gates 1975). 
There are in any case plans to design future chips with built‐in Wi‐Fi capabilities 
(Greene 2012).

5.	 It is no light matter to have held a conviction, which, had we had an opportunity 
to act upon it, could have resulted in the ruination of all our cosmic endowment. 
Perhaps one could argue for the following principle: if somebody has in the past 
been certain on N occasions that a system has been improved sufficiently to 
make it safe, and each time it was revealed that they were wrong, then on the 
next occasion they are not entitled to assign a credence greater than 1/(N + 1) to 
the system being safe.

6.	 In one informal experiment, the role of the AI was played by an intelligent 
human. Another individual played the role of gatekeeper and was tasked with 
not letting the AI out of the box. The AI could communicate with the gate­
keeper only by text and was given two hours to persuade the gatekeeper to let 
it out. In three cases out of five, with different individuals playing the gate­
keeper, the AI escaped (Yudkowsky 2002). What a human can do, a superintel­
ligence can do too. (The reverse, of course, does not hold. Even if the task for a 
real superintelligence were harder – maybe the gatekeepers would be more 
strongly motivated to refrain from releasing the AI than the individuals playing 
gatekeeper in the experiment – the superintelligence might still succeed where a 
human would fail.)

7.	 One should not overstate the marginal amount of safety that could be gained in 
this way. Mental imagery can substitute for graphical display. Consider the 
impact books can have on people – and books are not even interactive.
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  8.	 See also Chalmers (2010). It would be a mistake to infer from this that there is 
no possible use in building a system that will never be observed by any outside 
entity. One might place a final value on what goes on inside such a system. Also, 
other people might have preferences about what goes on inside such a system, 
and might therefore be influenced by its creation or the promise of its creation. 
Knowledge of the existence of certain kinds of isolated systems (ones containing 
observers) can also induce anthropic uncertainty in outside observers, which 
may influence their behavior.

  9.	 One might wonder why social integration is considered a form of capability 
control. Should it not instead be classified as a motivation selection method on 
the ground that it involves seeking to influence a system’s behavior by means of 
incentives? We will look closely at motivation selection presently; but, in answer 
to this question, we are construing motivation selection as a cluster of control 
methods that work by selecting or shaping a system’s final goals – goals sought 
for their own sakes rather than for instrumental reasons. Social integration does 
not target a system’s final goals, so it is not motivation selection. Rather, social 
integration aims to limit the system’s effective capabilities: it seeks to render the 
system incapable of achieving a certain set of outcomes – outcomes in which the 
system attains the benefits of defection without suffering the associated penal­
ties (retribution, and loss of the gains from collaboration). The hope is that by 
limiting which outcomes the system is able to attain, the system will find that the 
most effective remaining means of realizing its final goals is to behave 
cooperatively.

10.	 This approach may be somewhat more promising in the case of an emulation 
believed to have anthropomorphic motivations.

11.	 I owe this idea to Carl Shulman.
12.	 Creating a cipher certain to withstand a superintelligent code‐breaker is a 

nontrivial challenge. For example, traces of random numbers might be left in 
some observer’s brain or in the microstructure of the random generator, from 
whence the superintelligence can retrieve them; or, if pseudorandom numbers 
are used, the superintelligence might guess or discover the seed from which they 
were generated. Further, the superintelligence could build large quantum 
computers, or even discover unknown physical phenomena that could be used 
to construct new kinds of computers.

13.	 The AI could wire itself to believe that it had received a reward tokens, but this 
should not make it wirehead if it is designed to want the reward tokens (as 
opposed to wanting to be in a state in which it has certain beliefs about the 
reward tokens).

14.	 For the original article, see Bostrom (2003). See also Elga (2004).
15.	 Shulman (2010).
16.	 Basement‐level reality presumably contains more computational resources than 

simulated reality, since any computational processes occurring in a simulation 
are also occurring on the computer running the simulation. Basement‐level 
reality might also contain a wealth of other physical resources which could be 
hard for simulated agents to access – agents that exist only at the indulgence of 
powerful simulators who may have other uses in mind for those resources. 
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(Of course, the inference here is not strictly deductively valid: in principle, it 
could be the case that universes in which simulations are run contain so much 
more resources that simulated civilizations on average have access to more 
resources than non‐simulated civilizations, even though each non‐simulated 
civilization that runs simulations has more resources than all the civilizations it 
simulates do combined.)

17.	 There are various further esoteric considerations that might bear on this matter, 
the implications of which have not yet been fully analyzed. These considera­
tions may ultimately be crucially important in developing an all‐things‐­
considered approach to dealing with the prospect of an intelligence explosion. 
However, it seems unlikely that we will succeed in figuring out the practical 
import of such esoteric arguments unless we have first made some progress on 
the more mundane kinds of consideration that are the topic of most of 
this book.

18.	 Cf., e.g., Quine and Ullian (1978).
19.	� Which an AI might investigate by considering the performance characteristics 

of various basic computational functionalities, such as the size and capacity of 
various data buses, the time it takes to access different parts of memory, the 
incidence of random bit flips, and so forth.

20.	 Perhaps the prior could be (a computable approximation of) the Solomonoff 
prior, which assigns probability to possible worlds on the basis of their 
algorithmic complexity. See Li and Vitányi (2008).

21.	 Asimov (1942). To the three laws were later added a “Zeroth Law”: “(0) A 
robot may not harm humanity, or, by inaction, allow humanity to come to 
harm” (Asimov 1985).

22.	 Cf. Gunn (1982).
23.	 Russell (1986, 161f).
24.	 Similarly, although some philosophers have spent entire careers trying to care­

fully formulate deontological systems, new cases and consequences occasion­
ally come to light that necessitate revisions. For example, deontological moral 
philosophy has in recent years been reinvigorated through the discovery of a 
fertile new class of philosophical thought experiments, “trolley problems,” 
which reveal many subtle interactions among our intuitions about the moral 
significance of the acts/omissions distinction, the distinction between intended 
and unintended consequences, and other such matters; see, e.g., Kamm (2007).

25.	 Armstrong (2010).
26.	 As a rule of thumb, if one plans to use multiple safety mechanisms to contain 

an AI, it may be wise to work on each one as if it were intended to be the sole 
safety mechanism and as if it were therefore required to be individually suffi­
cient. It one puts a leaky bucket inside another leaky bucket, the water still 
comes out.

27.	 A variation of the same idea is to build the AI so that it is continuously moti­
vated to act on its best guesses about what the implicitly defined standard is. In 
this setup, the AI’s final goal is always to act on the implicitly defined standard, 
and it pursues an investigation into what this standard is only for instrumental 
reasons.
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