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Abstract—Deep learning frameworks have proven to be very
effective at tasks like classification, segmentation, detection, and
translation. Before being processed by a deep learning model,
objects are first encoded into a suitable vector representation.
For example, images are typically encoded using convolutional
neural networks whereas texts typically use recurrent neural
networks. Similarly, other modalities of data like 3D point clouds,
audio signals, and videos can be transformed into vectors using
appropriate encoders. Although deep learning architectures do
a good job of learning these vector representations in isola-
tion, learning a single common representation across multiple
modalities is a challenging task. In this work, we develop a
Multi Stage Common Vector Space (M-CVS) that is suitable
for encoding multiple modalities. The M-CVS is an efficient
low-dimensional vector representation in which the contextual
similarity of data is preserved across all modalities through the
use of contrastive loss functions. Our vector space can perform
tasks like multimodal retrieval, searching and generation, where
for example, images can be retrieved from text or audio input.
The addition of a new modality would generally mean resetting
and training the entire network. However, we introduce a stage-
wise learning technique where each modality is compared to a
reference modality before being projected to the M-CVS. Our
method ensures that a new modality can be mapped into the M-
CVS without changing existing encodings, allowing the extension
to any number of modalities. We build and evaluate M-CVS
on the XMedia and XMedianet multimodal dataset. Extensive
ablation experiments using images, text, audio, video, and 3D
point cloud modalities demonstrate the complexity vs. accuracy
tradeoff under a wide variety of real-world use cases.

Index Terms—retrieval, indexing, multimedia, multimodal,
deep learning.

I. INTRODUCTION

Neural network architectures have shown tremendous ca-
pabilities in tasks like image classification, image segmenta-
tion, language translation and object detection. The flow of
knowledge from one data modality to another is a challenging
task. In this work, we propose a Multi Stage Common Vector
Space (M-CVS) that takes in data belonging to multiple
modalities and projects it into a common embedding space. In

Fig. 1: The M-CVS model. The input modalities pass through
their own encoding networks and then through fully connected
layers before going in to the attention layer. The output of the
attention layer is the M-CVS embedding of the input data.

the M-CVS, similar objects and concepts are clustered together
whereas dissimilar objects and concepts are well separated
from each other, irrespective of their modality. For instance,
the representation of the images, text, audio, video and 3D
point cloud of a giraffe will lie close to each other and far
away from the representations of cars. Figure 1 shows the
overall architecture of the M-CVS. Each of the modalities is
mapped into the M-CVS using separate encoders. The fully
connected layers help bring the different modalities into the
M-CVS.

The task of cross modal retrieval has been tackled in [4],
[12] with different loss functions and architectures. Most cross
modal tasks restrict themselves to two modalities. We are
introducing a new training technique which enables adding of
new modalities without changing the existing trained model.

In the M-CVS, a new modality can be added without
changing the existing architecture which significantly reduces
the time taken to train the model. The main contributions of978-1-7281-4732-1/19/$31.00 ©2019 IEEE
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this work are as follows:
• Develop a low dimensional vector space that accommo-

dates data originating from multiple modalities.
• Demonstrate the ability of the M-CVS to seamlessly

extend to more than two modalities without affecting
existing inference.

• Perform cross modal retrieval on different multimodal
datasets.

• Implement stage wise training of neural networks to see
effect on performance of retrieval and inference time.

• Compare different training strategies and compare the
pros and cons of each.

II. RELATED WORK

Deep learning has been effective in tasks like image clas-
sification [7], [9], [10], [25], semantic segmentation [2], [11],
object detection [19], [20], and language translation [6]. The
interaction between text and vision in particular has made
some great strides. For example, Sah et al. [22] trained a
network that summarized several hour-long videos to short
paragraphs. Using multiple modalities of data to perform
retrieval is referred to as cross modal retrieval. Most work
in the multimodal space restricts itself to only two modalities.
Zhang et al. [32] developed a text encoding framework that
generated a vector representation of a text while [23] shows
how multiple captions can be used to generate images using
common vector representations.

Deng et al. [3] performed cross modal hashing using a
triplet based hashing network and Wu et al. [27] showed
the use of adversarial training by using cycle consistency
loss function. The task of real-value based retrieval can be
modeled in different ways. Qi et al. [18] used the triplet
loss function to form triplets (anchors, positive, negative)
and train a model whose objective function ensured that the
encoded vector representation of anchors and their correspond-
ing positive samples lie close in the latent space, while the
encoded vector representation anchors and negative samples
are pushed far away. More recent works like Xu et al. [29]
used adversarial loss functions and built an architecture that
converted a 4096-dimensional vector representation to a 200
dimension vector using fully connected layers. Zhen et al. [34]
used a combination of a linear classifier, modality invariance
loss, and intermodal loss to perform retrieval. Peng et al. [15]
created an architecture that was able to retrieve images from
their outline sketches and vice-versa. Works in [8], [17] show
the use of retrieval of data from one modality to the other at
the granular level where the input query is able to retrieve its
corresponding ground-truth sample of the other modality.

III. PROPOSED METHODOLOGY

A. Network Architecture

The architecture is shown in Figure 1. The model has
five different modalities of data that are mapped onto the
M-CVS using fully connected neural network layers. Each
of the modalities have their own encoding networks that
extract the individual vector representations of the data. The

encoders then pass through two fully connected layers into
the M-CVS through the attention layer. We use the tanh
activation function in between the fully connected layers.
Using the fully connected layers, we bring all the data into a
512 dimensional vector representation. The vectors then pass
through the aligned attention layer. The output of the attention
layer is the final M-CVS representation of the data.

As new modalities are introduced, they are compared with
all existing modalities, and their weights are update such that
when mapping into M-CVS, we should not be able to tell
which modality the data came from. In this comparison, the
weights of all the modalities already present in the M-CVS are
frozen and only the weights of the new modality are updated.

We compare our implementation of the M-CVS with the
CVS model [21], [23], a non-stage wise implementation of
the M-CVS. Conceptually, both the CVS and the M-CVS are
similar but the way in which they are trained is quite different.
In the CVS, we need

(
n
2

)
attention blocks between each pair of

modalities before the data can be projected in to the common
embedding space. Another limitation of the CVS is that the
addition of a new modality into the CVS alters the existing
inference of all the other modalities. That is to say that the
CVS needs all the data before being built and is difficult to
scale.

The M-CVS requires n additional blocks of attention when-
ever we add a new modality. We constrain our model to update
only the weights corresponding to the new modality.

The training takes place in a stage wise manner. In stage 1,
we train the image and text networks. From stage 2 onward,
the weights corresponding to the image and the text branch
are not updated. In stage 2, we map the video to the M-
CVS by comparing it with the image and the text modality.
Only the weights corresponding the video branch are updated.
Similarly, in stages 3 and 4, the audio and 3D branches are
added respectively. By deploying such a stage wise training
technique, we can add any number of newer modalities without
affecting the existing model and its inference. The stage wise
training also reduces the time taken to add the new modality
as only a fraction of the total weights have to be learned by
the model.

B. Loss Functions

There are two sets of loss functions that we define in the
M-CVS. We use a modified version of the triplet loss function
described in [24]. We define two data points belonging to
the same class as positive pairs and data points belonging
to different classes as negative pairs. Our triplet loss is a
combination of intermodality triplet loss and intramodality
triplet loss which calculate losses across two modalities and
within the same modality respectively. For any given such
triplet, the loss value is incremented as per (1) where α1,
α2 and α3 are the margins and (fma − fmp ) is the distance
between the reference anchor and the positive pair belonging
to modality m modality and (fma − fmn ) is the distance
between the reference anchor and the negative pair belonging
to modality m. The γ1, γ2 and γ3 are the weights of the three
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individual losses. x and y refer to the different modalities that
belong to either of images, text, audio, video or 3D point
clouds.

Lt =
i,t,v,a,3d∑

x,y
max(0, |fxa − fxp | − |fxa − fxn |+ α1

+max(0, |fya − fyp | − |fya − fyn |+ α2

+max(0, |fxa − fyp | − |fxa − fyn |+ α3

(1)

In addition to the triplet loss, we deploy the cross entropy
loss to classify the samples into their respective categories.

Lc =

N∑
i

yilog(ŷi) + (1− yi)log(1− ŷi) (2)

The total loss is given by the linear combination of (1) and
(2).

C. Aligned Attention

Attention mechanisms are able to emphasize more on cer-
tain parts of the data at different times. Vaswani et al. [26]
showed its application in language translations and Xu et al.
[28] showed how attention is used for image captioning.

Fig. 2: Attention mechanism that aligns the new modality
being added to the reference modality in the M-CVS.

The attention mechanism we develop takes in two input
embeddings and transforms them to the M-CVS embedding.
The attention mechanism that we use computes eis where i
and s are the two modalities. This is shown in (3).

eis =Wetanh(Wigi +Wsgs +Wisgi · gs + b) (3)

The resulting vector from (3) is normalized to obtain the
attention vector αis.

αis =
exp(eis)∑
exp(eis)

(4)

The attention vector from (4) is passed through a residual
block inspired from [7] as shown in (5) and (6) respectively.

ĝi = αis · gi + gi (5)

ĝs = αis · gs + gs (6)

ĝi and ĝs are further l2 normalized before treating them as
the final M-CVS representation of the data. Such an attention
mechanism allows us to add newer modalities without chang-
ing existing models.

IV. DATASETS

We evaluate our model on XMedia [15], [30] and XMe-
diaNet [13], [14]. These datasets contain data belonging to
five different modalities - image, text, audio, video, 3D points
and is ideal to demonstrate the capabilities of the M-CVS. The
XMedia dataset has 20 different categories and each sample of
all the modalities belong to one of these categories. Similarly,
the XMediaNet has 200 categories. Table I and II shows the
number of samples and the different encoders for the XMedia
and the XMediaNet dataset and their dimensions respectively.

TABLE I: Multimodal XMedia dataset [31] statistics.

Modality #Train #Test Feature dim. (Method)
Image 4000 1000 4096 (CNN)
Text 4000 1000 3000 (BoW)

Video 400 100 4096 (C3D-CNN)
Audio 800 200 29 (MFCC)

3D Model 400 100 4700 (Light Field)

TABLE II: Multimodal XMediaNet dataset [13] statistics.

Media Text Image Video Audio 3D
Training 32,000 32,000 8,000 8,000 1,600
Testing 8,000 8,000 2,000 2,000 400

V. IMPLEMENTATION AND RESULTS

A. Implementation Specifications

Our M-CVS is a 512 dimensional space and all modalities
are mapped in to this space using two fully connected layers.
For instance, the 4k image feature is connected through two
fully connected layers, both of which contain 512 neurons.

All our models are trained using TensorFlow [1]. We use
a batch size of 128 and train all models for 50 epochs. We
use Adam as our optimizer. During inference, each test sample
is evaluated against all instances of the other modality. This
comparison returns a similarity matrix that is then used to
calculate the mean average precision score.

B. Evaluation Metrics

The mean Average Precision (mAP ) scores [5] is used to
evaluate our model. The Average Precision (AP) is computed
for every query on the first R top-ranked retrieved data
samples:

AP =
1

N

R∑
r=1

p(r) · rel(r) (7)
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where, N is the total relevance of the samples in the retrieval,
p(r) is precision at r, and rel(r) is a flag for the relevance of
a given rank (one if relevant and zero otherwise). If the class
label of the query is same as that of the retrieved sample,
then the relevance is said to be true. mAP is the average of
AP across all queries. We report mAP@50 (R = 50) for all
experiments as is standard practice in the literature.

C. Experiments and Analysis

We report the mAP@50 on the XMedia and the XMediaNet
multimodal datasets. Our results clearly indicate that the use of
the attention model is very effective in improving the results.
The image and text modalities have more samples to train on
and hence are able to generalize better as indicated by the
high retrieval scores between images and text. The number of
samples in both the XMedia and the XMediaNet is imbalanced
and the dimensions of the audio features is very low. We
believe having a larger dataset could improve results.

D. CVS versus M-CVS model

The CVS model performs better than the M-CVS model,
but requires all modalities to be trained in unison. Adding a
new modality to the CVS model would require re-training all
modalities from scratch. Our M-CVS model overcomes this by
performing the training in a stage-wise manner. This results in
a robust model that performs nearly as well as the CVS model
as evident from III and IV. We can see from Figure 3 that the
time taken per iteration for the CVS model is much higher
when it is trained with incremental number of modalities as
compared to the M-CVS model.

Fig. 3: The timing comparison between the CVS and the M-
CVS model. The M-CVS

VI. CONCLUSION

The CVS model is an effective technique to map similar
concepts close and dissimilar concepts far, irrespective of
their input modality. During training of CVS architectures,
all input modalities need to be available for the model to
be built. Adding subsequent modalities into the CVS model
require re-training all modality weights from scratch. To avoid
this problem, we introduce the M-CVS model that performs
stage wise addition of modalities into the embedding space.
Our M-CVS model preserves existing modality weights as

TABLE III: mAP@50 for XMedia dataset (I - image, T- text,
A - audio, V - video, 3D - three dimension). Q is query and
R is retrieval modality.

Q
R

I T A V 3D

S2UPG
[16]

I − 0.270 0.265 0.264 0.394
T 0.275 − 0.242 0.242 0.338
A 0.274 0.244 − 0.207 0.363
V 0.225 0.193 0.168 − 0.267
3D 0.345 0.275 0.329 0.276 −
Avg 0.273

SCVM
[33]

I − 0.903 0.406 0.532 0.655
T 0.889 − 0.507 0.549 0.722
A 0.438 0.527 − 0.313 0.370
V 0.553 0.580 0.302 − 0.450
3D 0.603 0.679 0.370 0.426 −
Avg 0.539

CVS

I − 0.908 0.708 0.801 0.731
T 0.950 − 0.743 0.828 0.769
A 0.416 0.477 − 0.341 0.420
V 0.490 0.481 0.366 − 0.434
3D 0.580 0.545 0.457 0.558 −
Avg 0.600

M-CVS

I − 0.897 0.531 0.809 0.782
T 0.943 − 0.538 0.840 0.822
A 0.508 0.513 − 0.318 0.505
V 0.521 0.211 0.202 − 0.282
3D 0.616 0.627 0.457 0.558 −
Avg 0.567

TABLE IV: mAP@50 for XMediaNet dataset (I - image, T-
text, V - video). Q is query and R is retrieval modality.

Q
R

I T V

CVS

I − 0.775 0.605
T 0.685 − 0.504
V 0.395 0.383 −
Avg 0.558

M-CVS

I − 0.777 0.457
T 0.673 − 0.349
V 0.227 0.260 −
Avg 0.457

new modalities are introduced. Results show that our M-CVS
architecture can achieve performance similar to CVS, but at a
significant compute cost savings.
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