
CHAPTER ELEVEN

Series and Parallel Piping

1. SERIES PIPING

In the previous chapters, we assumed the pipeline to have the same
diameter throughout its length. Pipes are said to be in series if different
lengths of pipes of different diameters are joined end to end with the entire
flow passing through all pipes.

Consider a pipeline consisting of two different lengths and pipe diameters
joined together in series. A pipeline, 1000 ft long, 16-in diameter, connected
in series with a pipeline, 500 ft long and 14-in diameter would be an
example of a series pipeline. At the connection point, we will need to
have a fitting known as a reducer, that will join the 16-in pipe with the
smaller 14-in pipe. This fitting will be a 16-in � 14-in reducer. The reducer
causes transition in the pipe diameter smoothly from 16 in to 14 in. We can
calculate the total pressure drop through this 16-in/14-in pipeline system by
adding the individual pressure drops in the 16-in and the 14-in pipe segment
and accounting for the pressure loss in the 16-in � 14-in reducer.

There are situations where a pipeline may consist of different pipe diam-
eter connected together in series to transport different volumes of fluid as
shown in Figure 11.1.

In Figure 11.1, pipe section AB with a diameter of 16-in is used to trans-
port natural gas volume of 100 million standard cubic feet per day
(MMSCFD) and after making a delivery of 20 MMSCFD at B, the
remainder of 80 MMSCFD flows through the 14-in diameter pipe BC.

Figure 11.1 Series piping.
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At C, a delivery of 30 MMSCFD is made and the balance volume of
50 MMSCFD is delivered to the terminus D through a 12-in pipeline CD.

It is clear that the pipe section AB flows the largest volume
(100 MMSCFD), whereas the pipe segment CD transports the least volume
(50 MMSCFD). Therefore, segments AB and CD for reasons of economy
should be of different pipe diameters as indicated in the Figure 11.1. If we
maintained the same pipe diameter of 16-in from A to D it would be a waste
of pipe material and therefore cost. Constant diameter is used only when the
same flow that enters the pipeline is also delivered at the end of the pipeline,
with no intermediate injections or deliveries.

However, in reality there is no way of determining ahead what the
future delivery volumes would be along the pipeline. Hence it is difficult
to determine initially the different pipe sizes for each segment. Therefore,
in many cases you will find that the same diameter pipe is used throughout
the entire length of the pipeline even though there are intermediate deliv-
eries. Even with the same nominal pipe diameter, different pipe sections may
have different wall thicknesses; therefore, we have different pipe inside
diameters for each pipe segment. Such wall thickness changes are made to
compensate for varying pressures along the pipeline. The subject of pipe
strength and its relation to pipe diameter and wall thickness were discussed
in Chapter 5.

The pressure required to transport gas or liquid in a series pipeline from
point A to point D in Figure11.1 is calculated by considering each pipe
segment such as AB, BC, etc., and applying the appropriate pressure drop
equation for each segment.

Another approach to calculating the pressures in series piping system is
using the equivalent length concept. This method can be applied when
the same uniform flow exists throughout the pipeline, with no intermediate
deliveries or injections. We will explain this method of calculation for a
series piping system with the same flow rate Q through all pipe segments.
Suppose the first pipe segment has an inside diameter D1 and length L1
followed by the second segment of inside diameter D2 and length L2and
so on. We calculate the equivalent length of the second pipe segment based
on the diameter D1 such that the pressure drop in the equivalent length
matches that in the original pipe segment of diameter D2.

Pressure drop in diameter D2 and Length L2 ¼
Pressure drop in diameter D1 and equivalent Length Le2
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Thus the second segment can be replaced with a piece of pipe of length
Le2 and diameter D1 Similarly, the third pipe segment with diameter D3 and
length L3 will be replaced with a piece of pipe of Le3 and diameter D1. Thus
we have converted the three segments of pipe in terms of diameter D1 as
follows

Segment 1 – diameter D1 and length L1
Segment 2 – diameter D1 and length Le2
Segment 3 – diameter D1 and length Le3
For convenience, we picked the diameter D1 of segment 1 as the base

diameter to use, to convert from the other pipe sizes. We now have the
series piping system reduced to one constant diameter (D1) pipe of total
equivalent length given by

Le ¼ L1þ Le2þ Le3 (11.1)

The pressure required at the inlet of this series piping system can then be
calculated based on diameter D1 and length Le. We will now explain how
the equivalent length is calculated.

1.1 Equivalent Length of Pipes: Gas Pipelines
Upon examining the general flow equation, it can be seen that for the same
flow rate and gas properties, neglecting elevation effects the pressure differ-
ence (P21 � P22 ) is inversely proportional to the fifth power of the pipe
diameter and directly proportional to the pipe length. Therefore, we can
state that approximately

DPsq ¼ CL
D5 (11.2)

where
DPsq ¼ difference in square of pressures ðP21 � P22Þ for pipe segment.
C ¼ a constant
L ¼ pipe length
D ¼ pipe inside diameter
The value of C depends on the flow rate, gas properties, gas temperature,

base pressure, and base temperature. Therefore, C will be the same for all
pipe segments in a series pipeline with constant flow rate.

From Eqn (11.2), we conclude that the equivalent length for the same
pressure drop is proportional to the fifth power of the diameter. Therefore,
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in the series piping example discussed earlier, the equivalent length of the
second pipe segment of diameter D2 and length L2 is

CL2
D5
2
¼ CLe2

D5
1

(11.3)

Simplifying, we get

Le2 ¼ L2

�
D1

D2

�5

(11.4)

Similarly, for the third pipe segment of diameter D3 and length L3, the
equivalent length is

Le3 ¼ L3

�
D1

D3

�5

(11.5)

Therefore, the total equivalent length Le for all three pipe segments in
terms of diameter D1 is

Le ¼ L1 þ L2

�
D1

D2

�5

þ L3

�
D1

D3

�5

(11.6)

It can be seen from Eqn (11.6) that if D1 ¼ D2 ¼ D3, the total equivalent
length becomes (L1 þ L2 þ L3) as expected.

We can now calculate the pressure drop for the series piping system
considering a single pipe of length Le and uniform diameter D1 flowing a
constant volume Q. A problem will illustrate the equivalent length method.

Problem 11.1: Gas Pipeline
A series piping system, shown in Figure 11.2, consists of 12 miles of Nominal
Pipe Size (NPS) 16, 0.375-in wall thickness connected to 24 miles of NPS
14, 0.250-in wall thickness and 8 miles of NPS 12, 0.250-in wall thickness
pipes. Calculate the inlet pressure required at the origin A of this pipeline
system for a gas flow rate of 100 MMSCFD. Gas is delivered to the terminus
B at a de-livery pressure of 500 psig. The gas gravity and viscosity are 0.6 and
0.000008 lb/ft-s. The gas temperature is assumed constant at 60 �F. Use a
compressibility factor of 0.90 and the general flow equation with Darcy

Figure 11.2 Series piping in a gas pipeline.
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friction factor ¼ 0.02. The base temperature and base pressure are 60 �F and
14.7 psia, respectively.

Compare results using the equivalent length method and with the more
detailed method of calculating pressure for each pipe segment separately.

Solution
Inside diameter of first pipe segment ¼ 16 � 2 � 0.375 ¼ 15.25 in
Inside diameter of second pipe segment ¼ 14 � 2 � 0.250 ¼ 13.50 in
Inside diameter of third pipe segment ¼ 12.75 e 21�10.250 ¼ 12.25 in
Using Eqn (11.6), we calculate the equivalent length of the pipeline,

considering NPS 16 as the base diameter.

Le ¼ 12þ 24�
�
15:25
13:5

�5

þ 8�
�
15:25
12:25

�5

or

Le ¼ 12þ 44:15þ 23:92 ¼ 80:07 mi

Therefore, we will calculate the inlet pressure P1 considering a single
pipe from A to B having a length of 80.07 miles and inside diameter of
15.25 in.

Outlet pressure ¼ 500 þ 14.7 ¼ 514.7 psia
Using the general flow, neglecting elevation effects and substituting

given values, we get

100� 106 ¼ 77:54

�
1ffiffiffiffiffiffiffiffiffi
0:02

p
��

520
14:7

�� �
P2
1 � 514:72

�
0:6� 520� 80:07� 0:9

�0:5
15:252:5

Transposing and simplifying, we get

P21 � 514:72 ¼ 724; 642:99

Finally, solving for the inlet pressure P1, we get

P1 ¼ 994:77 psia ¼ 980:07 psig

Next we will compare the preceding result, using the equivalent length
method, with the more detailed calculation of treating each pipe segment
separately and adding the pressure drops.

Consider the 8-mile pipe segment 3 first because we know the outlet
pressure at B is 500 psig. Therefore, we can calculate the pressure at the
beginning of the segment 3 using the general flow equation as follows.

100� 106 ¼ 77:54

�
1ffiffiffiffiffiffiffiffiffi
0:02

p
��

520
14:7

�� �
P2
1 � 514:72

�
0:6� 520� 8� 0:9

�0:5
12:252:5

Solving for the pressure P1, we get

P1 ¼ 693:83 psia ¼ 679:13 psig
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This is the pressure at the beginning of the pipe segment 3, which is also
the end of pipe segment 2.

Next consider pipe segment 2 (24 miles of NPS 14 pipe) and calculate
the upstream pressure P1 required for a downstream pressure of 679.13 psig
calculated in the preceding section. Using the general flow equation for pipe
segment 2, we get

100� 106 ¼ 77:54

�
1ffiffiffiffiffiffiffiffiffi
0:02

p
��

520
14:7

�� �
P2
1 � 693:832

�
0:6� 520� 24� 0:9

�0:5
13:52:5

Solving for the pressure P1, we get

P1 ¼ 938:58 psia ¼ 923:88 psig

This is the pressure at the beginning of the pipe segment 2, which is also
the end of pipe segment 1.

Next we calculate the inlet pressure P1 of pipe segment 1 (12 miles of
NPS 16 pipe) for an outlet pressure of 923.88 psig, we just calculated. Using
the general flow equation for pipe segment 1, we get

100� 106 ¼ 77:54

�
1ffiffiffiffiffiffiffiffiffi
0:02

p
��

520
14:7

�� �
P2
1 � 938:582

�
0:6� 520� 12� 0:9

�0:5
15:252:5

Solving for the pressure P1, we get

P1 ¼ 994:75 psia ¼ 980:05 psig

This compares well with the pressure of 980.07 psig we calculated
earlier using the equivalent length method.

Problem 11.2
A natural gas pipeline consists of three different pipe segments connected
in series, pumping the same uniform flow rate of 3.0 Mm3/day at 20 �C.
The first segment, DN 500 with a 12-mm wall thickness is 20-km long.
The second segment is DN 400, with a 10-mm wall thickness and
25-km long. The last segment is DN 300, with a 6-mm wall thickness
and 10 km long. The inlet pressure is 8500 kPa. Assuming flat terrain,
calculate the delivery pressure, using the general flow equation and Cole-
brook friction factor of 0.02. Gas gravity ¼ 0.65. Viscosity ¼ 0.000119
poise. Compressibility factor Z ¼ 0.9. Base temperature ¼ 15 �C and
base pressure ¼ 101 kPa. Compare results using the equivalent length
method as well as the method using individual pipe segment pressure
drops.

410 E. Shashi Menon



Solution
Inside diameter of first pipe segment ¼ 500 � 2 � 12 ¼ 476 mm.
Inside diameter of second pipe segment ¼ 400 � 2 � 10 ¼ 380 mm.
Inside diameter of last pipe segment ¼ 300 � 2 � 6 ¼ 288 mm.
Equivalent length method:
Using Eqn (11.6), we calculate the total equivalent length of the pipe-

line system based on the first segment diameter DN 500 as follows.

Le ¼ 20þ 25�
�
500� 2� 12
400� 2� 10

�5

þ 10�
�
500� 2� 12
300� 2� 6

�5

or

Le ¼ 20þ 77:10þ 123:33 ¼ 220:43 km

Thus the given pipeline system can be considered equivalent to a single
pipe DN 500, 12-mm wall thickness, 220.43-km long.

The outlet pressure P2 is calculated using the general flow equation as
follows

3� 106 ¼ 1:1494� 10�3
�
15þ 273

101

�

�
� �

85002 � P2
2

�
0:65� 293� 0:9� 0:02� 220:43

�0:5
ð476Þ2:5

Solving for P2 we get

85002 � P22 ¼ 25; 908; 801

or

P2 ¼ 6807 kPa ðabsoluteÞ
We have assumed that given inlet pressure is in absolute value.
Therefore, the delivery pressure is 6807 kPa (absolute).
Next we calculate the delivery pressure considering the three pipe seg-

ments treated separately. For the first pipe segment, 20-km long, we calcu-
late the outlet pressure P2 at the end of the first segment as follows. Using
the general flow equation, we get

3� 106 ¼ 1:1494� 10�3
�
15þ 273

101

�

�
� �

85002 � P2
2

�
0:65� 293� 0:9� 0:02� 20

�0:5
ð476Þ2:5

Solving for P2, we get

P2 ¼ 8361 kPa ðabsoluteÞ
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Thus, the pressure at the end of the first pipe segment or the beginning
of the second segment is 8361 kPa (absolute).

Next we repeat the calculation for the second pipe segment DN 400,
25-km long using

P1 ¼ 8361 kPa (absolute), to calculate P2

3� 106 ¼ 1:1494� 10�3
�
15þ 273

101

�

�
� �

83612 � P2
2

�
0:65� 293� 0:9� 0:02� 25

�0:5
ð380Þ2:5

Solving for P2 we get

P2 ¼ 7800 kPa ðabsoluteÞ
This is the pressure at the end of the second pipe segment, which is also

the inlet pressure for the third pipe segment.
Finally, we calculate the outlet pressure of the last pipe segment (DN

300, 10 km) using P1 ¼ 7800 kPa (absolute) as follows

3� 106 ¼ 1:1494� 10�3
�
15þ 273

101

�

�
� �

78002 � P2
2

�
0:65� 293� 0:9� 0:02� 10

�0:5
ð288Þ2:5

Solving for P2 we get.

P2 ¼ 6808 kPa ðabsoluteÞ
Therefore the delivery pressure is 6808 kPa (absolute).
This compares favorably with the values of 6807 kPa we calculated

earlier using the equivalent length approach.

1.2 Equivalent Length of Pipes: Liquid Pipelines
A pipe is equivalent to another pipe or a pipeline system, when the same
pressure loss from friction occurs in the equivalent pipe compared with
that of the other pipe or pipeline system. Because the pressure drop
can be caused by an infinite combination of pipe diameters and pipe
lengths, we must specify a particular diameter to calculate the equivalent
length.

Suppose a pipe A of length LA and internal diameter DA is connected in
series with a pipe B of length LB and internal diameter DB, If we were to
replace this two-pipe system with a single pipe of length LE and diameter
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DE, we have what is known as the equivalent length of pipe. This equivalent
length of pipe may be based on one of the two diameters (DA or DB) or a
totally different diameter DE.

The equivalent length LE in terms of pipe diameter DE can be written as

LE=ðDEÞ5 ¼ LA=ðDAÞ5 þ LB=ðDBÞ5 (11.7)

This formula for equivalent length is based on the premise that the total
friction loss in the two-pipe system exactly equals that of the single equiv-
alent pipe.

Because a pressure drop per unit length is inversely proportional to the
fifth power of the diameter. If we refer to the diameter DA as the basis,
this equation becomes, after setting DE ¼ DA.

LE ¼ LA þ LBðDA=DBÞ5 (11.8)

Thus, we have an equivalent length LE that will be based on diameter
DA. This length LE of pipe diameter DA will produce the same amount of
frictional pressure drop as the two lengths LA and LB in a series. We have
thus simplified the problem by reducing it to one single pipe length of uni-
form diameter DA.

The equivalent length method discussed previously is only approximate.
Furthermore, if elevation changes are involved, it becomes more compli-
cated, unless there are no controlling elevations along the pipeline system.

An example will illustrate this concept of equivalent pipe length.
Consider a pipeline 16-in � 0.281-in wall thickness pipeline, 20 miles

long installed in series with a 14-in � 0.250-in wall thickness pipeline
10 miles long. The equivalent length of this pipeline is

20þ 10� ð16� 0:562Þ5=ð14� 0:50Þ5 ¼ 39:56 miles of 16 inch pipe:

The actual physical length of 30 miles of 16-in and 14-in pipes is
replaced with a single 16-in pipe 39.56 miles long, for pressure drop calcu-
lations. Note that we have left out the pipe fitting that would connect the
16-in pipe with the 14-in pipe. This would be a 16 � 14 reducer which
would have its own equivalent length. To be precise, we should determine
the equivalent length of the reducer from the table in Appendix A.10 and
add it to the above length to obtain the total equivalent length, including
the fitting.

After the equivalent length pipe is determined, we can calculate the pres-
sure drop based on this pipe size.
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Problem 11.3: Liquid Pipeline
A refined products pipeline consists of three pipe segments connected in se-
ries, pumping the same uniform flow rate of 60,000 barrels/day of diesel.
The first segment, NPS 20, 0.500-in wall thickness is 20 miles long. The
second segment is NPS 16, 0.250-in wall thickness and 15 miles long.
The last segment is NPS 14, 0.250-in wall thickness and 10 miles long.
The inlet pressure is 1400 psig. Assuming flat terrain, calculate the delivery
pressure using the ColebrookeWhite equation for pressure drop and
0.002-in absolute pipe roughness throughout. Diesel gravity ¼ 0.85. Visco-
sity ¼ 5.0 cSt. Compare results using the equivalent length method as well
as the method using individual pipe segment pressure drops.

Solution
Calculate the Reynolds number as follows:

R ¼
�
92:24� 60000
5� ð20� 1:0Þ

�
¼ 58; 257 For a 20¼ in section

and

R ¼
�
92:24� 60000

5� 15:5Þ
�

¼ 71; 412 For a 16¼ in section

Finally; R ¼ 81;991 for a 14¼ in section

Next, calculate the friction factor f for each pipe size.
For a 20-in pipe section, using the ColebrookeWhite equation, we get

f as follows:

1ffiffiffi
f

p ¼ �2Log10

�
0:002

3:7� 19
þ 2:51� 1
58257f 0:5

�

Solving for f, we get f ¼ 0.02 (corresponding F ¼ 14.14)
Similarly, for a 16-in pipe section

1ffiffiffi
f

p ¼ �2Log10

�
0:002

3:7� 15:5
þ 2:51� 1
71412f 0:5

�

and f ¼ 0.0198 (F ¼ 14.21)
Finally, for a 14-in pipe section, f ¼ 0.0194 (F ¼ 14.36)
Next we calculate the Pressure drop per mile Pm for 20 inch, 16 inch

and 14 inch diameter pipe sizes as follows:
For 20-in pipe

Pm ¼ 0:2421

�
60000
14:14

�2:0

� 0:85

ð19Þ5 ¼ 1:5 psi=mi

For a 16-in pipe

Pm ¼ 0:2421

�
60000
14:21

�2:0

� 0:85

ð15:5Þ5 ¼ 4:10 psi=mi
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For a 14-in pipe

Pm ¼ 0:2421

�
60000
14:36

�2:0

� 0:85

ð13:5Þ5 ¼ 8:36 psi=mi

The total pressure drop in the entire pipeline is

ð1:5� 20Þ þ ð4:1� 15Þ þ ð8:36� 10Þ ¼ 175:1 psi

Therefore delivery pressure at the end of the pipe is 1400 � 175.1 ¼
1224.9 psi.

Next we will calculate the results using the equivalent length method:
Converting each of the segment in terms of the base diameter of 20 in,

we get the equivalent length of the middle segment (16 in) as ((20 � 1)/
(15.5))5 �15 ¼ 41.5 milesand similarly:

The equivalent length of the third segment (14 in) as ((20 � 1)/
(13.5))5 � 10 ¼ 55.22 miles.

Therefore, the total equivalent length of the entire pipeline is

20:0þ 41:5þ 55:22 ¼ 116:72 mi

The total pressure drop is then 116.72 � 1.5 ¼ 175.08 psi, which is the
same as before.

2. PARALLEL PIPING

Sometimes two or more pipes are connected such that the fluid flow
splits among the branch pipes and eventually combine downstream into a
single pipe as illustrated in Figure 11.3. Such a piping system is referred to
as parallel pipes. It is also called a looped piping system, where each parallel
pipe is known as a loop. The reason for installing parallel pipes or loops is to
reduce pressure drop in a certain section of the pipeline because of pipe pres-
sure limitation or for increasing the flow rate in a bottleneck section. By

Figure 11.3 Parallel pipes.
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installing a pipe loop from B to E in Figure 11.3, we are effectively reducing
the overall pressure drop in the pipeline from A to F, because between B and
E, the flow is split through two pipes.

In Figure 11.3, fluid flows through pipe AB and at point B, part of the
flow branches off into pipe BCE, whereas the remainder flows through
the pipe BDE. At point E, the flows recombine to the original value and
the liquid flows through the pipe EF.We will assume that the entire pipeline
system is in the horizontal plane with no changes in pipe elevations.

To solve for the pressures and flow rates in a parallel piping system, such
as the one depicted in Figure 11.3, we use the following two principles of
pipes in parallel.
1. Conservation of total flow.
2. Common pressure loss across each parallel pipe.

According to the principle (1), the total flow entering each junction of
pipe must equal the total flow leaving the junction.

Therefore,

Total Inflow ¼ Total Outflow

Thus, in Figure 11.3, all flows entering and leaving the junction B must
satisfy the above principle. If the flow into the junction B is Q, the flow in
branch BCE is QBC and flow in the branch BDE is QBD, we have from
above conservation of total flow

Q ¼ QBC þQBD (11.9)

The second principle of parallel pipes, defined as (2), requires that the
pressure drop across the branch BCE must equal the pressure drop across
the branch BDE. This is simply because point B represents the common
upstream pressure for each of these branches, whereas the pressure at point
E represents the common downstream pressure. Referring to these pressures
as PB and PE, we can state

Pressure drop in branch BCE ¼ PB � PE (11.10)

Pressure drop in branch BDE ¼ PB � PE (11.11)

Assuming that the flow QBC and QBD are in the direction of BCE and
BDE, respectively. If we had a third pipe branch between B and E, such as
that shown by the dashed line BE in Figure 11.3, we can state that the com-
mon pressure drop PB � PE would be applicable to the third parallel pipe
between B and E also.
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We can rewrite Eqns (11.9) and (11.10) as follows for the three parallel
pipe system.

Q ¼ QBC þQBD þQBE (11.12)

and

DPBCE ¼ DPBDE ¼ DPBE (11.13)

where DP is the pressure drop in respective parallel pipes.
Similar to the equivalent length concept in series piping, we can calculate

an equivalent pipe diameter for pipes connected in parallel.

2.1 Equivalent Diameter of Pipes: Liquid Pipelines
Because each of the parallel pipes in Figure 11.3 has a common pressure
drop, we can replace all the parallel pipes between B and E with one single
pipe of length LE and diameter DE so that the pressure drop through the sin-
gle pipe at flow Q equals that of the individual pipes as follows:

Pressure drop in equivalent single pipe length LE and diameter DE at
flow rate Q ¼ DPBCE

Assuming now that we have only the two parallel pipes BCE and BDE in
Figure 11.3, ignoring the dashed line BE, we can state that

Q ¼ QBC þQBD (11.14)

and

DPEQ ¼ DPBCE ¼ DPBDE (11.15)

The pressure drop DPEQ for the equivalent pipe can be written as
follows, using Eqn (11.15)

DPEQ ¼ K
�
LE

�ðQÞ2	D5
E (11.16)

where K is a constant, that depends on the liquid properties.
Eqn (11.16) will then become

K LE Q2=D5
E ¼ K LBC Q2

BC=D
5
BC ¼ K LBD Q2

BD=D
5
BD (11.17)

Simplifying, we get

LE Q2=D5
E ¼ LBC Q2

BC=D
5
BC ¼ LBD Q2

BD=D
5
BD (11.18)

Further simplifying the problem by assuming each loop to be the same
length as the equivalent length

LBC ¼ LBD ¼ LE (11.19)
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We get

Q2=D5
E ¼ Q2

BC=D
5
BC ¼ Q2

BD=D
5
BD (11.20)

Substituting for QBD in terms for QBC from Eqn (11.20), we get

Q2=D5
E ¼ Q2

BC=D
5
BC (11.21)

and

Q2
BC=D

5
BC ¼ ðQ�QBCÞ2=D5

BD (11.22)

From Eqns (11.21) and (11.22), we can solve for the two flows QBC,
QBD, and the equivalent diameter DE in terms of the known quantities
Q, DBC, and DBC.

The following problem will illustrate the equivalent diameter approach
in parallel piping systems.

Problem 11.4: Parallel Pipes in a Liquid Pipeline
A parallel pipe system, transporting water, similar to the one shown in
Figure 11.3 is located in a horizontal plane with the following data.

Flow rate Q ¼ 2000 gal=min

Pipe segment AB ¼ 15:5 in inside diameter; 4000 ft

Pipe segment BCE ¼ 12 in inside diameter; 8000 ft

Pipe segment BDE ¼ 10 in inside diameter; 6500 ft

Pipe segment EF ¼ 15:5 in inside diameter; 3000 ft

1. Calculate the flow rate through each parallel pipe and the equivalent
diameter of a single pipe 5000-ft-long between B and E to that will
replace the two parallel pipes.

2. Determine the pressure required at the origin A to provide a delivery
pressure of 50 psig at the terminus F. Use the HazeneWilliams equation
with a C factor ¼ 120.

Solution

ðaÞ Q1 þQ2 ¼ 2000

Q2
1 L1

	
D5

1 ¼ Q2
2 L2

	
D5

2
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where suffix 1 and 2 refer to the two branches BCE and BDE, respectively.

ðQ2=Q1Þ2 ¼ ðD2=D1Þ5ðL1=L2Þ
¼ ð10=12Þ5 � ð8000=6500Þ

Q2=Q1 ¼ 0:7033

Solving, we get

Q1 ¼ 1174 gal=min

Q2 ¼ 826 gal=min

The equivalent pipe diameter for a single pipe 5000 ft long is calculated
as follows

ð2000Þ2ð5000Þ=D5
E ¼ ð1174Þ2 � 8000=ð12Þ5

or DE ¼ 13:52 in

Therefore, a 13.52-in-diameter pipe, 5000 ft long between B and E will
replace the two parallel pipes.

(b) To determine the pressure required at the origin A, we will first
calculate the pressure required at E for the pipe segment EF to provide a de-
livery pressure of 50 psig at the terminus F.

2.2 Parallel Pipes in Gas Pipelines
Similar to the parallel pipes in liquid pipelines discussed in the previous sec-
tion, we can perform an analysis of the parallel pipes or loops in a gas pipeline
system. In calculating the pressure drop through each parallel pipe in a gas
pipeline we use a slightly different approach.

According to the second principle of parallel pipes, the pressure drop in
pipe branch BCE must equal the pressure drop in pipe branch BDE. This is
because both pipe branches have a common starting point (B) and common
ending point (E). Therefore, the pressure drop in the branch pipe BCE and
branch pipe BDE are each equal to (PB � PE) where PB and PE are the pres-
sures at junctions B and E, respectively.

Therefore, we can write

DPBCE ¼ DPBDE ¼ PB � PE (11.23)

DP represents pressure drop and DPBCE is a function of the diameter and
length of branch BCE and the flow rate Q1. Similarly, DPBDE is a function
of the diameter and length of branch BCE and the flow rate Q2.
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To calculate the pressure drop in parallel pipes, we must first determine
the flow split at junction B. We know that the sum of the two flow rates Q1

and Q2 must equal the given inlet flow rate Q. If both pipe loops BCE and
BDE are equal in lengths and pipe inside diameters, we can infer that the
flow rate will be split equally between the two branches.

Thus, for identical pipe loops:

Q1 ¼ Q2 ¼
Q
2

(11.24)

In this case, the pressure drop from B to E can be calculated assuming a
flow rate of Q2 flowing through one of the pipe loops.

To illustrate this further, suppose we are interested in determining the
pressure at A for the given flow rate Q and a specified delivery pressure
(PF) at the pipe terminus F. We start with the last pipe segment EF and
calculate the pressure required at E for a flow rate of Q to deliver gas at F
at a pressure PF. We could use the general flow equation for this and substi-
tute PE for upstream pressure. P1 and PF for downstream pressure P2. Having
calculated PE, we can now consider one of the pipe loops such as BCE and
calculate the upstream pressure PB required for a flow rate of Q2 through BCE
for a downstream pressure of PE. In the general flow equation, the upstream
pressure P1 ¼ PB and the downstream pressure P2 ¼ PE.

This is correct only for identical pipe loops. Otherwise, the flow rate Q1

and Q2 through the pipe branches BCE and BDE will be unequal. From the
calculated value of PE, we can now determine the pressure required at A by
applying the general flow equation to pipe segment AB that has a gas flow
rate of Q. The upstream pressure P1 will be calculated for a downstream
pressure P2 ¼ PE.

Consider now a situation in which the pipe loops are not identical. This
means that the pipes BCE and BDE may have different lengths and different
diameters. In this case, we must determine the flow split between these two
branches by equating the pressure drops through each of the branches.
Because Q1 and Q2 are two unknowns, we will use the flow conservation
principle and the common pressure drop principle to determine the values of
Q1 and Q2. From the general flow equation, we can state the following.

The pressure drop from friction in branch BCE can be calculated from

�
P2B � P2E

� ¼ K1L1Q2
1

D5
1

(11.25)

where
K1 ¼ a parameter that depends on gas properties, gas temperature, etc.
L1 ¼ length of pipe branch BCE
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D1 ¼ inside diameter of pipe branch BCE
Q1 ¼ flow rate through pipe branch BCE
Other symbols are as defined previously.
K1 is a parameter that depends on the gas properties, gas temperature,

base pressure, and base temperature that will be the same for both pipe
branches BCE and BDE in a parallel pipeline system. Hence we regard
this as a constant from branch to branch.

Similarly, the pressure drop because of friction in branch BDE is calcu-
lated from

�
P2B � P2E

� ¼ K2L2Q2
2

D5
2

(11.26)

where
K2 ¼ a constant like K1

L2 ¼ length of pipe branch BDE
D2 ¼ inside diameter of pipe branch BDE
Q2 ¼ flow rate through pipe branch BDE
Other symbols are as defined earlier.
In Eqns (11.25) and (11.26), the constants K1 and K2 are equal because of

they do not depend on the diameter or length of the branch pipes BCE and
BDE. Combining both equations, we can state the following for common
pressure drop through each branch.

L1Q2
1

D5
1

¼ L2Q2
2

D5
2

(11.27)

Simplifying further, we get the following relationship between the two
flow rates Q1 and Q2.

Q1

Q2
¼

�
L2
L1

�0:5�D1

D2

�2:5

(11.28)

Combining Eqn (11.27) with Eqn (11.28), we can solve for the flow
rates Q1 and Q2.

To illustrate this, consider the inlet flow Q ¼ 100 MMSCFD and the
pipe branches as follows

L1 ¼ 10 mi D1 ¼ 15:5 in: for branch BCE

L2 ¼ 15 mi D2 ¼ 13:5 in: for branch BDE

From Eqn (11.24) for flow conservation, we get

Q1 þQ2 ¼ 100
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From Eqn (11.28), we get the ratio of flow rates as

Q1

Q2
¼

�
15
10

�0:5�15:5
13:5

�2:5

¼ 1:73

Solving these two equations in Q1 and Q2, we get

Q1 ¼ 63:37 MMSCFD

Q2 ¼ 36:63 MMSCFD

Once we know the values of Q1 and Q2, we can easily calculate the
common pressure drop in the branch pipes BCE and BDE. A problem
will be used to illustrate this method.

Another method of calculating pressure drops in parallel pipes is using
the equivalent diameter. In this method, we replace the pipe loops BCE
and BDE with a certain length of an equivalent diameter pipe that has
the same pressure drop as one of the branch pipes. The equivalent diameter
pipe can be calculated using the general flow equation as explained next.
The equivalent pipe with the same DP that will replace both branches
will have a diameter De and a length equal to one of the branch pipes,
say L1.

Because of the pressure drop in the equivalent diameter pipe, which
flows the full volume Q, is the same as that in any of the branch pipes,
we can state the following:

�
P2B � P2E

� ¼ keLeQ2

D5
e

(11.29)

where Q ¼ Q1 þ Q2 from Eqn (11.24) and Ke represents the constant for
the equivalent diameter pipe of length Le flowing the full volume Q.
Equating the value of ðP2B � P2EÞ to the corresponding values considering
each branch separately, we get

K1L1Q2
1

D5
1

¼ K2L2Q2
2

D5
2

¼ KeLeQ2

D5
e

(11.30)

Also setting K1 ¼ K2 ¼ Ke and Le ¼ L1, we simplify Eqn (11.30) as
follows.

L1Q2
1

D5
1

¼ L2Q2
2

D5
2

¼ L1Q2

D5
e

(11.31)
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Using Eqn (11.30) in conjunction with Eqn (11.31), we solve for the
equivalent diameter De as

De ¼ D1

"�
1þ Const1
Const1

�2
#1=5

(11.32)

where

Const1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D1

D2

�5�L2
L1

�s
(11.33)

And the individual flow rates Q1 and Q2 are calculated from

Q1 ¼
Q Const1
1þ Const1

(11.34)

and

Q2 ¼
Q

1þ Const1
(11.35)

To illustrate the equivalent diameter method, consider the inlet flow
Q ¼ 100 MMSCFD and the pipe loops as follows

L1 ¼ 10 mi D1 ¼ 15:5 in: for branch BCE

L2 ¼ 15 mi D2 ¼ 13:5 in: for branch BDE

From Eqn (11.35)

Const1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
15:5
13:5

�5�15
10

�s
¼ 1:73

Using Eqn (11.32), the equivalent diameter is

De ¼ 15:5

"�
1þ 1:73
1:73

�2
#1=5

¼ 18:60 in

Thus the NPS 16 and NPS 14 pipes in parallel can be replaced with an
equivalent pipe having an inside diameter of 18.6 in.

Next we calculate the flow rates in the two parallel pipes as follows

Q1 ¼
100� 1:73
1þ 1:73

¼ 63:37 MMSCFD
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and

Q2 ¼ 36:63 MMSCFD

Having calculated an equivalent diameter De, we can now calculate the
common pressure drop in the parallel branches by considering the entire
flow Q flowing through the equivalent diameter pipe.

Problem 11.5: Gas Pipeline
A gas pipeline consists of two parallel pipes, as shown in Figure 11.3. It is
operated at a flow rate of 100 MMSCFD. The first pipe segment AB is
12 miles long and consists of NPS 16, 0.250-in wall thickness pipe. The
loop BCE is 24 miles long and consists of NPS 14, 0.250-in wall thickness
pipe. The loop BDE is 16 miles long and consists of NPS 12, 0.250-in wall
thickness pipe. The last segment EF is 20 miles long, NPS 16, 0.250-in wall
thickness pipe. Assuming a gas gravity of 0.6, calculate the outlet pressure at
F and the pressures at the beginning and the end of the pipe loops and the
flow rates through them. The inlet pressure at A ¼ 1200 psig. Gas flowing
temperature ¼ 80 �F, base temperature ¼ 60 �F, and base pressur-
e ¼ 14.73 psia. Compressibility factor Z ¼ 0.92. Use the general flow equa-
tion with Colebrook friction factor f ¼ 0.015.

Solution
From Eqn (11.28), the ratio of the flow rates through the two pipe loops is
given by

Q1

Q2
¼

�
16
24

�0:5� 14� 2� 0:25
12:75� 2� 0:25

�2:5

¼ 1:041

And from Eqn (11.24)

Q1 þQ2 ¼ 100

Solving for Q1 and Q2, we get
Q1 ¼ 51.0 MMSCFD and Q2 ¼ 49.0 MMSCFD.
Next considering the first pipe segment AB, we will calculate the pres-

sure at B based on the inlet pressure of 1200 psig at A, using the general flow
equation as follows.

100� 106 ¼ 77:54

�
1ffiffiffiffiffiffiffiffiffiffiffi
0:015

p
��

520
14:73

�� �
1214:732 � P2

2

�
0:6� 540� 12� 0:92

�0:5
15:52:5

Solving for the pressure at B, we get

P2 ¼ 1181:33 psia ¼ 1166:6 psig
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This is the pressure at the beginning of the looped section at B. Next we
calculate the outlet pressure at E of pipe branch BCE considering a flow rate
of 51 MMSCFD through the NPS 14 pipe, starting at a pressure of
1181.33 psia at B.

Using the general flow equation, we get

51� 106 ¼ 77:54

�
1ffiffiffiffiffiffiffiffiffiffiffi
0:015

p
��

520
14:73

�� �
1181:332 � P2

2

�
0:6� 540� 24� 0:92

�0:5
13:52:5

Solving for the pressure at E, we get

P2 ¼ 1145:63 psia ¼ 1130:9 psig

We will now calculate the pressures using the equivalent diameter
method.

From Eqn (11.35)

Const1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
13:5
12:25

�5�16
24

�s
¼ 1:041

From Eqn (11.32), the equivalent diameter is

De ¼ 13:5

"�
1þ 1:041
1:041

�2
#1=5

¼ 17:67 in:

Thus we can replace the two branch pipes between B and E with a sin-
gle piece of pipe 24 miles long having an inside diameter of 17.67 in flowing
100 MMSCFD.

The pressure at B was calculated earlier as

PB ¼ 1181:33 psia

Using this pressure, we can calculate the downstream pressure at E for
the equivalent pipe diameter as follows

100� 106 ¼ 77:54

�
1ffiffiffiffiffiffiffiffiffiffiffi
0:015

p
��

520
14:73

�� �
1181:332 � P2

2

�
0:6� 540� 24� 0:92

�0:5
17:672:5

Solving for the outlet pressure at E, we get

P2 ¼ 1145:60 psia

which is almost the same as what we calculate before.
The pressure at F will therefore be the same as what we calculated before.
Therefore, using the equivalent diameter method the parallel pipes BCE

and BDE can be replaced with a single pipe 24 miles long having an inside
diameter of 17.67 in.
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Problem 11.6: Gas Pipeline (SI Units)
A natural gas pipeline DN 500 with a 12-mm wall thickness is 60 km long.
The gas flow rate is 5.0 Mm3/day at 20 �C. Calculate the inlet pressure
required for a delivery pressure of 4 MPa (absolute), using the general
flow equation with the modified ColebrookeWhite friction factor. Pipe
roughness ¼ 0.015 mm. To increase the flow rate through the pipeline,
the entire line is looped with a DN 500 pipeline, 12-mm-wall thickness.
Assuming the same delivery pressure, calculate the inlet pressure at the
new flow rate of 8 Mm3/day. Gas gravity ¼ 0.65. Viscosity ¼
0.000119 poise. Compressibility factor Z ¼ 0.88. Base temperature ¼
15 �C and base pressure ¼ 101 kPa. If the inlet and outlet pressures are
held the same as before, what length of the pipe should be looped to achieve
the increased flow?

Solution
Pipe inside diameter D ¼ 500 � 2 � 12 ¼ 476 mm.

Flow rate Q ¼ 5.0 � 106 m3/day.
Base temperature Tb ¼ 15 þ 273 ¼ 288 K.
Gas flow temperature Tf ¼ 20 þ 273 ¼ 293 K.
Delivery pressure P2 ¼ 4 MPa.
Calculate the Reynolds number as follows:

R ¼ 0:5134

�
101
288

��
0:65� 5� 106

0:000119� 476

�
¼ 10; 330; 330

From themodifiedColebrookeWhite equation, the transmission factor is

F ¼ �4Log10

�
0:015

3:7� 476
þ 1:4125F
10; 330; 330

�

Solving by successive iteration, we get

F ¼ 19:80

Using the general flow equation, the inlet pressure is calculated next.

5� 106 ¼ 5:747� 10�4

� 19:80

�
273þ 15

101

��
P21 � 40002

0:65� 293� 60� 0:88

�0:5
� ð476Þ2:5

Solving for the inlet pressure, we get

P1 ¼ 5077 kPa ðabsoluteÞ ¼ 5:08 MPa ðabsoluteÞ
Therefore, the inlet pressure required at 5 Mm3/day flow rate is

5.08 MPa.
Next, at 8 Mm3/day flow rate, we calculate the new inlet pressure with

the entire 60-km length looped with an identical DN 500 pipe. Because the
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loop is the same size as the main line, each parallel branch will carry half the
total flow rate or 4 Mm3/day.

We calculate the Reynolds number for flow through one of the loops.

R ¼ 0:5134

�
101
288

��
0:65� 4� 106

0:000119� 476

�
¼ 8; 264; 264

From themodifiedColebrookeWhite equation, the transmission factor is

F ¼ �4Log10

�
0:015

3:7� 476
þ 1:4125F
8; 264; 264

�

Solving by successive iteration, we get

F ¼ 19:70

Keeping the delivery pressure the same as before (4 MPa), using the
general flow equation, we calculate the inlet pressure required as follows.

4� 106 ¼ 5:747� 10�4

� 19:70

�
273þ 15

101

��
P21 � 40002

0:65� 293� 60� 0:88

�0:5
� ð476Þ2:5

Solving for the inlet pressure, we get

P1 ¼ 4724 kPa ðabsoluteÞ ¼ 4:72 MPa ðabsoluteÞ
Therefore, for the fully looped pipeline at 8 Mm3/day flow rate the

inlet pressure required is

4:72 MPa:

Next, keeping the inlet and outlet pressures the same at 5077 and
4000 kPa, respectively, at the new flow rate of 8 Mm3/day we assume L
km of the pipe from the inlet is looped. We will calculate the value of L
by first calculating the pressure at the point where the loop ends. Because
each parallel pipe carries 4 Mm3/day, we use the Reynolds number and
transmission factor calculated earlier.

R ¼ 8; 264; 264 and F ¼ 19:70

Using the general flow equation, we calculate the outlet pressure at the
end of the loop of length L km as follows.

4� 106 ¼ 5:747� 10�4

� 19:70

�
273þ 15

101

��
50772 � P2

2

0:65� 293� L � 0:88

�0:5
� ð476Þ2:5

Solving for pressure in terms of the loop length L, we get

P22 ¼ 50772 � 105; 291:13L (11.36)
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Next we apply the general flow equation for the pipe segment of length
(60 e L) km, that carries the full 8 Mm3/day flow rate. The inlet pressure is
P2 and the outlet pressure is 4000 kPa.

The Reynolds number at 8 Mm3/day is

R ¼ 0:5134

�
101
288

��
0:65� 8� 106

0:000119� 476

�
¼ 16; 528; 528

From themodifiedColebrookeWhite equation, the transmission factor is

F ¼ �4Log10

�
0:015

3:7� 476
þ 1:4125F
16; 528; 528

�

Solving by successive iteration, we get

F ¼ 19:96

Using the general flow equation, we calculate the inlet pressure for the
pipe segment of length (60-L) km as follows.

8� 106 ¼ 5:747� 10�4

� 19:96

�
273þ 15

101

��
P2
2 � 40002

0:65� 293� ð60� LÞ � 0:88

�0:5
� ð476Þ2:5

Simplifying, we get

P22 ¼ 40002 þ 410; 263:77ð60� LÞ (11.37)

From Eqns (11.36) and (11.37), eliminating P2, we solve for L as
follows.

50772 � 105; 291:13L ¼ 40002 þ 410; 263:77
�
60� L

�
Therefore

L ¼ 48:66 km

Thus 48.66 km of the 60-km pipeline length will have to be looped
starting at the pipe inlet so that at 8 Mm3/day both inlet and outlet pressures
will be the same as before at 5 Mm3/day.

What will be the effect if the loop was installed starting at the down-
stream end of the pipeline and proceeding towards the upstream end?
Will the results be the same? In the next section, we will explore the best
location to install the pipe loop.
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3. LOCATING PIPE LOOP: GAS PIPELINES

In the preceding example, we looked at looping an entire pipeline to
reduce pressure drop and increase the flow rate. We also explored looping a
portion of the pipe, beginning at the upstream end. How do we determine
where the loop should be placed for optimum results? Should it be located
upstream, downstream, or in a mid-section of the pipe? We will analyze this
as follows.

Three looping scenarios are presented in Figure 11.4.
In case (1), a pipeline of length L is shown looped with X miles of pipe,

beginning at the upstream end A. In case (2), the same length X of pipe is
looped, but it is located on the downstream end B. Case (3) shows the
mid-section of the pipeline being looped. For most practical purposes, we
can say that the cost of all three loops will be the same as long as the loop
length is the same.

To determine which of these cases are optimum, we must analyze how
the pressure drop in the pipeline varies with distance from the pipe inlet to
outlet. It is found that, if the gas temperature is constant throughout, at
locations near the upstream end the pressure drops at a slower rate than at
the downstream end. Therefore, there is more pressure drop in the down-
stream section compared to that in the upstream section. Hence, to reduce
the overall pressure drop, the loop must be installed towards the downstream
end of the pipe. This argument is valid only if the gas temperature is constant

Figure 11.4 Different looping scenarios.
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throughout the pipeline. In reality, because of heat transfer between the
flowing gas and the surrounding soil (buried pipe) or the outside air
(above-ground pipe), the gas temperature will change along the length of
the pipeline. If the gas temperature at the pipe inlet is higher than that
of the surrounding soil (buried pipe), the gas will lose heat to the soil and
the temperature will drop from the pipe inlet to the pipe outlet. If the gas
is compressed at the inlet using a compressor, then the gas temperature
will be a lot higher than that of the soil immediately downstream of the
compressor. The hotter gas will cause higher pressure drops (examine the
general flow equation and see how the pressure varies with the gas flow tem-
perature). Hence, in this case, the upstream segment will have a larger pres-
sure drop compared with the downstream segment. Therefore, considering
heat transfer effects, the pipe loop should be installed in the upstream portion
for maximum benefit. The installation of the pipe loop in the mid-section of
the pipeline as in case (3) in Figure 11.4 will not be the optimum location
based on the preceding discussion. It can therefore be concluded that if
the gas temperature is fairly constant along the pipeline, the loop should
be installed toward the downstream end as in case (2). If heat transfer is taken
into account and the gas temperature varies along the pipeline, with the
hotter gas being upstream, the better location for the pipe loop will be on
the upstream end as in case (1).

Looping pipes will be explored more in Chapter 14, where we discuss
several case studies and pipeline economics.
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