
Chapter 8 

Pipeline transportation of natural gas* 

8.1. Physical and physico-chemical properties of natural gas 

In  the following we shall be concerned only with those physical and physi- 
cochemical properties that affect the transmission of gas in pipelines; even 
those properties will be discussed only in so far as they enter into the 
relevant hydraulic theories. 

8.1.1. Equation of state, compressibility, density, gravity 

It is the gas laws or, in a broader scope, the equations of state concern- 
ing natural gas that describe the interrelationships of pressure, specific 
volume and temperature, all of which may be subsumed under the notion 
‘ P V T  behaviour’ of the gas. Natural gas is not ideal, and the deviation of 
its behaviour from the ideal gas laws is seldom negligible and occasionally 
quite considerable. For the purposes of practical calculations, those equa- 
tions describing the p V T  behaviour of real gases are to be preferred that 
account for deviation from ideal-gas behaviour by a single correction 
factor, based on a consideration valid for any gas. Such a consideration 
is the theorem of corresponding states, expressed in terms of state param- 
eters reduced to the critical state: this theorem states the existence of 
a function of the reduced state parameters, f(p,, V,, T,) = 0 ,  that is valid 
for any gas. The pVT behaviour of natural gas can be described in terms 
of an equation of state corrected by the compressibility factor z :  

R 
M 

PV = 2-T 8.1-1 

where V is thespeci fic volume valid at  pressure p and temperature T ;  
R is the universal gas constant, whose rounded-off value is 8314 J/(kmole. K). 
Any given gas is characterized by its specific gas constant, or simply gas 
constant, 

R 
M 

R’=--. 8.1-2 

By the theorem oi‘ corresponding states, the compressibility factors z of 
two gases are equal if the reduced state paramet,ers of the two gases are 

* This Chapter has been written in co-operation with Ferenc Patch. 
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equal, that  is, if the gases are in the same corresponding state. Reduced 
pressure is 

and reduced temperature is 
pi- =  PIP^ 
T ,  = TIT,. 

I n  the case of gas mixtures, reduced parameters of state are to be re- 
placed by the pseudo-reduced parameters ppr and Tpr  defined jn terms 
of the pseudocritical pressure and temperature p p c  and T,,, both depend- 
ing on gas composition, as follows: 

and 
8.1-3 

8.1-4 

If gas composition is known, p,, and T,, can be determined by applying 
the principle of additivity or -usually a t  a lower accuracy -using empirical 
diagrams. Additivity means that, molar mass, pseudocritical pressure and 
pseudocritical temperature of a mixture can be added up  from the re- 
spective parameters of the components, combined with their molar frac- 
tions or volume fractions: 

n 
M =  Z y i M i  

i = l  

n 

The accuracy of this calculation is usually impaired by the circumstance 
that, in the composition of the gas, the relative abundance of the heaviest 
components is given by a single figure denoted Cn+. The critical param- 
eters are usually put equal to  those of the component CnAl;  if e.g. the 
combined heavy fraction is CBL,  then it is taken into account with the 
critical parameters of heptane, C,. This is, of course, an approximation 
whose accuracy depends on the actual composition of the combined heavy 
fraction. 

Bxample 8.1-1. Find the molar mass and pseudocritical parameters of 
state a t  a pressure of 88 bars and 280 K temperature of the wet natural gas 
whose composition is given in Columns (1) and (2) of Table 8.1-1. The 
physical constants of the gas components are listed in Table 6.4-1. The 
calculation whose details are given in Columns (3)) (4) and (5) of Table 
8.1-1, furnishes M = 21.5 kg/kmole. By Eqs 8.1-3 and 8.1-4, 

8.8 x lo6 

4.59 x 106 
= 1.92 P = p r  

T --= 280*o 1.25. 
p r -  224.2 
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Table 8.1 - 1 

12.67 
3.01 
2.43 
0.58 
0.87 
1.73 
0.04 
0.14 

1 

150.7 
30.5 
20.3 
4.1 
6.4 

11.3 
0.3 
0.6 

l 2  
Methane 
Ethane 
Propane 

i-Butane 
n-But ane 
n-Pentane 

co, 
N, 

Total 

I 
0.790 

I 0.055 
0.010 

1 0.015 
0.024 

0.005 

1 0.100 

i 0.001 

i 1.000 

3 1 4  0 

36.67 
4.89 
2.34 
0.36 
0.57 
0.81 
0.08 
0.17 

45.90 

Figure 8.1 - 1 permits us to read off pseudocritical pressures v. pressure and 
pseudocritical temperatures v. temperature for hydrocarbon gases of 
various molar mass. 

Example 8.1 -2. Find using Fig. 8.1 - 1 pseudoreduced parameters of 
state for a gas of molar mass M = 21.5 at  the pressure and temperature 
stated in the foregoing example. - Figure 8.1-1 furnishes p p c  = 4.61 
MN/m2 and Tp,  = 223 K. - By Eqs 8.1-3 and 8.1-4, 

= 1.91 
8.8 x lo6 

4.61 x lo6 
P p r  = 

and 

= 1.26. 
280 

” -  223 
T -- 

PPC 

7 
MN 

300 

K 

250 

TPC 

200 

15’75 20 25 30 35 
M, kg/kmole 

Fig. 8.1-1 Pseudocritical parameters of natural gas v. molar mass (from 
Katz 1959, p. 111; used with permission of MoGraw-Hill Book Company) 
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The results furnished by the two procedures are in approximate agree- 
ment, but more substantial deviations may occur in other cases. Empirical 
diagrams other than Fig. 8.1-1 have been published (e.g. Stearns e t  al. 
1951). 

The compressibility factor z can be determined most accurately by 
laboratory experiments on pVT behaviour. If no z = f(p,  T) diagram 
based on experiment is available, then z is determined as a function of the 
reduced state parameters out of empirical diagrams or relationships. One 
of the best-known empirical diagrams is that  of Standing and Katz (1942; 
Fig. 8.1-2).  For the pseudoreduced parameters ppr = 1.92 and T,, = 1.25 
of Example 8.1-1,  it furnishes z = 0.92. 

Natural gas often contains substantial amount of non-hydrocarbon gases, 
N, and CO, first of all. If the volume percentage of these is less than 8 
percent for N, and 10 percent for CO,, then the compressibility factor is 

Fig. 8.1 - 2 Compressibility factor of natural gas v. pseudo-reduced parameters of 
state, after Standing (1952; reproduced by permission of the copyright owner- 
copyright @ Chevron Research Company 1951; all rights reserved under the Inter- 

national Copyright Convention) 
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most readily determined by a procedure suggested by Grif (Szilas 1967): 
the hydrocarbons are considered to  be a single component whose pseudo- 
critical parameters and compressibility factors z are determined separately 
by some suitable method. The compressibility factors xco2 and zN2 for 
CO, and N, are then read off Figures 8.1-3 and 8.1-4, and the value x '  
for the mixed gas as a whole is calculated using the mixing rule 

2' = Y N ~ Z N ,  + ~ ~ 0 2 ~ ~ 0 2  + (1 - Y N ~  - Y C O , ) ~ .  

I n  writing computer programs it  is an advantage if the compressibility 
factor can be found by calculation, without having to  resort to  diagrams. 
Literature contains several calculation procedures. The relevant formulae 
are mathematical representations of more or less extensive domains of the 
families of curves constituting the empirical diagrams. The French gas 

1 

5 70 15 MN 20 
P I  7 

Fig. 8 .1 -3  Compressibility factor of CO, according to Reamer and Elters; after 
T6rok et al. (1966) 
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Fig. 8.1-4 Compressibility factor of K2 according to  Sage and Lacey; after Torok 
et  al. (1966) 
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industry uses for pressures of below 70 bars a t  soil-temperature flow the 
formula 

(SociBtB . . . Manuel 1968). A relationship accounting also for temperature, 
applicable below 60 bars, is 

z = 1 - 2 x 1 0 - * p .  8.1-5 

8.1 -6 

E is listed for certain temperatures in Table 8.1 - 2 (likewise from SociBtB . . . 
Manuel 1968). 

Table 8 .1 -2  

0 1 2 . 6 5 ~ 1 0 - ~  
16 2 . 0 4 ~  lo -*  
30 i 1.65x10-8  

Relationships for calculating the pseudocritical parameters of state have 

8.1-7 

been given by Thomas et al. (1970) 

p,, = 4 . 8 9 4 ~  lo6 - 4 . 0 5 0 ~  lo5 e, 
T,, = 94.71 + 170.7 e,. 8.1-8 

Wilkinson (1964) gave for p ,  < 1.5 the formula 

8.1 -9 

where ppr and T,, are the values furnished by Eqs 8.1-3 and 8.1-4,  
respectively . 

Gas density a t  pressure p and temperature T can he obtained putting 
V = l i e  in Eq. 8.1-1: 

8.1-10 e=- .  P J f  
zRT 

If this equation is written up for the standard state, then p = p n !  
T = T ,  and x = z, = 1. Then 

8.1-11 

Let e.g. p ,  = 1.013 bar and T n  = 273.2 K. Since furthermore, R = 8314 
J/(kmole. K),  

M 
22.42 

o n = - .  
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Rearranging we get, a t  the standard-state parameters staked above, the 
standard molar volume 

Vmol = M e n  = 22.42 m3/kmole. 8.1-13 

Relative density is the standard-state density of the gas referred to the 
standard-state density of air: 

e n  

Pan 
e r=- - - .  

Now by Eqs 8.1-12 and 8.1-14, 

M M 
er=z=28.96’ 

Gravity is 

Y = eg. 

8.1-14 

8.1-15 

8.1 - 16 

8.1.2. Viscosity 

Gas viscosity, as distinct from liquid viscosity, increases as temperature 
increases, decreases as molecular weight increases, and is independent of 
pressure at medium pressures. At atmospheric pressure, viscosities of hy- 
drocarbon gases vary linearly with temperature between 0 and 200 “C (Fig. 
8.1 -5).  The viscosity of hydrocarbon mixtures a t  atmospheric pressures 
is readily calculated using a relationship published by Herning and Zipper: 

i =  1 
P a  = 2 yi yz 

i = l  

Fig. 8.1-5 Viscosities of natural gas com- 
ponents at  atmospheric pressure; after Carr 
(1954). 1 helium, 2 air, 3 nitrogen, 4 carbon 
dioxide, 5 hydrogen sulphide, 6 methane, 7 
ethane, 8 propane, 9 isobutane, 10 n-butane, 
11 n-pentane, 12 n-hexane, 13 n-heptane, 14 

n-octane, 15 n-nonane, 16 n-decane 

8.1-17 
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Figure 8.1-6 is a plot of values furnished by this relationship, and, 
more generally, of measured viscosities of artificial hydrocarbon-gas 
mixtures. It permits us t o  find atmospheric pressure viscosity in terms of 
the molecular weight and relative gravity of the gas (Carr et al. 1954). 
The influence of non-hydrocarbon components may be taken into account 
by a viscosity-increasing correction depending on relative density, provided 

Fig. 
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8.1-6 Viscosity of natural gas at atmospheric pressure (Carr et al. 195 
M, k g / k m o l e  

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 2 2.4 2.6 2.8 3.0 3.2 
Tr 

Fig. 8.1-7 Variation of k = pup/po v. the pseudo-reduced parameters of state 
(Carr et  al. 1954) 
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the share of these components does not exceed 15 percent. - A relation- 
ship between viscosity and pressure may be set up making use of the theorem 
of corresponding states. Figure 8.1-7 allows us to find, in the knowledge 
of the pseudocritical pressure and temperature, the factor E = pp/p, by 
Nhich the viscosity a t  atmospheric pressure is to be multiplied in order 
io obtain the value that holds a t  pressure p (Carr e t  al. 1954). The rela- 
tionship is valid in the gaseous state only, and it is therefore necessary 
in critical cases to  check by phase examinations whether or not a liquid 
phase is present. 

8.1.3. Specific heat, molar heat, adiabatic gas exponent, 
Joule-Thomson effect 

Specific heat is the heat capacity of the unit mass or molar mass of a 
substance or, in the case we are discussing, the ratio of the heat dQ im- 
parted to a unit mass of gas to  the resulting temperature change dT, 
provided no phase change takes place during the temperature change. The 
usual cases investigated in a gas are temperature changes at  constant 
pressure, on the one hand, and a t  constant volume, on the other, and 
accordingly, two distinct specific heats may be defined, the isobaric c p  

2 x  lo3  

I 

3x103 

2 x lo8  

1 x l o 8  

Fig. 8.1- 

-100 0 100 200 300 400 500 6W 
T. O C .  

8 Specific heats of natural-gas components at  atmospheric pressure, after 
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and the isochoric c,. c p  > c,, since part of the heat supplied to the system 
will expand the gas in the isobaric case. In ideal gases, the difference between 
the two constants equals the gas constant, that  is, 

c P  - C, = R. 8.1-18 

The difference between the characteristic specific heats in a real gas is 
not constant. Figure 8.1-8  after Brown (1945) shows isobaric molar heats 
v. temperature of hydrocarbon homologues a t  atmospheric pressure. The 
cpa of gas mixtures can be determined on the basis of additivity, in terms 
of the components’ specific heats and molar fractions, that is, 

n 

Cpa = ,2 Yi Cpoi. 
1 = l  

The specific heat c p p  of a gas mixture a t  pressure p exceeds the value 
cpa at atmospheric pressure by Ac,. Figure 8.1 -9 is a plot of Ac, v. pseudo- 
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reduced pressure ppt  for various pseudoreduced temperatures T,, after 
Edmister (Perry 1969). Let us point out that dc, is stated in molar terms, 
and has to be divided by the molar Jf mass in order to  transform it into 
a quantity having the nature of a specific heat. 

The adiabatic gas exponent 

8.1-19 

is usually required in thermodynamic calculations. I ts  value can be deter- 
mined, e.g., by reading the molar-heat difference ( cp  - c , )  off Fig.8.1-10 

Fig. 8.1-10 

300 
C p -  C" 

3 
mole K 

100 

10 

O O L  0 10 10 L O  
Pr 

( c p - c , )  of real gases v. the reduced parameters of state, 
(1969) 

after Perry 

(after Perry 1969) and calculating c, in the knowledge of c,. The use of 
the figure presupposes knowledge of the pseudoreduced parameters of 
state. The molar heat or specific heat iu calculated for a certain tempera- 
ture range rather than for a single pair of pressure and temperature values. 
The mean molar heat c, can be determined for instance by planimetering 
the specific heats calculated for various temperatures by the procedure 
outlined above. I n  a simpler procedure, one may read the enthalpy values 
h, and h ,  corresponding t o  the initial and terminal temperatures T ,  and 
T, off suitable diagrams or tables. Then 

8.1 -20 

If the pressure of an ideal gas is lowered without the gas delivering 
energy, then, if the gas is ideal and the change of state is adiabatic, the 
total internal energy of the system remains unchanged, that is, the state 
change is isoenthalpic, and the temperature of the gas remains unchanged, 
too. If, however, the gas undergoing said change is real, then its volume 
change will differ from ideal gas behaviour. As a result, its internal energy 
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and hence also its temperature will be affected (Joule-Thomson effect). 
Among the temperature changes taking place during gas flow, it is ex- 
pedient to account for this effect by the Joule-Thomson coefficient ,ud,  

which is a measure of temperature change per unity pressure change. 
p d  3 0, that is, expansion may increase, reduce or leave unchanged the 

0 1  I I I I 

0 1 2 3 4 

Ppr 

Fig. 8.1 - 11 Relationship for determining the choke effect, after Korchazhkin (1963) 

temperature of the gas. Several relationships for determining pd have been 
derived. Figure 8.1-11 gives the values [in J/(K kmole)] of the expression 

in terms of the pseudoreduced parameters of state, and this expression 
may be solved to  yield pd (Korchazhkin 1963). 

8.1.4. Hydrocarbon hydrates 

Hydrocarbon gas hydrate is a solid granular substance resembling snow 
or ice. I t  is composed of water and the molecules of one or more hydrate- 
forming gases. The molecules of this gas enter cavities in the H,O lattice, 
which is looser than the ice lattice, without entering into chemical bond 
with the water. The lattice thus forming may be one of two pentagonal 
dodecahedra. The conditions of hydrate formation and stability are: 
(i) sufficiently low temperature and high pressure; (ii) the hydrate-forming 
gas is held together by covalent bonds; its molecules are shorter than 8 -%; 
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and when liquid, it is immiscible with water; (iii) during hydrate formation, 
water is liquid; (iv) hydrate is resistant to  water and no Van der Waals 
forces arise between its molecules. 

Hydrates include besides water methane, ethane, propane or butane. 
alone or mixed together. I n  addition to the hydrocarbons, other, non- 
hydrocarbon gas components such as nitrogen, carbon dioxide or hydrogen 
sulphide may also be hydrate-forming. Hydrate composition depends on 
the nature of the hydrate-forming gas but is not governed by the rules of' 
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Fig. 8.1 - 12 State diagram of hydrocarbons according t o  Willard; after Orlicek and 
Poll 1951, Table 118 (used with permission of Springer-Verlag, Wien/New York) 

stoichiometry. The least water-to-methane ratio in methane hydrate would 
be 4.5, in view of the number of methane molecules that can be accom- 
modated in the water lattice. However, methane-unsaturated hydrates 
with more than 4.5 moles of H,O per mole of methane also occur. The 
least water content of ethane hydrate is about 7 . 7  moles H,O per mole 
of ethane. The propane and butane molecules may enter but the largest 
cavities of the lattice, and hence, in propane hydrate, 1 7  moles a t  least 
of water are required per mole of propane. 

Figure 8.1 - 12 shows state diagrams of various two-component hydro- 
carbon hydrates after Willard (Orlicek and Poll 1951). The upper tempera- 
ture limit e.g. of propane hydrate formation is seen to be 5.6 "C, with a 
corresponding pressure of 5.6 bars. The point defined by these parameters 
of state is an invariant of the propane-water system, a four-phase point 
with no degree of freedom, where propane hydrate as the solid phase is at 
equilibrium with gaseous propane saturated with water vapour, water 
saturated with liquid propane and propane saturated with water. The 
figure shows which phases may coexist in the individual regions. I n  reality, 
i t  is usual for hydrates t o  involve more than one hydrocarbon component. 
The critical pressure of hydrate formation is substantially reduced e.g. 
if methane is accompanied by some hydrocarbon of larger molar mass, 
propane or butane first of all. Even quite low concentrations cf these may 
displace the phase diagram rather considerably. For approximate estimates 
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one may use Fig. 8.1-13, which shows critical hydrate-formation pres- 
sures and temperatures for hydrocarbons of various relative gravities. The 
presence of CO, and H2S at  a given temperature may lower the critical 
pressure, whereas the presence of N, tends to raise it. The inset in Fig. 
8.1 - 13 provides the correction factor CN, which shows how many times 
the critical pressure of hydrate formation is higher in the presence than 
in the absence of a certain quantity of nitrogen. 
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Fig. 8.1-13 Limits of gas hydrate formation, after Katz (1959, p. 213; used with 
permission of McGraw-Hill Book Company) 

Several more accurate procedures have been devised. For nitrogenless 
natural gas, up t o  about 280 bars pressure, Katz’ procedure involving 
equilibrium constants is best suited. The condition of hydrate formation is 

The Khrs are to be read off the Kh = f(T), diagrams of the hydrate-form- 
ing components (Katz 1959). - Heinze (1971) prefers the modified 
McLeod-Campbell procedure for determining hydrate formation tem- 
peratures (hydrate points) of natural gas containing nitrogen up to about 
400 bars pressure. The hydrate point is calculated using the relationship 

T = Fx. 8.1-21 

The values of K,, for various pressures are contained in Table 8.1-3. 
The K ,  values falling between those given in the table may be found by 
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Table 8.1-3 
Hydrate-equilibrium factors K ,  for hydrate-forming natural-gas components 

(modified after Heinze 1971) 

0.013 
0.010 

Components Yi 50 

89,618 
33,295 
44,734 

34,543 
45,535 
85,060 

102,096 
57,979 
30,555 
38,788 
63,986 

___  
100 I 

35,949 
47,101 
83,970 
94,310 
51,133 
32,133 
43,504 
69,972 

I 

____ 

48,0781 36,719 

79,836 
89,319 
47,648 
33,369 
44,812 
74,001 

200 ~ 

37,3571 
48,704 
75,610 
82,481 
45,032 
33,695 
46,773 
76,349 

I 

37,8141 
49,316 
73,150 
78,791 
43,846 
34,214 
50,371 
78,554~ 

300 1 
j 

38,2041 
49,772 
71,340 
75,569 
43,328 
34,656 
51,6601 
80,4261 

, 
3CO 

i 38,531 
50,140 
70,103 
74,533 
43,2761 
35,0051 

81,373, 
I 

390 

38,767 
50,435 
69,154 
73,304 
43,234 
35,251 
54,018 
82,148 

linear interpolation. The hydrate factor for multi-component natural gas 
of known molar ratios may be found by applying the principle of additivity. 

Example 8.1-3 (Heinze 1971). Find the hydrate point at 147 bars 
pressure for the gas composition given in Column 2 of Table 8.1-4. Let us 
point out that, regardless of the quantity and nature of the longer-molecule 
non-hydrate-forming natural-gas components, it i s  assumed that 

By the data in Column 4 of the Table, K ,  = 39,459 and hence, hydrate 
point is a t  

?- 

39 459 

0.445 
= 297.8 K = 24.6 "C. 

Hydrate point may be substantially reduced by adding to the natural gas 
a hydrate inhibitor such as calcium chloride, methanol, ethylene glycol, 
diethylene glycol. 

Table 8.1-4 
Finding the hydrate formation temperature of Thonse gas 

(after Heinze 1971) 

Components 

c6, 1 0.011 

31,722 
3,505 
2,242 
1,165 

333 
492 

36 



8.2. Temperature of flowing gases 

In  most long uninsulated pipelines, the temperature of flowing gas 
approaches soil temperature after a travel sufficiently short for flow tem- 
perature to be identified for all practical purposes with soil temperature 
over the full length of the pipeline. I n  certain cases, however, the flow 
temperature of gas may significantly differ from the temperature of the 
surrounding soil, and it may then be important to  determine temperature 
traverses for the pipeline. The cases in question include the following. 
(i) It is necessary to  decide in designing where the flow temperature drops 

Fig. 8.2 - 1 Pinpointing hazard of hydrate formation in a pipeline, 
and Shirkovsky (1957) and Torok et al. (1968) 

after Smirnov 

below the hydrate point; (ii) it is desired to  chill the gas by injecting lique- 
fied gas, in order to  increase the throughput capacity of the pipeline (Gud- 
kov et al. 1970); (iii) in arctic regions, the gas may cause an undesirable 
warming up of the permafrost soil in which the pipeline is laid. 

Figure 8.2-1 (after Smirnov and Shirkovsky 1957; and Torok et al. 
1968) is a temperature traverse of a given pipeline (Graph I). It permits us 
to delimit the line segment where there is a risk of hydrate formation. 
Graph I1 is the pressure traverse. The accurate calculation of the two 
traverses takes a successive-approximation procedure. I n  the knowledge of 
pressure, the hydrate-point traverse (Graph 111) may be calculated in the 
manner explained in Section 8.1.4. At point I ,  where Graphs I1 and I11 
meet (I = 50 km), the hydrate point T h  is just equal to the temperature 
T, of gas flow. For hydrate to form, it is sufficient that  there be some free 
water available a t  this line section. Graph IV is a water vapour saturation 
traverse along the pipeline. Points of this curve can be determined by 
means of auxiliary diagrams for corresponding pairs of p and T, (e.g., 
Katz 1959). Assuming the water vapour content of the gas to  be 0.4 g/m3, 
the dew point of the gas turns out to  occur a t  point 2; from there on, the 
pipeline does contain condensed water: that  is, this condition of hydrate 
formation is also satisfied a t  and beyond 1 = 50 km. 

The temperature of gas flowing in the pipeline depends, for a given 
inflow temperature TI and soil temperature T,, on the following factors: 
( i )  heat exchange with the environment, depending primarily on the heat 
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transfer coefficient (cf. Section 7.2.3). The internal convection coefficient, 
a,, is infinite in a fair approximation. (ii) The Joule-Thomson effect due 
to friction, velocity increase and altitude change. (iii) Phase changes (con- 
densation, evaporation) due to pressure and temperature changes. (iv) The 
energy loss of flow, which end up as heat. 

These effects are accounted for in steady-state flow by the following 
equation (P&pay 1970), stating flow temperature a t  a distance I ,  from the 
head end of the line to be 

where 

TI 
h k n d ,  

+ 9 - - -  
I 4 m  

212 - 2.'1 + v1 I 

I n  deriving this equation, P&pay assumed pressure, flow rate and phase 
transitions to be linear functions of distance from the head end. It is there- 
fore recommended in problems where a high accuracy is required to  calcu- 
late temperature changes for shorter line segments. Let us point out that 
suffix 1 invariablyrefers to the head end and 2 t o  the tail end of the line 
of length I, except, of course, in the numbering of the constants C .  

I n  the case when the phase changes are left out of consideration-that 
is, in single-phase flow-Eq. 8.2-1 simplifies to  

T,) e-a 'z  - 

where 

36* 

8 .2 -2  
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The first two terms of this equation describe heat exchange with the 
environment; the third one accounts for the Joule-Thomson effect, the 
fourth for the change in geodetic head and the fifth for the change in 
velocity head. I n  practical calculations, the last two terms may be neglected. 
The resulting error is usually less than the error due to  uncertainties in 
the various parameters. If the pressure drop is small, then so is the tem- 
perature drop due to  expansion, and the third term may also be neglected, 
in which case Eq.  8.2-2 simplifies to  Eq.  7.2-15. 

8.3. Steady-state flow in pipeline systems 

The fundamental relationships of gas flow in a pipeline are stated in 
Section 1.2.  That section refers to  a single pipeline. Actual gas trans- 
mission systems, however, often form connected nets, in which flow is 
governed by relationships much more involved than those referring to  a 
single line. Pipe nets may be high-pressure, with pressure changes entailing 
significant changes in specific volume, and low-pressure, with such changes 
negligible. The first type includes transmission systems of regional supply, 
the second includes gas nets supplying local consumer groups, most often 
community utilities and households. I n  the latter we shall concentrate on 
the first type. 

Flow in transmission systems is almost invariably transient, but numerous 
design and operation control problems may be solved notwithstanding by 
assuming flow to be steady-state. Network models based on the assump- 
tion of steady flow permit the establishment of pressure contour maps 
of both radial and looped networks for periods of peak demand. This map 
permits us to pinpoint the critical segments of the net, where consum- 
er demand cannot be fully met in peak demand periods. The pressure 
map is useful in designing new systems, and in expanding or checking 
the operation of existing ones. 

8.3.1. Design fundamentals 

The two basic elements of a pipeline network are the nodes and the node 
connecting elements (NCEs). Nodes include those points where a pipeleg ends, 
or where two or more NCEs join, or where there is injection or delivery 
of gas. The pressure map of the network is determined by node pressures. 
The most important NCEs are pipelegs, compressor stations, regulators, 
valves, and underground gas storages. Prior to  constructing a model of a 
a complex system it is necessary to establish mathematical models for in- 
dividual NCEs. These models are in effect pressure v. throughput relation- 
ships valid at given parameters. 

The characteristic equation of a high-pressure pipeleg is, by Eq. 1.2-7,  

pf - p ;  = k,q2. 8.3-1 
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The gas flow expressed in standard volume units is 

where 

8.3-2 

8.3-3 

In  a low-pressure pipeleg, with pressure close to atmospheric, we have 
Z = 1 and 

P? - P?. = (pi + P P )  (pi - 2 3 2 )  2Pn(Pi - P Z )  
and the above equations modify to  

P1- P2 = k2q2 
and 

8.3-4 

8.3-5 

8.3-6 

Compressor characteristics are provided by the manufacturer. These 
may usually be approximated by a function of the type 

9 =  P 

k, L? + k5 El J k* 

8.3-7 

where k,, k, and k5 are compressor constants. 
Pressure regulators may be described by the flow equations of chokes 

(cf. Section 1 .5 -1 ) .  If the pressure drop is less than critical (flow is 
subsonic), then Eq.  1.5--2 will hold if the gas is liquidless, that  is, 

where 

8.3-8 

8.3-9 

If the pressure drop is above-critical (flow is sonic), then p,lp, is to be re- 
placed by the expression in Eq. 1.5-3, and the characteristic relationship is 

q = k,Pl. 8.3-10 
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The production of wells tapping an underground gas reservoir can be 

8.3-11 

where, as distinct from the usual productivity relationship (cf. Section 3.1) 
p1 means formation pressure and p ,  means wellhead pressure; k., is a pro- 
ductivity index corresponding to this latter definition. 

I n  the knowledge of the gas transmission system’s elements, a mathe- 
matical-hydraulic model of the entire system may be constructed. I n  
laying down the principles of modelling, the recognition of an analogy 
between gas flow in pipe networks and flow of electricity in electrical net- 
works was extensively exploited. Kirchhoff’s laws apply to gas flow, too. 
The first law applies to any node; the algebraic sum of gas flows entering 
and leaving the node is zero, that is 

described by the relationship 

4 = k d p :  - Pi)n 

m 

2 q i  = 0 
i =  I 

8.3-12 

where m is the number of NCEs meeting at the node. Gas flowing into the 
node is given the positive sign. By Kirchhoff’s second law, for any loop 
in the high-pressure system, the algebraic sum of pressure drops, taken 
with signs corresponding to  a consistent sense of rotation around the loop, 
is zero, that is, 

n 

2 ( p :  - p i ) <  = 0. 
1 = 1  

8.3-13 

where n is the number of NCEs in the loop, and p1 and p 2  are, respectively, 
the head-end and tail-end pressures of said pipelegs, head and tail being 
taken with respect to the sense of rotation chosen. This relationship is also 
called the loop law. I n  low-pressure gas distribution networks, the compressi- 
bility of the gas is negligible and the loop law accordingly simplifies to 

n 

8.3-14 

There are t’wo fundamental types of gas transmission systems, loopless and 
looped. 

8.3.2. Loopless systems 

(a) Numerical methods 

I n  a loopless system, NCEs joined by nodes form no closed loops any- 
where in the system. 

Figure 8.3-1 shows a hypothetical loopless system. Gas enters through 
node J and leaves through Nodes 11, I11 and IV. Pressures and throughputs 
in such a system, assuming all NCEs to be pipelegs, are caicuiated as fol- 
lows. I n  the knowledge of the gas volumes respectively injected into and 
taken out of the nodes, Eq. 8.3-12 furnishes the gas flows qi in the 
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pipelegs. In  possession of these latter, Eq. 8.3-1 yields pressure drops in 
the pipelegs and node pressures. 

Example 8.3-1. Given the gas flows into and out of Nodes from I to I V  
of the pipeline shown in Fig. 8.3-1 and the parameters of pipelegs from 1 
to  3 and the prescribed terminal pressure pIv= 18 bars for Node IV;  find 
the injection pressure p I  necessary to  ensure the throughputs and the ter- 
minal pressure prescribed, and find the individual node pressures. The 
resistance factors calculated using Eq. 8 .3 -3  from the parameters of the 
pipelegs are listed in Column 3 of Table 8.3 - 1.  The kl , s  have been replaced 
by k,s .  Node throughputs are listed in Column 4, and the prescribed terminal 
pressure appears in the last row of column 9. I n  the possession of the node 

I 

Fig. 8.3-1 

throughputs, the pipeleg throughputs listed in Column 5 were calculated 
using node law 8.3-12. Column 7 states the pressure drops in the pipelegs. 
Now with plv, and hence, piv, given, one may find the remaining node 
pressures using the relationship 

8.3-16 

j = 111; 11; I. 

The calculation reveals that an injection pressure of p l  = 54.9 bars is re- 
quired to ensure a terminal pressure of pI, = 18 bars. 

The situation is somewhat more complicated if the injection and terminal 
pressures are fixed, and so are the injection and delivery rates at the inter- 
mediate nodes, and the problem is t o  find the maximum gas output that 

Table 8.3-1 

Yode 1 Pipeleg 

j i 

91 

ma - 
S 

3 

249.0 

145.0 

482.0 

4 

$-2.38 

- 0.38 

-0.80 

- 1.20 

91 

m3 - 
S 

5 

2.38 

2.00 

1.20 

6 

592.6 

290.0 

578.4 

P? 
NS 

m4 
10'0 - 

PI 
N 

106 - 
mz 

7 ___ 

1410.4 

580.0 

694.1 

- 8 1 9  

3008.5 , 54.9 

1598.1 

1018.1 

324.0 

40.0 

31.9 

18.0 

567 



Table 

2.38 

2.00 

1.20 

Xode Pipeleg 

I 
592.6 I 1410.4 

290.0 ~ 580.0 

578.4 ~ 694.1 
I 

1 1 2  

I1 I l l  
2 

3 
I11 

IV 

3 1 4  

249.0 

145.0 

482.0 

-0.38 

-0.8 

estimation (1): 

qi  = 2.38 m3/s+ gm = 1.2 ms/s 

_ _ ~ -  I- 

I I 
I I 

can be ensured a t  the delivery end of the line. The solution involves a suc- 
cessive approximation (Hain 1968) in the following steps: (i) Estimate 
the maximum throughput qil) of the first pipeleg. (ii) Using Eq.  8.3-12, 
find the first-approximation throughputs q(il) of the individual pipelegs. 
(i i i)  In  possession of these latter find the pressure drops in the pipelegs 
using Eq. 8.3-1.  (iv) Using the relationship 

j = 11; 111; . . . , m 

where m is the number of nodes, find the node pressures belonging to the 
q(1l)s calculated in the first approximation. (v) If the square of terminal 
pressure pm deviates from the square of terminal pressure p,$) by more than 
the error permitted, then the throughputs determined in (ii) for the indi- 
vidual pipelegs are to be corrected using the expression qj2) = qI1) + Aq 
where 

2 (1)2 
8.3-17 d q  = - Pm - Pm 

2 r = l  i k d  

(vi) The procedure is repeated from Step (iii) on until the prescribed and 
calculated terminal pressures agree to  within a prescribed tolerance. 

Example 8.3-2. Find the maximum delivery rate a t  node IV in the pipe- 
line characterized in the foregoing example, if p ,  = 55 bars and p,, = 16 
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8 .3 -  2 

1614.6 

1034.6 

340.5 

3025.0 55.0 

18.5 

I 3025.0 I 55.0 
2.41 600.1 1446.2 

2.03 296.2 601.2 
1578.8 39.7 

~ ~ ~ 977.6 ~ 31.3 
892.9 729.2 

1'23 ~ ~ 1 248.4 ~ 15.8 

estimation (2): 2 kiq(@) = 1489.2): 10" 

g I =  2.41 mjs-t PIV = 1.23 m*/s 

(16X106)* - (15 8X10b)' - --o,oo85 Ap = - c_ - 
2 X  1489.2X 10" 

bars. - The main data of the solution are listed in Table 8 .3  -2.  
It shows that, a t  the given offtakes a t  intermediate nodes, the maxi- 
mum delivery rate attainable a t  the delivery end of the pipeline is 1.23 m3/s. 

I n  the two approximations employed to  solve the problem, the values 
of the kis were unchanged although throughputs and tail-end pressures of 
the pipelegs were different. The reasons for this are, one, that flow is fully 
turbulent so that the friction factor is independent of the throughput- 
dependent Reynolds number and, two, the change in the mean pressures 
of the pipelegs is so slight that  change in the compressibility factor z is neg- 
ligible. 

If there is a booster pump station installed somewhere along the pipeline, 
then the maximum throughput capacity of the pipeline can be calculated 
as follows (Hain 1968): Steps (i)-(iii) of the calculation are as above. 
(iv) I n  the knowledge of the gas throughput, intake pressure and installed 
compressor capacity, the output pressure of the pump can be determined 
for the node examined. (v) The tail-end pressure of the pipeline is calculated 
in the knowledge of the output pressure and of pressure drops in the indi- 
vidual pipelegs. (vi) If the calculated tail-end pressure differs from the pre- 
scribed one, pipeleg throughputs are once more corrected using the relation- 
ship @ = @) + dp, but the correction itself is now calculated by means 
of the relationship 

8.3- 18 

where (pl), and (p2), are the intake and discharge pressures of the compres- 
sor, respectively, and qc is compressor output. 
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(b) Graphical methods 

A quick and simple graphical method for solving problems involving the 
throughput and pressure parameters of gas transmission lines, based on 
diagrams, has been proposed by van den Hende (1969). 

The first step is to plot the family of curves A p  = f(p,),, resembling 
Fig. 8.3-2 for the pipeline examined, with both axes of coordinates cali- 
brated in the same units. The plots are calculated using the equations 

A p  = p ,  - p ,  = p1 - jrpf - kq'. 8.3 - 19 

Here, p 2  is expressed using Eq. 8.3-1. The k factor in Eq.  8.3-19 is iden- 
tical with the k ,  figuring in Eq. 8.3-3. The values of ii and z figuring there 
are functions of p and q. Plotting the family of curves may be simplified, 
however, by assuming for the purposes of approximate calculations that 
L and z are constant for any value of p and q. Van den Hende has developed 
a procedure for the calculation of k out of a function k = Cl ,  where C can 
be read off a table as a function of pipe size d,. Whichever way k is deter- 
mined, the individual curves of the family may be constructed by the graph- 
ical procedure illustrated in Fig. 8.3-3. The value of p ,  is furnished by 
Eq. 8.3-1 after the substitution p ,  = 0 ,  that is, 

Plotting any point of the curve is performed in a manner similar to the 
construction starting from point A .  Equation 8.3-1 holds for any point 
of this curve. For instance, it is clear on inspection that the hypotenuse of 
triangle OAB is precisely equal to the abscissa of point P, and that,  in the 
triangle, 

p 2  - 2 
1 - P2 + kq2 

In  possession of a family of curves characterized by a given k ,  any one of 
the three parameters p,, p ,  and q of the pipeline can be determined rapidly 
in possession of the other two. 

bars A p  t 

p2 Pl PI bars 

Fig. 8 .3 -2  Graphical procedure, after van den Hende (1969) 
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Example 8.3-3.  Find the head-end pressure p I  required to  ensure the 
tail-end pressure pI, = 18 bars in the pipeline schematically shown as Fig. 
8.3-1,  under the conditions stated in Example 8.3-1.  - Figure 8.3-4 
illustrates the family of curves plotted using Eq.  8.3-19. The manner of 
constructing the head-end pressure is shown by the full line in the Figure. 
The resulting head-end pressure is p ,  = 55 bars. This graphical method 
lends itself well to the solution of numerous other problems, too. 

p, bars p, Pl 

Fig. 8 . 3 - 3  Graph d p  =f(p), after van den Hende (1969) 

Example 8.3-4.  In  the pipeline characterized in the foregoing example, 
we want to raise the pressure at Node I11 from 31.9 to 35 bars. Khat  is 
the pressure increment required at  the head end, and what will the pressures 
a t  Nodes I1 and IV be 1 - The solution of the problem is shown in dashed 
line in Fig. 8.3-4.  The result is A p ,  = 1,5  bar for the required pressure 
increment at the head end, and 42.7 and 24.3 bars, respectively for the 
resulting pressures at Nodes I1 and IV. 

8.3.3. Looped systems 

The first procedure for modelling a low-pressure looped network was 
developed by Cross (1936); it was adapted with some modifications also 
to high-pressure systems (Hain 1968). Let us illustrate the application 
of this method on the loop shown as Fig. 8.3-5.  The gas flows into and out 
of the nodes are known, and so is pressure p ,  at  Node I. We are to  find the 
gas throughputs of the indivual pipelegs, as well as the pressures in the 
remaining nodes. The solution is based on the following consideration. 
Taking clockwise flow as positive, let us assume a first-approximation 
value q [ I )  for the throughput of pipeleg 1. Let us then use the node law to 
find the gas throughputs q i l ) ,  whose signs will be according as flow is clock- 
wise or counterclockwise. I n  the steady state, the loop law (8.3-13 or 
8.3-14) will have to apply. If it  is assumed that the first-approximation 
values of throughputs in the individual pipelegs differ by Aq from the actual 
throughput, then 

n 

1 = 1  
Z kl(qil) + Aq) + dgi = 0 , 
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Fig. 8 .3  - 4 Throughput and pressure distribution in the pipeline specified 
in Fig. 8 . 3 - 1  

i qi"= 50 

Fig. 8 . 3 - 5  Looped transmission system to Cross' method 
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where n is the number of node-connecting elements (pipelegs). By this 
relationship, the correction is 

8.3-20 

provided /dql 5 y i ;  the second-approximation values of the gas through- 
puts in the individual pipelegs can now be calculated as 

8.3-21 q p  = q p  + dq. 

, -  I200 

\ D I  %jq ?- 
\!a 

1200 - 

- 220 

- Pipeleg -Flow direction -- Inject ion,of f toke 

2 3  Gasf low ====== 3300 Pressure, N/m2 13 Number of pipeleg 
rate, rnyh 

(b) 
Fig. 8.3-6 Layout and hookup of low-pressure looped gas supply system 
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Tab1 e 

~ o o p  1 Pipeleg 

- 
i=9  

13( 10) 

15 
14(2) 

16 
16 

i =  I3 
s i  

m 

3 

0.3071 
0.1541 
0.1541 
0.2589 

0.1541 
0.1023 
0.1023 
0.1023 

0.1023 
0.1541 
0.1023 
0.1023 

0.1541 
0.1541 
0.3071 
0.2051 

m 

4 

450 
420 
370 
280 

370 
290 
240 
660 

290 
480 
480 
220 

480 
420 
1 80 
500 

k i  

5 

0.1240 
4.5759 
4.0311 
0.1917 

4.0311 
28.087 
23.245 
63.923 

28.087 

46.489 
21.308 

5.2296 

5.2295 
4.5759 
0.0496 
1.1859 

n'l" 

ma/h 

6E 

700 
200 

- 200 
- 500 

200 
200 

- 120 
- 160 

- 200 
40 
60 

- 240 

- 40 
- 200 

440 
220 

P'i' 

10-2 msjs 

6b 

19.444 
5.656 

- 13.889 
- 5.556 

5.556 
5.556 

-3.333 
- 4.444 

-5.556 
1.111 
1.667 

-6.667 

-1.111 
- 5.556 
12.22 
6.111 

ki! el"' 

10' Ns 
m5 

__ 

7 

0.0241 
0.2542 
0.2240 
0.0266 

0.5289 

0.2240 
1.5604 
0.7748 
2.8410 

5.4002 

1.5604 
0.0581 
0.7748 
1.4205 

3.8138 

0.0581 
0.2542 
0.0061 
0.0725 

0.3909 

If after the kth successive approximation Ay is within the tolerance ad- 
mitted, then the node pressures can be calculated using the relationship 

j -  1 

i = l  
p2 , - - p: - 2 ki 1qp  1 q y  ; 8.3-22 

j = I; 11; . * * 

for a high-pressure network or 
j -  1 

i =  I 
p ,  = P I  - 2 ki jqlk) I q!k) 8.3-23 

for a low-pressure network; k equals k, in Eq. 8.3-3 in the first case, and 
k, in Eq. 8 . 3 - 6  in the second. 

If the system is composed of several loops, then, after a first-approxi- 
mation estimation of the throughputs in the individual pipelegs, one cal- 
culates a Aq for each loop, and then performs the correction of the pipelegs' 

574 



8 .3 -3  

I I 
46.87 1 19.192 

141.23 ' -0.252 4.076 
- 124.42 I -  6.298 
- 36.99 1 1 -14.141 

I 
26.70 1 

12.42 
866.89 1 0.490 

- 258.27 1 
1262.7 1 

, 

6.298 
3.846 

- 2.843 
- 3.954 

1 .  
- 529.64 ~ I 

I I - 866.89 
6.46 2.200 

129.14 I 
- 947.0 

-1678.3 1 
- 6.46 i 

7.41 
44.29 ~ 

- 142.23 1 1.228 

95.99 1 

- 3.846 
2.083 
3.867 

- 4.466 

- 2.083 
- 4.076 

13.450 
7.339 

. . .  

. . .  

. . .  

... ... 

... . . .  

. . .  

... 

. . .  

. . .  

... 

... 

... 

... 

... 
* . .  

10-1 - I m5/h 

l l a  1 I l b  

20.960 I 764.6 
4.532 1 163.2 

- 5.486 
-12.373 

5.486 
4.353 

- 1.888 
- 2.999 

- 4.353 
1.220 
4.315 

- 4.018 

- 1.220 
- 4.532 

14.762 
8.651 

-197.5 
-445.4 

197.5 
156.7 

108.0 
- 68.0 

-156.7 
43.9 

165.3 
144.6 

- 43.9 
- 163.2 

531.4 
311.4 

12 

54.47 
93.98 

- 121.30 
- 29.35 

- 2.20 

121.30 
532.14 

- 82.81 
-574.75 

- 4.12 

-532.14 
7.79 

865.76 
-343.98 

- 2.58 

S 
m2 

13 

- 

- 

- 

3300 
3246 
3162 
3273 

3273 
3152 
2619 
2702 

2619 
3152 
3144 
2278 

- 7.79 3144 
- 93.98 ~ 3152 

10.81 ~ 3246 
88.74 1 3235 

- 2.22 1 

3246 
3152 
3273 
3302 

3152 
2619 
2702 
3277 

3152 
3144 
2278 
2622 

3162 
3246 
3235 
3146 

throughputs loop after loop. The pipelegs common to two loops are corrected 
using the Ags determined for both loops. Let us illustrate this procedure 
by an example referring to  a low-pressure network. 

Example 8.3-5 .  Given the gas flows into and out of the nodes of the 
network shown as Fig. 8.3-6a, and given the pressure pI(,) = 3300 N/m2 
of node I(1); find the gas throughputs of the individual pipelegs, and the 
individual node pressures. The loops are considered to  be balanced if the 

condition 2 ApI  < 5 N/m2 is satisfied. A working model of the network 

is shown as part (b) of Fig. 8.3-6. The numbering, sizes and length of the 
pipelegs composing the loops in the Figure are given in Columns 2-4 
of Table 8.3- 3. The pressure drops in the individual pipelegs are calculated 
using the relationship 

4% = kI I 91 I41 8.3-24 
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derived from Eq.  8.3-4; k, is furnished by Eq,8.3--.6, with p ,  1.014 x lo5  
N/m2, T, = 288.2 K, M = 16.03 kg/kmole, T = 283 K, and 3, is obtained 
using Eq.  1.2-5. After substitutions, 

ki = 5.079 X l i  
dP.333 

The values calculated in this way are listed in Column 5. Column 6 of the 
Table lists the first-approximation throughputs of the individual pipelegs, 
with clockwise rotation regarded as positive. I n  estimating these through- 
puts, the circumstance that the condition implicit in Eq. 8.3-12 must 
hold for each node separately was taken into due account. The pressure drops 
in Column 8 were calculated using Eq. 8.3-24. The dqs for the individual 
loops were determined from Eq. 8.3-20; for instance, in loop A ,  

- 
26.70 

2 x 0.5289 x lo4 A q A  = - - - 0.252 X 10-*m3/s. 

The summed data of Column 8 show that 2 dPi 1 exceeds in each loop the 

tolerance of 5 N/m2, so that the values listed in Column 6b have to  be cor- 
rected. I n  the pipelegs which belong to one loop only, the corrected through- 
puts are supplied by Eq. 8.3-21. I n  the pipelegs common to two loops, the 
throughputs must of course be the same (Column 10). The corrected 
throughputs are calculated as shown in the example below. By the values 
for pipelegs 2 and 14 in Column 6b, the first approximation throughput was 
5.556 x m3/s with signs according to the sense of rotation. The absolute 
value of the corrected throughput, calculated by means of Eq. 8.3-21 
but not stated in the Table, is 5.304 x m3/s in pipeleg 2 .  The throughput 
of pipeleg 14 is equated with this value, and then corrected using the cor- 
rection for loop D and Eq.  8.3-21. The value obtained is - 4 . 0 7 6 ~ 1 0 - ~  
m3/s, and accordingly the throughput in leg 2 is 4 . 0 7 6 ~  lo-* m3/s. It is 
these values that are entered into the corresponding rows of Column 10. 
Iteration is pursued with the q,s of Column 10. After seven steps of iteration, 
not given in detail, one obtains the last-step data and the final results listed 

in Columns 11-14. Clearly, by the data in Column 12, 2 d p ,  is in every 

case within the tolerance of 5 N/m2. The data in Columns 13 and 14 are 
the p I l s  and pI1[s, the pressures a t  the head and tail ends, respectively, of 
the individual pipelegs, based on the pressure drop data in Column 12 and 
on the condition of pI(l) = 3300 N/m2 at  the node common to pipelegs 1 
and 4.  

The main advantage of the Cross method is its simplicity, whereas its 
main drawback is the slowness of the convergence, which renders this 
method uneconomical in many applications. I n  order to  eliminate these 
drawbacks, Renouard developed a variant of the Cross method (SociM . . . 
Manuel 1968). The Renouard method is suited for the modelling of steady- 
state operation in not-too-complicated looped networks. The method was 
generalized by Pernelle for networks of any size (Soci8ti5 . . . Manuel 1968) 
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The essence of this latter method is as follows. I n  the foregoing example 
we required a throughput correction Ap for each loop in each step of iter- 
ation. Let us denote the throughput correction to  be calculated by Aq, 
in the case of loop A ,  AqB in the case of loop B, etc. The throughput cor- 
rection of the pipeleg(s) common to loops A and B is, then, (Aq, - 4qB), 
that  of the pipelegs common to loops B and C, (APE - Aqc), etc. - Equation 
8.3-20 permits us to write up for the n loops n linear equations in the n 
throughput corrections Aq,, dqB, Aqc, etc. The corrections are furnished 
by the solution of this system of equations. After applying the corrections 
to  the throughputs, the values obtained are checked to  see whether they 
satisfy loop law 8.3- 13; if the aggregate pressure drops of the loops exceed 
the prescribed tolerance, then the procedure is repeated. This method 
furnishes, according to its authors, a result of sufficient accuracy in two or 
three steps even if the first estimates of the individual throughputs of the 
pipelegs are rather wide of the mark. 

Stoner's method for solving looped networks is based on the node con- 
tinuity equation (Stoner 1970). It has the advantage that,  whereas the 
Cross method can be used to  establish throughput and pressure maps of 
the network only, the Stoner method will furnish any parameter (pipe size 
in a leg, compressor horsepower required, number of storage wells, size of 
pressure-reducing choke, etc.) of the complex system. It is, however, signif- 
icantly more complicated than the previously mentioned methods, and it 
requires much more computer time. - The way of constructing the model 
is illustrated in Fig. 8.3-7.  Node 11, selected as an example, receives gas 
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from underground storage facility (12-11) and pipeleg (10- I l ) ,  and de- 
livers gas into the intake of pump (13-11) ,  and into the consumer supply 
circuit directly attached to  the node. By this model, the node equation 
8.3-12 can be given the form 

3 1 1  = (q12-11)s - (q13-11)c + (410-11)p - go11 = 0 8.3-25 

where suffixes s, p and c respectively refer t o  storage, pipeleg and compres- 
sor, and qoll is the flow of gas out of node 11. Flow into the node is positive. 
The measure of imbalance a t  the node is Fll; its value is zero if the node is 
balanced, that is, if the condition IFj] < E is satisfied, where E is the toler- 
ance. Introducing into this Equation the Relationships 8.3-  1, - 7 and - 11, 
we get 

where S,,] is a sign factor accounting for flow direction: 

+ 1 if Pi>Pj  I - 1 if pi < pi 
fli,i = sign ( p i  - pi)  = 

Writing up in a similar fashion n equations of continuity for the n nodes 
of the system, one obtains the non-linear system of Equations constituting 
the mathematical model of the system in the steady state. 

The equations contain node pressures, inputs/outputs and the param- 
eters of the NCEs (node connecting elements), altogether (2n + m) 
parameters, where n is the number of nodes and m is the number of NCEs. 
The model of n equations will in principle yield any n unknowns of the 
(2n + m) parameters, if the remaining (n  + m) parameters are given. 
These equations, similar to  Eq. 8.3-26, can thus be written in the form 

F,(x,, Xp, . . . x,) = 0 8.3 -27 

j = 1 ,  2,  . . . ,  n. 

The only criterion in choosing the n unknowns to  be calculated is that  the 
continuity equations of the type 8.3-26, written up for the nodes, must 
remain mutually independent. Since the value of the nodal gas throughput 
is independent in (n  - 1) equations only, a t  least one of the values qo, must 
be known. It is likewise necessary to state a t  least one node pressure. 

The solution of the non-linear system of Equations 8.3-27 constituting the 
mathematical model of the network may be achieved by the Newton- 
Raphson technique. The essence of this method is that  it provides linear 
relationships for correcting the initial, estimated values of the unknowns, 
and said relationship of correction ensures that the successive steps of 

578 



iteration make the system approach the sclution. Let, the value of the ith 
unknown, denoted x i ,  be xjk) after the kth step of iteration; then 

x(:+1) = xjk) + Axjk+l); i = 1, 2, . . ., n 8.3 -28 

where the Axis are furnished in each step of iteration by the solution of the 
linear system of equations 

The aFJaxis are the values of the derivatives of the node continuity 
equations taken at  the xis calculated in the foregoing step of iteration. 
The linear system of Equations 8.3 -29 may be solved by direct elimination. 
The Newton-Raphson method requires that the initial values x(t) of the 
unknowns xi  be estimated. The convergence behaviour of the iteration will 
depend t o  a significant degree on the goodness of these estimates, even in a 
fairly simple system. Asuitable rate of convergence may be ensured, accord- 
ing to Stoner’s proposition, in the following way. Introducing the acceler- 
ation factor ai ,  Eq.  8.3-28 can be written in the form 

x p + o  = X p  + Axjk+l) gi  . 8.3-30 

The value of ui can be expressed in terms of the actual and the foregoing 
corrections A x i  as follows. Let 

A@+1) 
Ai = __- .  

Axlk) ’ 

if Ai 2 -1 ,  then ai = 0.5 i A!  1 ; 
if - 1  < Ai c 0, 

if 0 < Ai -= 1, 

if A i  2 1, then ai = 3. 

then 

then 

ai = 1.0 - 0.5 I A!  I ; 
ai = 1.0 + 2.0 1 Ai I ; 

I n  the first two steps of iteration, where divergence is most likely to occur, 
i t  is best to  put a, = 0.5 to ensure convergence. I n  the subsequent steps, 
the values of a, are determined as above in every other step; in the steps 
in between, ai is put equal to 1.0. This method ensured convergence in every 
case and gave results of satisfactory accuracy after 6-10 steps. 

Stoner (1971, 1972), in a development of the above method, gave a pro- 
cedure for determining the ‘sensitivity’ of the system in steady-state oper- 
ation. The purpose of the calculation is in this case to find out in what way 
some change(s) in some parameter@) of the system affect the remaining 
parameters. For instance, what changes in input pressures and flow rates, 
or compressor horsepower, are to be effected in order to satisfy a changed 
consumer demand? Schematically the method can be outlined as follows. - 
Let yi denote those n parameters whose changes we are interested in, after 
other rn parameters of the system, denoted xi in their turn, have been 
changed. I n  this notation, the non-linear system of equations resembling 
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Eq. 8.3-28, constituting the model of the system, can be written in the 
form 

FI(y1, yz, . . . j  Yn; $1, ~ 2 ,  . . , xrn) = 0 8.3-31 

j =  1, 2, . . . ;  n. 

The Taylor series expansion of the function Pi, with all but the linear terms 
dropped, is 

Each one of the two sets of derivatives, aFj/ayi and aFi/axi, formally 
identical with the derivatives figuring in Eq. 8.3-29, can be regarded as 
forming a matrix: 

aF, aF,- . . .  

. . .  

c = l  

Using these identities, Eq. 8.3-32 may be rewritten in matrix notation as 

Jdy + Cdx = 0 8.3-33 

which after rearranging becomes 

dy = - J - l C d x  

where J-1 is the inverse of J. The matric resulting from the multiplication 
- J - l C  is the so-called sensitivity matrix of the system, to be denoted by 
the symbol [d,/d,]. It is a measure of change in the parameters y, resulting 
from unity changes in the parameters x,, provided that the node continuity 
equation 8.3-12 is satisfied for every node. It suffices to determine the 
sensitivity matrix just once to  be able to determine by a simple matrix 
multiplication the change in the parameters yi of the system, resulting 
from any change in the parameters xi, represented by the vector Ax: 

A y =  dy Ax. 
[dxl 

8.3-34 
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8.4. Transient flow in pipeline systems 

Flow parameters in gas transmission pipelines are usually time-dependent, 
the main reason for which is the variation in demand, as a function of a 
variety of factors. If the fluid flowing in the pipe were incompressible, New- 
tonian, then the change in throughput would take place at the same instant 
and would be of the same magnitude at  any pipeline section, including the 
head and the tail end. Such transient flow could, then, a t  any instant be 
described by the equations of steady-state flow over the whole length of 
the pipeline. If, however, demand at the delivery end of a pipeline conveying 
compressible gas changes then it takes a time At for the resulting pressure 
reduction to make itself felt a t  the head end of the pipeline. The equations 
of steady-state flow will, then, apply to infinitesimal lengths of pipeline 
only. Still, even the equations of flow in a complex system made up of pipe- 
legs of considerable length may be derived from these fundamental relation- 
ships. It has been primarily thanks to the electronic computer that several 
increasingly more accurate procedures for modelling gas flow in complicated 
pipeline systems have been able to  be developed in the last decade and a 
half. 

8.4.1. Fundamental relationships 

The relationships describing flow in pipelines of finite length may be 
derived from four fundamental relationships; any differences in these are 
merely matters of formulation. The equation of continuity is 

8.4- 1 

The equation of energy or of motion is the transient form, accounting for 
the change of parameters in time, of Eq. 1.2-1: 

8 .4-2 

The equation of state for a gas flow regarded as isothermal is, by Eq. 8.1 - 1 

R 
- 2 - T .  P _ -  

e M  
The fourth fundamental relationship 

2 = f(P)T 9 

has several solutions employed in practice, one of. which is Eq. 8.1-9. 
If z is replaced by its average value and considered constant, then the num- 
ber of fundamental equations reduces to  three, and Eq.  8.1-1 may be 
written in the simpler form 

-= B2, 
e 

8.4-3 

58 1 



where B is the isothermic speed of sound. Eqs 8.4-1 and 8.4-3 imply 

8.4-4 

where mass flow is 

By Eqs 8.4-2,  8.4-3 and the above definition of qm, 

Equations 8.4-4  and - 5  constitute a system of non-linear partial dif- 
ferential equations; then, on the assumption that 2 = constant, describe 
transient flow in the pipeline system. 

8.4.2. Flow in pipelines 

(a) Matching the system to variable consumer demand 

There are two frequently-employed ways of adapting flow In pipelines 
to the (usually daily) fluctuation of consumer demand. It holds for both 
cases that over the period of fluctuation (which we shall henceforth equate 
with one day) the gas quantity injected into the pipeline equals the gas 
offtake, that is, the consumption out of the line. I n  the first case, the hourly 
injection of gas into the pipeline is constant, say 9," in standard volume 
units. At the delivery end of the pipeline, pressure varies between the mini- 
mum required a t  the head end of the consumer supply network, pzmin, and 
the peak pressure pZmax, occurring when demand is a t  a low end. This setup 
has the advantage that the rate of injecting gas into the pipeline is constant, 
requiring no regulation within one day. The difference between the constant 
input and the fluctuating offtake is taken up by the pipeline acting as a 
buffer storage facility. The drawback of this setup is that a significant por- 
tion of the pressure energy in the gas is dissipated by a throttle a t  the 
delivery end, since over most of the day the tail-end pressure of the pipeline 
exceeds the pZmin required by the consumer supply network. Energy loss 
is minimized in certain instances by making the gas pass through a gas 
turbine rather than a pressure reducer, and letting the turbine drive an 
electric generator. The output of this latter is fed to  the grid. An approx- 
imate designing of the pipeline may be performed by the following pro- 
cedure of Smirnov and Shirkovsky, slightly modified (Szilas 1967). 

Equation 1.2-7 may be restated in the following simple form: 
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Let us point out that, as opposed t o  the factor k1 in Eq. 8.3-2, the k 
occurring nere does not include the compressibility factor 2. By Eq. 8.4-6, 

and, introducing the expression p , / p ,  = R,, 

‘ Y  

Likewise by Eq. 8.4-6, 

and, putting p J p ,  = R,, _- 

8.4-7 

8.4-8 

8.4-9 

8.4-10 

Introducing the expressions of p ,  and p ,  in Eqs 8.4-8-10 into the Eq. 
1.2-26 for the mean pressure, and rearranging, we get 

8.4-11 

Figure 8.4-1 is a plot of the expression 3pk/2q]ir; v. R, as furnished by 
Eq. 8.4--11. 

The above-given relationships permit US to  find out whether the maximum 
pressure plmax that can be ensured a t  the head end of the pipeline is suffi- 
cient to  satisfy consumer demand, provided injection rate of gas into the pipe- 
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line is uniform. Calculation proceeds as follows. (i) Gas consumption is 
plotted v. time t on the basis of daily consumption records. Figure 8.4-2 
shows the daily fluctuation of R,, the percentage hourly consumption 
referred to daily consumption. The input into the pipeline per hour is 1124th 
of the daily consumption, that  is, 

24 -. 

- 1  
p = - f q(t) d t .  

24 . 
f = O  

The line parallel to the abscissa axis, having ordinate 9 ,  intersects the 
curve at  points A ,  B and C .  I n  segment A-B, consumption is less than q ;  
that is, gas accumulates in the pipeline. I n  segment B-C, the gas thus 
accumulated is used to  cover higher-than-average demand. (ii) Gas flow 
into the pipeline is precisely equal to demand a t  point A.  The gas reserve 
in the pipeline has dropped to zero a t  that  point; that  is, pressure at  the 
tail end of the pipeline must at that instant be pamint  which is the least pres- 
sure required at  the head end of the consumer supply system. Applying in 
an approximation the relationship for steady-state flow, we get by Eq. 
8.4-7 for pressure at  the head end of the pipeline at  this same instant 

where Z can be determined by iteration using the given T and the p cal- 
culated from p ,  and pZmin, applying Eq. 1.2-26. The mean pressure in the 
pipeline is, then, 

1 .  Pi mill P = -  P,,"+ 
3 2 [  P I  + Pzmin 

For the standard-state volume of gas in the pipeline, the general gas law 
furnishes 

8.4 - 12 

(iii) The area embraced by curve segment A-D-B and line segment 
A-B is determined by planimetering. Multiplying this by the scale of 
the diagram, we get the volume VoAB of gas stored up in the slack-demand 
period. (iv) Said stored-up volume will be a maximum a t  the instant cor- 
responding to B, and hence, the head- and tail-end pressures p ,  and p a .  
respectively, of the pipeline will also be maximal a t  that instant. The mean 
pressure in the pipeline, corrected by 2, is a t  that  instant 

8.4-- 13 

where V O a l  = VOA + VoAB. - From PIX, 11 and X may be determined by 
successive approximation. (v) The next step is to  calculate the value of 
the expression 3Fk/2q]'T and to  read the corresponding R, off Diagram 
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8.4-1. I n  the possession of this latter, Eq. 8.4-10 may be used to  furnish 
p 2 ,  whereupon p ,  = R,p, .  If the technically feasible maximum pressure 
at the head end of the pipeline is plmax, then the quantity of gas VoAB 
stored up in the pipeline during the period A -  B will suffice to cover the 
excess demand in the period B - C ,  if pl = plmax. 

The second way to satisfy fluctuating consumer demand is to inject into 
the pipeline gas a t  varying pressures and rates of injection, so as to ensure 
an unvaried tail-end pressure p 2  in the pipeline, equal to what is required 
by the consumer supply network. This, of course, can be realized only if 
the variations in demand in the supply circuit can be predicted to  a fair 
degree of accuracy. The problem can be solved making use of the relation- 
ships given in Section 8.1 -4. I n  the following we shall describe the principle 
of the Batey-Courts -Hannah method of solution and discuss the conclu- 
sions that can be drawn from a numerical example (Batey et  al. 1961). 

Gas-consumption variations in time can be represented by a Fourier 
function. Figure 8.4-3 shows the graph of such a function, q2 = f(t). I n  
possession of this graph, and of the constant pressure p 2  prescribed, we may, 
starting from fundamental relationships, calculate functions of gas flow 
rate and pressure v. time, step by step for various pipeline sections, pro- 
ceeding backward along the line. Such functions referring to the head end 
of the pipeline are illustrated by graphs q1 = f'(t) and pl = f"(t) shown in 
Fig. 8.4-3. The group of diagrams 
in Fig. 8.4-4 has been prepared on 
the b&is of several similar diagrams. 
These permit us to conclude upon 
several characteristics of transient 
flow. The six top diagrams are plots 
of each variable v. the frequency 
of the demand wave. Each curve 
in parts (a), (c) and (e) of the Figure 
shows the output flow-rate wave to 
have a lower amplitude qao than the 
input flow-rate wave (whose ampli- 
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tudeisq,,); damping increases as the frequency. For a given frequency, the 
amplitude ratio is the less, that is, damping is the stronger, the lower the tail- 
end pressure p ,  (part (a) oftheFigure), the lower the friction factor 1, and the 
less the pipe size d,. Each curve in parts (b), (d), and (f) of the Figure shows 
the phase shift of the demand wave to be the less, that is, phase velocity 
to be the higher, the higher the frequency. For a given frequency, phase 
shift is the less, the higher the tail-end pressure p,, the less the friction factor 
A, and the larger the pipe size. The diagram denoted (g) shows the amplitude 
ratio to decrease with pipeline length; the diagram denoted (h) shows the 
phase shift to increase with it. - This way of satisfying consumer demand 
has for its main advantage that no pressure energy need be dissipated by 
throttling at  the tail end, that is the power consumption of compressor is 
reduced. A precondition of any application of this method is, of course, 
a sufficiently accurate foreknowledge of the demand wave, in the form of 
the relevant relationships q1 = f'(t) and p1 = f " ( t ) ;  also, the compressor 
station should be operated in keeping with these relationships. 

No analytic solution of general validity is known for the system of 
partial differential equations discussed as describing transient gas flow in 
Section 8.4.1.  I n  special cases, however, connected with specific initial 
and boundary conditions, the system of equation can be solved. Literature 
contains descriptions of many such solutions (e.g. Komikova 197 1, Wilkin- 
son et  al. 1964). One of the common traits of these solutions is that they 
permit the analysis of partial problems and that their computer time de- 
mand is not excessive, In  practice, numerical solutions are often preferred 
in simulating transient flow conditions. 

(b) Numerical solutions 

In  the approach to the numerical solution of the system of partial dif- 
ferential equations 8.4-4 and 8.4-5,  the system is transformed into a 
system of algebraic equations using the method of finite differences. This 
algebraic system is capable of solution. For the transformation, the method 
of central finite differences can be used to advantage. It consists in essence 
of replacing the function, continuous in the interval under investigation, by 
a chord extending across a finite domain of the independent variable. 
The slope of said chord is approximately equal to the slope of the tangent 
to the curve at  the middle of the domain. It is subsequently simple to cal- 
culate numerically the derivative of the curve. 

For solving the system of differential equations, literature (e.g. Zielke 
1971) usually cites three methods: the implicit method, the explicit method 
and the method of characteristics. A common trait to the three methods is 
that calculation proceeds step by step, deriving pressures and flow rates 
prevailing a t  various points of the pipeline at the instant t + At on the 
basis of the known distribution of pressures and flow rates a t  the instant t .  
The differences are as follows. - I n  the explicit method, the partial dif- 
ferential equations are transformed into algebraic equations, so that the un- 
known pressures and flow rates at  the instant t + At depend only on the 
known pressures and flow rates of the preceding time step, which permits us 
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to f ind  their values one by one solving the individual equations for them. - 
I n  t h e  implicit method, a system of algebraic equations results, which con- 
tains the unknown pressures and flow rates a t  the instant t + At at  the 
neighbouring points of the pipeline so as to  be made available only by the 
solution of the entire simultaneous set of equations. The system of equations 
furnished by the transformation may, in both cases, be either linear or not, 
There is the fundamental difference that, whereas in the explicit system 
the time step is limited for reasons of stability, the only consideration that 
limits the time step in the implicit method is the accuracy required, but 
steps are usually significantly longer than what is admissible in the explicit 

i-1 i i + l  ic.? 

Fig. 8.4-5 Fig. 8.4-6 

method. - The method of characteristics is essentially an explicit method 
whose essence is to seek in the [ x ,  t ]  plane such directions along which the 
partial differential equation can be reduced to a common differential 
equation. This latter can be solved numerically by the method of finite 
differences. The time step is rather restricted also in this method. 

Let us now discuss the transforming of the system of partial differential 
equations into one of algebraic equations by the method of finite differences 
as performed in the implicit method (Streeter and Wylie 1970, Zielke 1971). 
The pipeleg under examination is divided up into segments of length Ax. 
The time-variable flow rates and pressures of the line sect,ions thus obtained 
can be assigned to  the nodes of the lattice in Fig. 8.4-5, with a distance step 
A x  and a time step A t .  Figure 8.4-6 is a blow-up of the cell bounded by 
the lattice points (i; i + 1) in space and ( j ;  j + 1 )  in time. On the basis 
of this Figure, approximate values for the derivatives figuring in the systems 
of partial differential equations 8.4-4 and 8.4-5, relative to said cell, 
can be written up (with qm replaced by q)  as follows: 

8.4-14 

8.4-15 
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8.4-16 aq , q1+1,1+1 + 41+l,l - q1,1+1 - 91,l - - 
a x  2Ax 

-- a4 - 91,/+1 + q1+1,/+1 - ql,] - ql+l,] 8.4-17 

Regarding pressure p and mass flow rate q figuring in Eqs 8.4-4  and 8.4 - 5  
as time and space averages that are constant within the cell, we get 

at  2At 

8.4-18 

1 8.4- 19 
4 

P = - (pi,, + ~ r + l , j  + pi,j+l+ ~ i + 1 , 1 + 1 ) *  

Resubstituting Eqs8.4-14-8.4-  19 into Eqs 8.4-4 and 8.4-5,  and rear- 
ranging, we have a system of non. linear algebraic equations: 

8.4 - 20 
1 

2 A  At 
+- (Pi ,  j + Pi+l, j + Pi,  j+l + Pi+l,j+l) x 

If the values of the parameters q! , ] ;  q, +1, I ;  p , ,  I ;  p ,  + 1, ,  a t  the instant j are 
known, either because they figure in the initial conditions or as a result 
of the calculation for a preceding time step, then the pair of equations 
contains four unknowns in all: the parameters ql , l+l ;  ql+!31+l; p , , ]  + l ;  

Q ~ ~ ~ , ~ - ~ ,  belonging to the instant t + A t .  The pair of equations 8.4-20 
map be written up in a similar manner for each one of the n cells. Thus, in 
any time step, we have to solve 2 n  + 2 equations, including the two 
Iioundarp conditions, for 2n + 2 unknowns altogether. For solving the 
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2n + 2 non-linear algebraic equations, Streeter and Wylie (1970) have 
proposed the Newton-Raphson method of iteration. The procedure of 
solution is influenced by the way the two boundary conditions are stated: 
i t  will differ according to  whether the two boundary conditions refer to the 
same or to  opposite ends of the pipe segment examined. Said boundary 
conditions are most often time functions of node gas flow rate or pressure. 
- The number of steps of iteration required to solve the system of equations 
depends to a significant extent on the choice of initial values for the vari- 
ables. I n  order to accelerate convergence it is to be recommended to estimate 
the initial values by extrapolating from the values found for the preceding 
time steps. A solution of sufficient accuracy of the system of equations 
may thus be achieved in just one or two steps. The implicit method has 
the advantage of being stable even if the time steps At exceed AxlB,  and 
that, consequently, time-step length is limited by accuracy considerations 
only. There is, however, the drawback that the values of the variables for 
the instant t + At may occasionally be furnished by anon-linear system of 
equations of almost-unmanageable size. 

The method of characteristics has also been employed (Streeter and 
W'ylie 1970) for the solution of Eqs 8.4 -4 and 8.4-5. The advantages and 
disadvantages of this method resemble those of the explicit method; all 
there is to do in order to find the pressure and mass flow rate in the next 
instant of time is the solution of a system of two quadratic equations in 
two unknowns, but the time step, for reasons of stability, must be quite 
small: At < A x / B .  There is an advantage in simultaneously using the char- 
acteristic and the implicit method. This will increase the largest admissible 
time step At rather significantly against what is admitted by the sole use 
of the method of characteristics. Furthermore, the method of charac- 
teristics permits the breakdown of complex gas transmission systems into 
simpler elements. The implicit method, applied to the individual /ele- 
ments, will yield a smaller number of non-linear equations per system, and 
accordingly, time needed to solve these equations will be reduced rather 
substantially. 

8.4.3. Flow in pipeline systems 

I f  there is injection or offtake of gas a t  certain intermediate points of 
the transmission line, then these points are to be regarded as nodes and the 
node law must apply to  them. The system of non-linear algebraic equations, 
written up for the implicit cells of the individual pipeline segments and 
composed of pairs of equations resembling Eqs 8.4-20, is then complement- 
ed by node continuity equations of the form 

m 

where qn is the gas mass flow into or out of the node, and the q,s are the 
mass flow rates in the pipelegs meeting a t  the node. It is the solution of this 
extended non-linear system of algebraic equations that furnishes the time- 
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dependence of pressures and flow rates in a transmission line with injections 
and offtakes a t  intermediate points. Describing in this way the transients 
taking place in the transmission line system is fairly complicated; this is 
why, despite its accuracy, it is used to  solve simpler, radial systems only 
(Wylie et al. 1970). Modelling the transients of more complicated, looped 
nets is usually performed by some simpler method resulting from certain 
neglections. The most usual neglections are as follows (Guy 1967). 

In a gas transmission line system, neglecting the altitude difference 
between the system’s nodes does not usually introduce a significant error. 
The third-term on the right-hand side of Eq. 8.4-5 describing transient 
flow may therefore be dropped. It can further be shown that the term 
( p / A , ) ( a q / a t ) ,  describing the change per unit of time in the rate of mass 
flow on the right-hand side of Eq. 8.4-5,  is in the majority of practical 
cases less by an order of magnitude than the friction term 

1 B2 q2 

2diA: ’ 

and is therefore negligible, too. These simplifications reduce the system 
composed of Eqs 8.4-4 and 8.4-5 to  the following, much simpler, form: 

8.4-21 

8.4-22 

where we have changed the notation concerning internal cross-sectional 
area and I D  of the pipe (Ai ---L A ;  di + d) .  - Equation 8.4-21 states the 
pressure change per unit of time in an infinitesimal length of pipe dx, 
brought about by an infinitesimal change in the gas mass flow rate. The 
equation describes the capacitive property of the pipeline. - By Eq.  
8.4-22, the flowing pressure drop in the infinitesimal length of pipe dx 
can be calculated using the relationship for steady-state flow. The equation 
expresses the resistance to  flow of the pipeline. The physical content of 
these equations can be generalized to  systems of pipelines as follows. 

One assigns to  any node half the length of each pipeleg tying in to  that 
node, and the half-legs thus obtained are summed. Let the volume thus 
assigned to node j be Vj. The flows qi,] into and out of the node and the 
offtake q0,] at  the node determine the change of the mass flow rate a t  the 
node. Equation 8.4-21 may, therefore, be rewritten for this node in the 
following form (Fincham 1971): 

8.4-23 

where m is the number of pipelegs tying in to the node. - By Eq. 8.4-22, 
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mass flow rates in the pipelegs assigned to  node j can be calculated using 
the relationshix, 

8.4-24 

where the li,]s are the lengths of the individual pipelegs and 

Si , j  = sign ( p i  - p j ) .  

Introducing Eq. 8.4-24 into Eq.  8.4-23, and employing the notation 

we get after rearranging the differential equation 

8.4-25 

Applying the method of finite differences, 

-- dpj - Pi( t  + A t )  + P j ( t )  
dt At 

Using this, Eq.  8.4-25 assumes after rearranging the form 

Writing up similar equations for the other nodes we obtain a system of 
non-linear algebraic equations concerning the transients in the complex 
system. The solution of this system of equations furnishes the pressures 
prevailing at  the individual nodes at  the instant ( t  + A t ) .  Differential 
equation 8.4-25 can be solved using the implicit or explicit method, as 
follows. 

Let us introduce the notation 
m 

i =  1 
Ci= A t K , (  2 Ji,j(l p ?  - p3 1)0.5Si,j - qoi).  

Equation 8.4-26 may accordingly be written up in two ways: 

P j ( t  + A t )  = c j ( t )  + P j ( t )  
for the explicit method, and 

p j ( t  + A t )  = Cj(t + A t )  + Pj( t )  

for the implicit method. If the node pressures a t  the instant t are fixed 
by some initial condition, then the explicit method will directly furnish 
the pressures prevailing at  the instant ( t  + A t ) .  If, on the other hand, 
the implicit method is adopted, then said pressures may be obtained only 
by pimultaneously solving the system of non-linear algebraic equations, 
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including an equation resembling 8.4-26 for each node. If the system 
incorporates other elements (compressor, choke, etc.) as well, then the 
models described so far are further complicated. These elements having no 
transient storage capacity, however, their transient behaviour will be 
characterized by the same mathematical models as are described in Sec- 
tion 8.3.1 for steady-state operation. 

I n  connection with the application to concrete cases of the mathematical 
models outlined above, we have invariably pointed out the necessity of 
formulating suitable initial and boundary conditions, The alternatives 
arising in this respect were summarized by Batey et al. (1961). 

I n  fixing initial conditions there are two options. ( i )  Flow rates and 
pressures are determined by simultaneous measurement at various points 
of the pipeleg examined, and the pressure and flow rate distribution func- 
tions thus obtained will fix the initial state of the system. This procedure 
is bound to run up against a number of difficulties, and it is therefore 
much more common that: (ii) flow is considered as steady-state at the instant 
t = 0 in the pipeleg examined. The initial pressure distribution required 
for the transient calculation can then be calculated using the steady-state 
model, and the mass flow rate is constant. 

I n  defining boundary conditions, the following alternatives enter into 
consideration. One may fix the variation in time of the injection or deliv- 
ery pressure, of the flow rate or of throughput. As these six parameters 
are not independent mathematically, it is necessary and sufficient to fix 
the time variations of two parameters. I n  a complex system it is usually 
necessary to start from time-variable consumer demand at  the various 
nodes. The mathematical formulation of the relevant time functions may 
be based e.g. on the harmonic analysis of measurement results. Once the 
time functions have been established, one of the problems to be solved 
may be the adjustment, within the feasible limits, of the flow rates and 
pressures of the individual sources of gas, and possibly of compressor horse- 
power, so that the pressures a t  the consumer offtake points do not exceed 
the least supply pressure contracted for by more than a certain safety 
reserve. This is the way in which energy losses due to expansion can be 
minimized. 

8.5. Computer modelling of gas transmission systems 

8.5.1. Case of the digital computer 

The practical mathematical modelling of gas transmission systems has 
been made possible by the advent of the high-speed electronic computer. 
This statement is amply illustrated by the computation time demand of 
the steady-state, let alone the transient, network models described above. 
Employing the digital computer for systems modelling requires the mathe- 
matical formulation, ‘intelligible’ to the computer, of the fundamental data 
(e.g. system configuration) and of the fundamental relationships describing 
the particular model envisaged. This formulation is something of a special 
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problem. I n  solving it,  the systems analyst is assisted by an independent 
branch of modern mathematics, graph theory (Haray 1969), which has 
been applied-e.g. by Szendy (1967) -to the topological characterization 
of electric networks, too. 

(a) Application of the graph theory 

The complex gas transmission system composed of nodes and NCEs 
may, with due attention to the known or assumed directions of flow, be 
regarded as a directed graph whose connection matrix A is rather simple 
to write up. Let the columns of A represent NCEs, that  is, edges of graph, 
and let the rows represent nodes. Let element ai, of the matrix be 

+ 1, if edge j emerges from node i, 
-1, if edge j ends in node i, I 0 ,  if edge j and node i are unconnected. 

a,,, = 

The connection matrix of the graph in Fig. 8.5-1a, representing the net- 
work in Fig. 8.3-6,  is accordingly 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

2 - 1 1 0 0 0 0 0 0 0 0 0 1  
3 0 - 1 - 1  0 0 0 0 0 0 1 1 0 

5 0 0 0 0 - 1  1 0 0 0 0 0 0 n 8.5-  1 
6 0 0 0 0 0 - 1  1 0 0 
7 0 0 0 0 0 0 - 1 - 1  0 0 0 
8 0 0 0 0 0 0 0 1 - 1 - 1  0 0 
9 -  0 0 0 0 0 0 0 0 1 0 0 - 1 - 1  

A = l I - l  0 0 1 0  0 0 0 0 0 0 0 1  

4 , 0 0 1 - 1 1 0 0 0 0 0 0 0 ~  

O - I  : 
Node-connecting elements 

This connection matrix uniquely defines system configuration. In  net - 
work calculation, one requires in addition to the connection matrix also 
a definition of the loops-the senses of rotation-in the network, which 

1 

Tree branch- 
Chord --- 

t 

38 

Fig. 8.5 - 1 Gas transmission system 
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may be performed with the aid of the so-called loop matrix. In  order to 
derive the loop matrix from the connection matrix it is necessary to in- 
troduce the concept of a tree. This term denotes a connected graph in 
which there is one and only one trajectory between any two nodes. Thus, 
any loopless graph is a tree. If a graph is looped, it is possible to turn i t  
into a tree by eliminating some of its edges. This may be performed auto- 
matically, by adding up the rows of the connection matrix. Let us designate 
on the tree chosen a so-called point of reference or base point, and let us 
drop the corresponding row from the connection matrix. Now rearranging 
the matrix so as to separate tree branches and chord branches (the latter 
are those which are to be eliminated to form the tree), we may write up 
the so-called matching matrix of the system. Let e.g. the reference point 
be node I ,  in the graph shown as Fig. 8.5-1a, and let us eliminate loops 
by dropping edges 3, 6, 8 and 10. The matching matrix of the graph is, 
then, written in the form 

1 2  4 5 7 9 1 1 1 2  3 6 8 1 0  
- - 

-1 1 0  0 0 0 0 1 
0 - 1  0 0 0 0 1 0 
0 0 - 1  1 0 0 0 0 
0 0 0 - 1  0 0 0 0 
0 0 0 0 1 0 - 1  0 
0 0 0 0 - 1  0 0 0 
0 0 0 0 0 - 1  0 0 
0 0 0 0 0 1 0 - 1  

- 

0 0 0 0  
- 1 0 0 1  

1 0 0 0  
0 1 0 0  
0 - 1  0 0 
0 0 - 1  0 
0 0 1 - 1  
0 0 0 0  

8.5-2 

Tree branches 

B f 

Chord branches 
Bh 

Clearly, in a graph of n nodes and m edges, the number of independent 
so-called basic loops is k = m - ?a + 1. It can be shown that the trans- 
pose CT of the matrix C of these basic loops is defined by the relationship 

8.5-3 

where I is the unity matrix. 
Brl is the inverse of matrix Bf. It can be produced either by inverting 

matrix Bf, or by writing up directly as follows. The rows of BTI are the 
tree branches; its columns are the nodes. Let element bfil of matrix Bylzbe 

+1, if the trajectory from the base point to node i 
includes branch i ,  with the branch directed towards * .  

b-1 = the base point, 
” I -1, idem, with the branch directed towards the node, 8.5-4 

I 0; if the trajectory from the base point to the node 
does not include branch j. 

For an example, the inverse of matrix B, referring to  the tree shown in 
continuous line in Fig. 8.5-1a, written up according to Eq. 8.5-4, is 
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2 3 4 5 6 7 8 9  

0 0 
1 0  
0 1 
1 0  
0 1 

-BF1 = 1 
2 
4 
5 
7 
9 

11 
12 

0 9  
0 8  
o p ,  
0 :  
1-E- 

- 1 1 0 0 1  
0 1 0 0 1  
0 0 1 1 0  
0 0 0 1 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 1  

~ 0 0 0 0 0  

Nodes 

1 
I 2 

4 
5 
7 
9 

11 
12 
3 
6 
8 

10 

Bf'Bhs = 
- -1  - 1  0 0- 

- 1  -1  -1  1 
1 1 0 0  
0 1 0 0  
0 0 - 1  0 
0 0 1 - 1  
0 -1  -1  0 
0 0 1 - 1  
1 0 0 0  
0 1 0 0  
0 0 1 0  

- 0 0 0 1 -  

I n  possession of this inverse matrix, the transpose CT of matrix C referring 
to  the independent loops is obtained, after performing the matrix multi- 
plication, written up in Eq. 8.5-3 in the form (cf. Fig. 8.5-lb): 

Loops 

A B C D  

C T =  [- 

The system is uniquely defined by its connection matrix A and the loop 
matrix C derived from it. If in the following we agree to  represent gas 
flow in the individual NCEs by m-dimensional column vector q, and the 
gas offtakes a t  the individual nodes by n-dimensional column vector go, 
then Kirchhoff's node law may be written in the form of a matrix equation 

A9 = 909 

Zaijqj = qoi * 

or, in more detail, of the relationship 

j 

Kirchhoff's second law may be written up in a similar fashion, by 
representing pressure changes Ap2 = pq - p i  across NCEs by column 
vectors d P .  The loop law then assumes the form 

or, in more detail, 
CAP = 0 ,  

2 c,jAPj = 0,  
j 

where k is the subscript of loops. 
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It emerges from the above considerations that modelling gas trans- 
mission systems by means of directed graphs is fairly simple; description 
using matrices of such systems affords a clear insight into the essence of 
the problem; and the calculation is readily performed by computer. It 
should be noted, however, that if the system is extensive, the procedure 
takes a considerable storage capacity. Another problem is that matrices 
A, B and C are usually highly sparse; that is, a high percentage (up to  90 
or even 98 percent in some cases) of their elements may be zero. I n  order 
to  reduce storage capacity demand and to  simplify calculation, special 
sparse-matrix solution methods have been devised. 

(b) Review of system-modelling programs 

As a consequence of the fast-increasing popularity of the digital com- 
puter, numerous systems, simulation programs have been developed by the 
research teams involved with the problem. The most widely known pro- 
grams were reviewed by Goacher (1969), who divided them in three main 
groups. 

(i) General programs suitable also for the modelling of gas transmission 
systems. These are essentially programs suited for the solution of differential 
equations of various types. Several of these are included in the software 
of almost every medium and big general-purpose computer. The best- 
known such programs include CSMP (Continuous System Nodelling Pro- 
gram (IBM 1130/360)); Digital Simulation Language (IBM 1130/7090/360); 
MIMIC; MIDAS (Modified Integration Digital Analog Simulation) ; KALDAS 
(Kidsrove Algol Digital Analog Simulation (ICL 1900 Series)); SLANG 
(Simulation Language (ICL 503/803/4120/4130/ATLAS)). These programs 
have the common drawback that the system of dfferential equations 
describing the process taking place in the system has to be formulated by 
the gas engineer, who must, in addition, bring the system to the most 
suitable form or, indeed, reduce i t  to  the most fundamental operations 
(addition, subtraction), as the system of equations is fed to  the computer 
as a basic data. Preparing the equations of the boundary conditions is not 
less cumbersome. Another disadvantage is that  all programs named above 
employ the explicit method to solve the system of differential equations, 
and although the results for any time step are obtained rather fast, time 
steps must be quite short, which is a considerable disadvantage when 
handling transients of long duration. 

(ii) Programs modelling steady states. These programs are used for two 
distinct purposes: first, independently, to  investigate one of the fairly 
large class of steady-state or nearly-steady-state technical and engineering 
problems, and secondly, to  furnish initial conditions for the dynamic 
models. The programs developed by workers of the Gas Council’s London 
Research Station and their main characteristics are given in Table 8.5-1 
(after Goacher 1969). These programs satisfy in their majority the require- 
ment that the user should not have to know about the structure and opera- 
tion of the program. The input data including the network configuration, 
the parameters of the pipelegs, the pressures and yields of the sourcep. 
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Table 8.5-1 

Main features of steady-state network analysis programs (after Goacher 1969) 

MANKA (8K) 
MANNA (32K) 

MANX 1 (32K) 

SOKIC (8K) 

SONIC (32K) 

DEVIL (32K) 

SNAC (3210 

150 150 
300 1 300 

600 500 

150 ~ 150 

300 , 300 

300 ~ 300 

400 1 300 

15 
40 l2 1 50 

50 altogether 
100 200 

None 
None 

None 

200 altogether 
20 20 10 

20 altogether 
40 50 20 (at least 1) 

50 altogether 
40 50 20 (at least 1) - 1 

1 50 altogether 

1 

25 1 150 

MANX-4 = Matrix Algebra for Kon-linear Xetwork Analysis (IBM 1130) 
SONIC = Steady-state of Networks Including Compressors (IBM 1130) 
SNAC = Steady-state Network Analysis with Compressors 

and consumer demands is readily compiled with reference to  a set of in- 
structions. I n  order to solve a loop i t  is sufficient to estimate the through- 
put in one pipeleg included in the loop. From these data, the computer 
will calculate the steady-state conditions by an iteration procedure. 

(iii) Programs modelling steady and transient states. I n  these programs, 
the part modelling the steady state serves to provide the initial conditions 
required for the transient calculations. The program is formulated also in 
this case so that the gas engineer in control of the system may use i t  as a 
‘black box’ provided he observes certain instructions and rules of opera- 
tion. Although the input data list differs from one program to the next, 
each program will require as a matter of course the data mentioned in 
connection with the programs simulating steady states. These must be 
complemented with the transient boundary conditions and with the param- 
eters of the compressors, regulators, valves, etc. included in the system. 
The most widely known programs and their main characteristics are listed 
in Table 8.5-2. Not mentioned in the Table is General Electric’s (USA) 
fairly successful GE Simulator. This latter, similarly to  ENSMP and CAP, 
solves the differential equations by the implicit method, whereas PIPET- 
RAN and SATAN use the explicit method. The time step is, therefore, 
much shorter in the latter. For an example as to the structure of a program 
simulating a complex gas transmission system, let us consider that of 
SATAN. 
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Table 8.5-2 

A summary of the main features available in four dynamic analysis programs (after Goaoher 1969) 
____ 

PIW- 

leIined 
nodes 

sum 

-~ 
I 

~ 

5 

30 

Flow- 
drfined 
nodes 

Flow prrssnre 
pmfiles 

Lonble or 
parallel 
pipes 

’ipeleg: Nodrs Ilegnlatorc Lilop” Valves Program 

1 
~ __  - 

CAP 

ENSMP 

PIPET- 
RAN 

SATAN 

2 3 6 7 8 9 10 1 1  
____ 

150 

300 

105 

Not 
avail- 
able 

4 

NO 
limit 

No 
limit 

30 

No limit 

150 

300 

105 

300 

150 
may have up- 
per and lower 
pressure limits 

300 

Not 
available 

Not 
avail- 
able 

Not 
avail- 
able 

10 PCO 
PCI 
FCO 
FCI 

50 
iltogethe 

PCO 
FCO 

10 10 

Not 
avail- 
able 

Not 
avail- 
able 

No limit 

No limit 

20 PCO 10 
Does not in- 
clude com- 
pressor loops 

No limit 

5 standard 
type. No limit 
on specific 
type 

30 

,ogether 

10 PCO 
PCI 
FCO 
FCI 
HPC 
HPM 

PCO 
FCO 
HPM 

30 

5 

25 

106 

300 
may have up- 
per and lower 
pressure limits 

150 50 

PCO = Pressure-controlled outlet 
PCI = Pressure-controlled inlet 
FCO = Flow-controlled outIet 
FCI = Flow-controlled inlet 
HPC = Horsepower control 
HPM = Horsepower maximum 
ENSMP = Extended Network Systems Modelling Program; Engineering Research Station of Gas 

CAP 
PIPETRAN = Pipeline Transients, Electronic Associates Inc. (USA) 
SATAN 

Council (England) 
= Control Advisory Program; Engineering Research Station of Gas Council (Bngland) 

= Steady and Transient Analysis of Network Gas Council London Research Station 



The program consists of three main units, which may be run separately 
if so desired. - Phase 1.  Calculation of the steady state. Quite often, it is 
necessary to  compare only the steady-state operation of various system 
configurations, or to furnish initial conditions for the transient calculation. 
I n  that case, running this program separately, one may examine up to 10 
variants in succession. At the end of each run, in addition to the printout 
of the desired results, all data required for the transient calculation except 
the boundary conditions is stored in the background memory from where 

1 -  steady-state condition 

I I-.. I I Store steady-state ~ o c ~ i n g \  
configuration4 parom store j 

u I I 
,- runs done 

4 Yes 

0 Exit 1 

Ex i t  2 0 

t ransient data-set 
---l--- 

transient analysis w 
E x i t 3  I L 

Fig. 8.5-2  The SATAN program, after Goacher (1969) 

it may be called in as and when required. - Phase 2. This is the connecting 
phase in which the transient model is built up step by step out of the re- 
sults of one or more variants of the previous phase, judged to be the most 
interesting, and out of the boundary conditions fed into the machine. 
The results are once more relegated to the background memory. Up to 
ten dynamic-model variants may be stored also in this case. - Phase 3. 
Transient analysis. The computer calls in the intermediate results, calcu- 
lated in the foregoing phases, of one or several preferred variants, and 
calculates the transient flow rates and pressures. 

The block diagram of the program is given after Goacher in Fig. 8.5-2.  
The program structure is such that routines providing higher accuracy, 
or a faster solution, or a more economical use of storage space can be 
introduced into the program without changing its structure, merely by 
exchanging certain segments. 
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8.5.2. Case of the analog computer 

Analog computers incorporate cells simulating the four main types of 
elements of the gas transmission network: pipelegs, consumers, gas sources 
and compressor stations. The system's model can be composed of these 
cells by simple plug-in. I n  analog computers simulating steady-state flow, 
the so-called pipeleg cells simulating flow in a length of pipe represent 

the relationship 
\ q02 

A El  - E ,  = RI" 

analogous to  the friction equation. 
where E is E.M.F., R is electric 
resistance and I is intensity of 
current. If the variation with 
pressure of the flowing medium's 

q03 gravity can be neglected, then 
pressure p in the pipeline is 
proportional to  E .  This analogy 
applies to low-pressure commu- 

nity utilities, In  high-pressure gas transmission systems, where gravity 
varies markedly with pressure, this latter is proportional to the square 
root of E.  The extraction of the radical is performed by a function gene- 
rator. I n  modern apparatuses, pipe cells are constructed so that, if the 
direction of flow in a given pipeleg is opposite to  what has been assumed, 
an automatic reversal of flow takes place. The cell simulating the con- 
sumer is a current sink which, irrespective of any voltage fluctuation at 
the node, absorbs current a t  a constant rate out of the system. The so- 
called source cell modelling the injection of gas is a d.c. power supply unit 
of variable output voltage. The compressor-station cell is an electronic 
amplifier. 

Determining the various constants is facilitated by auxiliary diagrams 
in which said constants are plotted v. certain characteristic parameters, 
for instance, resistance to  flow of a pipeleg v. pipe size and length, etc. 
Setting these constants by means of calibrated potentiometers is fairly 
simple and quick. 

The results of the modelling procedure appear a t  a central control con- 
sole, where any node or cell of the system may be called in by pushing a 
single button. This makes node pressure and throughput, or, in the case 
of a cell, the difference between input and output pressure and the gas 
flow rate, appear on the readouts of digital voltmeters or as a printout 
of a printer hooked up to the system; each data is provided with a code 
permitting identification. The system can be instructed to  scan all nodes 
in succession and to record results as the scan proceeds. 

I n  an analog system, variants of the gas-transmission-system model 
take much less time to  build than when using a digital computer. This 
is a substantial advantage both when designing new systems and when 
examining the operation of existing ones. The analog machine can be used 
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to advantage also in the examination of transient behaviour. For an 
example let us consider one of the possible analog models of transient 
flow in the network section shown as Fig. 8.5-3. The principle of the 
procedure was outlined by Goacher (1969). The mathematical model of 
the network section, the system of first-degree differential equations 
8.4-25, can be written in the form 

I 8.5-5 

i 
= K ,  [JI,Z(Pf - Pi)"." - J 3 , 2 ( P )  - P3")"." - 4 0 2 1  

dt 

* = K3 [J1,3(Pl - P3)O" + ' ! 2 , 3 ( P 2  - P3)O.j - 4031 
dt 

The block diagram of the analog system solving this system of equations 
is shown as Fig. 8.5-4. 

The analog computer has the considerable advantage that it will solve 
a variety of problems without need for mathematical abstraction, by 
simple manual intervention, and practically a t  once, with no time required 
for the calculation. This type of modelling is therefore of considerable 
interest when the problem to solve is the choice among a large number 
of variants in designing a new system or in optimizing an existing one. 
One of the applications i t  is best suited for is the training of transmission 
system operations engineers, as i t  lends itself very well to  illustrating the 
way the gas supply system will function under various conditions (cf. 

Fig. 8.5 - 4 Block diagram of analog setup solving the system of Equation 8.5 - 5 ,  after 
Goacher (1969) 
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also Shephard and Williams 1965, de Brem and Tonnelier 1970). - The 
main drawback of the analog computer is that it is a special-purpose ma- 
chine; a device designed for the simulation of gas supply systems, that  can 
be used for hardly anything else. Machines suitable for representing com- 
plicated systems include a large number of cells and their price is accord- 
ingly high. 

The largest-size analog computer suitable for modelling a regional gas 
supply system is operated by SNAM at  Metanopoli, for simulating the 
Italian grid. After a publication in 1970, the total length of pipelines in 
the grid is 4000 km, and this is t o  be expanded by a further 5000 km. 
I n  1968 it conveyed 10 x 109 m3 of gas per year, and this value is expected t o  
increase to 18 or 20 x 109m3 by 1980. The analog machine models 210 pipelegs, 
22 injection and 70 offtake nodes, 4 compressor stations, 20 pressure reg- 
ulators and 40 valves. The transient behaviour of the grid is checked 
every three hours. The purpose of the check is to find the most economical 
way of satisfying demand, in terms of minimum compressor power and 
optimum storage-capacity exploitation. I n  1969, a digital machine was 
installed alongside the analog machine built in 1968. The digital machine 
serves to acquire measurement and situation data, to  perform side calcu- 
lations, to give alarm in the case of malfunctions, and to  prepare reports 
(Bonfiglioli and Croce 1970). 

8.6. Pipeline transportation of natural gas; economics 

Finding the economically optimum dimensions and operating para- 
meters of a gas transmission pipeline is a comparatively simple task if 
there is a single line to convey gas from the site of production to  the site 
of consumption. If no intermediate boosting is required, then the optimum 
trace and pipe size of the line can be determined similarly to the method 
outlined for oil pipelines in Section 7.1.4. Moreover, Renauldon’s pro- 
cedure will furnish the most economical pipe size relatively simply even 
if booster stations are installed a t  one or more points along the pipeline 
(SociBtB . . . Manuel 1968). 

I n  practice, however, the typical problem arising is the economic opti- 
mization of transmission networks or, even more generally, of regional gas 
supply grids, and this is a very complicated problem indeed. As was shown 
in the previous section, the grid includes the gas field proper as one of 
its components. It was tacitly assumed that the gas flow rate out of the 
field is given or known. I n  reality, the gas reserve of the field, the envisaged 
rhythm of its exploitation, and its expected life will all affect economy. 
Measures taken in order to  smooth daily and monthly production rates 
over the year also carry a considerable importance. We shall consider 
these viewpoints below. 

The duration of developing a gas field (drilling the gas wells, choosing 
the number of producing wells, the preparation and transmission equip- 
ment to be matched to them, the capacities and the construction and 
installation periods of these sets of equipment) may vary rather widely. 
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Mayer-Giirr illustrates the economic importance of these factors on a 
simple example (Mayer-Gurr 1971). Figure 8.6-la shows the first two 
sections of the typical production curve of a gas field, in three variants. 
The exploitable gas reserve of the field was assumed to  equal 55 km3. 
Three rhvthms of exdoitation have been envisaged. The first production 
period t ikes five ye& in all three. It is 
during this period that production is run 
up to full rated capacity. This latter is 4.5 
km3 in the first case, 3.0 in the second, 
and 2.25 in the third. This is the output 
that  is desired to  maintain over about 60 
percent of the field’s life. The period of 
level production is 10 years in the first 
case, 15 in the second and 20 in the third. 
Part (b) of the Figure shows the drilling 
rates and numbers of wells required by the 
individual variants. The reason for drill- 
ing more wells even after the run-up 
period of five years is that, by the assump- 
tions made, reservoir pressure and hence 
the productivity of the wells will decline 
during production. Part  (c) of the Figure 
shows the first cost of wells and of produc- 
tion equipment in the field. First cost is 
seen to  be exactly twice as high in the 
first case as in the third. The rhythm of 
development and the prescribed sustained 
level of production of the gas field does, 
then, substantially affect the economics 
of the regional gas supply grid. 

The factors affecting the optimal oper- 
ation of a gas supply system are, accord- 
ing to  Graf (1971)’ as follows. (i) The 
load factor of the system should be as 
high as possible. (Load factor: ratio of 
flow.) The load factor of the lsroduction 

1% -I-- 7 

0 5 I0 15 20 25 30 35 40 year 

Fig. 8.6-1 Development costs of 
gas field, after Mayer-Gurr (1971) 

mean to  maximum hourly gas 
svstem mav differ from that 

of the supply system; the main lreason for chis is th& one pipeline may 
convey gas coming from several gas fields. The gas supply company 
may, with a view to increasing the load factor, take the following measures: 
use the pipeline as a buffer storage facility (cf. Section 8.4-2a); establish 
an underground stratigraphic storage capacity (storage field) ; use a reserve 
of liquefied gas, or propane injection, or high-pressure gas storage to  
ensure an excess supply capacity for periods of peak demand. (ii) Of the 
above-enumerated measures, those are taken that ensure the most eco- 
nomical solution in any given case. (iii) Gas fields of various nature are to 
be produced in the most economical combination, possibly one after 
another. (iv) The system should ensure uninterrupted gas supply with a 
high degree of safety. The safety of supply can be measured by two factors. 
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One is availability, which is the ratio of the aggregate length of uninter- 
rupted supply periods to  total time. The other is the reserve factor. The 
higher the availability the less reserve is needed in the form of parallel 
lines, underground storage capacity or standby peak-demand supply 
systems. 

Undergound storage in storage fields is a chapter of reservoir engineer- 
ing. Here we shall just touch upon the essentials and the nature of the 
procedure. Natural gas may be stored in a gas reservoir, either exhausted 
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8.6 - 2 Natural gas supply 
(after Kridner 1965) 

or nearing exhaustion, in an exhausted 
crude oil reservoir, or in an aquifer. Re- 
quirements facing a reservoir are as follows. 
(i) It should have a cap-rock impervious to 
gas, (ii) it should have sufficiently high 
porosity and permeability, (iii) the stor- 
age wells should not establish commu- 
nication betwen the formations traversed, 
that  is, their casings should be cemented 
in so as to  provide faultless packoff 
(isolation); (iv) it should be situated close 
to  the area of consumption, (v) the reser- 
voir rock should be chemically inert vis- 
&-vis the gas to be stored. - The gas reser- 
voir may be closed, with no inflow of wa- 
ter from below or laterally. The storage 
space may in such cases be regarded in  

a fair approximation as a closed tank whose volume equals the pore 
volume. In  open reservoirs, decrease of pressure entails the inflow of 
water from below or from the periphery towards the centre of the reser- 
voir. On the injection of gas into the reservoir, the gas-water interface will 
sink. The gas-filled volume of this type of underground reservoir is, 
then, variable. I n  the USA, underground storage reservoirs for the stor- 
age of natural gas have been in use since 1915, and G. C. Grow (1965) 
predicted the volume of such reservoirs to attain 35 percent of coun- 
try-wide annual consumption by 1980. 

The main purpose of an underground storage reservoir is to mitigate 
the economically harmful influence of seasonal fluctuations in demand. 
Such fluctuations are significant especially where one of the foremost 
uses of gas is in heating. I n  order to  exploit the capacities of the production 
and transmission equipment more fully, a reserve is built up during the 
low-demand summer months in underground reservoirs (storage fields) close 
to consumption centres. This is where peak demand in the winter months 
is met from. 

Figure 8.6-2 is a typical diagram of natural-gas supply. The bold line 
shows the number of days on which daily consumption exceeds some 
arbitrary daily consumption q t .  The area below the curve equals the annual 
gas consumption, provided the axes are suitably calibrated. The average 
height of the area below the curve equals the mean daily consumption, 3 .  
Assuming that the production equipment produces, and the transmission 
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system conveys, a gas flow q each day, the area A indicates the volume 
of gas that can be stored up in the low-demand period. Area B,  equal to 
area A ,  is proportional to the volume of gas to  be taken out of the reservoir 
on high-demand days. The diagram reveals that, in the case considered, 
gas will have to be taken out of the reservoir over 150 days. Area B is 
split in two parts. Gas volume B, is most expediently stored in a storage 
field, whereas the storage of volume B ,  by some other means may be more 
economical, because taking out B ,  of the storage field would need a fairly 
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Fig. 8 . 6 - 3  The German Federal Republic’s 
gas supply system, after Graf (1971) 

considerable increase of the gas production capability of the producing 
field, which is rather a costly affair. It may therefore be expedient to 
supply volume B ,  from, for example, high-pressure undergound gas tanks, 
storage of liquefied gas, or of propane gas, etc. These methods have a 
copious literature. 

Regional gas supply grids are usually too complicated to  be operated 
optimally by unassisted men, in view of the continually changing demand 
and other conditions facing the system. This is why the process control 
of such systems is of so great an importance. Today’s consensus is that 
joint off-line control by man and computer is to  be preferred. One of the 
tasks of the computer is data acquisition and the presentation in due time 
of adequate information. In  possession of this information, the dispatcher 
must be in a position t o  take optimal decisions and to  implement them 
by remote control. The other main task of the computer is the on-line 
control of certain functions (Holland and Mix 1970). The first publication 
on off-line process control dates from 1966 (Pipe Line News 1966). Process 
control of gas supply systems has considerably spread since. Roberts 
(1970) describes the gas supply grid of Panhandle Eastern, controlled by 
a dispatcher assisted by an IBM-1800 computer. The grid incorporates 
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pipelines of 2100 km aggregate length and supplies with natural gas 110 
utilities catering to  22 million consumers. - Let us cast a brief glance on 
computer control, with the system realized a t  the Brigitta-Mobil Oil com- 
panies taken as an example. Figure 8.6-3 is a schematic sketch of the 
journey of natural gas from the gas wells to  the consumers. Gas is pro- 
duced from wells 1, and led through the dehydrators 2 installed next to  
each well into flowline 3 and through it  into well centres 4. From there, 
gas flows through transmission line 5 and enters the low-pressure utility 
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Fig. 8.6 - 4 Information transfer, display and control (Mittendorf and Schlemm 1971) 
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Fig. 8.6- 5 Flow of information among telemetering, remote-control and program- 
control equipment (Mittendorf and Schlemm 1971) 
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a t  transfer station 6 .  The data acquired all over the system is supplied to 
the central process control at Visbek. Critical points are provided with 
local automatic safety equipment (Graf 1971). 

Figure 8.6-4 is a schematic diagram of information flow and control 
(Mittendorf and Schlemm 1971). It is seen that both the dispatcher and the 
computer may give commands controlling both the production and trans- 
mission equipment. - Figure 8.6-5 shows information flow between the 
computer, its peripheral units, and the remote-signalling and remote- 
control equipment,. 
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