Chapter 8

Pipeline transportation of natural gas*®

8.1. Physical and physico-chemical properties of natural gas

In the following we shall be concerned only with those physical and physi-
cochemical properties that affect the transmission of gas in pipelines; even
those properties will be discussed only in so far as they enter into the
relevant hydraulic theories.

8.1.1. Equation of state, compressibility, density, gravity

It is the gas laws or, in a broader scope, the equations of state concern-
ing natural gas that describe the interrelationships of pressure, specific
volume and temperature, all of which may be subsumed under the notion
‘pVT behaviour’ of the gas. Natural gas is not ideal, and the deviation of
its behaviour from the ideal gas laws is seldom negligible and occasionally
quite considerable. For the purposes of practical calculations, those equa-
tions describing the pV7T behaviour of real gases are to be preferred that
account for deviation from ideal-gas behaviour by a single correction
factor, based on a consideration valid for any gas. Such a consideration
is the theorem of corresponding states, expressed in terms of state param-
eters reduced to the critical state: this theorem states the existence of
a function of the reduced state parameters, f(p,, V,, T,) = 0, that is valid
for any gas. The pV7T behaviour of natural gas can be described in terms
of an equation of state corrected by the compressibility factor z:

where V is thespeci fic volume valid at pressure p and temperature T';
R is the universal gas constant, whose rounded-off value is 8314J/(kmole. K).
Any given gas is characterized by its specific gas constant, or simply gas
constant,

R = £— 8.1-2
M

By the theorem of corresponding states, the compressibility factors z of
two gases are equal if the reduced state parameters of the two gases are

* This Chapter has been written in co-operation with Ferenc Patch.
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equal, that is, if the gases are in the same corresponding state. Reduced
pressure is

Pr= p/pc
T, = T/T..

In the case of gas mixtures, reduced parameters of state are to be re-
placed by the pseudo-reduced parameters p, and 7', defined in terms
of the pseudocritical pressure and temperature p,. and T, both depend-
ing on gas composition, as follows:

Por = P/Ppc 8.1—3
Toe = T[T 8.1—4

If gas composition is known, py. and T’y can be determined by applying
the principle of additivity or—usually at a lower accuracy —using empirical
diagrams. Additivity means that molar mass, pseudocritical pressure and
pseudocritical temperature of a mixture can be added up from the re-
spective parameters of the components, combined with their molar frac-
tions or volume fractions:

and reduced temperature is

and

n
M= i_ZlyiM i
n
Ppc = g‘lyipa

n
Tpc = iélyiTci :

The accuracy of this calculation is usually impaired by the circumstance
that, in the composition of the gas, the relative abundance of the heaviest
components is given by a single figure denoted C,,. The critical param-
eters are usually put equal to those of the component C,.; if e.g. the
combined heavy fraction is C;., then it is taken into account with the
critical parameters of heptane, C,. This is, of course, an approximation
whose accuracy depends on the actual composition of the combined heavy
fraction.

Example 8.1—1. Find the molar mass and pseudocritical parameters of
state at a pressure of 88 bars and 280 K temperature of the wet natural gas
whose composition is given in Columns (1) and (2) of Table 8.1—1. The
physical constants of the gas components are listed in Table 6.4 ~1. The
calculation whose details are given in Columns (3), (4) and (5) of Table
8.1 —1, furnishes M = 21.5 kg/kmole. By Eqs 8.1 -3 and 8.1—4,

8.8 x 108

= 17T 1,92
P T 4.59 % 10°
and
_ 2800 _ .
PI 9942
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Table 8.1—1

Components of . | Myz; | Teizi DPeizi
natural gas i ’ | kg/kmol | K 105 X/m?
1 1 2 3 : 4 5
| ‘
Methane 0% I 12.67 150.7 36.87
Ethane 0.100 | 3.01 30.5 4.89
Propane i 0.055 2.43 20.3 2.34
i-Butane 0.010 0.58 4.1 0.36
n-Butane |  0.015 0.87 6.4 0.57
n-Pentane ,  0.024 1.73 11.3 0.81
co, | 0.001 0.04 0.3 0.08
N, [ 0.005 0.14 0.6 0.17
l
Total 1.000 21.47 294.2 ’ 45.90

Figure 8.1—1 permits us to read off pseudocritical pressures v. pressure and

pseudocritical temperatures v. temperature for hydrocarbon gases
various molar mass.

of

Example 8.1—2. Find using Fig. 8.1—1 pseudoreduced parameters of
state for a gas of molar mass M = 21.5 at the pressure and temperature
stated in the foregoing example. — Figure 8.1—1 furnishes p, = 4.61

MN/m? and T, = 223 K. — By Eqs 8.1 -3 and 8.1—4,
_ 8.8x10°

Por = =191
P 481108
and
280
or = —— = 1.26.
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Fig. 8.1—1 Pseudocritical parameters of natural gas v. molar mass (from
Katz 1959, p. 111; used with permission of MeGraw-Hill Book Company)
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The results furnished by the two procedures are in approximate agree-
ment, but more substantial deviations may occur in other cases. Empirical
diagrams other than Fig. 8.1—1 have been published (e.g. Stearns et al.
1951).

The compressibility factor z can be determined most accurately by
laboratory experiments on pV7T behaviour. If no z = f(p,7T) diagram
based on experiment is available, then z is determined as a function of the
reduced state parameters out of empirical diagrams or relationships. One
of the best-known empirical diagrams is that of Standing and Katz (1942;
Fig. 8.1-2). For the pseudoreduced parameters p,, = 1.92 and T,, = 1.25
of Example 8.1—1, it furnishes z = 0.92.

Natural gas often contains substantial amount of non-hydrocarbon gases,
N, and CO, first of all. If the volume percentage of these is less than 8
percent for N, and 10 percent for CO,, then the compressibility factor is
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Fig. 8.1—2 Compressibility factor of natural gas v. pseudo-reduced parameters of
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most readily determined by a procedure suggested by Graf (Szilas 1967):
the hydrocarbons are considered to be a single component whose pseudo-
critical parameters and compressibility factors z are determined separately
by some suitable method. The compressibility factors zcg, and zy, for
CO, and N, are then read off Figures 8.1—3 and 8.1—4, and the value 2’
for the mixed gas as a whole is calculated using the mixing rule

2" = Yng®N2 + Ycootcor + (1 — ¥n2 — Yco2)?-

In writing computer programs it is an advantage if the compressibility
factor can be found by calculation, without having to resort to diagrams.
Literature contains several calculation procedures. The relevant formulae
are mathematical representations of more or less extensive domains of the
families of curves constituting the empirical diagrams. The French gas
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Fig. 8.1—3 Compressibility factor of CO, according to Reamer and Elters; after
Térok et al. (1966)
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Fig. 8.1—4 Compressibility factor of N, according to Sage and Lacey; after Térok
et al. (1966)
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industry uses for pressures of below 70 bars at soil-temperature flow the
formula

z=1—2x10-%p. 8.1—5
(Société . .. Manuel 1968). A relationship accounting also for temperature,
applicable below 60 bars, is
SR . 8.1-6
1+ kp

k is listed for certain temperatures in Table 8.1 —2 (likewise from Société . . .
Manuel 1968).

Table 8.1 -2
r L .
°C
0 ‘ 2.65x 10~8
15 | 2.04x10-8

30 ‘ 1.65x10°8

Relationships for calculating the pseudocritical parameters of state have
been given by Thomas et al. (1970) ‘

Ppe = 4.894 X 105 — 4.050 X 10% g, 8.1—7
Tpe = 94.71 + 170.7 g,. 8.1—-8
Wilkinson (1964) gave for p, << 1.5 the formula

2=1+ 0.25Tp, — 0.533 2B 8.1—-9
pr
where p, and T, are the values furnished by Egs 8.1—3 and 8.1—4,
respectively.
Gas density at pressure p and temperature 7' can be obtained putting
V =1Jp in Eq. 8.1—1:
_ ]MM
©T T

If this equation is written up for the standard state, then p = p,,
T=T,and z =z, = 1. Then

8.1-10

M

RT,
Let e.g. p, = 1.013 bar and 7', = 273.2 K. Since furthermore, B = 8314
J/{(kmole. K),

on 8.1—11

M
22,42

On =

8.1—-12

(311
Ot
[\



Rearranging we get, at the standard-state parameters stated above, the
standard molar volume

Vool = Mon = 22.42 m3/kmole. 8.1-13
Relative density is the standard-state density of the gas referred to the
standard-state density of air:

0, =2 8.1-14
Qan

Now by Eqs 8.1—12 and 8.1—14,

M

= . 8.1-15
28.96

_M
o =3

Gravity is
y = of. 8.1—16

8.1.2. Viscosity

Gas viscosity, as distinet from liquid viscosity, increases as temperature
increases, decreases as molecular weight increases, and is independent of
pressure at medium pressures. At atmospheric pressure, viscosities of hy-
drocarbon gases vary linearly with temperature between 0 and 200 °C (Fig.
8.1—5). The viscosity of hydrocarbon mixtures at atmospheric pressures
is readily calculated using a relationship published by Herning and Zipper:

n IEva
_2 Hoiti) M,
Ha:’————=1 . 8.1-17
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Fig. 8.1—5 Viscosities of natural gas com- 8 T %;; %-_
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Figure 8.1—6 is a plot of values furnished by this relationship, and,
more generally, of measured viscosities of artificial hydrocarbon-gas
mixtures. It permits us to find atmospheric pressure viscosity in terms of
the molecular weight and relative gravity of the gas (Carr et al. 1954).
The influence of non-hydrocarbon components may be taken into account
by a viscosity-increasing correction depending on relative density, provided
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Fig. 8.1—6 Viscosity of natural gas at atmospheric pressure (Carr et al. 1954)
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the share of these components does not exceed 15 percent. — A relation-
ship between viscosity and pressure may be set up making use of the theorem
of corresponding states. Figure 8.1 -7 allows us to find, in the knowledge
of the pseudocritical pressure and temperature, the factor & = u,/u, by
~hich the viscosity at atmospheric pressure is to be multiplied in order
¢0 obtain the value that holds at pressure p (Carr et al. 1954). The rela-
tionship is valid in the gaseous state only, and it is therefore necessary
in critical cases to check by phase examinations whether or not a liquid
phase is present.

8.1.3. Specific heat, molar heat, adiabatic gas exponent,
Joule—Thomson effect

Specific heat is the heat capacity of the unit mass or molar mass of a
substance or, in the case we are discussing, the ratio of the heat d@ im-
parted to a unit mass of gas to the resulting temperature change d7,
provided no phase change takes place during the temperature change. The
usual cases investigated in a gas are temperature changes at constant
pressure, on the one hand, and at constant volume, on the other, and
accordingly, two distinet specific heats may be defined, the isobaric ¢
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Fig. 8.1—8 Specific heats of natural-gas components at atmospheric pressure, after
Brown (1945)
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and the isochoric ¢,. ¢, > c,, since part of the heat supplied to the system
will expand the gas in the isobaric case. In ideal gases, the difference between
the two constants equals the gas constant, that is,

¢, — ¢, = R. 8.1-18

The difference between the characteristic specific heats in a real gas is
not constant. Figure 8.1 —8 after Brown (1945) shows isobaric molar heats
v. temperature of hydrocarbon homologues at atmospheric pressure. The
¢pe Of gas mixtures can be determined on the basis of additivity, in terms
of the components’ specific heats and molar fractions, that is,

n
Cpa = 2; Yi Cpai
=

The specific heat ¢,, of a gas mixture at pressure p exceeds the value
¢pq 4t atmospheric pressure by Ac,. Figure 8.1—9 is a plot of Ac, v. pseudo-
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reduced pressure p, for various pseudoreduced temperatures T, after
Edmister (Perry 1969). Let us point out that Ac, is stated in molar terms,
and has to be divided by the molar M mass in order to transform it into
a quantity having the nature of a specific heat.

The adiabatic gas exponent

s

3 = _P 8.1—-19
Cy

is usually required in thermodynamic calculations. Its value can be deter-
mined, e.g., by reading the molar-heat difference (c, — ¢,) off Fig.8.1—10

3 : T v T
cp—cvOO m o iU‘J‘j .
3 T EERaE 1057
mole K i Loy \\ ‘
100 1) & } \ | /
i S S T ALY
i AN
[[ i ] T SN0
f

HIATAY

10
==
004 010

0

Fig. 8.1—10 (c,—c,) of real gases v. the reduced parameters of state, after Perry
(1969)

(after Perry 1969) and calculating ¢, in the knowledge of ¢,. The use of
the figure presupposes knowledge of the pseudoreduced parameters of
state. The molar heat or specific heat is calculated for a certain tempera-
ture range rather than for a single pair of pressure and temperature values.
The mean molar heat c, can be determined for instance by planimetering
the specific heats calculated for various temperatures by the procedure
outlined above. In a simpler procedure, one may read the enthalpy values
hy, and h, corresponding to the initial and terminal temperatures 7', and
T, off suitable diagrams or tables. Then

~ hy — by

Cp e

T,—-T,

If the pressure of an ideal gas is lowered without the gas delivering
energy, then, if the gas is ideal and the change of state is adiabatic, the
total internal energy of the system remains unchanged, that is, the state
change is isoenthalpic, and the temperature of the gas remains unchanged,

too. If, however, the gas undergoing said change is real, then its volume
change will differ from ideal gas behaviour. As a result, its internal energy
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and hence also its temperature will be affected (Joule—Thomson effect).
Among the temperature changes taking place during gas flow, it is ex-
pedient to account for this effect by the Joule —Thomson coefficient u,,
which is a measure of temperature change per unity pressure change.
ug = 0, that is, expansion may increase, reduce or leave unchanged the

il

1x10%

Fig. 8.1 11 Relationship for determining the choke effect, after Korchazhkin (1963)

temperature of the gas. Several relationships for determining u, have been
derived. Figure 8.1--11 gives the values [in J/(K kmole)] of the expression

ppc cp Ha
T pe

in terms of the pseudoreduced parameters of state, and this expression
may be solved to vield u,; (Korchazhkin 1963).

8.1.4. Hydrocarbon hydrates

Hydrocarbon gas hydrate is a solid granular substance resembling snow
or ice. It is composed of water and the molecules of one or more hydrate-
forming gases. The molecules of this gas enter cavities in the H,0O lattice,
which is looser than the ice lattice, without entering into chemical bond
with the water. The lattice thus forming may be one of two pentagonal
dodecahedra. The conditions of hydrate formation and stability are:
(i) sufficiently low temperature and high pressure; (ii) the hydrate-forming
gas is held together by covalent bonds; its molecules are shorter than 8 A;
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and when liquid, it is immiscible with water; (iii) during hydrate formation,
water is liquid; (iv) hydrate is resistant to water and no Van der Waals
forces arise between its molecules.

Hydrates include besides water methane, ethane, propane or butane,
alone or mixed together. In addition to the hydrocarbons, other, non-
hydrocarbon gas components such as nitrogen, carbon dioxide or hydrogen
sulphide may also be hydrate-forming. Hydrate composition depends on
the nature of the hydrate-forming gas but is not governed by the rules of
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Fig. 8.1—12 State diagram of hydrocarbons according to Willard; after Orlicek and
Psll 1951, Table 118 (used with permission of Springer-Verlag, Wien/New York)

stoichiometry. The least water-to-methane ratio in methane hydrate would
be 4.5, in view of the number of methane molecules that can be accom-
modated in the water lattice. However, methane-unsaturated hydrates
with more than 4.5 moles of H,0 per mole of methane also occur. The
least water content of ethane hydrate is about 7.7 moles H,0 per mole
of ethane. The propane and butane molecules may enter but the largest
cavities of the lattice, and hence, in propane hydrate, 17 moles at least
of water are required per mole of propane.

Figure 8.1—12 shows state diagrams of various two-component hydro-
carbon hydrates after Willard (Orlicek and Poll 1951). The upper tempera-
ture limit e.g. of propane hydrate formation is seen to be 5.6 °C, with a
corresponding pressure of 5.6 bars. The point defined by these parameters
of state is an invariant of the propane-water system, a four-phase point
with no degree of freedom, where propane hydrate as the solid phase is at
equilibrium with gaseous propane saturated with water vapour, water
saturated with liquid propane and propane saturated with water. The
figure shows which phases may coexist in the individual regions. In reality,
it is usual for hydrates to involve more than one hydrocarbon component.
The critical pressure of hydrate formation is substantially reduced e.g.
if methane is accompanied by some hydrocarbon of larger molar mass,
propane or butane first of all. Even quite low concentrations cf these may
displace the phase diagram rather considerably. For approximate estimates
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one may use Fig. 8.1—13, which shows critical hydrate-formation pres-
sures and temperatures for hydrocarbons of various relative gravities. The
presence of CO, and H,S at a given temperature may lower the critical
pressure, whereas the presence of N, tends to raise it. The inset in Fig.
8.1 —13 provides the correction factor Cy, which shows how many times
the critical pressure of hydrate formation is higher in the presence than
in the absence of a certain quantity of nitrogen. '
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Fig. 8.1—13 Limits of gas hydrate formation, after Katz (1959, p. 213; used with
permission of MeGraw-Hill Book Company)

Several more accurate procedures have been devised. For nitrogenless
natural gas, up to about 280 bars pressure, Katz’ procedure involving
equilibrium constants is best suited. The condition of hydrate formation is

2’1‘_'2& =1

i=1 Khz'

The K;s are to be read off the K, = f(T'), diagrams of the hydrate-form-
ing components (Katz 1959). — Heinze (1971) prefers the modified
McLeod —Campbell procedure for determining hydrate formation tem-
peratures (hydrate points) of natural gas containing nitrogen up to about
400 bars pressure. The hydrate point is calculated using the relationship

T =V Ky 8.1-21
0.445

The values of K, for various pressures are contained in Table 8.1—3.
The K, values falling between those given in the table may be found by
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Table 8.1—3

Hydrate-equilibrium factors K, for hydrate-forming natural-gas components
(modified after Heinze 1971)

P, bars]
‘ 50 100 150 200 250 r 300 350 390
Components
| |
CH, 34,54:3i 35,949, 36,719 37,357’ 37,814 38,204' 38,531| 38,767
C,H, 45,5635 47,101} 48,078] 48,704; 49,316, 49,772] 50,140, 50,435
C,H, 85,060 83,970 79,836 175,610/ 73,150 71,340 70,103| 69,154
i-C,;H,, 102,096 94,310 89,319, 82,481 78,791 75,669 74,533] 73,304
n-C,H,, 57,979 51,133 47,648] 45,032 43,846| 43,328 43,276] 43,234
N, 30,555 32,133, 33,369 33,693 34,214| 34,656/ 35,005{ 35,251
CO, 38,788 43,504| 44,812| 46,773 50,371 51,660 52,269 54,018
H,S 63,986 69,972 74,001f 76,349 78,554 80,426‘ 81,3731 82,148
| |

linear interpolation. The hydrate factor for multi-component natural gas
of known molar ratios may be found by applying the principle of additivity.
Ezample 8.1—3 (Heinze 1971). Find the hydrate point at 147 bars
pressure for the gas composition given in Column 2 of Table 8.1—4. Let us
point out that, regardless of the quantity and nature of the longer-molecule
non-hydrate-forming natural-gas components, it is assumed that

n

2 zh[: 1.

i=

By the data in Column 4 of the Table, K, = 39,439 and hence, hydrate

point is at
4
T= VM = 2978 K = 24.6 °C.
0.445

Hydrate point may be substantially reduced by adding to the natural gas
a hydrate inhibitor such as calcium chloride, methanol, ethylene glycol,
diethylene glycol.

Table 8.1—4

Finding the hydrate formation temperature of Thonse gas
(after Heinze 1971)

Components 2hi \ at 1f7hibars ! 2niKp;
CH, ’ 0.865 ‘i 30,673 31,722
GH, | 0013 | 48020 3,505
C,H, | 0.028 ' 80,084 2,242

i-CH,, ! 0.013 | 89,618 1,165
N, | 0.010 | 33,295 333
CO, | 0.011 | 44,734 492

.27: 25Ky = 39,459
i=



8.2. Temperature of flowing gases

In most long uninsulated pipelines, the temperature of flowing gas
approaches soil temperature after a travel sufficiently short for flow tem-
perature to be identified for all practical purposes with soil temperature
over the full length of the pipeline. In certain cases, however, the flow
temperature of gas may significantly differ from the temperature of the
surrounding soil, and it may then be important to determine temperature
traverses for the pipeline. The cases in question include the following.
(i) It is necessary to decide in designing where the flow temperature drops

501
o, bay
T.°C i
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R
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0.8
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0 50
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Fig. 8.2—1 Pinpointing hazard of hydrate formation in a pipeline, after Smirnov
and Shirkovsky (1957) and Torok et al. (1968)

below the hydrate point; (ii) it is desired to chill the gas by injecting lique-
fied gas, in order to increase the throughput capacity of the pipeline (Gud-
kov et al. 1970); (iii) in arctic regions, the gas may cause an undesirable
warming up of the permafrost soil in which the pipeline is laid.

Figure 8.2—1 (after Smirnov and Shirkovsky 1957; and Torok et al.
1968) is a temperature traverse of a given pipeline (Graph I). It permits us
to delimit the line segment where there is a risk of hydrate formation.
Graph II is the pressure traverse. The accurate calculation of the two
traverses takes a successive-approximation procedure. In the knowledge of
pressure, the hydrate-point traverse (Graph III) may be calculated in the
manner explained in Section 8.1.4. At point I, where Graphs II and III
meet (I = 50 km), the hydrate point 7, is just equal to the temperature
T, of gas flow. For hydrate to form, it is sufficient that there be some free
water available at this line section. Graph IV is a water vapour saturation
traverse along the pipeline. Points of this curve can be determined by
means of auxiliary diagrams for corresponding pairs of p and T, (e.g.,
Katz 1959). Assuming the water vapour content of the gas to be 0.4 g/m?,
the dew point of the gas turns out to occur at point 2; from there on, the
pipeline does contain condensed water: that is, this condition of hydrate
formation is also satisfied at and beyond ! = 50 km.

The temperature of gas flowing in the pipeline depends, for a given
inflow temperature 7', and soil temperature 7', on the following factors:
(i) heat exchange with the environment, depending primarily on the heat
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transfer coefficient (cf. Section 7.2.3). The internal convection coefficient,
o,, is infinite in a fair approximation. (ii) The Joule — Thomson effect due
to friction, velocity increase and altitude change. (iii) Phase changes (con-
densation, evaporation) due to pressure and temperature changes. (iv) The
energy loss of flow, which end up as heat. '

These effects are accounted for in steady-state flow by the following
equation (Papay 1970), stating flow temperature at a distance [, from the
head end of the line to be

G [T 1 & GG ]
T OICa & C. Cy(C: + Cs) 04 + O5Zx + 05(01 _+_ Calx‘)
Ix — C, -
(€, + O, )C C OoCe 1 Ca) g9
where
k
Cy = zyicp + (1 —2y1) Cpys Co = —;
m
03 = —zvz__l%‘ﬂ‘ (CpL - va)
Cy = 2vy CpL gL gl—;& + (1 — 2vy)epv pav pl_;_p_z +
+Q ZV2_ZV1+v Yy — U +g£_k“d0T1
l ! l l Im
Zys — 2 — vy — U
0y = (2v2 Vll)z(pl Ps) (Cpr. ttar, — Cpv Hav) + [ 2 l 1]'

In deriving this equation, Pdpay assumed pressure, flow rate and phase
transitions to be linear functions of distance from the head end. It is there-
fore recommended in problems where a high accuracy is required to calcu-
late temperature changes for shorter line segments. Let us point out that
suffix 1 invariably refers to the head end and 2 to the tail end of the line
of length [, except, of course, in the numbering of the constants C.

In the case when the phase changes are left out of consideration—that
is, in single-phase flow —Eq. 8.2—1 simplifies to

T =T, + (T, — T)e-ats — FaV(PL = Po)

al
X (1 — ety — I (1 pmary P2
al va al CpV
N [vl T el (P GRSV 8.9_9
\ al l
where
k
a =
Qm cpV
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The first two terms of this equation describe heat exchange with the
environment; the third one accounts for the Joule—Thomson effect, the
fourth for the change in geodetic head and the fifth for the change in
velocity head. In practical calculations, the last two terms may be neglected.
The resulting error is usually less than the error due to uncertainties in
the various parameters. If the pressure drop is small, then so is the tem-
perature drop due to expansion, and the third term may also be neglected,
in which case Eq. 8.2--2 simplifies to Eq. 7.2—-15.

8.3. Steady-state flow in pipeline systems

The fundamental relationships of gas flow in a pipeline are stated in
Section 1.2. That section refers to a single pipeline. Actual gas trans-
mission systems, however, often form connected nets, in which flow is
governed by relationships much more involved than those referring to a
single line. Pipe nets may be high-pressure, with pressure changes entailing
significant changes in specific volume, and low-pressure, with such changes
negligible. The first type includes transmission systems of regional supply,
the second includes gas nets supplying local consumer groups, most often
community utilities and households. In the latter we shall concentrate on
the first type.

Flow in transmission systems is almost invariably transient, but numerous
design and operation control problems may be solved notwithstanding by
assuming flow to be steady-state. Network models based on the assump-
tion of steady flow permit the establishment of pressure contour maps
of both radial and looped networks for periods of peak demand. This map
permits us to pinpoint the critical segments of the net, where consum-
er demand cannot be fully met in peak demand periods. The pressure
map is useful in designing new systems, and in expanding or checking
the operation of existing ones.

8.3.1. Design fundamentals

The two basic elements of a pipeline network are the nodes and the node
connecting elements (NCEs). Nodes include those points where a pipeleg ends,
or where two or more NCEs join, or where there is injection or delivery
of gas. The pressure map of the network is determined by node pressures.
The most important NCEs are pipelegs, compressor stations, regulators,
valves, and underground gas storages. Prior to constructing a model of a
a complex system it is necessary to establish mathematical models for in-
dividual NCEs. These models are in effect pressure v. throughput relation-
ships valid at given parameters.

The characteristic equation of a high-pressure pipeleg is, by Eq. 1.2-17,

P} —pi=kig 8.3—1
564



The gas flow expressed in standard volume units is
2 ;2705
q= [u 8392
kl
where

ky = 1.95x10-4 8.3—3

d}

In a low-pressure pipeleg, with pressure close to atmospheric, we have
z=1 and

£n_)2 IM T3]

Pt — P3 = (p1 + P2) (P1 — P2) &~ 2pn(p; — Do)
and the above equations modify to

. Py — Py = kog? 8.3—4
q_[l’lk Pz] 8.3—5

respectively, with 2 _
ky = 0.975 % 10-4 _2ntMTA 8.3—6

T7d;
Compressor characteristics are provided by the manufacturer. These
may usually be approximated by a function of the type
by —2J + I
P

where ky, k£, and k; are compressor constants.

Pressure regulators may be described by the flow equations of chokes
(cf. Section 1.5—1). If the pressure drop is less than critical (flow is
subsonic), then Eq. 1.5—2 will hold if the gas is liquidless, that is,

i » E » 21 8.3—-8
el -
P1 P1

8.3—9

where

ks :Vﬁﬁd
4 ]WT1 % —1

If the pressure drop is above-critical (flow is sonic), then p,/p, isto be re-
placed by the expression in Eq.1.5— 3 and the characteristic relationship is

q = kqyp;. 8.3 -10
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The production of wells tapping an underground gas reservoir can be
described by the relationship

q = ke(p? — p3)" 8.3—11

where, as distinct from the usual productivity relationship (cf. Section 3.1)
p, means formation pressure and p, means wellhead pressure; kg is a pro-
ductivity index corresponding to this latter definition.

In the knowledge of the gas transmission system’s elements, a mathe-
matical-hydraulic model of the entire system may be constructed. In
laying down the principles of modelling, the recognition of an analogy
between gas flow in pipe networks and flow of electricity in electrical net-
works was extensively exploited. Kirchhoff’s laws apply to gas flow, too.
The first law applies to any node; the algebraic sum of gas flows entering
and leaving the node is zero, that is

m
2q:=0 8.3—12
i=1

where m is the number of NCEs meeting at the node. Gas flowing into the
node is given the positive sign. By Kirchhoff’s second law, for any loop
in the high-pressure system, the algebraic sum of pressure drops, taken
with signs corresponding to a consistent sense of rotation around the loop,
is zero, that is,

n

12 (pt — pd); = 0. 8.3—-13
where % is the number of NCEs in the loop, and p, and p, are, respectively,
the head-end and tail-end pressures of said pipelegs, head and tail being
taken with respect to the sense of rotation chosen. This relationship is also
called the loop law. In low-pressure gas distribution networks, the compressi-
bility of the gas is negligible and the loop law accordingly simplifies to

n
_2‘1(1’1_}72)[: 0. 8.3—14
i=

There are two fundamental types of gas transmission systems, loopless and
looped.

8.3.2. Loopless systems
(a) Numerical methods

In a loopless system, NCEs joined by nodes form no closed loops any-
where in the system.

Figure 8.3—1 shows a hypothetical loopless system Gas enters through
node I and leaves through Nodes II, I1I and IV. Pressures and throughputs
in such a system, assuming all NCEs to be pipelegs, are calculated as fol-
lows. In the knowledge of the gas volumes respectively injected into and
taken out of the nodes, Eq. 8.3—12 furnishes the gas flows ¢; in the
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pipelegs. In possession of these latter, Eq. 8.3 —1 yields pressure drops in
the pipelegs and node pressures.

Example 8.3—1. Given the gas flows into and out of Nodes from I to IV
of the pipeline shown in Fig. 8.3 —1 and the parameters of pipelegs from I
to 3 and the prescribed terminal pressure p, = 18 bars for Node IV; find
the injection pressure p; necessary to ensure the throughputs and the ter-
minal pressure prescribed, and find the individual node pressures. The
resistance factors calculated using Eq. 8.3 -3 from the parameters of the
pipelegs are listed in Column 3 of Table 8.3 —1. The k,;s have been replaced
by k;s. Node throughputs arelisted in Column 4, and the prescribed terminal
pressure appears in the last row of column 9. In the possession of the node

i
9 g, 1ay g, i s v

— P -0 —

| ] T 2 3 q
lqu v

Fig. 8.3—1

throughputs, the pipeleg throughputs listed in Column 5 were calculated
using node law 8.3 —12. Column 7 states the pressure drops in the pipelegs.
Now with ppy, and hence, p3y, given, one may find the remaining node
pressures using the relationship

3
v} =plv+ Jhigt; 8.3—15
i=j

j = III; II; 1.

The calculation reveals that an injection pressure of p; = 54.9 bars is re-
quired to ensure a terminal pressure of p;y = 18 bars.

The situation is somewhat more complicated if the injection and terminal
pressures are fixed, and so are the injection and delivery rates at the inter-
mediate nodes, and the problem is to find the maximum gas output that

Table 8.3—1
Node | Pipeleg ki ‘ 9 q kigi kig} i 3 Pj
Nege | m? m? N2g | Nt N
j 1 1010 E— R 1010 — 1010 — 1010 —_— 106 —_—
mw | s s m? mt | m* m?
1 2 | 3 ‘ 4 5 6 7 8 9
I -+.2.38 3008.5 | 549
1 249.0 2.38 592.6 1410.4
I —0.38 : 15981 | 40.0
‘ 2 145.0 2.00 \ 290.0 580.0 |
|
IIT | —0.80 1018.1 31.9
3 482.0 ‘ 1.20 578.4 694.1
v | . —1.20 3240 | 18.0
| [
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Table

" ki 4 g kgl kg
Node Pipeleg :
101 Nis? m_a m;s 1010 & 1010 Ne
m!® s s m’
1 2 3 4 5 8 7
| i
I \ l
1 249.0 2.38 592.6 i 1410.4
II —-0.38 ‘
2 145.0 2.00 290.0 580.0
111 —0.8 |
3 482.0 \ 1.20 578.4 ’\ 694.1
v | i
estimation (1): Z kg™ = 1461.0X10%

g1 = 2.38 m¥s— gqrv = 1.2 m¥/s

_ (16108%) — (18.5X10%)®
2X1461.0X10*°

dq = = 0.029 ~ 0.03

can be ensured at the delivery end of the line. The solution involves a suc-
cessive approximation (Hain 1968) in the following steps: (i) Estimate
the maximum throughput ¢{) of the first pipeleg. (ii) Using Eq. 8.3—12,
find the first-approximation throughputs ¢{) of the individual pipelegs.
(iii) In possession of these latter find the pressure drops in the pipelegs
using Eq. 8.3—1. (iv) Using the relationship

j—1
pi=pt — 3 ( — ph)s 8.3—16
j=1L; IIT; ..., m

where m is the number of nodes, find the node pressures belonging to the
q"Vs calculated in the first approximation. (v) If the square of terminal
pressure p,, deviates from the square of terminal pressure p{}) by more than
the error permitted, then the throughputs determined in (ii) for the indi-
vidual pipelegs are to be corrected using the expression ¢! = ¢V + Jq
where

2 _ aa(1)2
Ag = — Pm— Pm” 8.3—17

n
2 Zkiqg
i=1

(vi) The procedure is repeated from Step (iii) on until the prescribed and

calculated terminal pressures agree to within a prescribed tolerance.
Example 8§.3—2. Find the maximum declivery rate at node IV in the pipe-

line characterized in the foregoing example, if p; = 55 bars and p;y = 16
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o L] g kg g 7 o
1010‘\_72 108 N E 1010 NS 1010 _& 1010_‘\_:_2_ 105_N_
m? 8 m? m¢ m! m?2
8 9 10 11 12 13 14
3025.0 55.0 3025.0 55.0
2.41 600.1 1446.2
1614.6 1578.8 39.7
2.03 2906.2 601.2
1034.6 977.6 31.3
1.23 592.9 729.2
340.5 18.5 248.4 15.8
estimation (2): I kg™ = 1489.2X10°

g1= 2.41 m/s— grv = 1.23 m3/s
_ (16X10%)* — (13.8X10%)*
2 1489.2X 10

4g = = —0.0025

bars. — The main data of the solution are listed in Table 8.3 —2.
It shows that, at the given offtakes at intermediate nodes, the maxi-
mum delivery rate attainable at the delivery end of the pipeline is 1.23 m3/s.

In the two approximations employed to solve the problem, the values
of the ks were unchanged although throughputs and tail-end pressures of
the pipelegs were different. The reasons for this are, one, that flow is fully
turbulent so that the friction factor is independent of the throughput-
dependent Reynolds number and, two, the change in the mean pressures
of the pipelegs is so slight that change in the compressibility factor 2 is neg-
ligible.

If there is a booster pump station installed somewhere along the pipeline,
then the maximum throughput capacity of the pipeline can be calculated
as follows (Hain 1968): Steps (i)—(iii) of the calculation are as above.
(iv) In the knowledge of the gas throughput, intake pressure and installed
compressor capacity, the output pressure of the pump can be determined
for the node examined. (v) The tail-end pressure of the pipeline is calculated
in the knowledge of the output pressure and of pressure drops in the indi-
vidual pipelegs. (vi) If the calculated tail-end pressure differs from the pre-
scribed one, pipeleg throughputs are once more corrected using the relation-
ship ¢/ = ¢V + 4g, but the correction itself is now calculated by means
of the relationship

2 pl1)2
M=~ p’"( )27"” . 8.3 18
2 [u_ 43 kiqgl)]
g i=1

where (p;). and (p,), are the intake and discharge pressures of the compres-
sor, respectively, and ¢, is compressor output.
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(b) Graphical methods

A quick and simple graphical method for solving problems involving the
throughput and pressure parameters of gas transmission lines, based on
diagrams, has been proposed by van den Hende (1969).

The first step is to plot the family of curves Ap = f(p,),, resembling
Fig. 8.3 —2 for the pipeline examined, with both axes of coordinates cali-
brated in the same units. The plots are calculated using the equations

Ap = p, — ps = py — Vp} — k. 8319

Here, p, is expressed using Eq. 8.3 1. The & factor in Eq. 8.3 —19 is iden-
tical with the %, figuring in Eq. 8.3 —3. The values of 1 and z figuring there
are functions of p and ¢. Plotting the family of curves may be simplified,
however, by assuming for the purposes of approximate calculations that
A and z are constant forany value of p and ¢q. Van den Hende has developed
a procedure for the calculation of £ out of a function ¥ = C!, where C can
be read off a table as a function of pipe size d;. Whichever way £k is deter-
mined, the individual curves of the family may be constructed by the graph-
ical procedure illustrated in Fig. 8.3 —3. The value of p, is furnished by
Eq. 8.3—1 after the substitution p, = 0, that is,

Ap,=q k.

Plotting any point of the curve is performed in a manner similar to the
construction starting from point 4. Equation 8.3 —1 holds for any point
of this curve. For instance, it is clear on inspection that the hypotenuse of
triangle OA B is precisely equal to the abscissa of point P, and that, in the
triangle,

P} = p}+ ket

In possession of a family of curves characterized by a given %, any one of
the three parameters p;, p, and g of the pipeline can be determined rapidly
in possession of the other two.

4p
bars

Py P, Py bars

Fig. 8.3—2 Graphical procedure, after van den Hende (1969)
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Ezxample 8.3—3. Find the head-end pressure p; required to ensure the
tail-end pressure p;y = 18 bars in the pipeline schematically shown as Fig.
8.3 —1, under the conditions stated in Example 8.3—1. — Figure 8.3 —4
illustrates the family of curves plotted using Eq. 8.3 —19. The manner of
constructing the head-end pressure is shown by the full line in the Figure.
The resulting head-end pressure is p; = 55 bars. This graphical method
lends itself well to the solution of numerous other problems, too.

Ap
bars
A
//
N
l; 'l
rd
T ///
Rl
~ A B
45 5°)
P, P p, bars

Fig. 8.3—3 Graph 4p = f(p), after van den Hende (1969)

Example 8.3—4. In the pipeline characterized in the foregoing example,
we want to raise the pressure at Node III from 31.9 to 35 bars. What is
the pressure increment required at the head end, and what will the pressures
at Nodes IT and IV be? — The solution of the problem is shown in dashed
line in Fig. 8.3—4. The result is Ap; = 1,5 bar for the required pressure
increment at the head end, and 42.7 and 24.3 bars, respectively for the
resulting pressures at Nodes II and IV.

8.3.3. Looped systems

The first procedure for modelling a low-pressure looped network was
developed by Cross (1936); it was adapted with some modifications also
to high-pressure systems (Hain 1968). Let us illustrate the application
of this method on the loop shown as Fig. 8.3 —5. The gas flows into and out
of the nodes are known, and so is pressure p; at Node I. We are to find the
gas throughputs of the indivual pipelegs, as well as the pressures in the
remaining nodes. The solution is based on the following consideration.
Taking clockwise flow as positive, let us assume a first-approximation
value ¢{V) for the throughput of pipeleg I. Let us then use the node law to
find the gas throughputs ¢{), whose signs will be according as flow is clock-
wise or counterclockwise. In the steady state, the loop law (8.3—-13 or
8.3—14) will have to apply. If it is assumed that the first-approximation
values of throughputs in the individual pipelegs differ by 4g from the actual
throughput, then
kg + 4q) g + dgj =0,

i=

-
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Fig. 8.3 ~4 Throughput and pressure distribution in the pipeline specified
in Fig. 8.3—1

|
'qw=50

Fig. 8.3—5 Looped transmission system to Cross’ method
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where n is the number of node-connecting elements (pipelegs). By this

relationship, the correction is
n

3 kil | g

—_—i=r

dg = -

2 ié: kilqf |

provided |4q| < ¢;; the second-approximation values of the gas through-

puts in the individual pipelegs can now be calculated as
g =g + 4g

f 200

300
-
™~ s
D
220 200 -/
]
\ - 30
16 11
115 D 13 Tm c 12?
60
~ i 9 - 80
P ~ 5
160
T1 A 3? 5 B 7T
4 8
1200
#'P, =3300 N 4

~—— Pipeleg —= Flow direction — == [njection, offtake
220 Gus flow 3300 Pressure, N/m?
—— rate, m¥h = !

(b)

13 Number of pipeleg

Fig. 8.3—6 Layout and hookup of low-pressure looped gas supply system

8.3—20

8.3—-21
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Table

1 d; I k3 q(‘l) q(}) ki‘q‘[(l)
Loop Pipeleg
m m 10¢ ):»S—E ms/h 10-2 md/s 10¢ Ijs
m'’ m!
1 ‘ 2 3 4 5 6a b ; 7
A 1 0.3071 450 0.1240 ‘ 700 19.444 0.0241
2(14) 0.1541 420 4.5759 200 5.556 0.2542
3(5) 0.1541 370 4.0311 —200 — 5.556 0.2240
4 0.2589 280 0.1917 —500 —13.889 0.0266
‘ 4
| X~ 0.5289
‘ i=1
B | 3(3) 0.1541 370 4.0311 200 5.556 0.2240
f 6(9) 0.1023 290 28.087 200 5.5856 1.5604
\ 7 0.1023 240 23.245 —120 —3.833 0.7748
\ 8 0.1023 660 63.923 —160 —4.444 2.8410
| 8
! = 5.4002
: i=5
C ‘ 9(6) 0.1023 290 28.087 —200 —5.556 1.5604
‘. 10(13) 0.1541 480 5.2296 40 1.111 0.0581
“ 11 0.1023 480 46.489 60 1.667 0.7748
‘ 12 0.1023 220 21.308 —240 —6.667 1.4205
12 i
X f 3.8188
i=9 J |
D “ 13(10) 0.1541 480 5.2295 — 40 —1.111 0.0581
: 14(2) 0.1541 \ 420 4.5759 —200 —5.556 0.2542
! 15 0.3071 i‘ 180 0.0496 440 12.22 0.0061
i 16 0.2051 | 500 1.1859 220 6.111 0.0725
i 16
X 0.3909
} i=13 “
| | i

If after the kth successive approximation Aqg is within the tolerance ad-
mitted, then the node pressures can be calculated using the relationship

j=1
i =pt— X kilgP 14 ; 8.3—22
i=
j=1; IL;
for a high-pressure network or
i=1
pi=pi— 3 kilg g 8.3—-23

for a low-pressure network; k equals k; in Eq. 8.3-—8 in the first case, and
k, in Eq. 8.3—6 in the second.

If the system is composed of several loops, then, after a first-approxi-
mation estimation of the throughputs in the individual pipelegs, one cal-
culates a Ag for each loop, and then performs the correction of the pipelegs’
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8.3—3

‘ \
Ap;_—.kiq‘,l){q(,”] dq 7 & g ap = kig® P || Pu | pthi
\
|
i ‘10—2 m;si 10—2 nia. 10—2 H__l_a mS/h i i; _N—.
m? | 8 | s 8 m?2 m m?
8 9 | 10 1la 11b 12 13 14
[ \ :
46.87 | 1002 | ... 20.960 |  754.6 54.47 | 3300 | 3246
14123 —0.252 4076 | ... 4532 | 163.2 93.98 | 3246 | 3152
— 124.42 | — 6,298 | ... | — 5486 | —197.5 | —121.30 | 3152 | 3273
— 36.99 } | —14.141 | ... | —12.373 | —445.4 | — 29.35 | 3273 | 3302
i |
26.70 | | — 2.20
| |
12.42 | | 6.208 | ... 5.486 197.5 121.30 {3273 3152
866.89 | 0.490 3.846 | ... 4.353 156.7 532.14 | 3152 | 2619
— 25827 | — 2843 | ... | — 1.888 | — 68.0 | — 82.81 | 2619 | 2702
1262.7 | — 3.954 | ... | — 2.999 108.0 | —574.75 | 2702 | 3277
— 529.64 ! ~ 412 |
} ,
— 866.89 | | _ 3846 ( ... | — 4.353 | —156.7 | —532.14 | 2619 | 3152
6.46 | 2.200 2.083 | ... 1.220 43.9 779 | 3152 | 3144
129.14 | 3.867 | ... 4.315 155.3 865.76 | 3144 | 2278
— 9470 ! — 4466 | ... | — 4018 144.6 | —343.98 | 2278 | 2622
‘ |
| |
—1678.3 ‘ 1 — 258
— 646 | — 2083 ... | — 1220 — 439! — 779 | 3144 | 3152
— 14223 | 1.228 | — 4.076 | ... | — 45332 | —163.2 | — 93.98 | 3152 | 3246
741 13.450 | ... 14.762 531.4 10.81 | 3246 | 3235
44.29 | 7.339 | ... 8.651 311.4 88.74 | 3235 | 3146
|
|
|
95.99 | ‘ — 222
‘ \
\ i i

throughputs loop after loop. The pipelegs common to two loops are corrected
using the Ags determined for both loops. Let us illustrate this procedure
by an example referring to a low-pressure network.

Example 8.3--5. Given the gas flows into and out of the nodes of the
network shown as Fig. 8.3—6a, and given the pressure p;;, = 3300 N/m?
of node I;y; find the gas throughputs of the individual pipelegs, and the
individual node pressures. The loops are considered to be balanced if the

| n
condition l 3 Ap;| < 5 N/m? is satisfied. A working model of the network
i=1

is shown as part (b) of Fig. 8.3—6. The numbering, sizes and length of the
pipelegs composing the loops in the Figure are given in Columns 2—4
of Table 8.3 —3. The pressure drops in the individual pipelegs are calculated
using the relationship

Ap; = kilqi|q; 8.3—24
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derived from Eq. 8.3 —4; k; is furnished by Eq. 8.3 -6, with p,, = 1.014 x 10°
N/m? T, = 288.2 K, M = 16.03 kg/kmole, 7 = 283 K, and 1 is obtained
using Eq. 1.2—-5. After substitutions,

l;

;= 5.079x 10-3 .
d?.333

The values calculated in this way are listed in Column 5. Column 6 of the
Table lists the first-approximation throughputs of the individual pipelegs,
with clockwise rotation regarded as positive. In estimating these through-
puts, the circumstance that the condition implicit in Eq. 8.3—12 must
hold for each node separately was taken into due account. The pressure drops
in Column 8 were calculated using Eq. 8.3—24. The Ags for the individual
loops were determined from Eq. 8.3-20; for instance, in loop 4,
26.70

Aqp= — ———o = — 0.252X 10~2m¥s.
2% 0.5289 x 104

4
The summed data of Column 8 show that| 3 AP:‘} exceeds in each loop the
=1

tolerance of 5 Njm?, so that the values listed in Column 6b have to be cor-
rected. In the pipelegs which belong to one loop only, the corrected through-
puts are supplied by Eq. 8.3—21. In the pipelegs common to two loops, the
throughputs must of course be the same (Column 10). The corrected
throughputs are calculated as shown in the example below. By the values
for pipelegs 2 and 14 in Column 6b, the first approximation throughput was
5.556 x 102 m3/s with signs according to the sense of rotation. The absolute
value of the corrected throughput, calculated by means of Eq. 8.3—21
but not stated in the Table, is 5.304 x 10-2 m?s in pipeleg 2. The throughput
of pipeleg 14 is equated with this value, and then corrected using the cor-
rection for loop D and Eq. 8.3—-21. The value obtained is —4.076 x 10-2
m?3/s, and accordingly the throughput in leg 2 is 4.076 x 10~2 m?/s. It is
these values that are entered into the corresponding rows of Column 10,
Iteration is pursued with the ¢;s of Column 10. After seven steps of iteration,
not given in detail, one obtains the last-step data and the final results listed

lé: Ap; ‘

case within the tolerance of 5 N/m? The data in Columns 13 and 14 are
the pys and pyy;s, the pressures at the head and tail ends, respectively, of
the individual pipelegs, based on the pressure drop data in Column 12 and
on the condition of p;;, = 3300 N/m?® at the node common to pipelegs I
and 4.

The main advantage of the Cross method is its simplicity, whereas its
main drawback is the slowness of the convergence, which renders this
method uneconomical in many applications. In order to eliminate these
drawbacks, Renouard developed a variant of the Cross method (Société . . .
Manuel 1968). The Renouard method ig suited for the modelling of steady-
state operation in not-too-complicated looped networks. The method was
generalized by Pernelle for networks of any size (Société . .. Manuel 1968)
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The essence of this latter method is as follows. In the foregoing example
we required a throughput correction Ap for each loop in each step of iter-
ation. Let us denote the throughput correction to be calculated by Adg,
in the case of loop 4, 4qp in the case of loop B, etc. The throughput cor-
rection of the pipeleg(s) common to loops A and B is, then, (dg, — Ag3),
that of the pipelegs common to loops B and C, (4gz — Aqc), ete. — Equation
8.3 —20 permits us to write up for the »n loops n linear equations in the n
throughput corrections Ag,, Agp, Adgc, etc. The corrections are furnished
by the solution of this system of equations. After applying the corrections
to the throughputs, the values obtained are checked to see whether thev
satisfy loop law 8.3 —13; if the aggregate pressure drops of the loops exceed
the prescribed tolerance, then the procedure is repeated. This method
furnishes, according to its authors, a result of sufficient accuracy in two or
three steps even if the first estimates of the individual throughputs of the
pipelegs are rather wide of the mark.

Stoner’s method for solving looped networks is based on the node con-
tinuity equation (Stoner 1970). It has the advantage that, whereas the
Cross method can be used to establish throughput and pressure maps of
the network only, the Stoner method will furnish any parameter (pipe size
in a leg, compressor horsepower required, number of storage wells, size of
pressure-reducing choke, etc.) of the complex system. It is, however, signif-
icantly more complicated than the previously mentioned methods, and it
requires much more computer time. — The way of constructing the model
is illustrated in Fig. 8.3 —7. Node 11, selected as an example, receives gas
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from underground storage facility (12 —-11) and pipeleg (10—11), and de-
livers gas into the intake of pump (13— 11), and into the consumer supply
circuit directly attached to the node. By this model, the node equation
8.3—12 can be given the form

Fyy = (q12-11)s — (Qu3-11)c + (910—11)p —Go1 =0 8.3—25

where suffixes s, p and ¢ respectively refer to storage, pipeleg and compres-
sor, and g,, is the flow of gas out of node 11. Flow into the node is positive.
The measure of imbalance at the node is F,,; its value is zero if the node is
balanced, that is, if the condition |F;| < ¢ is satisfied, where ¢ is the toler-
ance. Introducing into this Equation the Relationships 8.3—1, —7and —11,
we get

Fiyy=J1-4(0% — 9% )nSy0-11 — _27&1(1‘1_ +
k, | P k
o| 22| ks
P11 8.3—26
2 ;2 |\05
4+ (7% Ofn[) S10-11 — Gory = 0
(ky)Pi1y
where S, ; is a sign factor accounting for flow direction:

+1if p, >p;
—1if p, <p;-

Writing up in a similar fashion » equations of continuity for the n nodes
of the system, one obtains the non-linear system of Equations constituting
the mathematical model of the system in the steady state.

The equations contain node pressures, inputs/outputs and the param-
eters of the NCEs (node connecting elements), altogether (2n + m)
parameters, where % is the number of nodes and m is the number of NCEs.
The model of n equations will in principle yield any » unknowns of the
(2n + m) parameters, if the remaining (n + m) parameters are given.
These equations, similar to Eq. 8.3—26, can thus be written in the form

8, ;= sign(p; — p;) = {

Fixy, 2, ... x,) =0 8.3 —-27

i=12, ..., n

The only criterion in choosing the n unknowns to be calculated is that the
continuity equations of the type 8.3 -26, written up for the nodes, must
remain mutually independent. Since the value of the nodal gas throughput
is independent in (n — 1) equations only, at least one of the values ¢,; must
be known. It is likewise necessary to state at least one node pressure.

The solution of the non-linear system of Equations 8.8 —27 constituting the
mathematical model of the network may be achieved by the Newton—
Raphson technique. The essence of this method is that it provides linear
relationships for correcting the initial, estimated values of the unknowns,
and said relationship of correction ensures that the successive steps of
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iteration make the system approach the sclution. Let the value of the ith
unknown, denoted z;, be z{*) after the kth step of iteration; then

2f+D = 2B L Axk+D; §=1,2, ..., n 8.3 28

where the Ax;s are furnished in each step of iteration by the solution of the
linear system of equations
n F
%= —F;  j=1,2...,n 8329
i=1 0%;

The 8 F,/ox;s are the values of the derivatives of the node continuity
equations taken at the x5 calculated in the foregoing step of iteration.
The linear system of Equations 8.3 —29 may be solved by direct elimination.
The Newton—Raphson method requires that the initial values (! of the
unknowns z; be estimated. The convergence behaviour of the iteration will
depend to a significant degree on the goodness of these estimates, even in a
fairly simple system. A suitable rate of convergence may be ensured, accord-
ing to Stoner’s proposition, in the following way. Introducing the acceler-
ation factor «;, Eq. 8.3 —28 can be written in the form

xl(_k+1) — xl(k) + Ax,(.““) ;. 8.3—30

The value of «; can be expressed in terms of the actual and the foregoing
corrections Az, as follows. Let

Axl(k+1)
£ Ax}")_,
if 4;< -1, then oa;=05]4;];
if —1<A4;<0, then 0;=10—-05]4;];
if 0<A4d;<]l, then ;= 1.0+ 2.0|4;;;
if 4;>1, then a; = 3.

In the first two steps of iteration, where divergence is most likely to occur,
it is best to put «; = 0.5 to ensure convergence. In the subsequent steps,
the values of «; are determined as above in every other step; in the steps
in between, «; is put equal to 1.0. This method ensured convergence in every
case and gave results of satisfactory accuracy after 6—10 steps.

Stoner (1971, 1972), in a development of the above method, gave a pro-
cedure for determining the ‘sensitivity’ of the system in steady-state oper-
ation. The purpose of the calculation is in this case to find out in what way
some change(s) in some parameter(s) of the system affect the remaining
parameters. For instance, what changes in input pressures and flow rates,
or compressor horsepower, are to be effected in order to satisfy a changed
consumer demand ? Schematically the method can be outlined as follows. —
Let y; denote those n parameters whose changes we are interested in, after
other m parameters of the system, denoted x; in their turn, have been
changed. In this notation, the non-linear system of equations resembling
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Eq. 8.3—26, constituting the model of the system, can be written in the
form

Fyy Yar -0 Yny 2y, Tgy -0y T) =0 8.3—-31
i=1 2, ... n

The Taylor series expansion of the function F, with all but the linear terms
dropped, is

n s m .
Z%dyi+2&dxi=0; i=12, ..., n 8.3 —-32
i=1 0Y; =1 0,

Each one of the two sets of derivatives, 8F,/ay, and 8F;/ox;, formally
identical with the derivatives figuring in Eq. 8.3—29, can be regarded as
forming a matrix:

oF,  oF,7]
oY1 OYn

J=| N F
oF, a8k,

_ 39U 'Hayn_

- oF. 5P
i
c=| I
oF,  oF,

_ e, 9% _

Using these identities, Eq. 8.3 —32 may be rewritten in matrix notation as
Jdy 4+ Cdz =0 8.3—33
which after rearranging becomes
dy = —J-1Cdx

where J-1 is the inverse of J. The matric resulting from the multiplication
—J-1C is the so-called sensitivity matrix of the system, to be denoted by
the symbol [d,/d,]. Tt is a measure of change in the parameters y; resulting
from unity changes in the parameters x;, provided that the node continuity
equation 8.3—12 is satisfied for every node. It suffices to determine the
sensitivity matrix just once to be able to determine by a simple matrix
multiplication the change in the parameters y; of the system, resulting
from any change in the parameters z;, represented by the vector Ax:

Ay = [%] Az 8.3—34

X
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8.4. Transient flow in pipeline systems

Flow parameters in gas transmission pipelines are usually time-dependent,
the main reason for which is the variation in demand, as a funection of a
variety of factors. If the fluid flowing in the pipe were incompressible, New-
tonian, then the change in throughput would take place at the same instant
and would be of the same magnitude at any pipeline section, including the
head and the tail end. Such transient flow could, then, at any instant be
described by the equations of steady-state flow over the whole length of
the pipeline. If, however, demand at the delivery end of a pipeline conveying
compressible gas changes then it takes a time At for the resulting pressure
reduction to make itself felt at the head end of the pipeline. The equations
of steady-state flow will, then, apply to infinitesimal lengths of pipeline
only. Still, even the equations of flow in a complex system made up of pipe-
legs of considerable length may be derived from these fundamental relation-
ships. It has been primarily thanks to the electronic computer that several
increasingly more accurate procedures for modelling gas flow in complicated
ﬁi}igline systems have been able to be developed in the last decade and a

alf.

8.4.1. Fundamental relationships

The relationships describing flow in pipelines of finite length may be
derived from four fundamental relationships; any differences in these are
merely matters of formulation. The equation of continuity is

ogm | 9ed) _ 8.4—1
oxr ot

The equation of energy or of motion is the transient form, accounting for
the change of parameters in time, of Eq. 1.2—1:

2
_ag_}_ggmn“_i_-}mg +Q—8—U=O. 84—2

The equation of state for a gas flow regarded as isothermal is, by Eq. 8.1 -1

g—zz—R—T.

e
The fourth fundamental relationship

2= f(p)T ’

has several solutions employed in practice, one ot which is Eq. 8.1-9.
If z is replaced by its average value and considered constant, then the num-
ber of fundamental equations reduces to three, and Eq. 8.1—1 may be
written in the simpler form

— = B, 8.4—3
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where B is the isothermic speed of sound. Eqs 8.4 —1 and 8.4—3 imply
F,o=2%m 9P _ 8.4—4

where mass flow is

D
qm = QAiv = EAIU .

By Eqgs 8.4—2, 8.4—3 and the above definition of g,

2 2
p,= 100 POm | P9 g APl gy g
26 Apt B 2d; A}

Equations 8.4—4 and —5 constitute a system of non-linear partial dif-
ferential equations; then, on the assumption that z = constant, describe
transient flow in the pipeline system.

8.4.2. Flow in pipelines
(a) Matching the system to variable consumer demand

There are two frequently-employed ways of adapting flow in pipelines
to the (usually daily) fluctuation of consumer demand. It holds for both
cases that over the period of fluctuation (which we shall henceforth equate
with one day) the gas quantity injected into the pipeline equals the gas
offtake, that is, the consumption out of the line. In the first case, the hourly
injection of gas into the pipeline is constant, say ¢, in standard volume
units. At the delivery end of the pipeline, pressure varies between the mini-
mum required at the head end of the consumer supply network, p,mi, and
the peak pressure p,ma., occurring when demand is at a low end. This setup
has the advantage that the rate of injecting gas into the pipeline is constant,
requiring no regulation within one day. The difference between the constant
input and the fluctuating offtake is taken up by the pipeline acting as a
buffer storage facility. The drawback of this setup is that a significant por-
tion of the pressure energy in the gas is dissipated by a throttle at the
delivery end, since over most of the day the tail-end pressure of the pipeline
exceeds the p,n, required by the consumer supply network. Energy loss
is minimized in certain instances by making the gas pass through a gas
turbine rather than a pressure reducer, and letting the turbine drive an
electric generator. The output of this latter is fed to the grid. An approx-
imate designing of the pipeline may be performed by the following pro-
cedure of Smirnov and Shirkovsky, slightly modified (Szilas 1967).

Equation 1.2—7 may be restated in the following simple form:

2 __ m2
q=kl/£1___l’£. 8.4-6
2z
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Let us point out that, as opposed to the factor £, in Eq. 8.3—2, the &
occurring here does not include the compressibility factor z. By Eq. 8.4—86,

2z
pl:Vp% g—' ’ 8.4—7

k2
and, introducing the expression p/p, = R,
qR, )z
YkVRE -1
Likewise by Eq. 8.4—86,
2z
Py = Vp% - qk—2 8.4—9
and, putting p,/p, = R,
71z
= 8.4—10
pz k‘va% —1

Introducing the expressions of p, and p, in Eqs 8.4—8-10 into the Eq.
1.2 26 for the mean pressure, and rearranging, we get

3pk R4+ E,+1
29z (R, +1) VR -1
Figure 8.4—1 is a plot of the expression 3pk/2q1/5 v. R, as furnished by
Eq. 8.4--11, ’
The above-given relationships permit us to find out whether the maximum

Pressure P ... that can be ensured at the head end of the pipeline is suffi-
cient to satisfy consumer demand, provided injection rate of gas into the pipe-

8.4—-11
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Fig. 8.4—1 For determining the Fig. 8.4 — 2 For determining the buffer
buffer action of a pipeline (I), action of a pipeline (II), according to
after Smirnov and Shirkovsky Smirnov and Shirkovsky (1957) and
(1957) and Szilas (1967) Szilas (1967)
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line is uniform. Calculation proceeds as follows. (i) Gas consumption is
plotted v. time £ on the basis of daily consumption records. Figure 8.4 —2
shows the daily fluctuation of R, the percentage hourly consumption
referred to daily consumption. The input into the pipeline per hour is 1/24th

of the daily consumption, that is,
24

- 1
= — $)yds.
=7, [ q(t)
=0

The line parallel to the abscissa axis, having ordinate ¢, intersects the
curve at points 4, B and C. In segment 4 - B, consumption is less than g ;
that is, gas accumulates in the pipeline. In segment B—C, the gas thus
accumulated is used to cover higher-than-average demand. (ii) Gas flow
into the pipeline is precisely equal to demand at point 4. The gas reserve
in the pipeline has dropped to zero at that point; that is, pressure at the
tail end of the pipeline must at that instant be p,yy,, which is the least pres-
sure required at the head end of the consumer supply system. Applying in
an approximation the relationship for steady-state flow, we get by Eq.
8.4—7 for pressure at the head end of the pipeline at this same instant

pr= | hn + L2
1 2min ]C2

where z can be determined by iteration using the given 7 and the p cal-
culated from p, and Py, applying Eq. 1.2—26. The mean pressure in the
pipeline is, then,
- 2 P% min J
pm2f ).
3 y2 + Pamin

For the standard-state volume of gas in the pipeline, the general gas law
furnishes

Vos ==—1220 8.4 12

(iii) The area embraced by curve segment 4 —D — B and line segment
A—B is determined by planimetering. Multiplying this by the scale of
the diagram, we get the volume V45 of gas stored up in the slack-demand
period. (iv) Said stored-up volume will be a maximum at the instant cor-
responding to B, and hence, the head- and tail-end pressures p, and p.,
respectively, of the pipeline will also be maximal at that instant. The mean
pressure in the pipeline, corrected by z, is at that instant

L _tny, I 8.4-13

4 Tn All

where Vo, = Voa + Voag. — From p/z, p and z may be determined by
successive approximation. (v) The next step is to calculate the value of
the expression 3pk/2g)/Z and to read the corresponding R, off Diagram
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8.4—1. In the possession of this latter, Eq. 8.4 —10 may be used to furnish
Pg Whereupon p, = E,p,. If the technically feasible maximum pressure
at the head end of the pipeline is pimay, then the quantity of gas Voap
stored up in the pipeline during the period 4 — B will suffice to cover the
excess demand in the period B—C, if p; = Pinax-

The second way to satisfy fluctuating consumer demand is to inject into
the pipeline gas at varying pressures and rates of injection, so as to ensure
an unvaried tail-end pressure p, in the pipeline, equal to what is required
by the consumer supply network. This, of course, can be realized only if
the variations in demand in the supply circuit can be predicted to a fair
degree of accuracy. The problem can be solved making use of the relation-
ships given in Section 8.1 —4. In the following we shall describe the principle
of the Batey —Courts —Hannah method of solution and discuss the conclu-
sions that can be drawn from a numerical example (Batey et al. 1961).

Gas-consumption variations in time can be represented by a Fourier
function. Figure 8.4 —3 shows the graph of such a function, ¢, = f(¢). In
possession of this graph, and of the constant pressure p, prescribed, we may,
starting from fundamental relationships, calculate functions of gas flow
rate and pressure v. time, step by step for various pipeline sections, pro-
ceeding backward along the line. Such functions referring to the head end
of the pipeline are illustrated by graphs ¢, =1f'(t) and p; =1{"(¢) shown in
Fig. 8.4—3. The group of diagrams
in Fig. 8.4—4 has been prepared on
the basis of several similar diagrams. Jao
These permit us to conclude upon Sa

a =52.4 b b =10,
© R R ® » 373"

several characteristics of transient 0.8
flow. The six top diagrams are plots 08
of each variable v. the frequency 0.4

of the demand wave. Each curve
in parts (a), (¢) and (e) of the Figure
shows the output flow-rate wave to
have a lower amplitude ¢,, than the
input flow-rate wave (whose ampli-
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t h Length - Length
Fig. 8.4—3 Transient flow (I), after Fig. 8.4—4 Transient flow (II), after
Batey et al. (1961) Batey et al. (1961)

585



tudeisgq,;); damping increases as the frequency. For a given frequency, the
amplitude ratio is theless, that is, damping is the stronger, the lower the tail-
end pressure p, (part (a) of the Figure), the lower the frictionfactor 4, and the
less the pipe size d;. Each curve in parts (b), (d), and (f) of the Figure shows
the phase shift of the demand wave to be the less, that is, phase velocity
to be the higher, the higher the frequency. For a given frequency, phase
shift is the less, the higher the tail-end pressure p,, the less the friction factor
4, and the larger the pipe size. The diagram denoted (g) shows the amplitude
ratio to decrease with pipeline length; the diagram denoted (h) shows the
phase shift to increase with it. — This way of satisfying consumer demand
has for its main advantage that no pressure energy need be dissipated by
throttling at the tail end, that is the power consumption of compressor is
reduced. A precondition of any application of this method is, of course,
a sufficiently accurate foreknowledge of the demand wave, in the form of
the relevant relationships ¢, = f'(¢) and p, = {"(#); also, the compressor
station should be operated in keeping with these relationships.

No analytic solution of general validity is known for the system of
partial differential equations discussed as describing transient gas flow in
Section 8.4.1. In special cases, however, connected with specific initial
and boundary conditions, the system of equation can be solved. Literature
contains descriptions of many such solutions (e.g. Komikova 1971, Wilkin-
son et al. 1964). One of the common traits of these solutions is that they
permit the analysis of partial problems and that their computer time de-
mand is not excessive. In practice, numerical solutions are often preferred
in simulating transient flow conditions.

(b) Numerical solutions

In the approach to the numerical solution of the system of partial dif-
ferential equations 8.4—4 and 8.4—5, the system is transformed into a
system of algebraic equations using the method of finite differences. This
algebraic system is capable of solution. For the transformation, the method
of central finite differences can be used to advantage. It consists in essence
of replacing the function, continuous in the interval under investigation, by
a chord extending across a finite domain of the independent variable.
The slope of said chord is approximately equal to the slope of the tangent
to the curve at the middle of the domain. It is subsequently simple to cal-
culate numerically the derivative of the curve.

For solving the system of differential equations, literature (e.g. Zielke
1971) usually cites three methods: the implicit method, the explicit method
and the method of characteristics. A common trait to the three methods is
that calculation proceeds step by step, deriving pressures and flow rates
prevailing at various points of the pipeline at the instant ¢ 4+ 4¢ on the
basis of the known distribution of pressures and flow rates at the instant ¢.
The differences are as follows. — In the explicit method, the partial dif-
ferential equations are transformed into algebraic equations, so that the un-
known pressures and flow rates at the instant ¢ 4 At depend only on the
known pressures and flow rates of the preceding time step, which permits us
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to find their values one by one solving the individual equations for them. —
In the implicit method, a system of algebraic equations results, which con-
tains the unknown pressures and flow rates at the instant ¢ + At at the
neighbouring points of the pipeline so as to be made available only by the
solution of the entire simultaneous set of equations. The system of equations
furnished by the transformation may, in both cases, be either linear or not.
There is the fundamental difference that, whereas in the explicit system
the time step is limited for reasons of stability, the only consideration that
limits the time step in the implicit method is the accuracy required, but
steps are usually significantly longer than what is admissible in the explicit
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Fig. 84—5 Fig. 84—6

method. — The method of characteristics is essentially an explicit method
whose essence is to seek in the [x, t] plane such directions along which the
partial differential equation can be reduced to a common differential
equation. This latter can be solved numerically by the method of finite
differences. The time step is rather restricted also in this method.

Let us now discuss the transforming of the system of partial differential
equations into one of algebraic equations by the method of finite differences
as performed in the implicit method (Streeter and Wylie 1970, Zielke 1971).
The pipeleg under examination is divided up into segments of length Ax.
The time-variable flow rates and pressures of the line sections thus obtained
can be assigned to the nodes of the lattice in Fig. 8.4—5, with a distance step
Adx and a time step At. Figure 8.4—6 is a blow-up of the cell bounded by
the lattice points (i; ¢ 4 1) in space and (j; j + 1) in time. On the basis
of this Figure, approximate values for the derivatives figuring in the svstems
of partial differential equations 8.4—4 and 8.4—35, relative to said cell,
can be written up (with ¢, replaced by ¢) as follows:

op? _ D1, j+1 + Piea,j — P i1 — PR j
ox 24x

8.4—14

0P . Pijsit Py jrr — Pij — P
ot 24t

8.4—15
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0 _ v T Tiarg — Tijv1 — 9iJ

84—-16
ox 24x
09 _ _ Qijrit i — % — G, 8.4_17
ot 24t

Regarding pressure p and mass flow rate ¢ figuring in Eqs 8.4 —4 and 8.4 -5
as time and space averages that are constant within the cell, we get

1
qg= " (91, + Qivr, 7+ 90 541+ Tig1, j41) 8.4-18

1
p= " (Di,j+ Pig1,j + Pijs1 T Pity, j41) 8.4—19

Resubstituting Eqs 8.4 —14—8.4 19 into Eqs 8.4—4 and 8.4—5, and rear-
ranging, we have a system of non-linear algebraic equations:

1
Fy = — (pi,jy1 + Piy1,j41 — Pij — Pi1,)) +

At
B
+ A (@it1, 01+ Qi1 — iy — 00) = 05
1, 2 2 9
F,= T (PFr1,ju1 T Pier,y — PF e — P15) +
1
+ m (Pi,j + Pisa,j + Pijr1 + Pity, j41) X 8.4-20

XA, j+1 T Qir, j+1 — 9,5 — Divr,j) T

sina |, .
+ g4B2 (P )+ Pier,; + D3 o1 + Phia, jm1) +
AB?
=+ sdA* (9, + Qi1 s+ Qi o1 T Qi j+1) X

X Qi+ G, ; + @i, o1 + Gia, j | = 0.

If the values of the parameters q; ;; ¢;11,;; Pij; Pi+1,; 8t the instant j are
known, either because they figure in the initial conditions or as a result
of the calculation for a preceding time step, then the pair of equations
contains four unknowns in all: the parameters ¢; ;.i; ¢i4+1,;+1 Dij+1
Pi+1,j-1» belonging to the instant ¢ - A¢. The pair of equations 8.4—20
may be written up in a similar manner for each one of the » cells. Thus, in
any time step, we have to solve 2n + 2 equations, including the two
houndary conditions, for 2n + 2 unknowns altogether. For solving the
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2n + 2 non-linear algebraic equations, Streeter and Wylie (1970) have
proposed the Newton—Raphson method of iteration. The procedure of
solution is influenced by the way the two boundary conditions are stated;
it will differ according to whether the two boundary conditions refer to the
same or to opposite ends of the pipe segment examined. Said boundary
conditions are most often time functions of node gas flow rate or pressure.
— The number of steps of iteration required to solve the system of equations
depends to a significant extent on the choice of initial values for the vari-
ables. In order to accelerate convergence it is to be recommended to estimate
the initial values by extrapolating from the values found for the preceding
time steps. A solution of sufficient accuracy of the system of equations
may thus be achieved in just one or two steps. The implicit method has
the advantage of being stable even if the time steps A¢ exceed Adx/B, and
that, consequently, time-step length is limited by accuracy considerations
only. There is, however, the drawback that the values of the variables for
the instant ¢ + At may occasionally be furnished by a non-linear system of
equations of almost-unmanageable size.

The method of characteristics has also been employed (Streeter and
Wylie 1970) for the solution of Eqs 8.4 —4 and 8.4—5. The advantages and
disadvantages of this method resemble those of the explicit method; all
there is to do in order to find the pressure and mass flow rate in the next
instant of time is the solution of a system of two quadratic equations in
two unknowns, but the time step, for reasons of stability, must be quite
small: A4¢ << Ax/B. There is an advantage in simultaneously using the char-
acteristic and the implicit method. This will increase the largest admissible
time step At rather significantly against what is admitted by the sole use
of the method of characteristics. Furthermore, the method of charac-
teristics permits the breakdown of complex gas transmission systems into
simpler elements. The implicit method, applied to the individual |ele-
ments, will yield a smaller number of non-linear equations per system, and
accordingly, time needed to solve these equations will be reduced rather
substantially.

8.4.3. Flow in pipeline systems

If there is injection or offtake of gas at certain intermediate points of
the transmission line, then these points are to be regarded as nodes and the
node law must apply to them. The system of non-linear algebraic equations,
written up for the implicit cells of the individual pipeline segments and
composed of pairs of equations resembling Eqs 8.4 —20, is then complement-
ed by node continuity equations of the form

m
In + 2: 7; =0,
i=
where ¢, is the gas mass flow into or out of the node, and the g8 are the

mass flow rates in the pipelegs meeting at the node. It is the solution of this
extended non-linear system of algebraic equations that furnishes the time-
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dependence of pressures and flow rates in a transmission line with injections
and offtakes at intermediate points. Describing in this way the transients
taking place in the transmission line system is fairly complicated; this is
why, despite its accuracy, it is used to solve simpler, radial systems only
(Wylie et al. 1970). Modelling the transients of more complicated, looped
nets is usually performed by some simpler method resulting from certain
neglections. The most usual neglections are as follows (Guy 1967).

In a gas transmission line system, neglecting the altitude difference
between the system’s nodes does not usually introduce a significant error.
The third-term on the right-hand side of Eq. 8.4—5 describing transient
flow may therefore be dropped. It can further be shown that the term
(p/A;)(ag/at), describing the change per unit of time in the rate of mass
flow on the right-hand side of Eq. 8.4—35, is in the majority of practical
cages less by an order of magnitude than the friction term

AB2g?
2d, A3’

and is therefore negligible, too. These simplifications reduce the system
composed of Eqs 8.4—4 and 8.4—5 to the following, much simpler, form:

ot Adx ’

2 2
ot _ B, 8.4 22
ox dAz?

where we have changed the notation concerning internal cross-sectional
area and ID of the pipe (4; — 4; d; — d). — Equation 8.4—21 states the
pressure change per unit of time in an infinitesimal length of pipe dw,
brought about by an infinitesimal change in the gas mass flow rate. The
equation describes the capacitive property of the pipeline. — By Eq.
8.4 22, the flowing pressure drop in the infinitesimal length of pipe dx
can be calculated using the relationship for steady-state flow. The equation
expresses the resistance to flow of the pipeline. The physical content of
these equations can be generalized to systems of pipelines as follows.

One assigns to any node half the length of each pipeleg tying in to that
node, and the half-legs thus obtained are summed. Let the volume thus
assigned to node j be V. The flows ¢; ; into and out of the node and the
offtake ¢, , at the node determine the change of the mass flow rate at the
node. Equation 8.4—21 may, therefore, be rewritten for this node in the
following form (Fincham 1971):

P Sy g 8.4—23
Bt ,~=21g”’ fo

where m is the number of pipelegs tying in to the node. — By Eq. 8.4--22,
590



mass flow rates in the pipelegs assigned to node j can be calculated using

the relationship
_[di;4%; | p%—p3| 708
9i,j = [ 7 B I ] Sij 8.4—-24

iJ
where the [, s are the lengths of the individual pipelegs and

Si,j = sign (p; — ).
Introducing Eq. 8.4—24 into Eq. 8.4-23, and employing the notation

2105
V; ' ’ b
we get after rearranging the differential equation
d
dz;j = K 2 [Jz ¥ p2 I)OSSI 1] — 4oj- 8.4—25

Applying the method of finite differences,

dp; _ pilt + 40) + pyit)
dz At

Using this, Eq. 8.4—25 assumes after rearranging the form

m
pit + Aty = MK { lé; Wil P} — 03 )38 ;] — 205} + pst - 8.4—-26

Writing up similar equations for the other nodes we obtain a system of
non-linear algebraic equations concerning the transients in the complex
system. The solution of this system of equations furnishes the pressures
prevailing at the individual nodes at the instant (¢ 4 4¢). Differential
equation 8.4—25 can be solved using the implicit or explicit method, as
follows.

Let us introduce the notation

m
Cy=AtK;{ :é; il o3 — 233 S;; — os} -
Equation 8.4—26 may accordingly be written up in two ways:

Pt + Aty = C)(t) + p(t)
for the explicit method, and

pi(t + At) = Cylt + 48) + p,(t)

for the implicit method. If the node pressures at the instant ¢ are fixed
by some initial condition, then the explicit method will directly furnish
the pressures prevailing at the instant (¢ + A¢). If, on the other hand,
the implicit method is adopted, then said pressures may be obtained only
by simultaneously solving the system of non-linear algebraic equations,
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including an equation resembling 8.4 —26 for each node. If the system
incorporates other elements (compressor, choke, etc.) as well, then the
models described so far are further complicated. These elements having no
transient storage capacity, however, their transient behaviour will be
characterized by the same mathematical models as are described in Sec-
tion 8.3.1 for steady-state operation.

In connection with the application to concrete cases of the mathematical
models outlined above, we have invariably pointed out the necessity of
formulating suitable initial and boundary conditions. The alternatives
arising in this respect were summarized by Batey et al. (1961).

In fixing initial conditions there are two options. (i) Flow rates and
pressures are determined by simultaneous measurement at various points
of the pipeleg examined, and the pressure and flow rate distribution func-
tions thus obtained will fix the initial state of the system. This procedure
is bound to run up against a number of difficulties, and it is therefore
much more common that: (ii) flow is considered as steady-state at the instant
t = 0 in the pipeleg examined. The initial pressure distribution required
for the transient calculation can then be calculated using the steady-state
model, and the mass flow rate is constant.

In defining boundary conditions, the following alternatives enter into
consideration. One may fix the variation in time of the injection or deliv-
ery pressure, of the flow rate or of throughput. As these six parameters
are not independent mathematically, it is necessary and sufficient to fix
the time variations of two parameters. In a complex system it is usually
necessary to start from time-variable consumer demand at the various
nodes. The mathematical formulation of the relevant time functions may
be based e.g. on the harmonic analysis of measurement results. Once the
time functions have been established, one of the problems to be solved
may be the adjustment, within the feasible limits, of the flow rates and
pressures of the individual sources of gas, and possibly of compressor horse-
power, so that the pressures at the consumer offtake points do not exceed
the least supply pressure contracted for by more than a certain safety

reserve. This is the way in which energy losses due to expansion can be
minimized.

8.5. Computer modelling of gas transmission systems
8.5.1. Case of the digital computer

The practical mathematical modelling of gas transmission systems has
been made possible by the advent of the high-speed electronic computer.
This statement is amply illustrated by the computation time demand of
the steady-state, let alone the transient, network models described above.
Employing the digital computer for systems modelling requires the mathe-
matical formulation, ‘intelligible’ to the computer, of the fundamental data
(e.g. system configuration) and of the fundamental relationships describing
the particular model envisaged. This formulation is something of a special
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problem. In solving it, the systems analyst is assisted by an independent
branch of modern mathematics, graph theory (Haray 1969), which has
been applied—e.g. by Szendy (1967)—to the topological characterization
of electric networks, too.

(a) Application of the graph theory

The complex gas transmission system composed of nodes and NCEs
may, with due attention to the known or assumed directions of flow, be
regarded as a directed graph whose connection matrix A is rather simple
to write up. Let the columns of A represent NCEs, that is, edges of graph,
and let the rows represent nodes. Let element a;; of the matrix be

41, if edge j emerges from node 4,
a; ;= 4 —1, if edge j§ ends in node i,
0, if edge j and node i are unconnected.

The connection matrix of the graph in Fig. 8.5—1a, representing the net-
work in Fig. 8.3—86, is accordingly

1 2 3 4 5 6 7 8 9 10 11 12

A=1[ 1 0 0 1 0 0 0 0 0 0 0 0

2 -1 1 0 0 0 0 0 0 0 0 O 1°

3 0-1-1 0 0 0 0 0 0 1 1 0

4 0 0 1-1 1 0 0 0 0 0 0 0 |z

5 0o 0 0 0-1 1 0 0 0 0 0 0 T 8.5—1

6 0 0 0 0 0—-1 1 0 0 0-1 0 Iz

7 00 0 0 0 0—-1—-1 0 0 0 O

8 0 0 0 0 0 0 0 1l —-1-1 0 0

9 0 0 0 0 0 0 0 0 1 0 0 —1_]

Node-connecting elements

This connection matrix uniquely defines system configuration. In net-
work calculation, one requires in addition to the connection matrix also
a definition of the loops—the senses of rotation—in the network, which

Tree branchem———
Chord —— —

Fig. 8.5 -1 Gas transmission system
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may be performed with the aid of the so-called loop matrix. In order to
derive the loop matrix from the connection matrix it is necessary to in-
troduce the concept of a tree. This term denotes a connected graph in
which there is one and only one trajectory between any two nodes. Thus,
any loopless graph is a tree. If a graph is looped, it is possible to turn it
into a tree by eliminating some of its edges. This may be performed auto-
matically, by adding up the rows of the connection matrix. Let us designate
on the tree chosen a so-called point of reference or base point, and let us
drop the corresponding row from the connection matrix. Now rearranging
the matrix so as to separate tree branches and chord branches (the latter
are those which are to be eliminated to form the tree), we may write up
the so-called matching matrix of the system. Let e.g. the reference point
be node I, in the graph shown as Fig. 8.5—1a, and let us eliminate loops
by dropping edges 3, 6, 8§ and 10. The matching matrix of the graph is,
then, written in the form

1 2

)
ot
ot
N
[
(==

|

CO0OOHOS B
|
OCOOOHMROO o}

8.5—2

COO—HOOO (=]

COHHFOOOO ~3

OrHMROOOOO

[

HEOOOOOQ ©

W00 -1 QU W N

_HOOOOOOM

OO0 MO W
[

OROOOOKO

|
OCOOHOO~D

OCOO0OOCOO
OCOCOCOO =

I
|

Tree branches Chord branches
B; B;

Clearly, in a graph of » nodes and m edges, the number of independent
so-called basic loops is £k = m — n + 1. It can be shown that the trans-
pose CT of the matrix C of these basic loops is defined by the relationship

C7 | I

where I is the unity matrix.

B! is the inverse of matrix B;. It can be produced either by inverting
matrix B;, or by writing up directly as follows. The rows of Bi! are the
tree branches; its columns are the nodes. Let element b5 of matrix Bj'2be

+1, if the trajectory from the base point to node i
includes branch 4, with the branch directed towards
Bl — the base point,
" —1, idem, with the branch directed towards the node, 8.5—4
0, if the trajectory from the base point to the node
does not include branch j.

For an example, the inverse of matrix B; referring to the tree shown in
continuous line in Fig. 8.5—1a, written up according to Eq. 8.5—4, is
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2 3 4 5 6 7 8 9
-Bf'=1 71 1 0 ¢ 1 1 1 17
2 01 0 0 L 1 0 0]8
4 0 0 1 1 0o 0 0 0|7
5 0 0 0 1 0 0 0 O0|%
7 0 0 0 0 O 1 o0 0|5
9 0 0 0 0 0 0 1 0],
11 0 0 0 0 1 1 o 0|8
12 Lo o0 o 0 0 0 1 1=
Nodes

In possession of this inverse matrix, the transpose €T of matrix C referring
to the independent loops is obtained, after performing the matrix multi-
plication, written up in Eq. 8.5—38 in the form (cf. Fig. 8.5—1b):

Loops
A B ¢ D
Cr_[—Bf-lBh] 1 T—-1 -1 0 0
= I [T 2 -1 -1 -1 1
: 4 1 1 0 0
5 0 1 0 0
7 0 0 —1 0,
9 0 0 1 —1 |8
11 0 -1 -1 0 %
12 0 0 1 -1
3 1 0 0 0
6 0 1 0 0
8 0 0 1 0
100 | o 0 0 1

The system is uniquely defined by its connection matrix A and the loop
matrix C derived from it. If in the following we agree to represent gas
flow in the individual NCEs by m-dimensional column vector ¢, and the
gas offtakes at the individual nodes by n-dimensional column vector ¢,
then Kirchhoff’s node law may be written in the form of a matrix equation

Ag =g,
or, in more detail, of the relationship
JZaiij = i -

Kirchhoff’s second law may be written up in a similar fashion, by
representing pressure changes Ap? = p} — p2 across NCEs by column
vectors AP. The loop law then assumes the form

C4P = o,
or, in more detail,
Z ck]APj = 0,
J
where k is the subscript of loops.
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It enierges from the above considerations that modelling gas trans-
mission systems by means of directed graphs is fairly simple; description
using matrices of such systems affords a clear insight into the essence of
the problem; and the calculation is readily performed by computer. It
should be noted, however, that if the system is extensive, the procedure
takes a considerable storage capacity. Another problem is that matrices
A, B and C are usually highly sparse; that is, a high percentage (up to 90
or even 98 percent in some cases) of their elements may be zero. In order
to reduce storage capacity demand and to simplify calculation, special
sparse-matrix solution methods have been devised.

(b) Review of system-modelling programs

As a consequence of the fast-increasing popularity of the digital com-
puter, numerous systems, simulation programs have been developed by the
research teams involved with the problem. The most widely known pro-
grams were reviewed by Goacher (1969), who divided them in three main
groups.

(i) General programs suitable also for the modelling of gas transmission
systems. These are essentially programs suited for the solution of differential
equations of various types. Several of these are included in the software
of almost every medium and big general-purpose computer. The best-
known such programs include CSMP (Continuous System Modelling Pro-
gram (IBM 1130/360)); Digital Simulation Language (IBM 1130/7090/360);
MIMIC; MIDAS (Modified Integration Digital AnalogSimulation); KALDAS
(Kidsrove Algol Digital Analog Simulation (ICL 1900 Series)); SLANG
(Simulation Language (ICL 503/803/4120/4130/ATLAS)). These programs
have the common drawback that the system of differential equations
describing the process taking place in the system has to be formulated by
the gas engineer, who must, in addition, bring the system to the most
suitable form or, indeed, reduce it to the most fundamental operations
(addition, subtraction), as the system of equations is fed to the computer
as a basic data. Preparing the equations of the boundary conditions is not
less cumbersome. Another disadvantage is that all programs named above
employ the explicit method to solve the system of differential equations,
and although the results for any time step are obtained rather fast, time
steps must be quite short, which is a considerable disadvantage when
handling transients of long duration.

(ii) Programs modelling steady states. These programs are used for two
distinct purposes: first, independently, to investigate one of the fairly
large class of steady-state or nearly-steady-state technical and engineering
problems, and secondly, to furnish initial conditions for the dynamic
models. The programs developed by workers of the Gas Council’s London
Research Station and their main characteristics are given in Table 8.5 —1
(after Goacher 1969). These programs satisfy in their majority the require-
ment that the user should not have to know about the structure and opera-
tion of the program. The input data including the network configuration,
the parameters of the pipelegs, the pressures and yields of the sources.
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Table 8.5—-1

Main features of steady-state network analysis programs (after Goacher 1969)

i | ;
Program | Pipelegs Nodes | Pressure-defined Loops Compres: ors/Regulators
I nodes
1 ‘ 2 \ 3 4 5 -
MANNA (8K) | 150 150 12 15 None
MANNA (32K) : 300 | 300 40 50 None

§ | 50 altogether
MANN 1 (32K) : 600 500 100 200 None

i 200 altogether
SONIC (8K) ;150 ‘ 150 20 20 10
i

20 altogether

SONIC (32K) 300 300 40 50 20 (at least 1)

i 50 altogether

DEVIL (32K) 300 300 40 50 20 (at least 1)

50 altogether

\
SNAC (32K) } 400 300 25 ‘ 150 25
\ |
MANNA = Matrix Algebra for Non-linear Network Analysis (IBM 1130)
SONIC = Steady-state of Networks Including Compressors (IBM 1130)
SNAC = Steady-state Network Analysis with Compressors

and consumer demands is readily compiled with reference to a set of in-
structions. In order to solve a loop it is sufficient to estimate the through-
put in one pipeleg included in the loop. From these data, the computer
will calculate the steady-state conditions by an iteration procedure.

(ii1) Programs modelling steady and transient states. In these programs,
the part modelling the steady state serves to provide the initial conditions
required for the transient calculations. The program is formulated also in
this case so that the gas engineer in control of the system may use it as a
‘black box’ provided he observes certain instructions and rules of opera-
tion. Although the input data list differs from one program to the next,
each program will require as a matter of course the data mentioned in
connection with the programs simulating steady states. These must be
complemented with the transient boundary conditions and with the param-
eters of the compressors, regulators, valves, etc. included in the system.
The most widely known programs and their main characteristics are listed
in Table 8.5—2. Not mentioned in the Table is General Electric’s (USA)
fairly successful GE Simulator. This latter, similarly to ENSMP and CAP,
solves the differential equations by the implicit method, whereas PIPET-
RAN and SATAN use the explicit method. The time step is, therefore,
much shorter in the latter. For an example as to the structure of a program

simulating a complex gas transmission system, let us consider that of
SATAN.
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Table 8.6 —2

A summary of the main features available in four dynamic analysis programs (after Goacher 1969)
! Flow- E ;‘fi’ Flow pressure Lonble or
Program Pipelegs Nodes d‘(;,‘i)l;:;l df‘eﬁned Compressors Regulators Loops Valves proﬁl;z " p‘;::él:l
nodes
o -T 2 3 4 5 6 7 8 9 10 11
CAP 150 150 No 5 | Not Not 10 10 No limit 150
may have up- | limit available avail-
per and lower able
pressure limits
ENSMP 300 300 No 30 20 PCO Not 10 Not 5 standard 300
limit 30 altogether avail- Does not in- avail- type. No limit
gehe able clude com- able on specific
pressor loops type
PIPET- 105 106 30 5 | 10 PCO 10 PCO | No limi