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Biometric authentication technologies are used for the machine identification of individ-
uals. The human-generated patterns used may be primarily physiological or behavioral,
but usually contain elements of both components. Examples include voice, handwriting,
face, eye and fingerprint identification. In this paper, we look at these technologies and
their applications in general, developing a systematic approach to classifying, analyzing
and evaluating them. A general system model is shown and test results for a number of
technologies are considered.
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1. General Principles

1.1. The functions of biometric identification devices

The term “biometric authentication” refers to the automatic identification or

identity verification of living individuals using physiological and behavioral char-

acteristics. Biometric authentication is the “automatic”, “real-time”, “nonforensic”

subset of the broader field of human identification. There are two distinct functions

for biometric devices,

(i) To prove you are who you say you are.

(ii) To prove you are not who you say you are not.

These functions are “duals” of each other. In the first function, we really mean

the act of linking the presenting person with an identity previously registered

or enrolled in the system. The user of the biometric system makes a “positive”

claim of identity which is “verified” by the automatic comparison of the submitted

“sample” to the enrolled “template”. If the system requires a “true” identity,

this must be established at the time of enrollment with external documentation.

Biometric systems do not inherently require knowledge of the user’s “true” iden-

tity, allowing for the possibility of anonymous verification through biometrics. The

purpose of a positive identification system is to prevent the use of a single identity

∗E-mail: biomet@email.sjsu.edu
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by multiple people. If a positive identification system fails to find a match be-

tween an enrolled template and a submitted sample, a “rejection” results. A match

between sample and template results in an “acceptance”. References 1–5 document

several such systems.

The second function, establishing that you are not someone or not among a

group of people already known to the system, constitutes the largest current use

of biometrics: negative “identification”. The purpose of a negative identification

system is to prevent the use of multiple identities by a single person. Consequently,

social service and driver’s licensing systems use negative identification to prevent

issuance of multiple documents to the same individual. If a negative identification

system fails to find a match between the submitted sample and all the enrolled

templates, an “acceptance” results. A match between the sample and one of the

templates results in a “rejection”. References 3 and 6 document several systems

for “negative” identification.

A negative claim to identity (establishing that you are not who you say you

are not) can only be accomplished through biometrics. For positive identifica-

tion, however, there are multiple alternative technologies such as passwords, PINs

(Personal Identification Numbers), cryptographic keys, and various “tokens” inclu-

ding identification cards. Both tokens and passwords have some inherent advan-

tages over biometric identification. Security against “false acceptance” of randomly

generated impostors can be made arbitrarily high by increasing the number of

randomly generated digits or characters used for identification. Further, in the event

of a “false rejection”, people seem to blame themselves for PIN errors, blame the

token for token errors, but blame the system for biometric errors. In the event of

loss or compromise, the token, PIN, password or key can be changed and reissued,

but a biometric measure cannot. Biometric and alternatively-based identification

systems all require a method of “exception handling” in the event of token loss or

biometric failure.

However, the use of passwords, PINs, keys and tokens carries the security pro-

blem of verifying that the presenter is the authorized user and not an unauthorized

holder. Consequently, passwords and tokens can be used in conjunction with biomet-

ric identification to mitigate their vulnerability to unauthorized use. Most impor-

tantly, properly designed biometric systems can be faster and more convenient for

the user and cheaper for the administrator than the alternatives. In our experience,

the most successful biometric systems for performing the positive identification have

been those aimed at increasing speed and convenience while maintaining adequate

levels of security such as those of Refs. 1–5.

1.2. Robustness, distinctiveness, accessibility, acceptability

and availability

There seems to be virtually no limit to the body parts, personal characteristics and

imaging methods that have been suggested and used for biometric identification:
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fingers, hands, feet, faces, eyes, ears, teeth, veins, voices, signatures, typing styles,

gaits and odors. This author’s claim to biometric development fame is a now-defunct

system based on the resonance patterns of the human head measured through

microphones placed in the users’ ear canals. Which characteristic is best? The

primary concerns are at least five-fold: the robustness, distinctiveness, accessibility,

acceptability and availability of the biometric pattern. By robust, we mean repeat-

able, not subject to large changes over time. By distinctive, we mean the existence of

wide differences in the pattern among the population. By accessible, we mean easily

presented to an imaging sensor. By acceptable, we mean perceived as nonintrusive

by the user. By available, we mean that some number of independent measures can

be presented by each user. The head resonance system scores high on robustness,

distinctiveness and availability, and low on accessibility and acceptability.

Let’s compare fingerprinting to hand geometry with regard to these measures.

Fingerprints are extremely distinctive, but not very robust, sitting at the very

end of the major appendages we use to explore the world. Damaging fingerprints

requires a few seconds of exposure to household cleaning chemicals. Many people

have chronically dry skin and cannot present clear fingerprints. Conversely, hands

are very robust, but not very distinctive. To change your hand geometry, you’d

have to hit your hand very hard with a hammer. However, many people (a few in

every 1000) have hands similar in shape to yours, so hand geometry is not very

distinctive. Hands are easily presented without much training required, but most

people initially misjudge the location of their fingerprints, assuming them to be on

the tips of the fingers. Both methods require some “real-time” feedback to the user

regarding proper presentation. Both fingerprints and the hand are accessible, being

easily presented. In the 1990 Orkand study,7 only 8% of customers at Department

of Motor Vehicle offices who had just used a biometric device agreed that electronic

fingerprinting “invades your privacy”. Summarizing the results of a lengthy survey,

the study rated the public acceptance of electronic fingerprinting at 96%. To our

knowledge, there is no comparable polling of users regarding hand geometry, but we

hypothesize that the figures would not be too different. With regard to availability,

our studies have shown that a person can repeatably present at least 6 nearly-

independent fingerprints, but only one hand geometry (your left hand may be a

near mirror image of your right).

What about eye-based methods such as iris and retinal scanning? Eyes are very

robust. Humans go to great effort, though both the autonomic and voluntary ner-

vous system, to protect the eye from any damage which heals quickly when it does

occur. The eye structure, further, appears to be quite distinctive. On the other

hand, the eye is not easy to present although the Orkand study showed that the

time required to present the retina was slightly less than that required for the

imaging of a fingerprint. No similar studies exist for iris scanning, but our experi-

ence indicates that the time required for presentation is not much different from

retinal scanning. Proper collection of an iris scan requires a well-trained operator,

a cooperative subject, adjusted equipment and well-controlled lighting conditions.
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Regarding acceptability, iris scanning is said to have a public acceptance rate of

94%. The Orkand study8 found a similar rate of acceptability for retinal scan-

ning. The human has two irises for presentation. The question of retina availability

is complicated by the fact that multiple areas of the retina can be presented by

moving the eye in various directions.

The question of “which biometric device is best?” is very complicated. The

answer depends upon the specifics of the application.

2. Classifying Applications

Each technology has strengths and (sometimes terminal) weaknesses depending

upon the application in which it is used. Although each use of biometrics is clearly

different, some striking similarities emerge when considering applications as a whole.

All applications can be partitioned according to at least seven categories. This list

of application categories is open, meaning that additional partitions might also be

appropriate. We could also argue that not all possible partition permutations are

equally likely or even permissible.

2.1. Cooperative versus noncooperative

The first partition is “cooperative/noncooperative”. This refers to the behavior of

the deceptive user. In applications verifying the positive claim of identity such as

access control, the deceptive user is cooperating with the system in the attempt to

be recognized as someone he/she is not. This we call a “cooperative” application. In

applications verifying a negative claim to identity, the deceptive user is attempting

to not cooperate with the system in an attempt not to be identified. This we call

a “noncooperative” application. Users in cooperative applications may be asked to

identify themselves in some way, perhaps with a card or a PIN, thereby limiting

the database search of stored templates to that of a single claimed identity. Users

in noncooperative applications cannot be relied on to identify themselves correctly,

thereby requiring the search of a large portion of the database. Cooperative but so-

called “PIN-less” verification applications also require search of the entire database.

2.2. Overt versus covert

The second partition is “overt/covert”. If the user is aware that a biometric iden-

tifier is being measured, the use is overt. If unaware, the use is covert. Almost all

conceivable access control and nonforensic applications are overt. Forensic applica-

tions can be covert. We could argue that this second partition dominates the first

in that a wolf cannot cooperate or noncooperate unless the application is overt.

2.3. Habituated versus nonhabituated

The third partition, “habituated/nonhabituated”, applies to the intended users of

the application. Users presenting a biometric trait on a daily basis can be considered
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habituated after short period of time. Users who have not presented the trait

recently can be considered “nonhabituated”. A more precise definition will be pos-

sible after we have better information relating system performance to frequency of

use for a wide population over a wide field of devices. If all the intended users are

“habituated”, the application is considered a “habituated” application. If all the

intended users are “nonhabituated”, the application is considered “nonhabituated”.

In general, all applications will be “nonhabituated” during the first week of oper-

ation and can have a mixture of habituated and nonhabituated users at any time

thereafter. Access control to a secure work area is generally “habituated”. Access

control to a sporting event is generally “nonhabituated”.

2.4. Attended versus nonattended

A fourth partition is “attended/unattended” and refers to whether the use of the

biometric device during operation will be observed and guided by system manage-

ment. Noncooperative applications will generally require supervised operation while

cooperative operation may or may not. Nearly all systems supervise the enrollment

process although some do not.4

2.5. Standard environment

A fifth partition is “standard/nonstandard operating environment”. If the applica-

tion will take place indoors at standard temperature (20◦C), pressure (1 atm.) and

other environmental conditions particularly where lighting conditions can be con-

trolled, it is considered a “standard environment” application. Outdoor systems and

perhaps some unusual indoor systems are considered “nonstandard environment”

applications.

2.6. Public versus private

A sixth partition is “public/private”. Will the users of the system be customers of

the system management (public) or employees (private)? Clearly attitudes toward

usage of the devices which will directly effect performance vary depending upon the

relationship between the end-users and system management.

2.7. Open versus closed

A seventh partition is “open/closed”. Will the system be required, now or in the

future, to exchange data with other biometric systems run by other management?

For instance, some State social service agencies want to be able to exchange bio-

metric information with other States. If a system is to be open, data collection,

compression and format standards are required.
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3. Examples of the Classification of Applications

Every application can be classified according to the above partitions. For instance,

the positive biometric identification of users of the Immigration and Naturalization

Service’s Passenger Accelerated Service System (INSPASS),3 currently in place at

Kennedy, Newark, Los Angeles, Miami, San Francisco, Detroit, Dulles (Washington,

D.C.), Vancouver and Toronto airports for rapidly admitting frequent travelers into

the United States can be classified as a cooperative, overt, nonattended, nonhabit-

uated, standard environment, public, closed application. The system is cooperative

because those wishing to defeat the system will attempt to be identified as someone

already holding a pass. It is overt because all will be aware that they are required

to give a biometric measure as a condition of enrollment into this system. It is

nonattended and in a standard environment because collection of the biometric

will occur near the passport inspection counter inside the airports, but not under

the direct observation of an INS employee. It is nonhabituated because most inter-

national travelers use the system less than once per month. The system is public

because enrollment is open to any frequent traveler into the United States. It is

closed because INSPASS does not exchange biometric information with any other

system.

The biometric identification of motor vehicle drivers for the purpose of prevent-

ing the issuance of multiple licenses can be classified as a noncooperative, overt,

attended, nonhabituated, standard environment, public, open application. It is non-

cooperative because those wishing to defeat the system attempt not to be identified

as someone already holding a license. It is overt because all are aware of the re-

quirement to give a biometric measure as a condition of receiving a license. It is

attended and in a standard environment because collection of the biometric occurs

at the licensing counter of a State Department of Motor Vehicles.a It is nonhab-

ituated because drivers are only required to give a biometric identifier every four

or five years upon license renewal. It is public because the system will be used by

customers of the Departments of Motor Vehicles. All current systems are closed as

States are not presently exchanging biometric information.

4. Classifying Devices

The consensus among the research community today is that all biometric devices

have both physiological and behavioral components. Physiology plays a role in

all technologies even those, such as speaker and signature recognition, previously

classified as “behavioral”.

The underlying physiology must be presented to the device. The act of presenta-

tion is a behavior. For instance, the ridges of a fingerprint are clearly physiological,

aFive States currently require fingerprints from driver’s license applicants: California, Colorado,
Georgia, Hawaii, and Texas. Michigan has made the practice illegal. A review of the use of biomet-
rics in U.S. driver’s licensing can be found in Ref. 47. The American Association of Motor Vehicle
Administrators has recently developed standards for biometric identification in driver’s licensing.
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but the pressure, rotation and roll of the finger when presented to the sensor is

based on the behavior of the user. Fingerprint images can be influenced by past

behavior such as exposure to caustic chemicals as well. Clearly, all biometric de-

vices have a behavioral component and behavior requires cooperation. A technology

is incompatible with noncooperative applications to the extent that the measured

characteristic can be controlled by behavior.

5. The Generic Biometric System

Although these devices rely on widely different technologies, much can be said about

them in general. Figure 1 shows a generic biometric authentication system divided

into five sub-systems: data collection, transmission, signal processing, decision and

data storage. We will consider these subsystems one at a time.

5.1. Data collection

Biometric systems begin with the measurement of a behavioral/physiological char-

acteristic. Key to all systems is the underlying assumption that the measured bio-

metric characteristic is both distinctive between individuals and repeatable over

time for the same individual. The problems in measuring and controlling these

variations begin in the data collection subsystem.

The user’s characteristic must be presented to a sensor. As already noted, the

presentation of any biometric to the sensor introduces a behavioral component to

every biometric method. The output of the sensor which is the input data upon

which the system is built is the convolution of: (1) the biometric measure; (2) the

way the measure is presented; and (3) the technical characteristics of the sensor.

Both the repeatability and the distinctiveness of the measurement are negatively

impacted by changes in any of these factors.b If a system is to be open, the pre-

sentation and sensor characteristics must be standardized to ensure that biometric

characteristics collected with one system will match those collected on the same

individual by another system. If a system is to be used in an overt, noncoopera-

tive application, the user must not be able to willfully change the biometric or its

presentation sufficiently to avoid being matched to previous records.

5.2. Transmission

Some, but not all, biometric systems collect data at one location but store and/or

process it at another. Such systems require data transmission. If a great amount

of data is involved, compression may be required before transmission or storage to

conserve bandwidth and storage space. Figure 1 shows compression and transmis-

sion occurring before the signal processing and image storage. In such cases, the

bThe mathematical basic for this somewhat surprising statement linking distinctiveness to input
variability is found in Ref. 18.

In
t. 

J.
 I

m
ag

e 
G

ra
p.

 2
00

1.
01

:9
3-

11
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 O

F 
SI

N
G

A
PO

R
E

 o
n 

11
/0

4/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 15, 2001 14:17 WSPC/164-IJIG 00008

100 J. L. Wayman

transmitted or stored compressed data must be expanded before further use. The

process of compression and expansion generally causes quality loss in the restored

signal with loss increasing with increasing compression ratio. The compression tech-

nique used will depend upon the biometric signal. An interesting area of research

is in finding, for a given biometric technique, compression methods with minimum

impact on the signal processing subsystem.

If a system is to be open, compression and transmission protocols must be

standardized so that every user of the data can reconstruct the original signal.

Standards currently exist for the compression of fingerprint (WSQ), facial images

(JPEG), and voice data (CELP).

5.3. Signal processing

Having acquired and possibly transmitted a biometric characteristic, we must

prepare it for matching with other like measures. Figure 1 divides the signal pro-

cessing subsystem into three tasks: feature extraction, quality control, and pattern

matching.

Feature extraction is fascinating. Our first goal is separate, in the presence of

the noise and signal losses imposed by the transmission process, the true biometric

pattern from the presentation and sensor characteristics also coming from the data

collection subsystem. Our second, related goal is to preserve from the biometric

pattern those qualities which are distinctive and repeatable, and to discard those

which are not or are redundant. In a text-independent speaker recognition system,

for instance, we may want to find the features, such as the frequency relationships

in vowels, that depend only upon the speaker and not upon the words being spoken.

And, we will want to focus on those features that remain unchanged even if the

speaker has a cold or is not speaking directly into the microphone. There are as

��������

��������

��	�
���

����� �	�����	�����������

��	�

������	���


����	���

������	�	���

������

�����������

�	���
�

��
���

���������


��		���

��	�����

�����	�

���	���

���	���

��	���	���

���������

	�����������

Fig. 1. Generic biometric system.
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many wonderfully creative mathematical approaches to feature extraction as there

are scientists and engineers in the biometrics industry. You can understand why such

algorithms are always considered proprietary. Consequently, in an open system, the

“open” stops here.

In general, feature extraction is a form of nonreversible compression, meaning

that the original biometric image cannot be reconstructed from the extracted fea-

tures. In some systems, transmission occurs after feature extraction to reduce the

bandwidth required.

After feature extraction, or maybe even before or during, we will want to check

to see if the signal received from the data collection subsystem is of good quality.

If the features “don’t make sense” or are insufficient in some way, we can conclude

quickly that the received signal was defective. This is called a “failure to acquire”

and we can request a new sample from the data collection subsystem while the

user is still at the sensor. The development of this “quality control” process has

greatly improved the performance of biometric systems in the last few short years.

On the other hand, some people seem never to be able to present an acceptable

signal to the system. If a negative decision by the quality control module cannot

be over-ridden, a “failure to enroll” error results.

The feature “sample”, now of very small size compared to the original signal, will

be sent to the pattern matching process for comparison to one or more previously

identified and stored features. The term “enrollment” refers to the placing of that

feature “sample” into the database for the very first time. Once in the database

and perhaps associated with an identity by external information (provided by the

enrollee or others), the feature sample is referred to as the “template” for the

individual to which it refers.

The purpose of the pattern matching process is to compare a presented feature

sample to a stored template, and to send to the decision subsystem a quantitative

measure of the comparison. An exception is enrollment in systems allowing multiple

enrollments. In this application, the pattern matching process can be skipped. In

the cooperative case where the user has claimed an identity or where there is but a

single record in the current database (which might be a magnetic stripe card), the

pattern matching process only makes a comparison against a single stored template.

In all other cases, the pattern matching process compares the present sample to

multiple templates from the database one-at-a-time as instructed by the decision

subsystem, sending on a quantitative “distance” measure for each comparison.

For simplification, we will assume closely matching patterns to have small “dis-

tances” between them. Distances will rarely, if ever, be zero as there will always be

some biometric, presentation, sensor or transmission related difference between the

sample and template from even the same person.

5.4. Decision

The decision subsystem implements system policy by directing the database search

determine “matches” or “nonmatches” based on the distance measures received
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from the pattern matcher and ultimately make an “accept/reject” decision based

on the system policy. Such a policy could be to declare a match for any distance

lower than a fixed threshold and “accept” a user on the basis of this single match,

or the policy could be to declare a match for any distance lower than a user-

dependent, time-variant, or environmentally-linked threshold and require matches

from multiple measures for an “accept” decision. The policy could be to give all

users, good-guys and bad-guys (deceptive users) alike, three tries to return a low

distance measure and be “accepted” as matching a claimed template. Or, in the

absence of a claimed template, the system policy could be to direct the search of all,

or only a portion, of the database and return a single match, multiple “candidate”

matches, or declare that no match was found.

The decision policy employed is a management decision that is specific to the

operational and security requirements of the system. In general, lowering the num-

ber of false nonmatches can be traded against raising the number of false matches.

The optimal system policy in this regard depends both upon the statistical char-

acteristics of the comparison distances coming from the pattern matcher and upon

the relative penalties for false match and false nonmatch within the system. In any

case, in the testing of biometric devices, it is necessary to de-couple the performance

of the signal processing subsystem from the policies implemented by the decision

subsystem.

5.5. Storage

The remaining subsystem to be considered is that of storage. There will be one or

more forms of storage used depending upon the biometric system. Feature templates

will be stored in a database for comparison by the pattern matcher to incoming

feature samples. For systems only performing “one-to-one” matching, the database

may be distributed on magnetic stripe cards carried by each enrolled user. Depend-

ing upon system policy, no central database need exist although in this application,

a centralized database can be used to detect counterfeit cards or to reissue lost

cards without re-collecting the biometric pattern.

The database will be centralized if the system performs one-to-N matching with

N greater than one as in the case of identification or “PIN-less” verification systems.

As N gets very large, system speed requirements dictate that the database be

partitioned into smaller subsets such that any feature sample need only be matched

to the templates stored in one partition. This strategy has the effect of increasing

system speed and decreasing false matches at the expense of increasing the false

nonmatch rate owing to partitioning errors. This means that system error rates do

not remain constant with increasing database size and identification systems do not

linearly scale. Consequently, database partitioning strategies represent a complex

policy decision. Scaling equations for biometric systems are given in Ref. 8.

If it may be necessary to reconstruct the biometric patterns from stored data,

raw (although possibly compressed) data storage will be required. The biometric
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pattern is generally not reconstructable from the stored templates. Further, the tem-

plates themselves are created using the proprietary feature extraction algorithms of

the system vendor. The storage of raw data allows changes in the system or system

vendor to be made without the need to re-collect data from all enrolled users.

6. Testing

The principles of biometric testing have been detailed in Ref. 9. As originally

suggested in Ref. 10, there are three basic types of tests: technology, scenario,

and operational. Technology tests evaluate the performance of algorithms on

pre-collected databases. References 10–18 describe such tests, often held in a

competitive environment. Scenario evaluations seek to test a prototype biomet-

ric system in an environment that models some proposed application. Operational

tests use data collected directly from an application (perhaps a “pilot project”).

References 19 and 20 give examples of such a test. All tests generally focus on

repeatability and distinctiveness of the measures, as reflected by the system error

rates. Scenario and operational tests also usually measure user throughput rates,

as well.

All type of testing require repeat visits with multiple human subjects. Further,

the generally low error rates mean that many human subjects are required to detect

even a few errors. The number of subjects required to produce “statistically sig-

nificant” results, however, is not well understood.9,20,21 The consensus in the test

community is that systematic errors owing to uncontrolled variables are far more

significant than random errors owing to small sample sizes.

Biometric testing is extremely expensive, generally affordable only by govern-

ment agencies. Few biometric technologies have undergone rigorous, developer/

vendor-independent testing in scenario or operational environments. These points

will be explored in more detail in this section.

6.1. Distance distributions

The most basic technical measures which we can use to determine the distinctive-

ness and repeatability of the biometric patterns are the distance measures output by

the signal processing module.c Through testing, we can establish three application-

dependent distributions based on these measures. The first distribution is created

from distance measures resulting from comparison of samples to like templates. We

call this the “genuine” distribution. It shows us the repeatability of measures from

the same person. The second distribution is created from the distance measures

resulting from comparison of templates from different enrolled individuals. We call

this the “inter-template” distribution. The third distribution is created from the

cStrictly speaking, these are “scores” and may not represent distances in what mathematicians
call a “metric space”. We can assume without loss of generality that the larger the measure, the
greater the difference between sample and template or template and template.
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Fig. 2. Distance distributions.

distance between samples to nonlike templates. We call this the “impostor” distri-

bution. It shows us the distinctiveness of measures from different individuals. A full

mathematical development of these concepts is given in Ref. 18.

These distributions are shown as Fig. 2. Both the impostor and inter-template

distributions lie generally to the right of the genuine distribution. The genuine

distribution has a second “mode” (hump). We have noticed this in all of our

experimental data. This second mode results from match attempts by people

that can never reliably use the system (called “goats” in the literature22–24) and

by otherwise biometrically-repeatable individuals that cannot use the system

successfully on this particular occasion. All of us have days that we “just aren’t

ourselves”. Convolution of the genuine and inter-template curves in the original

space of the measurement, under the template creation policy, results in the im-

postor distribution. The mathematics for performing this convolution is discussed

in Refs. 25 and 26.

If we were to establish a decision policy by picking a “threshold” distance, then

declaring distances less than the threshold as a “match” and those greater to indi-

cate “nonmatch”, errors would inevitably be made because of the overlap between

the genuine and impostor distributions. No threshold could cleanly separate the

genuine and impostor distances. In a perfect system, the repeatability (genuine)

distribution would be disjoint (nonoverlapping) from the impostor distribution.

Clearly, decreasing the difficulty of the application category will affect the genuine

distribution by making it easier for users to give repeatable samples, thus moving

the genuine curve to the left and decreasing the overlap with the impostor distri-

bution. Movement of the genuine distribution also causes secondary movement in

the impostor distribution as the latter is the convolution of the inter-template and

genuine distributions. We currently have no quantitative methodology or predicting

movement of the distributions under varying applications.

In noncooperative applications, it is the goal of the deceptive user not to be

identified. This can be accomplished by willful behavior, moving a personal dis-

tribution to the right and past a decision policy threshold. We do not know for

any noncooperative system the extent to which deceptive users can move genuine

measures to the right.
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Some systems have strong quality-control modules and will not allow poor im-

ages to be accepted. Eliminating poor images by increasing the “failure to enroll”

rate can decrease both false match and false nonmatch rates. Two identical devices

can give different ROC curves based on the strictness of the quality-control module.

We emphasize that with the exception of arbitrary policies of the quality con-

trol module, these curves do not depend in any way upon system decision policy,

but upon the basic distinctiveness and repeatability of the biometric patterns in

this application. This leads us to the idea that maybe different systems in simi-

lar applications can be compared on the basis of these distributions. Even though

there is unit area under each distribution, the curves themselves are not dimension-

less owing to their expression in terms of the dimensional distance. We will need

a nondimensional number if we are to compare two unrelated biometric systems

using a common and basic technical performance measure.

6.2. Nondimensional measures of comparison

The most useful method for removing the dimensions from the results shown in

Fig. 2 is to integrate the “impostor” distribution from zero to an upper bound τ .

The value of the integral represents the probability that an impostor’s score will be

less than the decision threshold τ . Under a threshold-based decision policy, this area

represents the probability of a single comparison “false match” at this threshold.

We can then integrate the “genuine” distribution from this same bound τ to

infinity, the value of this integral representing the probability that a genuine score

will be greater than the decision threshold. This area represents the probability of

a single comparison “false nonmatch” at this threshold.

These two values, “false match” and “false nonmatch” for every τ can be

displayed as a point on a graph with the false match on the abscissa (x-axis)

Fig. 3. AFIS benchmark ROC.
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and the false nonmatch on the ordinate (y-axis). We have done this in Fig. 3 for

five Automatic Fingerprint Identification System (AFIS) algorithms tested against

a standard database. For historic reasons, this is called the “Receiver Operat-

ing Characteristic” or ROC curve.27–29 Mathematical methods for using these

measured false match and false nonmatch rates for “false acceptance” and “false

rejection” prediction under a wide range of system decision policies have been

established in Ref. 8.

Other measures have been suggested for use in biometric testing such as

“D-prime”30–32 and “Kullback–Leibler”33 values. These are single, scalar measures,

however, and are not translatable to error rate prediction.

We end this section by emphasizing that all of these measures are highly de-

pendent upon the category of the application and the population demographics

and are related to system error rates only through the decision policy. Nonetheless,

false match and false nonmatch error rates as displayed in the ROC curve seem to

be the only appropriate test measures allowing for even rudimentary system error

performance prediction.

6.3. Error bounds

Methods for establishing error bounds on the ROC are not well understood. Each

point on the ROC curve is calculated by integrating “genuine” and “impostor” dis-

tributions between zero and some threshold τ . Traditionally, as in Refs. 34 and 35,

error bounds for the ROC at each threshold τ have been found through a summation

of the binomial distribution. The confidence β given a nonvarying probability p of

K sample/template comparison scores or fewer, out ofN independent comparison

scores being in the region of integration would be,

β = Pr{i ≤ K} =

K∑
i=0

N !

i!(N − i)!p
i(1− p)N−i . (1)

In most biometric tests, values of N and K are too large to allow N ! and K!

in Eq. (1) to be computed directly. The general procedure is to substitute the

“incomplete Beta function”36,37 for the cumulative binomial distribution on the

right hand side above, then numerically invert to find p for a given N , K, and β.

This equation can be used to determine the required size of a biometric test for

a given level of confidence if the error probability is known in advance. Of course,

the purpose of the test is to determine the error probability, so, in general, the

required number of comparison scores (and test subjects) cannot be predicted prior

to testing. To deal with this, “Doddington’s Ruled” is to test until 30 errors have

been observed. If the test is large enough to produce 30 errors, we will be about

95% sure that the “true” value of the error rate for this test lies within about 40%

of that measured in Ref. 21.

dNamed after U.S. Department of Defense speech scientist George Doddington.
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Equation (1) will not be applicable to biometric systems if: (1) trials are not

independent; (2) the error probability varies across the population with single users

involved in more than one trial. If cross-comparisons (all samples compared to all

templates except the matching one) are used to establish the “impostor distri-

bution”, the comparisons will not be independent and Eq. (1) will not apply. An

equation for error bounds in this case has been given in Ref. 38 and has been verified

using operational data in Ref. 20. The varying error probability across the popula-

tion (“goats” with high false nonmatch errors and “lambs/wolves” with high false

match errors)22 similarly invalidates Eq. (1) as a generally appropriate equation for

developing error bounds if users are involved in more than one trial.

Reference 20 establishes Eq. (1) as an applicable approximation for the false

nonmatch rate under the rather restrictive condition that each enrolled user give

but one test sample. Under this protocol, trials are independent and can be treated

as coming from a uniform population. One interesting question to ask is “if we have

no errors, what is the lowest false nonmatch error rate that can be statistically

established for any threshold with a given number of comparisons?” We want to

find the value of p such that the probability of no errors in N trials, purely by

chance, is less than 5%. This is called the “95% confidence level”. We apply Eq. (1)

using X = 0,

0.05 > Pr(K = 0) =

0∑
i=0

N !

i!(i−N)!
pi(1− p)N−i = (1 − p)N . (2)

This reduces to

ln(0.05) > N ln(1 − p) . (3)

For small p, ln(1− p) ≈ −p and, further, ln(0.05) ≈ −3. Therefore, we can write,

N >
3

p
(4)

This means that at 95% statistical confidence, error rates can never be shown to

be smaller than three divided by the number of independent tests. For example, if

we wish to establish false nonmatch error rates to be less than 3%, we will need to

conduct 100 independent tests using 100 volunteers with no errors (3/.03 = 100).

The real problem with confidence intervals is that they refer to the statistical

inaccuracy of a particular test owing to finite test size. The intervals in no way

relate to future performance expectations for the tested device due to the much more

significant systematic uncertainty regarding user population and overall application

differences. The reporting of confidence intervals is not recommended in Ref. 9.

6.4. Scenario testing

The concepts of Secs. 6.1–6.3 apply to all tests, whether technical, scenario, or

operational. In technical tests, we develop an ROC using the algorithms of a signal

processing subsystem using a pre-collected database. The collection subsystem is
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separated in time and space from the signal processing subsystem. The resulting

ROC for the algorithms tested are highly dependent upon the conditions under

which the database was collected and the exact collection subsystem used.

To test how a complete system might perform in a real environment, we can

construct a “scenario” test, replicating the target operational environment in our

test protocols. All such test results must be interpreted in the context of the collec-

tion scenario and cannot be translated directly for performance prediction in other

conditions. Most prior testing has been done in cooperative, overt, habituated, at-

tended, standard environment, private, closed application of the test laboratory.

This is the application most likely to yield low error rates. Clearly, people who are

habitually cooperating with an attended system in an indoor environment with no

data transmission requirements are the most able to give clear, repeatable biometric

measures.

Use of a system at an outdoor amusement park4 to assure the identity of non-

transferable season ticket holders constitutes a cooperative, overt, nonhabituated,

unattended, nonstandard environment, public, closed application. Performance in

this application will not be well predicted from tests in the previously mentioned

habituated, attended application

One of the major considerations in a scenario test is that of “template aging”.

All biometric measures change to some extent over time. In a target application,

enrollment and use may be separated by years. To create a suitable scenario test,

we must enroll and test volunteers over a time interval similar to that expected

in the operational environment. That may not be possible for systems expected to

operate over long time scales. A rule of thumb would be to separate the samples at

least by the general time of healing of that body part. For instance, for fingerprints,

2 to 3 weeks should be sufficient. Perhaps, eye structures heal faster, allowing image

separation of only a few days. Considering a hair cut to be an injury to a body

structure, facial images should perhaps be separated by one or two months.

A test population with stable membership over time is so difficult to find and our

understanding of the demographic factors affecting biometric system performance

is so poor that target population approximation will always be a major problem

limiting the predictive value of our tests.

The ROC measures will be developed from the distributions of distances be-

tween samples created from the test data and templates created from the training

data. Distances resulting from comparisons of samples and templates from the same

people will be used to form the genuine distribution. Distances resulting from com-

parison of samples and templates from different people will be used to form the

impostor distribution.

6.5. Operational testing

Given the expense of assembling and tracking human test subjects for multiple

sample submissions over time and the limited, scenario-dependent nature of the
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resulting data, we are forced to ask, “Are there any alternatives to scenario testing

for real-world performance prediction?” Perhaps the operational data from installed

systems can be used for evaluating performance. Most systems maintain an activity

log which includes transaction scores. These transaction scores can be used directly

to create the genuine distribution of Fig. 2.

The problem with operational data is in creating the impostor distribution.

Referring to Fig. 1, the general biometric system stores feature templates in the

database and, rarely, compressed samples as well. If samples of all transactions

are stored, our problems are nearly solved. Using the stored samples under the

assumption that they are properly labeled (no impostors) and represent “good

faith” efforts to use the system (no players, pranksters or clowns), we can compare

the stored samples with nonlike templates, in “off-line” computation, to create the

impostor distribution.

Unfortunately, operational samples are rarely stored due to memory restrictions.

Templates are always stored, so perhaps they can be used in some way to compute

the impostor distribution. Calculating the distance distribution between templates

leads to the inter-template distribution of Fig. 2. Figure 2 was created using a sim-

ulation model based on biometric data from the Immigration and Naturalization

Service Passenger Accelerated Service System (INSPASS) used for U.S. immigra-

tion screening at several airports.19 It represents the relationship between genuine,

impostor and inter-template distributions for this 9-dimensional case. Clearly, the

inter-template distribution is a poor proxy for the impostor distribution. Figure 4

shows the difference in ROC curves resulting from the two cases.

Currently, we are not technically capable of correcting ROCs developed from

inter-template distributions except in the case where the template resulted from a

single enrollment sample. The correction factors depend upon the template creation

policy (number of sample submissions for enrollment) and more difficult questions

such as the assumed shape of the genuine distribution in the original template

space.18,25,26

Fig. 4. Inter-template ROC bias.
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7. Available Test Results

Results of some excellent tests are publicly available. The most sophisticated work

has been done in technical tests of speaker verification algorithms. Much of this

work is extremely mature, focusing on both the repeatability of sounds from a sin-

gle speaker and the variation between speakers.16,22,23,39–44 The (U.S.) National

Institute of Standards and Technology (NIST) holds an annual test of speaker ver-

ification algorithms.16 The scientific community has adopted general standards for

biometric testing9 modeled after the NIST speaker verification protocols. Technical

testing for speaker verification algorithms on pre-stored “corpora” is aided by the

existence of general standards for speech sampling rates and dynamic range.

In 1991, the Sandia National Laboratories released an excellent and widely

available scenario test on voice, signature, fingerprint, retinal and hand geometry

systems.45 Although the results are now dated, this test has served as the proto-

type for scenario testing in an office environment. The test used data acquired in a

laboratory setting from professional people well-acquainted with the devices. Error

rates as a function of a variable threshold were reported as were results of a user

acceptability survey. In April, 1996, Sandia released an operational evaluation of

the IriScan prototype46 in an access-control environment.

The Facial Recognition Technology (FERET) Program produced a number of

excellent papers,10–15 comparing facial recognition algorithms against standardized

databases in technical tests. Earlier reports from this same project included a look

at infrared imagery as well.15

In 1998, San Jose State University released the final report to the Federal

Highway Administration47 on the development of biometric standards for the iden-

tification of commercial drivers. This report includes the results of an international

automatic fingerprint identification system benchmark test.

More recently, the Fingerprint Verification Competition 200017 reported results

from a technical test of 11 algorithms against 4 different fingerprint databases.

8. Conclusion

The science of biometrics, although still in its infancy, is progressing extremely

rapidly. Just as aeronautical engineering took decades to catch up with the Wright

brothers, we hope to eventually catch up with the thousands of system users who

are successfully using these devices in a wide variety of applications. The goal of

the scientific community is to provide tools and test results to aid current and

prospective users in selecting and employing biometric technologies in a secure,

user-friendly, and cost-effective manner.
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