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Biometric authentication technologies are used for the machine identification of individ-
uals. The human-generated patterns used may be primarily physiological or behavioral,
but usually contain elements of both components. Examples include voice, handwriting,
face, eye and fingerprint identification. In this paper, we look at these technologies and
their applications in general, developing a systematic approach to classifying, analyzing
and evaluating them. A general system model is shown and test results for a number of
technologies are considered.
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1. General Principles
1.1. The functions of biometric identification devices

The term “biometric authentication” refers to the automatic identification or
identity verification of living individuals using physiological and behavioral char-
acteristics. Biometric authentication is the “automatic”, “real-time”, “nonforensic”
subset of the broader field of human identification. There are two distinct functions
for biometric devices,

(i) To prove you are who you say you are.
(ii) To prove you are not who you say you are not.

These functions are “duals” of each other. In the first function, we really mean
the act of linking the presenting person with an identity previously registered
or enrolled in the system. The user of the biometric system makes a “positive”
claim of identity which is “verified” by the automatic comparison of the submitted
“sample” to the enrolled “template”. If the system requires a “true” identity,
this must be established at the time of enrollment with external documentation.
Biometric systems do not inherently require knowledge of the user’s “true” iden-
tity, allowing for the possibility of anonymous verification through biometrics. The
purpose of a positive identification system is to prevent the use of a single identity
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by multiple people. If a positive identification system fails to find a match be-
tween an enrolled template and a submitted sample, a “rejection” results. A match
between sample and template results in an “acceptance”. References 1-5 document
several such systems.

The second function, establishing that you are not someone or not among a
group of people already known to the system, constitutes the largest current use
of biometrics: negative “identification”. The purpose of a negative identification
system is to prevent the use of multiple identities by a single person. Consequently,
social service and driver’s licensing systems use negative identification to prevent
issuance of multiple documents to the same individual. If a negative identification
system fails to find a match between the submitted sample and all the enrolled
templates, an “acceptance” results. A match between the sample and one of the
templates results in a “rejection”. References 3 and 6 document several systems
for “negative” identification.

A negative claim to identity (establishing that you are not who you say you
are not) can only be accomplished through biometrics. For positive identifica-
tion, however, there are multiple alternative technologies such as passwords, PINs
(Personal Identification Numbers), cryptographic keys, and various “tokens” inclu-
ding identification cards. Both tokens and passwords have some inherent advan-
tages over biometric identification. Security against “false acceptance” of randomly
generated impostors can be made arbitrarily high by increasing the number of
randomly generated digits or characters used for identification. Further, in the event
of a “false rejection”, people seem to blame themselves for PIN errors, blame the
token for token errors, but blame the system for biometric errors. In the event of
loss or compromise, the token, PIN, password or key can be changed and reissued,
but a biometric measure cannot. Biometric and alternatively-based identification
systems all require a method of “exception handling” in the event of token loss or
biometric failure.

However, the use of passwords, PINs, keys and tokens carries the security pro-
blem of verifying that the presenter is the authorized user and not an unauthorized
holder. Consequently, passwords and tokens can be used in conjunction with biomet-
ric identification to mitigate their vulnerability to unauthorized use. Most impor-
tantly, properly designed biometric systems can be faster and more convenient for
the user and cheaper for the administrator than the alternatives. In our experience,
the most successful biometric systems for performing the positive identification have
been those aimed at increasing speed and convenience while maintaining adequate
levels of security such as those of Refs. 1-5.

1.2. Robustness, distinctiveness, accessibility, acceptability
and availability

There seems to be virtually no limit to the body parts, personal characteristics and
imaging methods that have been suggested and used for biometric identification:
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fingers, hands, feet, faces, eyes, ears, teeth, veins, voices, signatures, typing styles,
gaits and odors. This author’s claim to biometric development fame is a now-defunct
system based on the resonance patterns of the human head measured through
microphones placed in the users’ ear canals. Which characteristic is best? The
primary concerns are at least five-fold: the robustness, distinctiveness, accessibility,
acceptability and availability of the biometric pattern. By robust, we mean repeat-
able, not subject to large changes over time. By distinctive, we mean the existence of
wide differences in the pattern among the population. By accessible, we mean easily
presented to an imaging sensor. By acceptable, we mean perceived as nonintrusive
by the user. By available, we mean that some number of independent measures can
be presented by each user. The head resonance system scores high on robustness,
distinctiveness and availability, and low on accessibility and acceptability.

Let’s compare fingerprinting to hand geometry with regard to these measures.
Fingerprints are extremely distinctive, but not very robust, sitting at the very
end of the major appendages we use to explore the world. Damaging fingerprints
requires a few seconds of exposure to household cleaning chemicals. Many people
have chronically dry skin and cannot present clear fingerprints. Conversely, hands
are very robust, but not very distinctive. To change your hand geometry, you’'d
have to hit your hand very hard with a hammer. However, many people (a few in
every 1000) have hands similar in shape to yours, so hand geometry is not very
distinctive. Hands are easily presented without much training required, but most
people initially misjudge the location of their fingerprints, assuming them to be on
the tips of the fingers. Both methods require some “real-time” feedback to the user
regarding proper presentation. Both fingerprints and the hand are accessible, being
easily presented. In the 1990 Orkand study,” only 8% of customers at Department
of Motor Vehicle offices who had just used a biometric device agreed that electronic
fingerprinting “invades your privacy”. Summarizing the results of a lengthy survey,
the study rated the public acceptance of electronic fingerprinting at 96%. To our
knowledge, there is no comparable polling of users regarding hand geometry, but we
hypothesize that the figures would not be too different. With regard to availability,
our studies have shown that a person can repeatably present at least 6 nearly-
independent fingerprints, but only one hand geometry (your left hand may be a
near mirror image of your right).

What about eye-based methods such as iris and retinal scanning? Eyes are very
robust. Humans go to great effort, though both the autonomic and voluntary ner-
vous system, to protect the eye from any damage which heals quickly when it does
occur. The eye structure, further, appears to be quite distinctive. On the other
hand, the eye is not easy to present although the Orkand study showed that the
time required to present the retina was slightly less than that required for the
imaging of a fingerprint. No similar studies exist for iris scanning, but our experi-
ence indicates that the time required for presentation is not much different from
retinal scanning. Proper collection of an iris scan requires a well-trained operator,
a cooperative subject, adjusted equipment and well-controlled lighting conditions.
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Regarding acceptability, iris scanning is said to have a public acceptance rate of
94%. The Orkand study® found a similar rate of acceptability for retinal scan-
ning. The human has two irises for presentation. The question of retina availability
is complicated by the fact that multiple areas of the retina can be presented by
moving the eye in various directions.

The question of “which biometric device is best?” is very complicated. The
answer depends upon the specifics of the application.

2. Classifying Applications

Each technology has strengths and (sometimes terminal) weaknesses depending
upon the application in which it is used. Although each use of biometrics is clearly
different, some striking similarities emerge when considering applications as a whole.
All applications can be partitioned according to at least seven categories. This list
of application categories is open, meaning that additional partitions might also be
appropriate. We could also argue that not all possible partition permutations are
equally likely or even permissible.

2.1. Cooperative versus noncooperative

The first partition is “cooperative/noncooperative”. This refers to the behavior of
the deceptive user. In applications verifying the positive claim of identity such as
access control, the deceptive user is cooperating with the system in the attempt to
be recognized as someone he/she is not. This we call a “cooperative” application. In
applications verifying a negative claim to identity, the deceptive user is attempting
to not cooperate with the system in an attempt not to be identified. This we call
a “noncooperative” application. Users in cooperative applications may be asked to
identify themselves in some way, perhaps with a card or a PIN, thereby limiting
the database search of stored templates to that of a single claimed identity. Users
in noncooperative applications cannot be relied on to identify themselves correctly,
thereby requiring the search of a large portion of the database. Cooperative but so-
called “PIN-less” verification applications also require search of the entire database.

2.2. Overt versus covert

The second partition is “overt/covert”. If the user is aware that a biometric iden-
tifier is being measured, the use is overt. If unaware, the use is covert. Almost all
conceivable access control and nonforensic applications are overt. Forensic applica-
tions can be covert. We could argue that this second partition dominates the first
in that a wolf cannot cooperate or noncooperate unless the application is overt.

2.3. Habituated versus nonhabituated

The third partition, “habituated /nonhabituated”, applies to the intended users of
the application. Users presenting a biometric trait on a daily basis can be considered
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habituated after short period of time. Users who have not presented the trait
recently can be considered “nonhabituated”. A more precise definition will be pos-
sible after we have better information relating system performance to frequency of
use for a wide population over a wide field of devices. If all the intended users are
“habituated”, the application is considered a “habituated” application. If all the
intended users are “nonhabituated”, the application is considered “nonhabituated”.
In general, all applications will be “nonhabituated” during the first week of oper-
ation and can have a mixture of habituated and nonhabituated users at any time
thereafter. Access control to a secure work area is generally “habituated”. Access
control to a sporting event is generally “nonhabituated”.

2.4. Attended versus nonattended

A fourth partition is “attended/unattended” and refers to whether the use of the
biometric device during operation will be observed and guided by system manage-
ment. Noncooperative applications will generally require supervised operation while
cooperative operation may or may not. Nearly all systems supervise the enrollment
process although some do not.*

2.5. Standard environment

A fifth partition is “standard /nonstandard operating environment”. If the applica-
tion will take place indoors at standard temperature (20°C), pressure (1 atm.) and
other environmental conditions particularly where lighting conditions can be con-
trolled, it is considered a “standard environment” application. Qutdoor systems and
perhaps some unusual indoor systems are considered “nonstandard environment”
applications.

2.6. Public versus private

A sixth partition is “public/private”. Will the users of the system be customers of
the system management (public) or employees (private)? Clearly attitudes toward
usage of the devices which will directly effect performance vary depending upon the
relationship between the end-users and system management.

2.7. Open versus closed

A seventh partition is “open/closed”. Will the system be required, now or in the
future, to exchange data with other biometric systems run by other management?
For instance, some State social service agencies want to be able to exchange bio-
metric information with other States. If a system is to be open, data collection,
compression and format standards are required.
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3. Examples of the Classification of Applications

Every application can be classified according to the above partitions. For instance,
the positive biometric identification of users of the Immigration and Naturalization
Service’s Passenger Accelerated Service System (INSPASS),? currently in place at
Kennedy, Newark, Los Angeles, Miami, San Francisco, Detroit, Dulles (Washington,
D.C.), Vancouver and Toronto airports for rapidly admitting frequent travelers into
the United States can be classified as a cooperative, overt, nonattended, nonhabit-
uated, standard environment, public, closed application. The system is cooperative
because those wishing to defeat the system will attempt to be identified as someone
already holding a pass. It is overt because all will be aware that they are required
to give a biometric measure as a condition of enrollment into this system. It is
nonattended and in a standard environment because collection of the biometric
will occur near the passport inspection counter inside the airports, but not under
the direct observation of an INS employee. It is nonhabituated because most inter-
national travelers use the system less than once per month. The system is public
because enrollment is open to any frequent traveler into the United States. It is
closed because INSPASS does not exchange biometric information with any other
system.

The biometric identification of motor vehicle drivers for the purpose of prevent-
ing the issuance of multiple licenses can be classified as a noncooperative, overt,
attended, nonhabituated, standard environment, public, open application. It is non-
cooperative because those wishing to defeat the system attempt not to be identified
as someone already holding a license. It is overt because all are aware of the re-
quirement to give a biometric measure as a condition of receiving a license. It is
attended and in a standard environment because collection of the biometric occurs
at the licensing counter of a State Department of Motor Vehicles.? It is nonhab-
ituated because drivers are only required to give a biometric identifier every four
or five years upon license renewal. It is public because the system will be used by
customers of the Departments of Motor Vehicles. All current systems are closed as
States are not presently exchanging biometric information.

4. Classifying Devices

The consensus among the research community today is that all biometric devices
have both physiological and behavioral components. Physiology plays a role in
all technologies even those, such as speaker and signature recognition, previously
classified as “behavioral”.

The underlying physiology must be presented to the device. The act of presenta-
tion is a behavior. For instance, the ridges of a fingerprint are clearly physiological,

2Five States currently require fingerprints from driver’s license applicants: California, Colorado,
Georgia, Hawaii, and Texas. Michigan has made the practice illegal. A review of the use of biomet-
rics in U.S. driver’s licensing can be found in Ref. 47. The American Association of Motor Vehicle
Administrators has recently developed standards for biometric identification in driver’s licensing.
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but the pressure, rotation and roll of the finger when presented to the sensor is
based on the behavior of the user. Fingerprint images can be influenced by past
behavior such as exposure to caustic chemicals as well. Clearly, all biometric de-
vices have a behavioral component and behavior requires cooperation. A technology
is incompatible with noncooperative applications to the extent that the measured
characteristic can be controlled by behavior.

5. The Generic Biometric System

Although these devices rely on widely different technologies, much can be said about
them in general. Figure 1 shows a generic biometric authentication system divided
into five sub-systems: data collection, transmission, signal processing, decision and
data storage. We will consider these subsystems one at a time.

5.1. Data collection

Biometric systems begin with the measurement of a behavioral/physiological char-
acteristic. Key to all systems is the underlying assumption that the measured bio-
metric characteristic is both distinctive between individuals and repeatable over
time for the same individual. The problems in measuring and controlling these
variations begin in the data collection subsystem.

The user’s characteristic must be presented to a sensor. As already noted, the
presentation of any biometric to the sensor introduces a behavioral component to
every biometric method. The output of the sensor which is the input data upon
which the system is built is the convolution of: (1) the biometric measure; (2) the
way the measure is presented; and (3) the technical characteristics of the sensor.
Both the repeatability and the distinctiveness of the measurement are negatively
impacted by changes in any of these factors.® If a system is to be open, the pre-
sentation and sensor characteristics must be standardized to ensure that biometric
characteristics collected with one system will match those collected on the same
individual by another system. If a system is to be used in an overt, noncoopera-
tive application, the user must not be able to willfully change the biometric or its
presentation sufficiently to avoid being matched to previous records.

5.2. Transmission

Some, but not all, biometric systems collect data at one location but store and/or
process it at another. Such systems require data transmission. If a great amount
of data is involved, compression may be required before transmission or storage to
conserve bandwidth and storage space. Figure 1 shows compression and transmis-
sion occurring before the signal processing and image storage. In such cases, the

bThe mathematical basic for this somewhat surprising statement linking distinctiveness to input
variability is found in Ref. 18.
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transmitted or stored compressed data must be expanded before further use. The
process of compression and expansion generally causes quality loss in the restored
signal with loss increasing with increasing compression ratio. The compression tech-
nique used will depend upon the biometric signal. An interesting area of research
is in finding, for a given biometric technique, compression methods with minimum
impact on the signal processing subsystem.

If a system is to be open, compression and transmission protocols must be
standardized so that every user of the data can reconstruct the original signal.
Standards currently exist for the compression of fingerprint (WSQ), facial images
(JPEG), and voice data (CELP).

5.3. Signal processing

Having acquired and possibly transmitted a biometric characteristic, we must
prepare it for matching with other like measures. Figure 1 divides the signal pro-
cessing subsystem into three tasks: feature extraction, quality control, and pattern
matching.

Feature extraction is fascinating. Our first goal is separate, in the presence of
the noise and signal losses imposed by the transmission process, the true biometric
pattern from the presentation and sensor characteristics also coming from the data
collection subsystem. Our second, related goal is to preserve from the biometric
pattern those qualities which are distinctive and repeatable, and to discard those
which are not or are redundant. In a text-independent speaker recognition system,
for instance, we may want to find the features, such as the frequency relationships
in vowels, that depend only upon the speaker and not upon the words being spoken.
And, we will want to focus on those features that remain unchanged even if the
speaker has a cold or is not speaking directly into the microphone. There are as
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many wonderfully creative mathematical approaches to feature extraction as there
are scientists and engineers in the biometrics industry. You can understand why such
algorithms are always considered proprietary. Consequently, in an open system, the
“open” stops here.

In general, feature extraction is a form of nonreversible compression, meaning
that the original biometric image cannot be reconstructed from the extracted fea-
tures. In some systems, transmission occurs after feature extraction to reduce the
bandwidth required.

After feature extraction, or maybe even before or during, we will want to check
to see if the signal received from the data collection subsystem is of good quality.
If the features “don’t make sense” or are insufficient in some way, we can conclude
quickly that the received signal was defective. This is called a “failure to acquire”
and we can request a new sample from the data collection subsystem while the
user is still at the sensor. The development of this “quality control” process has
greatly improved the performance of biometric systems in the last few short years.
On the other hand, some people seem never to be able to present an acceptable
signal to the system. If a negative decision by the quality control module cannot
be over-ridden, a “failure to enroll” error results.

The feature “sample”, now of very small size compared to the original signal, will
be sent to the pattern matching process for comparison to one or more previously
identified and stored features. The term “enrollment” refers to the placing of that
feature “sample” into the database for the very first time. Once in the database
and perhaps associated with an identity by external information (provided by the
enrollee or others), the feature sample is referred to as the “template” for the
individual to which it refers.

The purpose of the pattern matching process is to compare a presented feature
sample to a stored template, and to send to the decision subsystem a quantitative
measure of the comparison. An exception is enrollment in systems allowing multiple
enrollments. In this application, the pattern matching process can be skipped. In
the cooperative case where the user has claimed an identity or where there is but a
single record in the current database (which might be a magnetic stripe card), the
pattern matching process only makes a comparison against a single stored template.
In all other cases, the pattern matching process compares the present sample to
multiple templates from the database one-at-a-time as instructed by the decision
subsystem, sending on a quantitative “distance” measure for each comparison.

For simplification, we will assume closely matching patterns to have small “dis-
tances” between them. Distances will rarely, if ever, be zero as there will always be
some biometric, presentation, sensor or transmission related difference between the
sample and template from even the same person.

5.4. Decision

The decision subsystem implements system policy by directing the database search
determine “matches” or “nonmatches” based on the distance measures received
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from the pattern matcher and ultimately make an “accept/reject” decision based
on the system policy. Such a policy could be to declare a match for any distance
lower than a fixed threshold and “accept” a user on the basis of this single match,
or the policy could be to declare a match for any distance lower than a user-
dependent, time-variant, or environmentally-linked threshold and require matches
from multiple measures for an “accept” decision. The policy could be to give all
users, good-guys and bad-guys (deceptive users) alike, three tries to return a low
distance measure and be “accepted” as matching a claimed template. Or, in the
absence of a claimed template, the system policy could be to direct the search of all,
or only a portion, of the database and return a single match, multiple “candidate”
matches, or declare that no match was found.

The decision policy employed is a management decision that is specific to the
operational and security requirements of the system. In general, lowering the num-
ber of false nonmatches can be traded against raising the number of false matches.
The optimal system policy in this regard depends both upon the statistical char-
acteristics of the comparison distances coming from the pattern matcher and upon
the relative penalties for false match and false nonmatch within the system. In any
case, in the testing of biometric devices, it is necessary to de-couple the performance
of the signal processing subsystem from the policies implemented by the decision
subsystem.

5.5. Storage

The remaining subsystem to be considered is that of storage. There will be one or
more forms of storage used depending upon the biometric system. Feature templates
will be stored in a database for comparison by the pattern matcher to incoming
feature samples. For systems only performing “one-to-one” matching, the database
may be distributed on magnetic stripe cards carried by each enrolled user. Depend-
ing upon system policy, no central database need exist although in this application,
a centralized database can be used to detect counterfeit cards or to reissue lost
cards without re-collecting the biometric pattern.

The database will be centralized if the system performs one-to-N matching with
N greater than one as in the case of identification or “PIN-less” verification systems.
As N gets very large, system speed requirements dictate that the database be
partitioned into smaller subsets such that any feature sample need only be matched
to the templates stored in one partition. This strategy has the effect of increasing
system speed and decreasing false matches at the expense of increasing the false
nonmatch rate owing to partitioning errors. This means that system error rates do
not remain constant with increasing database size and identification systems do not
linearly scale. Consequently, database partitioning strategies represent a complex
policy decision. Scaling equations for biometric systems are given in Ref. 8.

If it may be necessary to reconstruct the biometric patterns from stored data,
raw (although possibly compressed) data storage will be required. The biometric
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pattern is generally not reconstructable from the stored templates. Further, the tem-
plates themselves are created using the proprietary feature extraction algorithms of
the system vendor. The storage of raw data allows changes in the system or system
vendor to be made without the need to re-collect data from all enrolled users.

6. Testing

The principles of biometric testing have been detailed in Ref. 9. As originally
suggested in Ref. 10, there are three basic types of tests: technology, scenario,
and operational. Technology tests evaluate the performance of algorithms on
pre-collected databases. References 10-18 describe such tests, often held in a
competitive environment. Scenario evaluations seek to test a prototype biomet-
ric system in an environment that models some proposed application. Operational
tests use data collected directly from an application (perhaps a “pilot project”).
References 19 and 20 give examples of such a test. All tests generally focus on
repeatability and distinctiveness of the measures, as reflected by the system error
rates. Scenario and operational tests also usually measure user throughput rates,
as well.

All type of testing require repeat visits with multiple human subjects. Further,
the generally low error rates mean that many human subjects are required to detect
even a few errors. The number of subjects required to produce “statistically sig-
nificant” results, however, is not well understood.’2%2! The consensus in the test
community is that systematic errors owing to uncontrolled variables are far more
significant than random errors owing to small sample sizes.

Biometric testing is extremely expensive, generally affordable only by govern-
ment agencies. Few biometric technologies have undergone rigorous, developer/
vendor-independent testing in scenario or operational environments. These points
will be explored in more detail in this section.

6.1. Distance distributions

The most basic technical measures which we can use to determine the distinctive-
ness and repeatability of the biometric patterns are the distance measures output by
the signal processing module.® Through testing, we can establish three application-
dependent distributions based on these measures. The first distribution is created
from distance measures resulting from comparison of samples to like templates. We
call this the “genuine” distribution. It shows us the repeatability of measures from
the same person. The second distribution is created from the distance measures
resulting from comparison of templates from different enrolled individuals. We call
this the “inter-template” distribution. The third distribution is created from the

“Strictly speaking, these are “scores” and may not represent distances in what mathematicians
call a “metric space”. We can assume without loss of generality that the larger the measure, the
greater the difference between sample and template or template and template.
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distance between samples to nonlike templates. We call this the “impostor” distri-
bution. It shows us the distinctiveness of measures from different individuals. A full
mathematical development of these concepts is given in Ref. 18.

These distributions are shown as Fig. 2. Both the impostor and inter-template
distributions lie generally to the right of the genuine distribution. The genuine
distribution has a second “mode” (hump). We have noticed this in all of our
experimental data. This second mode results from match attempts by people
that can never reliably use the system (called “goats” in the literature?? 24) and
by otherwise biometrically-repeatable individuals that cannot use the system
successfully on this particular occasion. All of us have days that we “just aren’t
ourselves”. Convolution of the genuine and inter-template curves in the original
space of the measurement, under the template creation policy, results in the im-
postor distribution. The mathematics for performing this convolution is discussed
in Refs. 25 and 26.

If we were to establish a decision policy by picking a “threshold” distance, then
declaring distances less than the threshold as a “match” and those greater to indi-
cate “nonmatch”, errors would inevitably be made because of the overlap between
the genuine and impostor distributions. No threshold could cleanly separate the
genuine and impostor distances. In a perfect system, the repeatability (genuine)
distribution would be disjoint (nonoverlapping) from the impostor distribution.
Clearly, decreasing the difficulty of the application category will affect the genuine
distribution by making it easier for users to give repeatable samples, thus moving
the genuine curve to the left and decreasing the overlap with the impostor distri-
bution. Movement of the genuine distribution also causes secondary movement in
the impostor distribution as the latter is the convolution of the inter-template and
genuine distributions. We currently have no quantitative methodology or predicting
movement of the distributions under varying applications.

In noncooperative applications, it is the goal of the deceptive user not to be
identified. This can be accomplished by willful behavior, moving a personal dis-
tribution to the right and past a decision policy threshold. We do not know for
any noncooperative system the extent to which deceptive users can move genuine
measures to the right.
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Some systems have strong quality-control modules and will not allow poor im-
ages to be accepted. Eliminating poor images by increasing the “failure to enroll”
rate can decrease both false match and false nonmatch rates. Two identical devices
can give different ROC curves based on the strictness of the quality-control module.

We emphasize that with the exception of arbitrary policies of the quality con-
trol module, these curves do not depend in any way upon system decision policy,
but upon the basic distinctiveness and repeatability of the biometric patterns in
this application. This leads us to the idea that maybe different systems in simi-
lar applications can be compared on the basis of these distributions. Even though
there is unit area under each distribution, the curves themselves are not dimension-
less owing to their expression in terms of the dimensional distance. We will need
a nondimensional number if we are to compare two unrelated biometric systems
using a common and basic technical performance measure.

6.2. Nondimensional measures of comparison

The most useful method for removing the dimensions from the results shown in
Fig. 2 is to integrate the “impostor” distribution from zero to an upper bound 7.
The value of the integral represents the probability that an impostor’s score will be
less than the decision threshold 7. Under a threshold-based decision policy, this area
represents the probability of a single comparison “false match” at this threshold.

We can then integrate the “genuine” distribution from this same bound 7 to
infinity, the value of this integral representing the probability that a genuine score
will be greater than the decision threshold. This area represents the probability of
a single comparison “false nonmatch” at this threshold.

These two values, “false match” and “false nonmatch” for every 7 can be
displayed as a point on a graph with the false match on the abscissa (z-axis)

FALSE NON-MATCH RATE

0.05 |~

0.00 ‘ l ‘
0.0 5.0E-4 1.0E-3 1.5E-3 2.0E-3

FALSE MATCH RATE

Fig. 3. AFIS benchmark ROC.
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and the false nonmatch on the ordinate (y-axis). We have done this in Fig. 3 for
five Automatic Fingerprint Identification System (AFIS) algorithms tested against
a standard database. For historic reasons, this is called the “Receiver Operat-
ing Characteristic’” or ROC curve.?”"29 Mathematical methods for using these
measured false match and false nonmatch rates for “false acceptance” and “false
rejection” prediction under a wide range of system decision policies have been
established in Ref. 8.

Other measures have been suggested for use in biometric testing such as
“D-prime” 39732 and “Kullback-Leibler” 33 values. These are single, scalar measures,
however, and are not translatable to error rate prediction.

We end this section by emphasizing that all of these measures are highly de-
pendent upon the category of the application and the population demographics
and are related to system error rates only through the decision policy. Nonetheless,
false match and false nonmatch error rates as displayed in the ROC curve seem to
be the only appropriate test measures allowing for even rudimentary system error
performance prediction.

6.3. Error bounds

Methods for establishing error bounds on the ROC are not well understood. Each
point on the ROC curve is calculated by integrating “genuine” and “impostor” dis-
tributions between zero and some threshold 7. Traditionally, as in Refs. 34 and 35,
error bounds for the ROC at each threshold 7 have been found through a summation
of the binomial distribution. The confidence  given a nonvarying probability p of
K sample/template comparison scores or fewer, out of N independent comparison
scores being in the region of integration would be,

N .
=0

In most biometric tests, values of N and K are too large to allow N! and K!
in Eq. (1) to be computed directly. The general procedure is to substitute the
“incomplete Beta function”3637 for the cumulative binomial distribution on the
right hand side above, then numerically invert to find p for a given N, K, and .

This equation can be used to determine the required size of a biometric test for
a given level of confidence if the error probability is known in advance. Of course,
the purpose of the test is to determine the error probability, so, in general, the
required number of comparison scores (and test subjects) cannot be predicted prior
to testing. To deal with this, “Doddington’s Rule?” is to test until 30 errors have
been observed. If the test is large enough to produce 30 errors, we will be about
95% sure that the “true” value of the error rate for this test lies within about 40%
of that measured in Ref. 21.

dNamed after U.S. Department of Defense speech scientist George Doddington.
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Equation (1) will not be applicable to biometric systems if: (1) trials are not
independent; (2) the error probability varies across the population with single users
involved in more than one trial. If cross-comparisons (all samples compared to all
templates except the matching one) are used to establish the “impostor distri-
bution”, the comparisons will not be independent and Eq. (1) will not apply. An
equation for error bounds in this case has been given in Ref. 38 and has been verified
using operational data in Ref. 20. The varying error probability across the popula-
tion (“goats” with high false nonmatch errors and “lambs/wolves” with high false
match errors)?? similarly invalidates Eq. (1) as a generally appropriate equation for
developing error bounds if users are involved in more than one trial.

Reference 20 establishes Eq. (1) as an applicable approximation for the false
nonmatch rate under the rather restrictive condition that each enrolled user give
but one test sample. Under this protocol, trials are independent and can be treated
as coming from a uniform population. One interesting question to ask is “if we have
no errors, what is the lowest false nonmatch error rate that can be statistically
established for any threshold with a given number of comparisons?” We want to
find the value of p such that the probability of no errors in N trials, purely by
chance, is less than 5%. This is called the “95% confidence level”. We apply Eq. (1)
using X =0,

0
0.05 > Pr(K =0) = Z ﬁpi(l -p)N P =1-p". (2)

This reduces to

In(0.05) > NIn(1 —p). (3)
For small p, In(1 — p) = —p and, further, In(0.05) ~ —3. Therefore, we can write,
3
N > - 4
, (4)

This means that at 95% statistical confidence, error rates can never be shown to
be smaller than three divided by the number of independent tests. For example, if
we wish to establish false nonmatch error rates to be less than 3%, we will need to
conduct 100 independent tests using 100 volunteers with no errors (3/.03 = 100).

The real problem with confidence intervals is that they refer to the statistical
inaccuracy of a particular test owing to finite test size. The intervals in no way
relate to future performance expectations for the tested device due to the much more
significant systematic uncertainty regarding user population and overall application
differences. The reporting of confidence intervals is not recommended in Ref. 9.

6.4. Scenario testing

The concepts of Secs. 6.1-6.3 apply to all tests, whether technical, scenario, or
operational. In technical tests, we develop an ROC using the algorithms of a signal
processing subsystem using a pre-collected database. The collection subsystem is
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separated in time and space from the signal processing subsystem. The resulting
ROC for the algorithms tested are highly dependent upon the conditions under
which the database was collected and the exact collection subsystem used.

To test how a complete system might perform in a real environment, we can
construct a “scenario” test, replicating the target operational environment in our
test protocols. All such test results must be interpreted in the context of the collec-
tion scenario and cannot be translated directly for performance prediction in other
conditions. Most prior testing has been done in cooperative, overt, habituated, at-
tended, standard environment, private, closed application of the test laboratory.
This is the application most likely to yield low error rates. Clearly, people who are
habitually cooperating with an attended system in an indoor environment with no
data transmission requirements are the most able to give clear, repeatable biometric
measures.

Use of a system at an outdoor amusement park* to assure the identity of non-
transferable season ticket holders constitutes a cooperative, overt, nonhabituated,
unattended, nonstandard environment, public, closed application. Performance in
this application will not be well predicted from tests in the previously mentioned
habituated, attended application

One of the major considerations in a scenario test is that of “template aging”.
All biometric measures change to some extent over time. In a target application,
enrollment and use may be separated by years. To create a suitable scenario test,
we must enroll and test volunteers over a time interval similar to that expected
in the operational environment. That may not be possible for systems expected to
operate over long time scales. A rule of thumb would be to separate the samples at
least by the general time of healing of that body part. For instance, for fingerprints,
2 to 3 weeks should be sufficient. Perhaps, eye structures heal faster, allowing image
separation of only a few days. Considering a hair cut to be an injury to a body
structure, facial images should perhaps be separated by one or two months.

A test population with stable membership over time is so difficult to find and our
understanding of the demographic factors affecting biometric system performance
is so poor that target population approximation will always be a major problem
limiting the predictive value of our tests.

The ROC measures will be developed from the distributions of distances be-
tween samples created from the test data and templates created from the training
data. Distances resulting from comparisons of samples and templates from the same
people will be used to form the genuine distribution. Distances resulting from com-
parison of samples and templates from different people will be used to form the
impostor distribution.

6.5. Operational testing

Given the expense of assembling and tracking human test subjects for multiple
sample submissions over time and the limited, scenario-dependent nature of the
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resulting data, we are forced to ask, “Are there any alternatives to scenario testing
for real-world performance prediction?” Perhaps the operational data from installed
systems can be used for evaluating performance. Most systems maintain an activity
log which includes transaction scores. These transaction scores can be used directly
to create the genuine distribution of Fig. 2.

The problem with operational data is in creating the impostor distribution.
Referring to Fig. 1, the general biometric system stores feature templates in the
database and, rarely, compressed samples as well. If samples of all transactions
are stored, our problems are nearly solved. Using the stored samples under the
assumption that they are properly labeled (no impostors) and represent “good
faith” efforts to use the system (no players, pranksters or clowns), we can compare
the stored samples with nonlike templates, in “off-line” computation, to create the
impostor distribution.

Unfortunately, operational samples are rarely stored due to memory restrictions.
Templates are always stored, so perhaps they can be used in some way to compute
the impostor distribution. Calculating the distance distribution between templates
leads to the inter-template distribution of Fig. 2. Figure 2 was created using a sim-
ulation model based on biometric data from the Immigration and Naturalization
Service Passenger Accelerated Service System (INSPASS) used for U.S. immigra-
tion screening at several airports.'® It represents the relationship between genuine,
impostor and inter-template distributions for this 9-dimensional case. Clearly, the
inter-template distribution is a poor proxy for the impostor distribution. Figure 4
shows the difference in ROC curves resulting from the two cases.

Currently, we are not technically capable of correcting ROCs developed from
inter-template distributions except in the case where the template resulted from a
single enrollment sample. The correction factors depend upon the template creation
policy (number of sample submissions for enrollment) and more difficult questions
such as the assumed shape of the genuine distribution in the original template

space.18:25,26
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Fig. 4. Inter-template ROC bias.
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7. Available Test Results

Results of some excellent tests are publicly available. The most sophisticated work
has been done in technical tests of speaker verification algorithms. Much of this
work is extremely mature, focusing on both the repeatability of sounds from a sin-
gle speaker and the variation between speakers.!6:22:23,39744 The (U.S.) National
Institute of Standards and Technology (NIST) holds an annual test of speaker ver-
ification algorithms.'® The scientific community has adopted general standards for
biometric testing® modeled after the NIST speaker verification protocols. Technical
testing for speaker verification algorithms on pre-stored “corpora” is aided by the
existence of general standards for speech sampling rates and dynamic range.

In 1991, the Sandia National Laboratories released an excellent and widely
available scenario test on voice, signature, fingerprint, retinal and hand geometry
systems.*® Although the results are now dated, this test has served as the proto-
type for scenario testing in an office environment. The test used data acquired in a
laboratory setting from professional people well-acquainted with the devices. Error
rates as a function of a variable threshold were reported as were results of a user
acceptability survey. In April, 1996, Sandia released an operational evaluation of
the IriScan prototypeS in an access-control environment.

The Facial Recognition Technology (FERET) Program produced a number of
excellent papers,'10=1°
databases in technical tests. Earlier reports from this same project included a look
at infrared imagery as well.*?

In 1998, San Jose State University released the final report to the Federal
Highway Administration*” on the development of biometric standards for the iden-

comparing facial recognition algorithms against standardized

tification of commercial drivers. This report includes the results of an international
automatic fingerprint identification system benchmark test.

More recently, the Fingerprint Verification Competition 200017 reported results
from a technical test of 11 algorithms against 4 different fingerprint databases.

8. Conclusion

The science of biometrics, although still in its infancy, is progressing extremely
rapidly. Just as aeronautical engineering took decades to catch up with the Wright
brothers, we hope to eventually catch up with the thousands of system users who
are successfully using these devices in a wide variety of applications. The goal of
the scientific community is to provide tools and test results to aid current and
prospective users in selecting and employing biometric technologies in a secure,
user-friendly, and cost-effective manner.
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