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A system of four mutually coupled van der Pal oscillators with time delay in the 
coupling paths is analyzed. The intrinsic (i.e., uncoupled) frequencies of these oscillators 
are given by Wo~ = 1 + Ao(k - I), k = 1, 2, 3, 4, where k denotes four oscillators and/ to  is 
the intrinsic frequency gradient. In this paper, it is shown that the coupling time delay, 
coupling factor, and gradient of intrinsic frequencies of such a system radically affect the 
number, frequency, amplitudes, and phases of entrained oscillations. 

1. INTRODUCTION 

The study of mutually coupled non-linear oscillators has received much attention in 
several fields of  engineering, statistical mechanics, electronics, and biological science and 
has been discussed in numerous experimental and theoretical works [1-13]. In many of 
these works it has been assumed that the signals of the interaction between the partial 
oscillators are instantaneously transmitted without delay. However, in practice one often 
encounters cases in which the interconnected oscillators are located certain distances 
apart from each other, so that a certain amount  of  time r is required for the passage of  
the interaction signal from one oscillator to another. Consequently, it is of  definite interest 
to consider the effects of  coupling delay on the processes of the interaction of  oscillators. 
Systems of  mutually coupled non-linear oscillators with a coupling delay have been 
investigated by several authors [14-19]. 

In this paper we analyze a system of four mutually coupled van der Pal oscillators 
with time delay in the coupling paths, which is described by four second order differential- 
difference equations (see Figure 1) 
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1 ix 0] = |x2 ( t  - x2 ! = unit matrix, 
x ,  i x~( t _ , X = xj  

Lx4(t - r ) J  0 x, 

tao2 0 1 0 1 
tOO----- , B = 

tao3 0 ! 0 " 

0 woa 0 0 i 

Dots represent differentiation with respect to time, xk (k = 1, 2, 3, 4) is the output (time 
series ~olution) of  the kth van der Pol oscillator, wok (=  l + A t a ( k - 1 ) ,  k = 1 ,2 ,3 ,4)  is 
the intrinsic frequency of  that oscillator, Ata is the intrinsic frequency gradient, e is the 
waveshape parameter  (a small positive constant, e << 1), a is the coupling factor (also a 
small positive constant), r is the delay time (a positive constant), and B is a real, symmetric 
matrix of order  four, representing the interaction links among the oscillators. 

In biological applications, a chain of  loosely coupled relaxation oscillators has been 
considered as an idealized model of  the gastro-intestinal tract or the ureter, so system 
(i)  may be also used as a subunit of a larger model in intestinal modeling. 

Sinusoidal solutions of  equation (I)  have been found by using the method of harmonic 
balance [20]. The results obtained are compared  with those provided by digital computer  
studies (digital simulations). 

2. ANALYSIS 

2.1. D E T E R M I N A T I O N  O F  E N T R A I N E D  F R E Q U E N C Y .  A M P L I T U D E S  A N D  P H A S E S  O F  T H E  

E N T R A I N E D  O S C I L L A T I O N  

An entrained solution of  the form 

x ~ = A k s i n ( w t + O ~ ) ,  k--  1 ,2 ,3 ,4 ,  (2) 

is assumed, where w is the entrained frequency, Ak are the entrained amplitudes, and Ok 
are the entrained phases (w, A~, and 0~ are constants to be determined). By substituting 
the solutions (2) and their time derivatives into equation (1), ignoring higher order terms 
in 3~0, and balancing coefficients o fs in  ( tat+ 0~) and cos (tat + 0~) on both sides, one can 
obtain the following eight algebraic relationships: 

Al(tagt - ta2) _ aA2 cos (02 -  01 - tar) = s, = 0, (3a) 

A 2 ( t a ~ 2 - t a : ) - a A i c o s ( O l - O 2 - w r ) - a A 3 c o s ( O ~ - O 2 - t a r ) = s 2 = O ,  (3b) 

A 3 ( t a ~ 3 - t a 2 ) - a A 2 c o s ( O 2 - O 3 - t a r ) - a A 4 c o s ( O 4 - O j - t a r ) = s ~ = O ,  (3c) 

A4(ta~ - 0) 2) - aA3 cos ( 0~ - 04 - .wr) = s.~ = 0, (3d) 

etaAl(I - A~/4) + etA2 sin (02 -  01 - tar) = c, = 0, (3e) 

e o ~ A 2 ( l - A ~ / 4 ) + a A t s i n ( O l - O 2 - t a r ) + a A s s i n ( O ~ - O z - t a r ) = c ~ = O ,  (3t") 

e o J A j ( l - A ~ / 4 ) + a A ~ s i n ( O 2 - O ~ - t a r ) + a A ~ s i n ( O 4 - O 3 - w r ) - - c 3 = O ,  (3g) 

etaA4(l - A~/4) + otA 3 sin (0.~ - 04 - tar) = c, = 0. (3h) 

By solving these non-linear algebraic equations, the eight quantities, i.e., to, Ak (k = 
1, 2, 3, 4), and 0A (k = 2, 3, 4, with 01 arbitraryL are obtained. 
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2.2. S T A B I L I T Y  P R O B L E M  

The s tabi l i ty  o f  these  osc i l la t ions  can be inves t iga ted  by  cons ider ing  the d y n a m i c  
response  to smal l  var ia t ions  from these osci l la t ions .  Equa t ion  (2) can be modi f ied  by  
a l lowing  for smal l  var ia t ions  in a m p l i t u d e  and  phase  o f  each osc i l l a to r  as fol lows:  

Xk=(At+at ) s in ( (0 t+OA+~k) ,  k =  1 , 2 , 3 , 4 ,  (4) 

where  ak and  ~Pk are  funct ions  o f  t ime t and  these values are  sufficiently small .  I f  all 
these var ia t ions  at  and  (PA tend to zero with increas ing  t, the  c o r r e spond ing  en t r a ined  
osc i l la t ion  is s table ;  i f  all o r  some o f  these var ia t ions  diverge,  this osc i l l a t ion  is uns table .  

Equat ion  (4) is easi ly  e x p a n d e d  to the form 

Xk = At  cos ~ t  sin ((0t + 0t) + a~ cos cpA sin ((0t + 0A) 

+AAsin~pAcos( (0 t+Ot)+ats in~cos( (0 t+O~) ,  k =  1 , 2 , 3 , 4 .  (5) 

I f  ~t  (k  = 1, 2, 3, 4) is sufficiently small ,  the  results  are  cos ~A -- 1 and  sin ~Pk - cpk (k = 

1, 2, 3, 4). Hence  xt can be rewri t ten as fo l lows:  

Xk = Ak sin ((at + Or)+ at sin ( wt + Ok) 

+At~kCOS(wt+Ok)+aA~ptCOS(wt+Ok), k =  1 , 2 , 3 , 4 .  (6) 

Neglec t ing  the second  o rde r  term,  aket  cos  (cot+ 0k), k = I, 2, 3, 4, one  can write 

xA =At  sin ( (0 t+  0 t ) +  ~:t sin ((or + 0A) 

+ r/t cos ((0t + 0k), k =  ! , 2 , 3 , 4 ,  (7) 

where  ~t = at  and  r/k = AAet. Subst i tu t ing  equa t ion  (7) into equa t ion  (1) and  ignor ing  
higher  o r d e r  terms in 3(0 gives the var ia t iona l  equa t ions :  

~ , - ~ ( 1  ~ ~ " - a A , ) ~ t + ( ( 0 o t -  ( 0 2 ) ~ , - 2 ( 0 ~ , +  ~(0(1 - a A 0 r h '  2 

- a cos (02 - 0, - ( 0 r ) ~ ,  + a sin (02 - 0, - (or) rh ,  = 0, (8a) 

2 ( 0 ~ 1 _ t . ( 0 ( !  3 2 I 2 �9 - a A , ) r / , +  - aA~)~ t  + ~ , -  e ( !  ((0o 2' - (02) r/, 

- a sin (0,  - 0, - ( 0 r ) ~ ,  - a cos ( 02 - 0, - (or) rb ,  = 0, (8b) 

~ t §  3 2 _aAt+,)r +((0~+ _(02)~k, _2(0r +c(0(1 , 2 - a A t  §247 

- a  cos (0A - 0A., - (0r)~t,  + a sin (0A - 0t+, - (or) r/A, 

- a  cos (0A§ 0A+t-  (0r)~t+~, + a sin (0k+2-  0 k + , -  (0r) , / t  § = 0, (8c) 

1 -~AA +,)r/t § + (Wot§ - (0 ) r / t+ ,  - ~ A t §  ~ t + , -  c( , 2 �9 2 2 

- a  sin (0t - 0 t §  (0r)~:t. - a  cos (0~ - 0A., - (or) r/t, 

- a  sin (OA.~-Ot+t-(0r)~+~.-a  cos (Ot+~-O~.,-wr)rl t .2.=O, k =  1,2, 
(Sd) 

3 2 �9 + 2 I 2 
~ 4 - -  e ( l  - : i A 4 ) ~ 4  ((004 - w 2 ) ~ 4  - 2 ( 0 ~ 4  + E(0 ( 1 aA . l )  T/4 

- a cos ( 03 - 0~ - (0r)~3, + a sin ( 03 - 04 - (or) 03, = 0, (8e) 

2 + ~ 2 2 2(0~,- c(0(I -aA,)~4 {~4- c(l (0z),h -- ~ A 4 )  "r/4 + ((004 - 

- a sin (03 - 0 4 -  (0r)~3, - a cos (03 - 04 - (or) r/3, = 0. ( 8 0  

Here ~ t , = ~ . t ( t - r )  and  rh, = r h ( t - r ) ,  k= i , 2 , 3 , 4 .  When  the subs t i tu t ions  .s e "  
and  r/~ ~ HA e "  ( ~ t  and  HA are cons tants )  are  made ,  the charac te r i s t ic  equa t ion  o f  the 
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variational equation (8) becomes as follows:i" 

D(s )  = 

Pt t PI 2 
Pn P22 
P~, P~ 
P,t P, t2 
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PI3 PI4 

~s  P24 

~ P~ 

where 

0 

P~ PJ6 

P45 P46 

Pss P~ 
P~s P~6 
P~s P~6 
P~s P86 

0 

= 0 ,  
P~, Ps~ 
P~ P~ 

P .  P~8 

p2k_12k_ t=S2_e( l  3 2 �9 --aAk)s+(tOok--t02), P~k-,2k=--2toS+eto(l. --aAk),l 2 

(9) 

--aAk), P2k.zk=S~--e(l--~AZk)S+(W~k--t02), k =  1,2,3,4,  p2k.2k_t=2toS_eto( I 3 2 

P2k-l.2k. I = P2k.2k*2---- --a e - "  cos (0k+l- Ok --tot), 

Pzk-l.2k+z = --Pzk.~k§ = a e - "  sin ( 0 k , i -  Ok -- tot), 

P2k+,.2k-I = P2k*2.2k = --a e - "  cos (Ok --0h+,-  for), 

P2k +t.~k = --P2k+2.2k-t = a e - "  sin (0k -- 0k . I -  cot), k = 1, 2, 3. 

Thus, the stability of the entrained oscillation can be determined by finding the locations 
of the roots of the characteristic equation (9) in the s-plane. The determination of the 
locations of these roots is carried out by making use of the Nyquist criterion [21]. Here, 
equation (9) is divided by Ft(s)F2(s)F~(s)F4(s), giving~t 

D'(s)  = D ( s ) /  Ft(s)  F2(s) F3(s) F4(s), (10) 

where 

Fk (s) = s 4 + eA2ks ~ + {2(tOO2k + tO 2) + e2(1 + ~A~)}s  2 

2 2 2 2 2 2 +e(tOok+ta )AkS+(tOok--tO ) +e: to2( l+~A~) ,  k =  1,2,3,4.  

This is done since the limit of D'(s)  must approach a constant or zero (in equation (10)), 
when s ~jco one has D ' ( s ) ~  1) as s approaches co. So the stability of the corresponding 
oscillation can be determined by plotting the D'(s)  locus (s takes on values along the 
Nyquist path) and investigating the behavior of  the D'(s)  plot with respect to the origin 
in the D'-plane. From the Nyquist criterion, the oscillation is stable, provided the Nyquist 
plot of D'(s)  does not encircle the origin�9 

3. NUMERICAL RESULTS 

A numerical analysis has been carried out by using the waveshape parameter of 0.03 
and the coupling factors of 0.2 and 0.3. 

In the system being considered, there are four modes of entrained oscillation (because 
of the four-oscillator system). These oscillations were expressed as 

xsk = Ajk sin ( %t  + Osk ), (11) 

t For s =0,  D(s) =0. 
t Since the poles of  D'(s) (i.e., zeros of  Ft(s)F2(s)F3(s)F4(s)) are all located in the left hal f  of  the s-plane, 

it is evident that there is no effect of  these addit ional poles on the stabil ity of  the oscil lation. 
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where j denotes four modes ( j =  1, 2, 3, 4) and k four oscillators (k = 1, 2, 3, 4). The 
entrained frequencies S ,  the entrained amplitudes Ajk, and the entrained phases Ojkt 
have been found by solving equations (3a)-(3h). The problem of solving equations 
(3a)-(3h) can be replaced by the problem of minimizing the sum of the squares of the 

2 2 left-hand sides of these equations (i.e., T.4,.I (S ,+C , ) ) .  To solve this problem, the 
Newton-Raphson method ([22] and [23]) was used:l:. By substituting the values obtained 
into equation (10), the stability of these oscillations ( l l)  have been determined. An 
example of the practical application of the Nyquist criterion to determination of the 
stability of the oscillation is illustrated in Figure 2. 

E 

- l  

22"I Re 

(a) 

E 

Figure 2. Example of  the practical application of  the Nyquist criterion to determining the stability of  the 
entrained oscillations for Ato = 0.05 and a = 0'2. (a) r = 5.6 (in this case, since the origin is not enclosed by 
the Nyquist plot o f  D'(s) ,  the entrained oscillation is stable); (b) r = 5 . 8  (for this value of  time delay, the 
entrained oscillation is unstable). 

Figures 3-6 show the variations of the entrained frequencies, entrained amplitudes, 
and entrained phases with increasing time delay for an intrinsic frequency gradient of 
zero. For very small values of time delay, four entrained oscillations are stable. Three of 
these oscillations (i.e., mode 1, mode 2, and mode 3) soon become unstable as ~- increases. 
The details of these relationships between the stability of entrained oscillations and time 
delay are found in Table 1. In some intervals containing r=nn-, n=1 ,2 ,3  . . . . .  two 
entrained oscillations (i.e., mode 1 and mode 4) are stable; one of these oscillations is 
unstable for other values of z. The regions in which two entrained oscillations are stable 
increase in size as ~- (or the coupling factor a) increases. The regions of ~" for which 
mode 1 is stable and those for which mode 4 is stable alternate as r varies. Therefore, 
the phenomenon of discontinuous jumps in the mode of entrained oscillation occurs if 

t Here the 0~'s ( j  = I, 2, 3, 4) are taken equal to zero for simplicity, without loss of  generality�9 
:~ Here the iteration for Newton's method is terminated when the value of .~.~.., ~s~,+ t~) is less than a given 

value of  0-000001. The values obtained for ~1, Aj~ and 01~ are reasonable. 



508 

(pc=J) '8 

A.  K O U D A  A N D  S. M O R I  

| a 

I# 
I I  
I 

t 

t 
I 
I 

[ n 

I 

I 
I 

G 

\ ' , . ,  I 
0 ~ 0 

| I I I I I 

co 
-" 6 6 6 

I 

o 0  , J  - -  , . . : ,  
.E  o ,-, t~ 
�9 131 ....~ "~ r 

~. ~ "II" 

==.~ o '~ 

"~ ~ v ill. 

o. ;>~'0 * 

w o . 0  E II 

~ o e ~  

e~ i.. ~-. 0 

~.., ,,..; ~ ~"".1 

0 
~ . ~  

(poJ) I ~  

\ \~ ./-2" 

I I 

\ \ 

i I ~ ~%.-~. ~) 
/ I 

I I 

~[ // ~ -1 ~ 

0 
,."p, 

~1 /  I' i ~- 

: I  ~ i 

/ 

: 1 1  I 

~ I ~  
/ /  

t~ 

/ 
3,1 

t - . ,  1 0 
- 9 ~. 
- -  0 

% 

.u E 
~ O o o  

~EE ~.,-' ~ ~ 

3 ~  

0 U 

~-o 
EE 

u~~ r 

o o 

r ~ -  

o ~  o 
~ ~ ~) In 



i 
(a) 

0 .9  

O.E 

0 . 7  I 
0 

M U T U A L L Y  C O U P L E D  V A N  D E R  P O L  O S C I L L A T O R S  

i [ i , i 

, I I i i T i I i 
0 .05  0.1 0 

509 

. . . . ~ " . 4 4  z ,  A 4  t 

\ 
\ 

Ni l"  " ~ . %  \ 

\ . .  \ 
x \ 

\ \ \ \ \  

\ \  
\ \  

0.05 0. I  

1" 1I" 

- 0 " 0 5  

I 

(c) 
l l i * l l l l l  

t 

..,,- 
/ 

- 0 . 1 0  ] I i T I i T I t I I 
0 0 .05  0.1 

Figure 4. Expanded version of Figure 3 showing mode 1 for very small values of time delay. (a) Entrained 
frequency; (b) entrained amplitudes (A.s~ are the entrained amplitudes ofmode 4); (c) entrained phases (0it = 0, 
014-0). 

r is varied smoothly  and continuously.  These jumps are indicated by vertical lines in 
Figures 3 -6  (the jumps for Aw = 0"05 are seen in Figures 8 and 9). 

In Figures 7, 8 and 9 the variations o f  entrained frequencies, entrained amplitudes,  
and entrained phases with increasing time delay for intrinsic frequency gradient o f  0.05, 
are shown.  For a = 0.2, in some intervals containing r = ( n -  l)rr, n = 1, 2, 3 . . . .  , all the 
entrained oscillations are unstable. For other values o f  r, only one entrained oscillation 
(mode 1 or m o d e  4) is stable. The regions o f  r for which mode  ! is stable and those for 
which mode  4 is stable alternate as ~" varies. The regions in which all the entrained 
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Figure 6. Expanded version of Figure 5 showing mode I for very small values of time delay. (a) Entrained 
frequency; (b) entrained amplitudes {A~ are the entrained amplitudes of mode 4); (c) entrained phases ( 0 t l  = 0, 
0t4-0}. 

oscillations are unstable increase in size with increasing r (these are shown by the dotted 
areas in Figure 7). As a increases these regions vanish, and the regions of  r for which 
the entrained oscillations are stable are obtained. The mode stabilities for very small 
values of  r are also shown in Table 2. It becomes clear from the above results that only 
for sufficiently small values of  r are mode 2 and mode 3 stable. 

Figure 10 shows the variations of  the entrained frequencies, entrained amplitudes, and 
entrained phases with increasing intrinsic frequency gradient for a = 0.2 and r :: 0. From 
this figure it becomes clear that the entrained amplitudes, and entrained phases of mode 
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Figure 9. Expanded version of Figure 8 showing mode I for very small values of time delay. (a) Entrained 
frequency; (b) entrained amplitudes (A4k are the entrained amplitudes of mode 4); (c) entrained phases (0jr = 0). 

TABLE 1 

The stabili O, o f  four  modes o f  entrained oscillation for  sufficiently small values o f  z ( the 
theoretical results fo r  Ato = O) 

Delay time r 
Coupling factor ^ 

a Mode 0 0.01 0.02 0.03 0.04 0.05 0.06 

0.2 

0.3 

Mode 1 S S C U U U U 
Mode 2 S S C U U U U 
Mode 3 S S S S S S U 
Mode 4 S S S S S S S 

Mode 1 S S U U U U U 
Mode 2 S S U U U U U 
Mode 3 S S S S U U U 
Mode 4 S S S S S S S 

Note: S, stable; U, unstable; C, critical. 



MUTUALLY COUPLED VAN DER POL OSCILLATORS 517 

TABLE 2 

The stability of four modes of entrained oscillation for suj~eiently small 
values of z (the theoretical results for Aoj = 0.05) 

Delay time r 
Coupling factor " 

a Mode 0 0-01 0.02 0.03 0.04 

0-2 

0.3 

Mode 1 U U U U U 
Mode 2 U U U U U 
Mode 3 U U U U U 
Mode 4 U U S S S 

Mode 1 S U U U U 
Mode 2 S S U U U 
Mode 3 S S S U U 
Mode 4 S S S S S 

Note: S, stable; U, unstable. 

TABLE 3 

Comparison of  the theoretical results with restdts obtained by numerical 
integration (Ato = 0.05, a = 0-2, and r = 5"6) 

Theoretical results 

Entrained 
Entrained Entrained phase 

Oscillator no. frequency amplitude (tad) 
k tat Aik 01k 

I 5.603 0 
2 5.811 0.453 

0.971 
3 4-204 1-316 
4 2.220 2.140 

Results obtained by numerical integration 

Oscillator no. 
k 

Entrained 
Entrained Entrained phase 
frequency amplitude (tad) 

tal Al~ 01~ 

0.97 

5.60 0 
5.79 0-46 
4-13 1.36 
2.16 2.20 
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and 4) indicate regions of unstable mode. (a) Mode I; (b) mode 2; (c) mode 3; (d) mode 4. 



0.I0 

0.05 U, 

* J I i 
(o) 

0-I0 

X X 

A w  

0.I0 

0.05 

0.I 0 

l l L i l i l l i  
(b) 

U2 

x x x 

o 52 x x Sz x 

- ~  , o , ~ o - - •  
0-05 O.t 
Aw 

0-05 0.05 

(d) 

(c) ' ' * ' x//~ 

Us 

x XX S ~ x x 

o , .  

$3 o 0"(300 o o 

0 0 0 ~  

' 0 ' O--O-~---X X-~X I 
0.05 o.I 
A w  

O-iO 

I~tUTUALLY COUPLED VAN DER POL OSCILLATORS 521 

$4 

IX z J O 1 O 
0 0 0-05 0.1 

A ~  

Figure 12. Regions of  mode stability for varying time delay and intrinsic frequency gradient (a  = 0.3). (a) 
Mode I; (b) mode 2; (c) mode 3; (d) mode 4. 
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x j  

(c) 
x3 

(b) (a) 
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5 

-5 

Figure 13. Results obtained by numerical integration (,~o = 0.05, a = 0.2 and r = 5"6). (a) Waveform of xt; 
(b) waveform of x2; (c) waveform of x3; (d) waveform of x4. 

2 and mode 3 (i.e., A22 , 022 , A33 and 033) change appreciably in the neighbourhood of 
zato =0.04 as Ato varies. For very small values of Ato, these modes are stable. As Ato 
increases these modes become unstable and then again become stable. The regions of 
mode stability for varying time delay (very small values) and intrinsic frequency gradient 
were also obtained, and are shown in Figures 11 and 12. 

These theoretical results agree well with those obtained by numerical integration of 
equation (1) performed with respect to time with the fourth order Runge-Kutta algorithm 
modified to take delay into account [24],t as shown in Figures 3-12. For Ato =0.05, 
a = 0.2, and r = 5"6 the results obtained by numerical integration are given in Figure 13 
and Table 3. 

tTh is  method was used for the step-size h=0.01 (t N = N h + t  o, N - - 1 , 2 , 3 , . . . ) ,  and reasonable solutions 
were obtained. 
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4. CONCLUSION 

A system of four mutually coupled van der Pol oscillators with time delay in the 
coupling paths has been analyzed. The intrinsic (i.e., uncoupled) frequencies of  these 
oscillators were given by t ~ o k = l + A t o ( k - l ) ,  k =  1 ,2 ,3 ,4 ,  where k denotes the four 
oscillators and Ato is the intrinsic frequency gradient. The theoretical results obtained 
have been checked against the digital simulation studies. 

It became clear from the results obtained that the coupling time delay, coupling factor, 
and gradient of  intrinsic frequencies radically affect the number, frequency, amplitudes, 
and phases of  entrained oscillations. 

For small values of  alto, mode l and mode 4 can be interpreted as being an in-phase 
mode and an anti-phase mode, respectively. Comparing the results with those for a 
three-oscillator system (see the Appendix) shows that the regions of  T for which the 
in-phase mode and the anti-phase mode are stable decrease as the number of  oscillators 
and the value of  ,~to increase. 

it is possible to obtain the in-phase mode with an entrained frequency higher than for 
the uncoupled condition by suitable choice of  time delay. In biological applications, this 
is one of  the phenomena recorded from the small intestine [9]. Hence, system (l)  may 
be used as a subunit o f  a larger model in intestinal modeling. 

In this paper,  the four-oscillator system was considered. Both theoretical and experi- 
mental studies for systems of  more than four oscillators will be reported at a later date. 
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APPENDIX 

A three-oscil lator system described by the following equat ions has been studied: 

.~, - E( I - x ~ ) ~ ,  + to~ , x ,  = c,x~I t -  T) ,  

~2 - ~ ( i - x ~ ) ~ 2  + ~, 2o2X2 = a X ,  ( t - z )  + a x 3 (  t - r), 
x 3 -  c ( l  2 �9 2 - x3)x3 + too3X~ = ax2( t - r).  (A 1 ) 

Here dots represent ditterentiation with respect to time, Xk (k = 1, 2, 3, 4) is the output  
o f  the kth van der Pol oscillator, took (=  I + A t o ( k - ! ) )  is the intrinsic f requency o f  that 
oscillator, Ato is the intrinsic frequency gradient,  e is the waveshape parameter,  a is the 
coupl ing factor,  and r is the delay time. 

A numerical  analysis was carried out for a waveshape parameter  o f  0.03, a coupl ing 
factor o f  0.2, and intrinsic f requency gradients  o f  zero and 0.05. 

In this system, there are three modes o f  entrained oscillation. The results are shown 
in Figures A I - A 3 .  As shown in these figures, the results for mode  1 and mode  3 are 
similar to those for mode  1 and mode 4 o f  the four-oscil lator system, respectively (see 
Figures 3-12).  Mode  2 is unstable for very small values o f  Ato. This mode  becomes stable 
and then again becomes unstable as Ato increases (the stable mode  2 becomes unstable 
as r is increased from zero). 
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