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A system of four mutually coupled van der Pol oscillators with time delay in the
coupling paths is analyzed. The intrinsic (i.e., uncoupled) frequencies of these oscillators
are given by wo, = 1+ 4dw(k—1), k=1, 2, 3, 4, where k denotes four oscillators and 4w is
the intrinsic frequency gradient. In this paper, it is shown that the coupling time delay,
coupling factor, and gradient of intrinsic frequencies of such a system radically affect the
number, frequency, amplitudes, and phases of entrained oscillations.

1. INTRODUCTION

The study of mutually coupled non-linear oscillators has received much attention in
several fields of engineering, statistical mechanics, electronics, and biological science and
has been discussed in numerous experimental and theoretical works [1-13]. In many of
these works it has been assumed that the signals of the interaction between the partial
oscillators are instantaneously transmitted without delay. However, in practice one often
encounters cases in which the interconnected oscillators are located certain distances
apart from each other, so that a certain amount of time 7 is required for the passage of
the interaction signal from one oscillator to another. Consequently, it is of definite interest
to consider the effects of coupling delay on the processes of the interaction of oscillators.
Systems of mutually coupled non-linear oscillators with a coupling delay have been
investigated by several authors [14-19].

In this paper we analyze a system of four mutually coupled van der Pol oscillators
with time delay in the coupling paths, which is described by four second order differential-
difference equations (see Figure 1)

x—e(I-x)x+wix = aBx,, (1)
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Oscillotor | Oscillgtor 2 Oscillator 3 Qsciliator 4

Figure 1. Block diagram for system (1).
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where
Xy -X|(1_T) X 0
X,(1— X
X = 2 , X, = A{t=1) s X= 2 . I = unit matrix,
XJ x,(’_T) x]
Xa xy(t—7) 0 X4
[ wor 01 00
Wo2 0 1 01 0
= B=
@o o3 ' 01 0 1

Dots represent differentiation with respect to time, x; (k =1, 2, 3, 4) is the output (time
series solution) of the kth van der Pol oscillator, wg, (=1+4w(k—1), k=1,2,3,4) is
the intrinsic frequency of that oscillator, Aw is the intrinsic frequency gradient, ¢ is the
waveshape parameter {a small positive constant, €« 1), « is the coupling factor (also a
small positive constant}, 7 is the delay time (a positive constant), and B is a real, symmetric
matrix of order four, representing the interaction links among the oscillators.

In biological applications, a chain of loosely coupled relaxation oscillators has been
considered as an idealized model of the gastro-intestinal tract or the ureter, so systcm
(1) may be also used as a subunit of a larger model in intestinal modeling.

Sinusoidal solutions of equation (1) have been found by using the method of harmonic
balance [20]. The results obtained are compared with those provided by digital computer
studies (digital simulations).

2. ANALYSIS
2.1. DETERMINATION OF ENTRAINED FREQUENCY, AMPLITUDES AND PHASES OF THE
ENTRAINED OSCILLATION
An entrained solution of the form

X, = Ay sin (wt + 6,), k=1,2,3,4, (2)

is assumed, where o is the entrained frequency, A, are the cntrained amplitudes, and 6,
are the entrained phases (w, A;, and 6, are constants to be determined). By substituting
the solutions (2) and their time derivatives into equation (1), ignoring higher order terms
in 3w, and balancing coeflicients of sin (wf+ 6,) and cos (wt + 6,) on both sides, one can
obtain the following eight algebraic relationships:

Awd -wl)—aA,cos(0,—0,—wr)=5,=0, (3a)
Ax(wd~w?)—aA, cos (6, 6,— wr)—~ aA; cos (8, — 6, — wr) =5, =0, (3b)
Ayfwd—wl)—-aA;cos (6,- 03— wr)—aA cos (0,— 0, —wr) =53,=0, (3¢)

Adwli—w?)—aA;cos (0,— 0~ wr) =5,=0, (3d)

ewA,(1-Al/4)+aA,sin (8,— 0, - wr) = ¢, =0, (3e)

gwAz(l - A§/4)+aA| Sin (0|_ 02—w7)+aA, sin (03_ 02_(1)7) =6= 0, (3[‘)
E(UA_;(] - A§/4)+GA2 sin (02_ 03"&)7)+0A4 sin (64_03_0)1') =C3 =0, (3g)
£wAL(1 — AY/4)+ aA, sin (8; - 0,— wT) = ¢, =0. (3h)

By solving these non-linear algebraic equations, the eight quantities, i.e., w, Ay (k=
1,2,3,4), and 6, (k=2,3,4, with 0, arbitrary), are obtained.
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2.2. STABILITY PROBLEM

The stability of these oscillations can be investigated by considering the dynamic
response to small variations from these oscillations. Equation (2) can be modified by
allowing for small variations in amplitude and phase of each oscillator as follows:

xk=(Ak+ak)sin(wt+9k+(,9k), k=l,2,3,4, (4)

where a, and ¢, are functions of time ¢ and these values are sufficiently small. If all

these variations a, and ¢, tend to zero with increasing ¢, the corresponding entrained

oscillation is stable; if all or some of these variations diverge, this oscillation is unstable.
Equation (4) is easily expanded to the form

Xx = Ay €0s ¢, sin (wt + 6, )+ a; cos ¢ sin (w! + 6,)
+ Ay sin @, cos {(wt+ 6,) + a, sin ¢, cos (wt+6,), k=1,2,3,4. (35)

If o (k=1,2,3,4) is sufficiently small, the results are cos ¢, =1 and sin ¢, = ¢, (k=
1,2,3,4). Hence x; can be rewritten as follows:

X, = Ag sin (wt + 0,) + a; sin (wt+ 6,)
+ A,y cos (wt + 8,)+ ap, cos (wt + 6,), k=1,2,3,4. (6)
Neglecting the second order term, a,, cos (wf+8,), k=1,2,3,4, one can write
X = A sin (wt+ 6,)+ & sin (wt + 6,)
+n cos{wt+6,), k=1,23,4, (7

where & = a, and 1, = A,¢.. Substituting equation (7) into equation (1) and ignoring
higher order terms in 3w gives the variational equations:

£~ e(1-2ANE +(wd - 0 — 201, + e (1 - 5AD) 1,

—a CO0S (02_0|—'(l)7)§2,+a sin (02_6|_(1)T)7]2,. =0, (8a)
2wé,—£w(l—%Af)._f,-i'ﬁ.—e(l—,%Af)ﬁl'*'(wé,—wz)m
—a sin (02_ 0,—w7’)§2,—a [o{0 (62_6|_0)T)7]2r=0, (Sb)

£k+| -e(1 —‘%Ai'&l)ék*-l+(w(z)k+l_wz)gkal_zwf’k+l+£w(l _£A1+1)77k+|

—~a cos (0, — Oy —wT)é,Hasin (6, — 0,y —wT),

= €0S (02— Oxrr1 = 0T) kv, T @ 5iN (Ogey = Oky — 07) s 2, = 0, (8¢)
20éii~ e0(1=3A2 D&+ i — e(1—5AL DTk + (08ke1 = @ )

—asin(6— 6, — o7) €, —a cos (0 — 6,y — wT) i,

—asin (0A+z"0k+|—w7)§k+zr_a €os (02— 644 "‘L’T)ﬂk+21 =0, k=1,2,

(8d)
£—e(1-3ADE+ (0dy = )& — 201+ ew(1 - 3AY)
—acos(0;—0,—wr)éy, +asin(8;— 0,— wr)n;, =0, (8e)
2wés— cw(1=-3ADE+ fla— e(1 - 1A s+ (w5 — ) 7
~asin(8;—0,—wr)é, —acos (83— 0;—wT)ny, =0. (8f)

st

Here &, =& (t~7) and n, = qu(r—7), k=1,2,3,4. When the substitutions &+ =, ¢
and n, > H, ¢* (Z, and H, are constants) are made, the characteristic equation of the
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variational equation (8) becomes as follows:t

PII PIZ PIJ P14

Py Py Py Py 0
P}I PJZ PJJ PCN PJS P36

D(S) = P4| P42 P43 P44 P45 P46 — 0‘ (9)

where
Pyiak-1 =52 = (1 —3A7)s + (0j — w?), Py_yai = —2ws + ew(1 —1A3),
Pyarr = 2ws — c0(1~3A7), Py =5"—e(1-iA%)s +(wii—7), k=1,2,3,4,
Paioy1 2601 = Prigks2=—a €77 €05 (04— Ok — w7),
Py k2= —Pugiy = a €7 sin (Oiyy — Ok — w1),
Pyiyak-1= Parsaan=—a e 7 cos (6, — 04y — @7),
Porsyon = _P2k+2,2k—.l =ae " sin (6 — by —w7), k=1,2,3.

Thus, the stability of the entrained oscillation can be determined by finding the locations
of the roots of the characteristic equation (9) in the s-plane. The determination of the
locations of these roots is carried out by making use of the Nyquist criterion [21]. Here,
equation (9) is divided by F,(s) Fa(s)F5(s) Fi(s), givingt

D'(s) = D(s)/ Fi(s) Fa(s) F3(s) Fa(s), (10)
where
Fi(s)=s5*+ eAls’ +{2(wdi + 0?) + e2(1 + £AY)}s?
+e(wh +0)Als+H(wdi - 0) + 2w’ (1+5%AL),  k=1,2,3,4.

This is done since the limit of D’(s) must approach a constant or zero (in equation (10)),
when s - joo one has D'(s)- 1) as s approaches o, So the stability of the corresponding
oscillation can be determined by plotting the D'(s) locus (s takes on values along the
Nyquist path) and investigating the behavior of the D’(s) plot with respect to the origin
in the D’-plane. From the Nyquist criterion, the oscillation is stable, provided the Nyquist
plot of D'(s) does not encircle the origin.

3. NUMERICAL RESULTS

A numerical analysis has been carried out by using the waveshape parameter of 0-03
and the coupling factors of 0-2 and 0-3. A

In the system being considered, there are four modes of entrained oscillation (because
of the four-oscillator system). These oscillations were expressed as

X = Ajk sin (wjt+ 0,k), (11)
t For s=0, D(s)=0.

1 Since the poles of D'(s) (i.e., zeros of Fy(s)}F,(s5)F;(s)F4(s)) are all located in the left half of the s-plane,
it is evident that there is no effect of these additional poles on the stability of the oscillation.
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where j denotes four modes (j=1,2,3,4) and k four oscillators (k=1,2,3,4). The
entrained frequencies w;, the entrained amplitudes A, and the entrained phases 6,1
have been found by solving equations (3a)-(3h). The problem of solving equations
(3a)-(3h) can be replaced by the problem of minimizing the sum of the squares of the
left-hand sides of these equations (i.e., Z:_, (§2+ C2)). To solve this problem, the
Newton-Raphson method ([22] and {23]) was used$. By substituting the values obtained
into equation (10), the stability of these oscillations (11) have been determined. An
example of the practical application of the Nyquist criterion to determination of the
stability of the oscillation is illustrated in Figure 2.

£ £

(b}

Figure 2. Example of the practical application of the Nyquist criterion to determining the stability of the
entrained oscillations for 4w =0-05 and a =0-2. (a) #=35-6 (in this case, since the origin is not enclosed by
the Nyquist plot of D’(s), the entrained oscillation is stable); (b) v =35-8 (for this value of time delay, the
entrained oscillation is unstable).

Figures 3-6 show the variations of the entrained frequencies, entrained amplitudes,
and entrained phases with increasing time delay for an intrinsic frequency gradient of
zero. For very small values of time delay, four entrained oscillations are stable. Three of
these oscillations (i.e., mode 1, mode 2, and mode 3) soon become unstable as 7 increases.
The details of these relationships between the stability of entrained oscillations and time
delay are found in Table 1. In some intervals containing r=nm n=1,2,3,..., two
entrained oscillations (i.e., mode 1 and mode 4) are stable; one of these oscillations is
unstable for other values of 7. The regions in which two entrained oscillations are stable
increase in size as 7 (or the coupling factor a) increases. The regions of » for which
mode 1 is stable and those for which mode 4 is stable alternate as r varies. Therefore,
the phenomenon of discontinuous jumps in the mode of entrained oscillation occurs if

t Here the 6,,’s (j=1,2,3,4) are taken equal to zero for simplicity, without loss qf gcperalily.
1 Here the iteration for Newton's method is terminated when the value of Y 5., (s} + ¢) is less than a given
value of 0-000001. The values obtained for w,, A,, and 6, are rcasonable.
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Figure 4. Expanded version of Figure 3 showing mode 1 for very small values of time delay. (a) Entrained
frequency; (b) entrained amplitudes (A,, are the entrained amplitudes of mode 4); (c) entrained phases (6,, =0,
8,,=0).

7 is varied smoothly and continuously. These jumps are indicated by vertical lines in
Figures 3-6 (the jumps for 4w =0-05 are seen in Figures 8 and 9).

In Figures 7, 8 and 9 the variations of entrained frequencies, entrained amplitudes,
and entrained phases with increasing time delay for intrinsic frequency gradient of 0-05,
are shown. For a =0-2, in some intervals containing r=(n—1)m, n=1,2,3,..., all the
entrained oscillations are unstable. For other values of 7, only one entrained oscillation
(mode 1 or mode 4) is stable. The regions of 7 for which mode 1 is stable and those for
which mode 4 is stable alternate as 7 varies. The regions in which all the entrained
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Figure 6. Expanded version of Figure 5 showing mode 1 for very small values of time delay. (a) Entrained
frequency; (b) entrained amplitudes (A, are the entrained amplitudes of mode 4); (c) entrained phases (8,, =0,
0,,=0). .

oscillations are unstable increase in size with increasing 7 (these are shown by the dotted
areas in Figure 7). As « increases these regions vanish, and the regions of + for which
the entrained oscillations are stable are obtained. The mode stabilities for very small
values of 7 are also shown in Table 2. It becomes clear from the above results that only
for sufficiently small values of 7 are mode 2 and mode 3 stable.

Figure 10 shows the variations of the entrained frequencies, entrained amplitudes, and
entrained phases with increasing intrinsic frequency gradient for @ =0-2 and 7:=0. From
this figure it becomes clear that the entrained amplitudes, and entrained phases of mode
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Figure 9. Expanded version of Figure 8 showing mode 1 for very small vaiues of time delay. (a} Entrained
frequency; (b) entrained amplitudes (A, are the entraincd amplitudes of mode 4); (c) entrained phases (8,, = 0).

TaBLE 1

The stability of four modes of entrained oscillation for sufficiently small values of 7 (the
theoretical results for Aw =0)

Delay time 7

Coupling factor

a Mode 0 0-01 0-02 0-03 0-04 005 .0-06
0-2 Mode 1 S S C U U U U
Mode 2 S S C U U U u
Mode 3 S S S S S S U
Mode 4 S S S S S S S
0-3 Mode 1 S S U U U U U
Mode 2 S S U U U U U
Mode 3 S S S S U U U
Mode 4 S ) S S S S S

Note: S, stable; U, unstable; C, critical.
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The stability of four modes of entrained oscillation for sufficiently small
values of v (the theoretical results for Aw =0-05)

Coupling factor
a

Delay time 7

o

Mode

0-01 0-02

0-03

Q@
[=]
=

0-2

03

Mode 1
Mode 2
Mode 3
Mode 4

Mode 1
Mode 2
Mode 3
Mode 4

nnrnnnn CCCCc

nrnCcC CcCccac
nrnCcCc nwnacc

»nCcCCcCcC nwCccc

nwCcCcCc wccca

Note: S, stable; U, unstable.

TABLE 3

Comparison of the theoretical results with results obtained by numerical
integration (4w =005, a =0-2, and 7=5:6)

Theoretical results

Entrained
Entrained Entrained phase
Oscillator no. frequency amplitude (rad)
k wy Ay 6,1
1 5-603 0
2 5-811 0-453
3 0-971 4-204 1316
4 2-220 2-140
Results obtained by numerical integration
Entrained
Entrained Entrained phase
Oscillator no. frequency amplitude (rad)
k Wy A O1x
1 5-60 0
2 5-79 0-46
3 0-97 413 136
4 2-16 2:20
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and 4) indicate regions of unstable mode. (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.
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Figure 13. Results obtained by numerical integration (Adw =0-05, @ =0-2 and 7 = 5-6). (a) Waveform of x,;
(b) waveform of x,; (¢) waveform of x;; (d) waveform of x,.

2 and mode 3 (i.e., A,;, 0,5, As; and 8;;) change appreciably in the neighbourhood of
Aw=0-04 as Aw varies. For very small values of Aw, these modes are stable. As dw
increases these modes become unstable and then again become stable. The regions of
mode stability for varying time delay (very small values) and intrinsic frequency gradient
were also obtained, and are shown in Figures 11 and 12.

These theoretical results agree well with those obtained by numerical integration of
equation (1) performed with respect to time with the fourth order Runge-Kutta algorithm
modified to take delay into account [24],f as shown in Figures 3-12. For 4w =005,
a =02, and 7=5-6 the results obtained by numerical integration are given in Figure 13
and Table 3.

t This method was used for the step-size h =001 (1, = Nh+1, N=1,2,3,...), and reasonable solutions
were obtained.
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4. CONCLUSION

A system of four mutually coupled van der Pol oscillators with time delay in the
coupling paths has been analyzed. The intrinsic (i.e., uncoupled) frequencies of these
oscillators were given by wo =1+A4w(k—1), k=1,2,3,4, where k denotes the four
oscillators and Aw is the intrinsic frequency gradient. The theoretical results obtained
have been checked against the digital simulation studies.

It became clear from the results obtained that the coupling time delay, coupling factor,
and gradient of intrinsic frequencies radically affect the number, frequency, amplitudes,
and phases of entrained oscillations.

For small values of 4w, mode 1 and mode 4 can be interpreted as being an in-phase
mode and an anti-phase mode, respectively. Comparing the results with those for a
three-oscillator system (see the Appendix) shows that the regions of 7 for which the
in-phase mode and the anti-phase mode are stable decrease as the number of oscillators
and the value of Aw increase.

It is possible to obtain the in-phase mode with an entrained frequency higher than for
the uncoupled condition by suitable choice of time delay. In biological applications, this
is one of the phenomena recorded from the small intestine [9]. Hence, system (1) may
be used as a subunit of a larger model in intestinal modeling.

In this paper, the four-oscillator system was considered. Both theoretical and experi-
mental studies for systems of more than four oscillators will be reported at a later date.
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APPENDIX

A three-oscillator system described by the following equations has been studied:
$i—e(1=xH)% +wdix,=ax(t—17),
%= e(1 = x2) %+ wdx, = ax,(t— 1)+ ax;(t—7),
K= e(1=x) X3+ wdixy = ax,(t — 7). (A1)

Here dots represent differentiation with respect to time, x; (k=1,2,3,4) is the output
of the kth van der Pol oscillator, wy, (=1+ Aw(k—1)) is the intrinsic frequency of that
oscillator, Aw is the intrinsic frequency gradient, £ is the waveshape parameter, « is the
coupling factor, and 7 is the delay time.

A numerical analysis was carried out for a waveshape parameter of 0-03, a coupling
factor of 0-2, and intrinsic frequency gradients of zero and 0-05.

In this system, there are three modes of entrained oscillation. The results are shown
in Figures A1-A3. As shown in these figures, the results for mode 1 and mode 3 are
similar to those for mode 1 and mode 4 of the four-oscillator system, respectively (see
Figures 3-12). Mode 2 is unstable for very small values of Aw. This mode becomes stable
and then again becomes unstable as Aw increases (the stable mode 2 becomes unstable
as 7 is increased from zero).
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