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ABSTRACT : Two clusses of nonlinear systems with one degree qffreedom, each having several 

a/a& limit c~~c1e.s. ure introduced und anul~lzrd. The realization q/one oj‘them is presented in the 

,fbrm qfa simple compact electronic device. The “Van der Pol structured” equation having a given 

number of limit cycles with prescribed amplitudes is analytically synthesized in a framework of 

quasilineur theory>. The qualitative structure of the phase space of such systems has dynamical 

properties simihr 10 certain situuhms in chemical kinetics, upplied physics and biology. 

I. Introduction 

This paper focuses on the synthesis of several stable limit cycles in the phase space 
of a single device with one degree of freedom. The first chosen approach relies on a 
certain “distortion” of a familiar system, allowing one to obtain periodical regimes 
of a prescribed number and amplitudes. A similar approach was developed and 
applied to the analysis of randomly perturbed systems (1,2), allowing the authors to 
acquire in explicit analytical form a limit cycle as well as a solution of the 
corresponding Fokker-Plank Equation, in many cases of practical interest. One 
encounters findings closely connected to those of (1,2), in (3,4), under the name of 
“Improved Van der Pol Equation”. The authors of these works investigate the 
synthesis of one limit cycle and do not refer to the earlier sources (1,2). As a second 
approach to the present paper, the special class of the Lienard Equations allowing 
an arbitrary number of cycles is introduced and a complete analytical synthesis for 
the case of polynomial nonlinearities is performed. 

Systems with similar qualitative dynamics were recently discussed in different 
areas of applied sciences (6, 7, 8). However, one cannot point out any known 
concrete device of a simple physical nature suitable for reproducible and easily 
accessible experiments. The proposed circuit is convenient for introducing external 
perturbations and the subsequent observations of the output. Some numerical 
experiments are also presented to illustrate the different possibilities and the 
characteristic pecularities of both classes mentioned. 

II. Analytical Models 

Using the notations : 

s x 

lgx; y) = g(s) ds + y2 -E, 
0 
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where 

Ei > Ei+l; E, > 0 (i = 1, 2, 3,. . . , 4 ; gW > 0 ; do) = 0, 

consider the differential equation : 

‘++j (x$1 dt 
++g(x) = 0 with constant p > 0. (1) 

Equation (1) or the corresponding equivalent system (2), in what will follow below, is 
termed the Conservative Multi-cycle Equation (CME), i.e. 

dx 

z= .Y; $ = _,,,[fi K(x;Y)]Y. 

Employing 

s * WY) = g(s) ds + Y' 
0 

as a Liapunov function for the CME, one concludes : 

(A) The solution (x = 0, y = 0) is unstable (stable) for odd (even) n, respectively. 
(B) With odd (even) n, the limit cycles 

s x 

g(s) ds + y2 = E, 
0 

with odd k are stable (unstable) and unstable (stable) for even k, respectively. 
(C) The domains of attraction of the stable limit cycles on the phase plane xOy, for 

odd (even) n, are separated from each other by the limit cycles with even (odd) 
numbers, respectively. 

With the choice g(x) - w’x, the CME (1) has the set of solutions xk(t) = 

(,/ERIw) sin (wt + Pk), Y = JE, cos (wt + j&), with odd k that are orbitally asymp- 
totically stable. The classical Van der Pol equation, with a single cycle, is received 
when g(x) = w’x, and I/(x; y) is replaced by V(x; 0) = x2 -El, with n = 1. Hence, it 
is quite natural to consider the “Van der Pol structured” Lienard Equation, 

where 

jt + @(x)x + g(x) = 0 (3) 

D(x) = fi rqx;O). 
i-l 

For the sake of abbreviation, Eq. (3) is termed the RME (Relaxational Multi-cycle 
Equation). In the absence of the analog to the Levinson-Smith theorem for existence 
of several stable limit cycles “in large”, one can resort to the asymptotical theory 
with respect to the small parameter, p << 1. In the quasilinear case (g(x) = w2x), the 
bifurcation equation for the generating amplitude A of the periodical solution of the 
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RME is 

s 2n 

D[A cos (u)] sin2(u) du = 0. (4) 
0 

Since this is a polynomial equation, it does admit a number of different real roots 
under the proper choice of various values of parameters E,. To obtain more concrete 
results, consider the Lienard Equation : 

f + pj-(x)i + w2x = 0, (5) 

withf(x) belonging to the class of polynomial functions, and p > 0. 

Lemma 
LetA,>O,A,+,>A,(k= l,..., N). There exists the polynomial, 

f(x) = a2Nx2N + aZN- 2~2N-2 + ... + a,, 

in even degrees of x, with a2N > 0 having N different simple positive roots bi, such 
that for all sufficiently small p, Eq. (5) allows N nontrivial periodical solutions, 
x,(t, p). These solutions have the following properties : 

(1) xk(t+sk,O) = A,sin(wt+@J 

where sk are arbitrary constants and Qk depends on sk. 
(2) Every other periodical solution out of the sequence {xk(t, p)} including x,(t, p) is 

orbitally asymptotically stable. The coefficients a2k of the polynomialf(x) are 
given by Eq. (7) below. 

Proof 
Using the notations R E A2, and 

K,, = 
s 

2n (cos @)2k sin2 @ da,, 
0 

one obtains the bifurcational equation, with respect to R, as : 

B(R) = a2NRNK2,+a2N_2RN-1K2N-2+ ... +a,n = 0. (6) 

It is obvious, that in order for the polynomial, B(R) in (6), with aZN > 0, to have the 
roots Ai (k = 1 ,. . ., N), it is sufficient and necessary for the coefficients of the 
polynomialf(x) to be : 

aZk = (-l)“~~N-k(A:rA~r...,At) 
2k 

(7) 

(k=O,l,...,N-1) 

where ok are the values of the elementary symmetric polynomials calculated at the 
values AZ. Now, assume the coefficients aZk are calculated by Eq. (7). Denote by 
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where_&(t) is a periodical solution corresponding to the root A, of bifurcational Eq. 
(6) and G is the period of the solution. Consider the system of intervals [0, z,], 
[z,, z,], . . . , [zN- 1, zN]. None of the limit cycles can be completely located within the 
dissipative or antidissipative domain, with respect to the Lebesque measure in the 
phase space of the RME (Bendixson Theorem). The question of dissipativity (or 
antidissipativity) is predetermined by the conditionf(x) > 0 (orf(x) < 0), accord- 
ingly. Hence, each of the above intervals contains at least one root b,, zk- 1 < b, < zk. 
Since all the roots are simple, 

f(x) = %N fi (x2 -%I (8) 

which completes the proof (9). 

Note first that for the practical purposes of simulation, it is important to have the 
representation off(x), in form of (8), rather than, 

fcx) = kto a2kxZk. 

In actual simulations, the polynomial f(x) approximating some characteristics of 
real physical elements can, of course, be different from (8). However, as odd degrees 
of x do not effect the bifurcational equation, it is possible to ignore their presence in 
f(x), regardless of whether one considers analysis or synthesis of the limit cycles. 
Hence, the class of polynomials,f(x), in which the sum of even members creates a 
polynomial having all its roots positive, is the only one leading to the appearance of 
several stable cycles for small p, in the Lienard Equation. Moreover, in synthesis, 
one can use only simple positive roots (with respect to x2). So, the R M E is indeed the 
direct and the natural generalization of the Van der Pol Equation. Since the 
substitution x = (dy/dt) transforms the Lienard Equation to the Rayleigh Equation, 

i;‘+ pF(j) + w2y = 0, 

where 

*Y 
F(Y) = 1 f(x) dx, 

0 

all the facts from the Lemma can be reformulated and applied again, broadening the 
possibilities for simulation. 

To compare the peculiarities of the RME and CME one should notice that the 
simplicity of the solutions of the CME do not depend on the value of p. In the case of 
linear g(x), all the periodical regimes have the same period. However, the periods are 
in general different for nonlinear g(x). This also can (or should) be taken into account 
for the circuit design. On the other hand, the RME has a simple structure and the 
periods of its solutions depend on ~1 in any case, but in an extremely noticeable way 
for large p. Simultaneously, with increasing p, the limit cycle of the quasi 
conservative situation drastically deforms, as is very well known from numerical 
and asymptotical studies of the Van der Pol Equation (5). 
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III. Some Numerical Illustrations 

To characterize certain internal parameters of the dynamical behavior of the 
systems, a limited numerical study was performed. The following data for the CME, 
with 11 = 5, reflect the time rates of convergence to the stable limit cycles. C,, in 
Table I, denotes the cycle corresponding to the proper periodical solution of the 
CME with integral E, = k (k = 1,. . . ,5). 

TABLE I 

rin l- Cl”, 

c1 W Cl G c, Cl c, c, 

0.5 3 0.1590 0.4395 0.0340 0.2435 0.3220 0.0135 
0.5 9 0.3235 0.5740 0.0350 0.3740 0.4195 0.0135 
2.0 3 0.0375 0.0675 0.0085 0.0505 0.0600 0.0035 
2.0 9 0.0381 0.0775 0.0085 0.0550 0.0670 0.0035 

Iin and To”, describe the times of convergence within lx, with respect to the value of 
(V, (x ; y) + I$.). Initial conditions are chosen as (i = ,/E, - 0.5, x = 0) for calculation 
of Fin and (a = ,/E, + 0.5, x = 0) for calculation of Tout. 

As seen from the data of Table I, for p = 0.5, the time of convergence from an 
unstable cycle to a stable cycle is less than one period of the cycle. The rate of 
convergence is significantly faster for large ,u, for instance at p = 2.0, convergence 
results in less than 10-l (2n/w). 

To evaluate the effect of a strong nonlinearity in the CME on the rate of 
convergence to the stable periodical regimes, the following procedure is employed. 
Assume that the time of transition (Fi, and I-,,,,) between two different positions in 
phase space is attributed to the linear oscillator with the time constant 2/h. Then, h is 
determined from 

(JJEi( ’ )0.5)/‘(JEJ = e hIOUl(in). 

The ratios of the time constants for the linear oscillators, one with time constant 2/y 
and the other with time constant 2/h, are presented in Table II. 

It is known that a Van der Pol vibrator proceeds to a relaxational regime with 
increasing p in Eq. (3). For p > 1, the cycle deforms significantly, and the period 
rapidly increases. Bearing in mind the presence of certain numerical obstructions 
when working with larger ,u (5), the “embedding” of the RME is used, i.e. 

jt+pD, i+ww2x = 0 

where 

0 fi K(x;O)+(l-0) fi K 
i=l i=l 

,(x;$) = DO(x;$). 
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TABLE II 

w/-4 (2/P) 
(Ylkl) WILtI) 

P W Cl c, c, Cl G c5 

0.5 3 8.719 0.830 6.198 3.330 0.957 14.120 

0.5 9 4.285 0.635 6.021 2.168 0.735 14.120 
2.0 3 36.968 5.402 24.791 16.058 5.138 54.463 
2.0 9 36.386 4.705 24.791 14.744 4.602 54.463 

At 0 = 1, (9) converts to the RME and at cr = 0, (9) coincides with the CME. The 
use of embedding allows for more convenient numerical studies with 0 G 0 < 1 
and arbitrary ,u. Some of the results with n = 3, for the RME, are given below in 
Table III. Two stable periodical solutions are observed for only particular values 
of E,. The dependence of the period on the value of p is partly seen from the data 

below, with E, = 0.1, E, = 1.0 and E, = 5.0. 
For the E, chosen above, Fig. 1 demonstrates the evolution of limit cycles with 

growth of g, as G --f 1. Figure 2 indicates the stable cycles Cr and C,. Inspection of 
the numerical data indicates irregularity of the reciprocal location of adjacent limit 
cycles in the phase space. Further, there are strong limitations on the choice of values 
E, for existence of cycles, for non-small ,u. 

IV. Devices 

The above described two classes of nonlinear systems (CME and RME) are both 
realizable as compact electronic devices. Since realization of the CME requires a 
more complex structure, with the specific and novel properties of non-small 
nonlinearities, only the synthesis of the CME is presented here. The block diagram 
and the circuit drawing which describe the realization of the CME are shown in 
Fig. 3. This circuit was developed for n = 5, which yields three stable periodical 
cycles. 

The circuit of Fig. 3 is composed of standard elements as shown. The multipliers 

TABLE III 

W CL Period 

9 0.5 0.708 
3 0.5 2.319 
3 2.0 3.960 
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, 

.’ 

-3- 

FIG. 1. Evolution of cycle C, with variations in (T for w = 9, p = 0.5. 

-bL 

FIG. 2. Stable cycles C, and C3 for w = 3, p = 0.5 in the RME. 
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(a) 

r 

L 

(b) FIG. 3. Block and circuit diagrams for the realization of the CME. 
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and operational amplifiers each have an operational range of + 10 V. Standard 
resistors (f5”/;) and capacitors were also utilized. The multipliers are of the 

transconductance integrated circuit type with a total error of + 1%. 
The main purpose of building the circuit is only to demonstrate the qualitative 

peculiarities of the internal dynamics of the CME. Therefore, in order to reduce the 
number of components necessary, u” and p are chosen equal to 1. The time constant 
for the integrators is chosen as 0.001 s, which eliminates the need for further scaling 
in the circuit. 

‘T‘he choice of voltages, E,, directly atkcts voltage levels elsewhere in the circuit. 
Hence, limitations exist regarding the range of values for the amplitudes of the limit 
cycles. In the course of performing a large number of experiments and measure- 
ments, the following characteristics were observed : 

(1) 

(2) 

(3) 

The lower threshold for the amplitude of the limit cycle with the smallest 
amplitude is about 0.7 V. The upper threshold for amplitude of the cycle with 
the “largest” amplitude is 2.1 V. This determines the restrictions on E,. Any 
combination of these five parameters within the above range lead to the 
prcdictablc limit cycles. 
The voltage amplitude of the “smallest” cycle is subject to the greatest error with 
respect to the voltage amplitude predicted by the solutions to the CME. On the 
lower threshold, with the above indicated range for E,, it is within 8%. As for the 
other cycles, the error is within l’:o of the theoretical values. 
Mcasurcd frequencies of the cycles arc in complete agreement with the chosen 
time constant parameter (time scaling parameter z = RC). 

FIG. 4. Multiple exposure photograph for stable cycles in phase plane, for the CME, for two 
separate sets of coefficients E,, for n = 5. Case 1 : E, = 0.403 V, E, = 1.613 V, E, = 1.925 V, 
E,=2.325V.Es=3.300V.Case2:E, =0.740V,E,= 1.860V,E,=2.260V,E,=2.64OV, 

E, = 3.730 V. Oscilloscope scale is 0.5 V/division. 
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By changing the charge on the capacitor, at the point X, (Fig. 3) it is possible to 
vary the initial conditions. Therefore, controllable transitions from one stable cycle 
to another are readily performed. The time of convergence was not accurately 
measured. However, it was not possible to observe, on the oscilloscope at the 
working frequencies, any phase plane trajectories off the stable limit cycles. 

For the sake of completeness of the description, two examples, representative of 
typical experiments performed on the circuit, are shown in Fig. 4. Here, stable cycles 
are superimposed in one photograph (multiple exposure) for easy comparison. 

V. Conclusion 

Recently, some authors have indicated the need to model the dynamics of systems 
met in certain applications (6,7,8) with several periodical regimes, particularly in the 
stochastic environment. To date, only very limited analytical means are available for 
revealing the peculiarities of such dynamics. The proposed circuits provide a simple 
means for direct experimentation on the interaction and the perturbed behavior of 
the above systems. Also, it may be possible to consider related devices as 
components in sensory and computational hardware or in adaptive control systems. 
For example, one can imagine a multi-stable circuit as a component for non-binary 
memory-like devices. 
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