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RATE OF PHASE SLIPS OF A DRIVEN VAN DER POL OSCILLATOR AT LOW NOISE
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The rate of noise-induced desynchronizations (phase slips) of a driven Van der Pol oscillator is determined in the limit of
weak noise. This is accomplished by a newly developed theory for the lifetime of metastable states, whereas Kramers® stan-
dard method is not applicable.

The Van der Pol oscillator driven by a periodic force,
.5&+ng (1 —x)x =yEsin wt (y>0), ‘ (N

is a standard model for many nonlinear phenomena in mechanics [1-3], optics [4,5], radio engineering [6] and
chemistry [4]. An additional stochastic driving force £(#), which is supposed to be gaussian and “white””:

(&) )E())) = 20%€8(t, — 1)), )

is often included to describe environmental influences; in laser theory this term accounts for spontaneously
emitted light [4,5].

In the steady state, and for small detuning w — wyq, X(¢) essentially oscillates with the driving frequency w, but
due to the stochastic force a random motion is superimposed, which leads to occasional losses of synchronization
even when € is arbitrarily small. More explicitly, the phase of x(f) occasionally departs by more than 7 from that
of the unperturbed motion and then acquires a shift of 2. Such an event is called a “phase slip”. The aim of this
paper is to evaluate the rate of these phase slips in the limit of low noise (¢ - 0). From the theoretical point of
view this problem has its own interest, due to the fact that a treatment according to Kramers’ ideas [7,8] is not
really possible. This aspect will be discussed in greater detail.

The basic analysis of the oscillator’s motion was given e.g. in ref. [9], and we briefly mention the essential
points: First, it is convenient to introduce two variables y(¢), y,(f) referring to a frame in (x, x) space, rotating
with frequency w:

¥, =x cos wt — (¥/w) sin wt, Y, =X sin wt +(x/w) cos wt, 3
from which the original variables may be reobtained by

X =y, cos wt+y, sin wt, x= w(—p, sin wt +y, cos wt). “4)
Differentiating (3) and using (4) and (1) we arrive at

7, =—B(®)wLsinwt, 3,=B(f)ewcos wt, ®
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with
B() =(w? — w(z))(yl cos wt +y,sin wt) — wy[l — (¥, cos wt +y,sin wt)z](ylsin Wt — y, cos wi)

+E sin wt + £(7).

From the assumption that the friction is not too large (y < w) it follows that »1 and y, do not change appreciably
during one period 27/w. It is therefore reasonable to perform the according time average in (5), which corresponds
to the Krylow—Bogoliubov method in first order [10]. For small detuning (w + wq ~ 2w) the result is

Fy =@y — w0, +(2D1 -2 +yDi4ly, —vE2w £, (1),
Py = (@ —woyy + (/DI — (2 +y)/a]y, +E2(0). (6)
For the noise sources El ,2 this procedure yields with (2):

(E1(t1)E(,)) = w2 sin Wty sin Wi,(E(t) )E(t,)) = ed(t, —1,) =&yt )Ex (1)),

(1(11)Ex(12)) = w2 sin @t cos wi,(E(ty )E(t,)) = 0. Q)
The Fokker—Planck equation associated with (6) is now readily found to be
dp/ot = —3(4,;p)/dy; + e(d’play? + 0%p/oy?),

Ay =(wy — @,y + (/DL - 01 +32)/Aly, —vE20, A, =(w - w)y, + (12 - +yD4]y,. ®)
Without detuning (w = w) detailed balance holds, and the stationary solution of (8) is

p(r1.y,) =Nexp[-¢(y,,,)7/el, )
with
0(r1,7y) =~} +y2)/a + ¥ +y12 32 + EQw) | (10)

_The function ¢ has the shape of a Mexican hat, with an inclination depending on E/cw. Since (6) with £ 1=0
= £, can be rewritten as

J"1=—’73¢/3y1, Vg = —y030[3y,, (11)

¢ may be viewed as the “potential” for the purely frictional motion in the (y,y,) plane. Therefore the stationary
points of ¢ coincide with the fixed points of the unperturbed motion, i.e. with those of (11). For E # 0 all these
points lie on the y, axis (see fig. 1), and their y; coordinates follow from

4y, —yi’ ~4F/w=0. (12)
With cos ¢ 4 —33/2 E/4¢ the roots of (12) are
yi= —(4/3Y2) cos(gf3 — 60°), yll’ = —(4/312) cos(y/3 + 60°), yi= (4/31/2) cos ¢/3. (13)

Here a denotes the minimum of ¢, which is the stable point of (11), b the saddle of ¢ being the hyperbolic point
of (11), and ¢ the maximum of ¢ being the unstable point of (11). We mention that £ = 0 implies ¢ = 90° and thus

y?=_’ y]f=2: yf=0,
furthermore that for the largest £ admitting real roots, i.e. for £ = 4c/33/2), ¢ = 180° and thus
yi=—4312 yb=ye=op3l2,

E is supposed to be contained within this range, excluding the limits.
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Fig. 1. Fixpoints of the noiseless motion in the rotating frame
of reference: a stable, ¢ unstable, b hyperbolic.

In what follows it is assumed that the noise is weak, i.e. that e is small. Then the stationary distribution p, is
concentrated in a small neighbourhood of a. A phase slip can now be characterized in the following way: while the
system stays most of the time near a, it is occasionally driven to the saddle b by the noise. If then it leaves the re-
gion of b on the other side than it had approached it, so that a full surrounding of ¢ is achieved, a phase slip is per-
formed. At first glance one would expect that the rate of these events can be determined by Kramers’ method.

The failure in applying his idea arises from the fact that both before and after a phase slip the system stays in the
same state (i.e. near a), and a current-carrying solution of (8) vanishing at the final state, but not at the initial state,
does not make sense. A way out of this problem is provided by the following argument: a phase slip is a crossing
of the part y; >y{ of the y; axis. Instead of considering the mean time elapsed between two such events, one can
artificially assume that this half-line is absorbing and calculate the mean time T until “absorption” occurs [11,12].
One merely has to take into account that an arrival on this half-line only results in an actual crossing with probabil-
ity% , since for the departure both sides of the line are equally probable. The total slipping rate (in either direction)
is therefore 3 of the absorbing rate. The absorbing rate itself can readily be determined by the result of ref. [12].
There the mean time T until “absorption” was given by the general expression

-1
T = [2/e(e+ D] Dr(1f@+1)] [dy, dy2w( f (—dSr)w(D")"‘/(“"l)gll(“”)) . (14)
a2 '

To apply this formula we note that here r denotes the y, direction, and —dS, = dy ; the drift in the y, direction
near the absorbing line is —,¥(32¢/3y ), ,=0» Which gives both a = 1 and g = v|32¢/3y3 l,,,=o- Furthermore Drr
=2 and w = p,. Thus (14) is now reduced to

T =(2em'? [ dy, p(,,0008%0/031, ). (15)
»§

For small €, p,(y, 0) only contributes near the saddle point b, and there it can be approximated by

Nexp{(~v/e)[p, +(d29/oyD), (v, —¥)*/21},

while |32¢/ay% |y2=0 may be replaced by its value at the saddle itself. Therefore (15) becomes

T~ = 2e[102¢/ay3 1, (8%0/0y2 ) 1 11/2N expl(—v/e) ey ]

It remains to evaluate the normalizing factor N of (9). For this an expansion of pg around a is sufficient:

p, ~Nexp{(—v/e)[8, +(3%¢/ay}),(r, —¥3)?/2 +(2%0/0y3), (v, —¥3)2 21},

which leads to
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N =y(2me) "L [(22g/0y2), (0% ¢1av3), 1112 exp(v/e)e, ],
so that finally
Tl =ynt exp[(—v/e)(9, — @)1 [(3%0/0y2),(8%¢/ 0p2),1820/ay3 1, [(3%¢lay3), 1 /2. (16)

In ref. [12] it is understood that the absorbing line is approached from one side only. Therefore, (2T)~! is the
rate of phase slips of one direction, and the total slipping rate is just given by (16).
The second derivatives of ¢ at a and b may be expressed in terms of (13):

2%y}, =307 — 1, 20%¢/a31,, = P02 -1 (17)

Eqgs. (16),(17),(13) and (10) give the phase=slipping rate in leading order as € = 0. The method presented here
can be extended to include a detuning, but since this case requires a more detailed discussion of the solutions of
the stationary Fokker—Planck equation at low noise, this will be presented separately. If the noise is not really
weak, the phase slip can be defined and calculated according to ref. [13]; a simpler method, which for the present
system gives the exact slipping rate (see ref. [14]), is presented in ref. [15].
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