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Abstract-A perturbation method is used to study the steady state behavior of two Van der 
Pol oscillators with strong linear diffusive coupling. It is shown that a bifurcation occurs 
which results in a transition from phase-locked periodic motions to quasi-periodic motions as 
the coupling is decreased or the detuning is increased. The analytical results are compared 
with a numerically generated solution. 

1. INTRODUCTION 

The object of this work is to study the dynamics of two Van der Pol oscillators with 
linear diffusive coupling. This system of non-linear, non-conservative limit cycle 
oscillators is described by a system of two second order ordinary differential equa- 
tions: 

3+x-r(I-x2)i=Ax (1) 

where 

x=(;:), x=(“d j) A=a(-; _;)+(; _;), ~41. 

Dots represent differentiation with respect to time, a is the diffusive coupling 
parameter, and A is related to the difference in natural frequency of the two 
uncoupled oscillators which will be referred to as the detuning parameter. In a 
previous work Rand and Holmes[l] studied this problem for small values of the 
coupling and detuning parameters. Here we extend their work by removing the 
assumption that a and A be small. The approach to the problem will be similar; we 
will use a perturbation analysis to reduce the study of the steady-state motions of 
these oscillators to the study of a system of algebraic equations. 

Earlier work in this area has been done by several other investigators. Minorsky[2] 
has studied two Van der Pol oscillators with small coupling proportional to f. Hayashi 
and Kuramitsu[3] used an averaging method to study coupled Van der Pol and 
damped linear oscillators. Linkens [4,5] has used the method of harmonic balance to 
study larger groups of Van der Pol oscillators with non-linear coupling. More in line 
with our approach is the work of Cohen and Neu[6] and Neu[7] who have used 
two-variable expansions to study phase-locking and rhythm splitting in pairs of 
weakly coupled limit cycle oscillators. More recently Neu[8,9] has examined 
phase-locking of large populations of coupled oscillators using the two-variable 
expansion method to obtain approximate solutions to equations arising from a 
continuum model. 

Problems concerning coupled non-linear oscillators frequently arise in biological 
applications. Many such examples can be found in the work of Pavlidis [ 101. 

2. PERTURBATION ANALYSIS 

We will use the two-variable expansion method to find an approximate solution of 
this system which is uniformly valid on a fixed finite time Interval 0 < t < T = 0(ev2). 
We shall neglect terms of order l z throughout. 
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In order to obtain a zero order system that has a particularly simple solution (which 
will help to simplify the perturbation analysis), we first transform to the normal mode 
co-ordinates of the linear problem (e = 0). 

We can write the co-ordinate transformation as 

x=Ry (2) 

where 

a = [2(1 + s*+ sd(l + s*))]-I’*, b = [2(1 + s*- sd(l + ,*))I-“* 

A 
s=-. 

2a 

Note that R is an orthonormal matrix (a* + b* = 1) whose columns are the eigen- 
vectors of (I - A) associated with the eigenvalues 

Hence 

A,=l+a(l+s-V(l+S*)), A*= 

R-’ = Rr. 

1 + a(1 + s + v/(1 + S*)). (4) 

Now we perform the transformation from x to y by substituting equation (2) into 
equation (1) and multiplying by R-’ on the left which gives 

j; + Ioy = eR-‘(I - x*)Ri (3 

0= 
WI ( > 02 ' 

(#)i’ = Ai; i= 1, 2. 

Next we employ the two-variable expansion method by replacing the independent 
variable t (time) with two new independent variables 5 (stretched time) and 9 (slow 
time) as described by Cole[l l] and Nayfeh[l2]. Let: 

[=Slt, n= 1+n,e+n*e*+ . . (6) 

q = ct. (7) 

Using the chain rule, derivatives with respect to t are now replaced by partial 
derivatives with respect to 6 and 77. 

d* 2 
=R’-&+2&- 

Z at 
a* 2 a* 

agas 
+e -$ 

Neglecting terms of O(e*), equation (5) becomes 

(I+ 2a,~)~~~ + 2ey, + IWY = rR-‘(I - x*)RY~ (10) 

where alphabetic subscripts represent partial differentiation. 



Dynamics of two strongly coupled Van der Pal oscillators 145 

Next we expand the dependent variables y,(S, 7) and ~~(6, T) in power series in e: 

Yi(59 T)) = YiO(z1 7) + eYil(Sv q) + o(e2); i = 19 2. (11) 

Substituting equation (11) into equation (lo), and equating coefficients of like powers 
of l , we obtain the four equations 

YlO@ + o,*y,o = 0 (12) 

Y2og + w**y*o = 0 (13) 

Yll&t+ &Y,, = - 2GY,O& - 2Y,ot, 

+ [a*(1 - a*y,o2 - 2aby,fJy*o - b2ym* 

+ b2(1 - b2Y,02 + 2abY,oY*o- ~*Y202)lY,o~ 

+ [ab(l - u*y,o* - 2uby,oy*o - &2) 

- a&l - ~*Y,o* + 2aby,oy2o - ~*~20*)1~20~ 

Y2l, + w**Y*l = - 2fi,Y*o,, - 2Y*ot, 

(14) 

+ IN1 - 02y,02 - 2W,oy,o - b2y,02) 

- ab(l - b*y,o* + Zaby,oy,o - ~‘~20*)1~10~ 

+ [b*(l - a2y,02 - Zaby,oy2, - b*y,,*) 

+ a*(1 - b*y,o’ + hby,oy2o - ~*Y,~)IY~o~ (15) 

Equations (12) and (13) have the solution 

ylo = A(4 sin M+ B(q) ~0s 015 (16) 

y20 = C(q) sin 0~5 + D(7)) cos ~25‘. (17) 

We substitute (16) and (17) into (14) and (15) and require that yr,(& 7)) and yr,(t, 7) be 
uniformly valid for all s>O. In order that yll and y2, have no secular (resonance) 
terms, the coefficients of sin o,f and cos 0~5 on the right-hand side of (14) and the 
coefficients of sin w& and cos 0~6 on the right-hand side of (IS) must vanish, giving 
the equations: 

Sn,o,A + 8B’ - 4B + (a’+ b’)B(A* + B*) + 4u2b2B(C2 + 0’) = 0 (18) 

SR,o,B-8A’+4A -(u’+ b4)A(A2+ B2)-4u2b2A(C2+D2) =0 (19) 

8n,02C+8D’-4D+(u’+ b’)D(C*+ DZ)+4u2b2D(A2+ B*)=O (20) 

8sl,ozD - 8C’ + 4C - (a’ + b’)C(C* -t D*) - 4u2b2C(A2 + B*) = 0 (21) 

where primes denote differentiation with respect to n. 
Here we have excluded the special 3 : 1 resonance case [IS] corresponding to 

o2 = 3w, for which additional terms appear in equations (18)-(21). 
Next we transform to polar co-ordinates, 

Yi0 = Pi(S) COS [WZ- @i(V)19 i = 19 2; (22) 
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i.e., 

D. W. STORTI and R. H. RAND 

A(v) = pdq) sin NT), B(v) = pdv) cos MT) (23) 

C(v) = p2(7)) sin 02(v), WV) = h(7)) ~0s 02(77) (24) 

and replace (18)-(21) with (18)A + (19)B, (2O)C + (21)0, (18)&(19)A, and (2O)D-(21)C, 
giving equations for the slowly varying amplitudes, pi(q) and phases, ei(n): 

p,2e; - R,u,P,~ = 0 (25) 

pz2 0; - R, w2p22 = 0 (26) 

8p,p; - 4~,~ + (a’ + b’)p,’ + 4a2b2p,2p: = 0 (27) 

8p2pi-4~: + (a’+ b’)h’+ 4a2b2p,‘p: = 0. (28) 

We now examine this system for equilibria which will correspond to steady-state 
solutions of the system (1). Up to this point RI has not been specified, but we must 
now take fI, = 0 in order to find non-trivial solutions which satisfy 0; = fIi = 0. We also 
simplify our notation by noting that pI and p2 appear only to the second power and 
thus let: 

p,’ = P, fi2 = Q. (2% 

Equations (25) and (26) are now identically satisfied and the two remaining equations, 
(27) and (28), become: 

P’ = P(1 - gP - hQ) = F(P, Q) (30) 

where 

Q’ = QU - hP - gQ) = G(P, Q) 

g = $(a’+ b’), h = a2b2. 

(31) 

(32) 

This system of equations has four equilibrium points, where F(P, Q) = G(P, Q) = 0. 

(9 P=Q=O. 

(ii) 

(iii) 

69 

p = L= 80 + s2) 
g 1+2s2 3 Q=O. 

For the special case of s2 = (l/2), g = h and there is a line of nonisolated equilibrium 
points where P + Q = 6 (see Fig. 2). 

3. STABILITY AND SIGNIFICANCE OF EQUILIBRIA 

Here we transform back to the original co-ordinates (x,, x2) to see what kind of 
motions correspond to the P, Q equilibria found in Section 2 and examine the 
linearized form of equations (30) and (31) to determine the stability of these motions. 
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The transformation is-given by [cf. equations (29), (22), (3), (2)]: 
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xIo= atiP cos(o,f- f?,)- bdQcos(w,~- 0,) (33) 

x2o = bd/P cos (0~6 - 0,) + ad/Q cos (u2f - e2). (34) 

The stability of the motion corresponds to that of the related equilibrium point in P, 
Q space and is determined by the trace and determinant of the linearization matrix 

J= ( 
aF aF 
apaq 
aG aG 
apaQ 

(35) 

evaluated at that equilibrium point as developed in Minorsky[2] (see Fig. 1). 
The first equilibrium, P = Q = 0, corresponds to the motion x1 = x2 = 0, for which 

J 
10 

= 01 ( 1 (36) 

Det(J) = 1 > 0, Tr(J) = 2 > 0. (37) 

Hence this state where both oscillators are turned off is unstable for all parameter 
values. Note that the zero motion of a single uncoupled Van der Pol oscillator is also 
unstable and this property is preserved under the present coupling. 

The next two equilibria P = (l/g), Q = 0 and P = 0, Q = (l/g) correspond to the 
phase-locked motions 

(38) 

and 

(:~~)=(~b)~c0s(02f-e2) 09) 

respectively. These periodic solutions are non-linear normal modes in the sense of 

Tr 

Det 

Fig. I. Determination stability of equilibrium from the properties of the linearization matrix J. 
S = saddles (unstable); UN = unstable nodes; UF = unstable foci; SF = stable foci; SN = 

stable nodes. The node-focus transition curve is given by Tr = 4 Det. 



148 D. W. STORTI and R. H. RAND 

Rosenberg[l3]. The linearization matrix for both of these equilibrium points is 

(40) 

Tr(J)= -a<O. (41) 

(Note that h and g are positive.) 

Det(J)=i-1 = ’ g(1 + s*) _ 1 _ ; ; ;& 
4(1+ s2)‘(1+ 2s5 

Tti(J)-4*Det(J)=$-4:+4= (a-2)2~O. (43) 

For s* > (l/2), these points are stable nodes and the phase-locked motions are stable. 
These motions are unstable when sz > (l/2) and the corresponding equilibria are 
saddles. 

The last equilibrium point P = Q = (l/(g + h)) gives the motion: 

Tr(J) = 3 < 0 

g* - h* 
Det(J) = (g + h)* 

T?(J) - 4. Det(J) = (3)* - 4 $*;h”;;’ = -$$? > 0. 

(44) 

(45) 

(47) 

This motion is, in general, quasi-periodic resulting from the summation of two 
periodic motions with noncommensurable frequencies. Such a motion is not periodic 
and there is no constant phase relation between the two oscillators. Here the stability 
is exactly the opposite of the previous case, stable for s2 > (l/2) and unstable for 
s* < (l/2). 

Using this information, we can construct a qualitative picture of the flow in the P, Q 
plane for various values of the parameter s as shown in Fig. 2, and can now 
understand the dynamic behavior of the system as follows. Recall that the parameter 
s = (A/2a) represents the ratio of the detuning to the coupling. If the difference in the 
uncoupled frequencies is sufficiently small compared to the coupling, then almost all 
solutions tend towards a phase-locked periodic motion. As the parameter s is increased 
past the critical value s* = (l/2), a bifurcation occurs which changes the stability of the 
non-trivial steady-state solutions. Such large values of the detuning (compared to the 
coupling) prevent phase-locking and the quasi-periodic motion results. 

5. COMPARISON WITH NUMERICAL RESULTS 

Having a set of analytical predictions at our disposal, a fourth order Runge-Kutta 
method was used tc numerically solve the original system of equations (1) to test 
these predictions. 
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P P P 

(a) (b) (cl 

Fig. 2. Flow in the P, Q plane. (a) S* < (l/2), (b) s* = (l/2), (c) s2 > (l/2). The line E consists of 
nonisolated equilibria and is given by P + Q = 6. 

The numerical experiments were begun by taking initial conditions close to the 
origin (i.e. at t = 0, xl Q 1, i, Q 1, ~2 Q 1, i2 + 1). For all such initial conditions 
and all values of S, the oscillation diverged from zero and approached some other 
solution. This confirmed that the solution with both oscillators ‘turned off’ is indeed 
unstable for all parameter values. 

Next, the long term (after about 50 cycles) behavior of the solutions was examined 
over a range of values of S. 

For s2 < (l/2), the perturbation analysis predicts that one mode should be ‘turned 
off’ (either y, = O(e) or y2 = O(e) and we should be able to describe the solution by the 
amplitude and period of the active mode. To test this prediction, we performed a 
numerical integration of the system (1) and expressed the results in terms of the 
normal mode coordinates y,, y2 via the transformation (2). The amplitudes and periods 
of oscillation of y, and y2 obtained by this method are given in Table 1 along with the 
analytic predictions. The percentage of the ‘total amplitude’ in the minor mode is 
plotted as a function of s in Fig. 3. 

Both the amplitudes and periods show good quantitative agreement for values of 
s c 0.2 when we take E = 0.1. This confirms the existence of phase-locked solutions 
for small values of S. 

Table 1. Comparison of analytical and numerical phase-locked solutions for l = 0.1,. 

Q A S2 T -T A, -A, A> -A2 r 

0.1 0.00 0.0000 

0.1 0.01 0.0025 

0.1 0.05 0.0625 

0.1 0.10 0.2500 

1.0 0.00 0.0000 

1.0 0.05 0.0006 

1.0 0.10 0.0025 

1.0 0.25 0.016 

6.3 6.28 2.71 2.83 0.00 0.00 0.00 
6.3 6.28 0.00 0.00 2.71 2.83 0.00 

;*: 
6:t 

6.27 5.72 0.15 2.70 0.00 2.82 0.15 2.67 0.00 2.82 0.05 0.05 
6.22 2.53 2.75 0.69 0.00 0.21 

5.7 5.67 0.71 0.00 2.50 2.75 0.22 
6.15 6.17 2.15 2.58 1.15 0.00 0.35 
5.6 5.59 Kl 0.00 2.1 2.58 0.38 
6.3 6.28 

0:OO 
2.83 0.00 0.00 0.00 

6.3 6.28 0.00 2.71 2.83 0.00 
6.2 6.21 2.70 2.83 0.07 0.03 
3.6 3.63 0.06 0.00 2.44 

z3 
0.02 

6.15 6.14 2.69 2.82 0.13 0:OO 0.05 

:*x5 
3:ss 

3.60 5.94 0.12 2.65 0.00 2.80 2.43 0.33 0.00 2.82 0.05 0.11 
3.54 0.31 0.00 2.40 2.80 0.11 

*A, and Al are the amplitude of oscillation of y, and y2. T is the period of that oscillation. 
- denotes analytical prediction. r is the fraction of the ‘total amplitude’ present in the minor 
mode, i.e. 

r=min 

The two lines of data for each set of parameter values correspond to different initial 
conditions. 
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Fig. 3. Plot of fraction I of total amplitude present in minor mode versus parameter s from 
numerical integration data in Table I. The plot is essentially the same for either mode and for 

either (I = 0.1 and (I = 1. 
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Fig. 4,(a) Theoretical predictions of period T versus time t for A = 0.25. (i) a = 0.05, s1 = 6.25; 
(ii) Q = 0.1. s* = 1.56; (iii) Q = 0.25, s2 = 0.25; (iv) (I = 1, s2 = 0.016. In (i) and (ii) the upper and 
lower curves correspond to x,(r) and x2(f) respectively.(b) Numerical results for period T versus 
timetforA=0.25,c=0.l.(i)a=0.05,~~ = 6.25; (ii) Q = 0.1, s* = 1.56; (iii) Q = 0.25. s* = 0.25; 
(iv) CI = I, sz = 0.016. In (i) and (ii) the upper and lower curves correspond to x,(t) and x,(l) 

respectively. 
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A I 

Fig. 5. Spectrum from fast Fourier transform of numerical solution for a = 0.1, A = 0.25, 
E = 0.1, s* = 1.56. A = amplitude, (I) = frequency. 

For larger values of s, the amplitude of the two modes become comparable and we 
can no longer describe the motion by a single period and amplitude. Instead two other 
methods are used to compare the numerical and analytical results. 

The first method, due to Cohen et al.[14], is to plot the time between zero crossings 
with positive slope of each oscillator as a function of time. This is done for a 
sequence of parameter values where the detuning (A) is fixed and the coupling (a) is 
varied. The analytical predictions shown in Fig. 4(a) agree closely with the numerical 
results, given in Fig. 4(b), once the transients have died out. Also in Fig. 4, we can see 
the periodic change in ‘period’ referred to by Neu[9] as ‘rhythm splitting*. 

The second method of comparison employed a program which performed a fast 
Fourier transform on data produced by numerical integration. The output consists of a 
graph of the coefficients of the terms in the Fourier expansion of the numerically 
generated waveform. 

The results of this procedure for a sample value of s* > (l/2) are shown in Fig. 5 
and, except for some small background contributions, agree very closely with the 
predictions of the perturbation analysis. The amplitudes of the two ‘spikes’ in the 
output are within 10% of the analytic values and the corresponding periods agree to 
within 1%. 

One important difference between the numerical and analytic results should be 
noted however. Rather than the sharp transition from phase-locking to quasi-periodi- 
city predicted by the perturbation analysis, the numerical results show a gradual 
change in the form of the solution. The motion slowly begins to pick up more than one 
main frequency component as s increases. This brings us back to the bifurcation 
which occurs in Fig. 2. The picture for s2 = (l/2) shows a line of non-isolated 
equilibrium points, which is not a structurally stable situation. A small perturbation of 
the flow could cause qualitative differences in the picture. The numerical results 
demonstrate that the prediction of this sharp transition is not correct and that there is 
something lost in neglecting terms small with respect to l . It is expected that an 
analysis including these terms would show some smoother change occurring over a 
range of values of the parameter s. 

6. CONCLUSIONS 

By means of a two-variable expansion perturbation analysis we have found two 
types of approximate solution of the system of equations (1). The first is a periodic 
phase-locked solution, with phase difference 0 or w depending on initial conditions, 
which is stable for values of the parameter s2 < (l/2). The second is a quasi-periodic 
motion which is approached from almost all initial conditions if s* > (l/2). Thus, we 
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see that the loss of phase-locked oscillations occurs as the result of either increasing 
the detuning or decreasing the coupling in the system. 

The analytical predictions agree closely with the numerical solutions of this system, 
except that the transition from phase-locked to quasi-periodic oscillations occurs 
gradually over a range of values of the parameter s in the numerically obtained 
solutions, in contrast to the sharp transition at s* = (l/2) in the analytical solution. 
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On utilise une m&hode de perturbation pour 6tudier le 
comportement 2 1'6tat statjonnaire de d&x oscillateurs 
de Van der Pol avec un fort couolaoe diffusif lin6air-e. 
On montre qu'une Gparation se pro&it qui r6sulte en 
une transition de mouvements p6riodiques 'a phases li6es 
vgrs des mouvem:nts quasi-p6riodiques lorsque le couplage 
decroit ou la desynchronisation s'accroit. On compare 
les Gsultats analytiques i une solution ge'nirie num&ique- 
ment. 

Zusamnenfassunq: 

Eine Perturbationsmethode wird zur Untersuchung des sta- 
tiona'ren Verhaltens zweier Van-der-Pol-Schwinger mit stark 
linear diffusiver Kopplung verwendet. Es wird gezeigt, 
dass eine Verzweigung auftritt, welche einen Ubergang von 
einer phasenfesten zu einer quasiperiodischen Bewegung 
bewirkt when die Kopplung verringert oder die Verstimnung 
vergrsssert wird. Die analytischen Ergebnisse werden mit 
numerisch erzeugten LSsungen verglichen. 


