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Abstract—A perturbation method is used to study the steady state behavior of two Van der
Pol oscillators with strong linear diffusive coupling. It is shown that a bifurcation occurs
which results in a transition from phase-locked periodic motions to quasi-periodic motions as
the coupling is decreased or the detuning is increased. The analytical results are compared
with a numerically generated solution.

1. INTRODUCTION

The object of this work is to study the dynamics of two Van der Pol oscillators with
linear diffusive coupling. This system of non-linear, non-conservative limit cycle
oscillators is described by a system of two second order ordinary differential equa-
tions:
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Dots represent differentiation with respect to time, a is the diffusive coupling
parameter, and A is related to the difference in natural frequency of the two
uncoupled oscillators which will be referred to as the detuning parameter. In a
previous work Rand and Holmes[1] studied this problem for small values of the
coupling and detuning parameters. Here we extend their work by removing the
assumption that « and A be small. The approach to the problem will be similar; we
will use a perturbation analysis to reduce the study of the steady-state motions of
these oscillators to the study of a system of algebraic equations.

Earlier work in this area has been done by several other investigators. Minorsky[2]
has studied two Van der Pol oscillators with small coupling proportional to % Hayashi
and Kuramitsu[3] used an averaging method to study coupled Van der Pol and
damped linear oscillators. Linkens[4, 5] has used the method of harmonic balance to
study larger groups of Van der Pol oscillators with non-linear coupling. More in line
with our approach is the work of Cohen and Neu[6] and Neu[7] who have used
two-variable expansions to study phase-locking and rhythm splitting in pairs of
weakly coupled limit cycle oscillators. More recently Neu[8,9] has examined
phase-locking of large populations of coupled oscillators using the two-variable
expansion method to obtain approximate solutions to equations arising from a
continuum model.

Problems concerning coupled non-linear oscillators frequently arise in biological
applications. Many such examples can be found in the work of Pavlidis[10].

where

2. PERTURBATION ANALYSIS

We will use the two-variable expansion method to find an approximate solution of
this system which is uniformly valid on a fixed finite time interval 0 <t < T = 0(¢™?).
We shall neglect terms of order € throughout.
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144 D. W. SToRTI and R. H. RAND

In order to obtain a zero order system that has a particularly simple solution (which
will help to simplify the perturbation analysis), we first transform to the normal mode
co-ordinates of the linear problem (e = 0).

We can write the co-ordinate transformation as

x =Ry (2)

(4,1

where
a=RA+s*+svVA+sYI?, b=[20+s*—sVA +s))'?

A

§ = =

T 2a’

Note that R is an orthonormal matrix (a’+ b*=1) whose columns are the eigen-
vectors of (I—A) associated with the eigenvalues

AM=1+a(l+s—=VA+5Y), A=1+a(l+s+V(1+sY). 4)

Hence

Now we perform the transformation from x to y by substituting equation (2) into
equation (1) and multiplying by R™' on the left which gives

y+1wy = eR™'(I- x)Ry )
w=("), w=ri i=12
w3

Next we employ the two-variable expansion method by replacing the independent
variable ¢ (time) with two new independent variables £ (stretched time) and 5 (slow
time) as described by Cole[11] and Nayfeh[12]. Let:

E=Qt Q=1+Qe+Me*+ .. (6)
n = €. )]

Using the chain rule, derivatives with respect to t are now replaced by partial
derivatives with respect to ¢ and 7.

d_q9d . ..9

ar -t <o,
[ P 3? ) 8?
F—Q@+2€Qa§an+esﬁi. )

Neglecting terms of 0(e?), equation (5) becomes
(1+2Q,€)y, + 2€y,, + Ioy = eR™'I— xRy, (10

where alphabetic subscripts represent partial differentiation.
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Next we expand the dependent variables y,(£, 1) and y,(£ 7) in power series in e:
Y& ) = yol& )+ eyu(& m)+0(e?); i=1,2. an

Substituting equation (11) into equation (10), and equating coefficients of like powers
of €, we obtain the four equations

Yiog + @’ yio=0 (12)
Yaoge + @il yn =0 13)
Yug+ olyy =~ 2Q1Yioee — 2Y10en

+[a’(1~ a’yo* — 2aby\oyn — b2y
+b*(1 - byie’ +2abyieya — a* ¥ e
+[ab(1 — a’yio* — 2aby gy — b*e?)
—ab(1 - b’y + 2abyioyxn ~ @’y yxu, (14)
Yoge + w2 yu = = 20 Yaoge = 2 Y204
+[ab(1 - @’y —2abyy, — b’yy?)
= ab(1 -~ b’y +2aby,0y2 ~ a*yx)] Yo
+[b*(1 ~ a’yg* — 2abyioyn — b’yd)
+a* (1= by’ +2abye¥2 — @’ y2)]yxe (15)
Equations (12) and (13) have the solution
Y10 = A(n) sin o, &+ B(n) cos o, ¢ (16)
Y20 = C(n) sin w € + D(n) cos wy€ . an
We substitute (16) and (17) into (14) and (15) and require that y,(£ ) and y,,(£, ) be
uniformly valid for all £>0. In order that y,, and y, have no secular (resonance)
terms, the coefficients of sin w ¢ and cos @& on the right-hand side of (14) and the

coefficients of sin w,¢ and cos w,£ on the right-hand side of (15) must vanish, giving
the equations:

80w, A +8B'~4B +(a*+ b*) B(A*+ B} + 4a*b*B(C*+ D¥) =0 (18)
80w, B —8A’+4A —(a*+ b*)A(A + BY) ~ 4a*b*A(C*+ D) =0 (19
80,w,C +8D'—4D + (a*+ b*) D(C* + D*) + 4a*b*D(A* + BY) = 0 (20)
80w, D —8C' +4C —(a* + b)C(C*+ D*) - 4a’b’C(A*+ B} =0 Q1)

‘where primes denote differentiation with respect to 7.

Here we have excluded the special 3:1 resonance case[15] corresponding to
w, = 3w, for which additional terms appear in equations (18)~(21).

Next we transform to polar co-ordinates,

Yo=p(n)cos[wé—0(n)], i=1,2; (22)
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ie.,
A(m) = pi(n) sin 8:(n), B(m) = pi(n) cos 6,(n) (23)
C(m) = pAm) sin 6)(n), D(n) = py(n) cos 6(n) (24)

and replace (18)-(21) with (18)A + (19)B, (20)C + (21)D, (18) B-(19) A, and (20)D-(21)C,
giving equations for the slowly varying amplitudes, p;(n) and phases, 6;(7):

p’0; — Qyoip =0 (25)
P20 — Qwpt =0 (26)
8pip) —4pt+(a*+ bYpt +4a’bpp’ =0 2N
8p.psy—4p,t + (a* + bY)py +4a’b’plp = 0. (28)

We now examine this system for equilibria which will correspond to steady-state
solutions of the system (1). Up to this point (), has not been specified, but we must
now take ; = 0 in order to find non-trivial solutions which satisfy 8} = 9; = 0. We also
simplify our notation by noting that p, and p, appear only to the second power and
thus let:

pl2 = P9 P22 = Q (29)

Equations (25) and (26) are now identically satisfied and the two remaining equations,
(27) and (28), become:

P'=P(1-gP-hQ)=F(P,Q) (30)
Q' =Q(—-hP-gQ)=G(P,Q) (3D

where
g=3(a"+b%, h=ab 32)

This system of equations has four equilibrium points, where F(P, Q)= G(P, Q) =0.

@ P=Q=0.
(i) p-1-8ts) o0

For the special case of s?=(1/2), g = h and there is a line of nonisolated equilibrium
points where P + Q =6 (see Fig. 2).

3. STABILITY AND SIGNIFICANCE OF EQUILIBRIA

Here we transform back to the original co-ordinates (x,, x,) to see what kind of
motions correspond to the P, Q equilibria found in Section 2 and examine the
linearized form of equations (30) and (31) to determine the stability of these motions.
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The transformation is given by [cf. equations (29), (22), (3), (2)):
Xi0=a\/P cos (w1~ 6,)— b/ Q cos (£ — 6,) (33)
X0 =b\/P cos (o,£— 8,)+ a\/Q cos (wé — 8,). 34)

The stability of the motion corresponds to that of the related equilibrium point in P,
Q space and is determined by the trace and determinant of the linearization matrix

oF oF

_|aP 3Q

=6 36 ©@5)
aP 3Q

evaluated at that equilibrium point as developed in Minorsky[2] (see Fig. 1).
The first equilibrium, P = Q =0, corresponds to the motion x; = x, = 0, for which

(1)

Detd)=1>0, Tr(J)=2>0. 37

Hence this state where both oscillators are turned off is unstable for all parameter
values. Note that the zero motion of a single uncoupled Van der Pol oscillator is also
unstable and this property is preserved under the present coupling.

The next two equilibria P =(1/g), Q=0 and P =0, Q =(1/g) correspond to the
phase-locked motions

(5) = (5) 7 cos wne =0 (38)
and
(:lﬂ) = (—ab) \‘}g cos (w;€ =~ 6) (39)

respectively. These periodic solutions are non-linear normal modes in the sense of

Tr

UN

UF

SF

SN

Fig. 1. Determination stability of equilibrium from the properties of the linearization matrix J.
S = saddles (unstable); UN = unstable nodes; UF = unstable foci; SF = stable foci; SN =
stable nodes. The node-focus transition curve is given by Tr =4 Det.
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Rosenberg[13]. The linearization matrix for both of these equilibrium points is
h
= ¢ 40
J h (40)
4

Tr(3) = —§<0. (41)

(Note that h and g are positive.)

Ch_ 1 s+sy ,_1-28
Detd) = - 1=ga7sh ar2s) | “1+2s “2)

2 2
Trz(J)—4-Det(J)=§;—4§+4=(—3—2) >0. (43)

For s2>(1/2), these points are stable nodes and the phase-locked motions are stable.
These motions are unstable when s?>(1/2) and the corresponding equilibria are
saddles.

The last equilibrium point P = Q = (1/(g + h)) gives the motion:

G- varm s ) (ia=o) “
_—
TrQ) = g{%% <0 (46)
Det(d) = (g;T’,i‘;, 1)

2 2 2 2
(& —hY)_ 4k
e hy g+

Tr(J) - 4-Det(J) = (g‘ fi)

(48)

This motion is, in general, quasi-periodic resulting from the summation of two
periodic motions with noncommensurable frequencies. Such a motion is not periodic
and there is no constant phase relation between the two oscillators. Here the stability
is exactly the opposite of the previous case, stable for s*>(1/2) and unstable for
s2<(1/2).

Using this information, we can construct a qualitative picture of the flow in the P, Q
plane for various values of the parameter s as shown in Fig. 2, and can now
understand the dynamic behavior of the system as follows. Recall that the parameter
s = (A]2a) represents the ratio of the detuning to the coupling. If the difference in the
uncoupled frequencies is sufficiently small compared to the coupling, then almost all
solutions tend towards a phase-locked periodic motion. As the parameter s is increased
past the critical value s? = (1/2), a bifurcation occurs which changes the stability of the
non-trivial steady-state solutions. Such large values of the detuning (compared to the
coupling) prevent phase-locking and the quasi-periodic motion results.

5. COMPARISON WITH NUMERICAL RESULTS

Having a set of analytical predictions at our disposal, a fourth order Runge-Kutta
method was used tc numerically solve the original system of equations (1) to test
these predictions.
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Fig. 2. Flow in the P, Q plane. (a) s <(1/2), (b) s2=(1/2), (c) s*> (1/2). The line E consists of
nonisolated equilibria and is given by P + Q = 6.

The numerical experiments were begun by taking initial conditions close to the
origin (i.e. at t=0, x; <1, %<1, x,<1, % <1). For all such initial conditions
and all values of s, the oscillation diverged from zero and approached some other
solution. This confirmed that the solution with both oscillators ‘turned off’ is indeed
unstable for all parameter values.

Next, the long term (after about 50 cycles) behavior of the solutions was examined
over a range of values of s.

For s?<(1/2), the perturbation analysis predicts that one mode should be ‘turned
off’ (either y, = 0(¢) or y, = 0(¢) and we should be able to describe the solution by the
amplitude and period of the active mode. To test this prediction, we performed a
numerical integration of the system (1) and expressed the results in terms of the
normal mode coordinates y,, y, via the transformation (2). The amplitudes and periods
of oscillation of y, and y, obtained by this method are given in Table 1 along with the
analytic predictions. The percentage of the ‘total amplitude’ in the minor mode is
plotted as a function of s in Fig. 3.

Both the amplitudes and periods show good quantitative agreement for values of
5 <0.2 when we take € =0.1. This confirms the existence of phase-locked solutions
for small values of s.

Table 1. Comparison of analytical and numerical phase-locked solutions for ¢ =0.1*.

[ 4 A Sz T ~T A| ~A| Az ”'Az r

0.1 0.00 0.0000 6.3 6.28 2.71 2.83 0.00 0.00 0.00
6.3 6.28 0.00 0.00 271 2.83 0.00
0.1 0.01 0.0025 6.3 6.27 2.70 2.82 0.15 0.00 0.05
5.7 5.72 0.15 0.00 2.67 2.82 0.05
0.1 0.05 0.0625 6.2 6.22 2.53 2.75 0.69 0.00 0.21
5.7 5.67 0.71 0.00 2.50 2.75 0.22
0.1 0.10 0.2500 6.15 6.17 2.15 2.58 1.15 0.00 0.35
5.6 5.59 1.2 0.00 2.1 2.58 0.38
1.0 0.00 0.0000 6.3 6.28 2.7 2.83 0.00 0.00 0.00
6.3 6.28 0.00 0.00 27 2.83 0.00
1.0 0.05 0.0006 6.2 6.21 2.70 2.83 0.07 0.00 0.03
36 3.63 0.06 0.00 2.44 2.83 0.02
1.0 0.10 0.0025 6.15 6.14 2.69 2.82 0.13 0.00 0.05
36 3.60 0.12 0.00 2.43 2.82 0.05
1.0 0.25 0.016 5.95 5.94 2.65 2.80 0.33 0.00 0.11
3.55 3.54 0.31 0.00 2.40 2.80 0.11

* A, and A, are the amplitude of oscillation of y, and y,. T is the period of that oscillation.
~ denotes analytical prediction. r is the fraction of the ‘total amplitude’ present in the minor

mode, i.c.
. A A
= PR c.J I 2. S
r=min (AI +A) A +Az).

The two lines of data for each set of parameter values correspond to different initial
conditions.
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Fig. 3. Plot of fraction r of total amplitude present in minor mode versus parameter s from
numerical integration data in Table 1. The plot is essentially the same for either mode and for
either a =0.1and a =1.
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Fig. 4.(a) Theoretical predictions of period T versus time ¢ for A = 0.25. (i) a = 0.05, s? = 6.25;

(ii) @ = 0.1, s* = 1.56; (iii) @ = 0.25, s’ =0.25; (iv) a = 1, 5> = 0.016. In (i) and (ii) the upper and

lower curves correspond 10 x,(f) and x,(t) respectively. (b) Numerical results for period T versus

time ¢ for A =0.25, € = 0.1. (i) a = 0.05, 5* = 6.25; (ii) a = 0.1, s? = 1.56; (iii) « = 0.25, s? =0.25;

@iv) a =1, s*=0.016. In (i) and (ii) the upper and lower curves correspond to x,(¢) and x,(¢)
respectively.
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Fig. 5. Spectrum from fast Fourier transform of numerical solution for a =0.1, A =0.25,
€=10.1, s?=1.56. A = amplitude, w = frequency.

For larger values of s, the amplitude of the two modes become comparable and we
can no longer describe the motion by a single period and amplitude. Instead two other
methods are used to compare the numerical and analytical results.

The first method, due to Cohen et al.[14], is to plot the time between zero crossings
with positive slope of each oscillator as a function of time. This is done for a
sequence of parameter values where the detuning (A) is fixed and the coupling (a) is
varied. The analytical predictions shown in Fig. 4(a) agree closely with the numerical
results, given in Fig. 4(b), once the transients have died out. Also in Fig. 4, we can see
the periodic change in ‘period’ referred to by Neu[9] as ‘rhythm splitting’.

The second method of comparison employed a program which performed a fast
Fourier transform on data produced by numerical integration. The output consists of a
graph of the coefficients of the terms in the Fourier expansion of the numerically
generated waveform.

The results of this procedure for a sample value of s2>(1/2) are shown in Fig. S
and, except for some small background contributions, agree very closely with the
predictions of the perturbation analysis. The amplitudes of the two ‘spikes’ in the
output are within 10% of the analytic values and the corresponding periods agree to
within 1%.

One important difference between the numerical and analytic results should be
noted however. Rather than the sharp transition from phase-locking to quasi-periodi-
city predicted by the perturbation analysis, the numerical results show a gradual
change in the form of the solution. The motion slowly begins to pick up more than one
main frequency component as s increases. This brings us back to the bifurcation
which occurs in Fig. 2. The picture for s*=(1/2) shows a line of non-isolated
equilibrium points, which is not a structurally stable situation. A small perturbation of
the flow could cause qualitative differences in the picture. The numerical results
demonstrate that the prediction of this sharp transition is not correct and that there is
something lost in neglecting terms small with respect to €. It is expected that an
analysis including these terms would show some smoother change occurring over a
range of values of the parameter s.

6. CONCLUSIONS

By means of a two-variable expansion perturbation analysis we have found two
types of approximate solution of the system of equations (1). The first is a periodic
phase-locked solution, with phase difference 0 or 7 depending on initial conditions,
which is stable for values of the parameter s> < (1/2). The second is a quasi-periodic
motion which is approached from almost all initial conditions if s2> (1/2). Thus, we
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see that the loss of phase-locked oscillations occurs as the result of either increasing
the detuning or decreasing the coupling in the system.

The analytical predictions agree closely with the numerical solutions of this system,

except that the transition from phase-locked to quasi-periodic oscillations occurs
gradually over a range of values of the parameter s in the numerically obtained
solutions, in contrast to the sharp transition at s’ = (1/2) in the analytical solution.

I.
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Résumé:

On utilise une methode de perturbation pour etudier le
comportement a 1'état stationnaire de deux oscillateurs

de Van der Pol avec un fort couplage diffusif linéaire.

On montre qu'une séparation se _produit quj résulte en

une transition de mouvements periodiques a phases liées
vers des mouvements quasi- per1od1ques lorsque le couplage
decrout ou la desynchron1sat1on s'accroit. On _compare

les résultats analytiques a une solution générée numérique-
ment.

Zusammenfassung:

Eine Perturbationsmethode wird zur Untersuchung des sta-
tiondren Verhaltens zweier Van-der-Pol-Schwinger mit stark
linear diffusiver Kopplung verwendet. Es wird gezeigt,
dass eine Verzweigung auftritt, welche einen Ubergang von
einer phasenfesten zu einer quasiperiomschen Bewegung
bewirkt when die Kopplung verringert oder die Verstimmung
vergrissert wird. Die analytischen Ergebnisse werden mit
numerisch erzeugten Losungen verglichen.



