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Abstract-A system of mutually coupled van der Pol oscillators containing fifth-order con- 
ductance characteristic, with the coupling delay, are analyzed by using the non-linear mode 
analysis. In particular, it has been demonstrated that zero state, two single modes, and one 
double mode are stable only for sulliciently small 7. 

The analytical results have been verified by using the digital simulation. 

1. INTRODUCTION 

The study of systems of mutually coupled non-linear oscillators is of interest to 
several fields of engineering, statistical mechanics, electronics, and biological science, 
and has been done experimentally and theoretically by several authors [l-3]. 

Recently, Datardina and Linkens [93 have investigated a coupled system of van der 
Pal oscillators with fifth-power non-linear characteristics for modeling the myoelec- 
trical activity of the human large intestine. 

In this paper we consider the effects of coupling delay [l, lO-12) on the processes of 
interaction of oscillators in the system discussed in [9] and theoretically investigate 
the properties of such a system. 

The structure and stability of modes are clarified by using the non-linear mode 
analysis of Endo and Mori (4-61 and these results are compared with the results 
obtained by the digital computer study (digital simulation). 

2. MODE ANALYSIS 

The system under consideration is described by the differential-difference equa- 
tions 

i:; + &- s,x;2+ s5xi4p; + w2x; - k&s = 0 

(1) 
n; + b(s, - sjx;2+ ssx;4)i; + w2x; - kx;, = 0 

where k is the coupling factor (positive constant), * = (dldt’), ‘. = (d2/dt”), xi,, = 
xi(t’- T’), xi,* = xXt’- #), and T’ is the delay time (positive constant). 

The normalized equations of equation (1) are obtained by changing the amplitude 
and time as in 

4 

&,(N = 1, 2), 

7’ = r/w, 
267 

(2) 



A. KOUDA and S. MORI 268 

and 

By defining 

and 

t’ = t/o. 

E = @,lw, a = k/o2 

so 

f, + l ( 1 - px: + xj)l, + XI - ax2, = 0 

22 + c( 1 - px: + x:)12 + x2 - CYXl, = 0 

where 
. = (d/d t), -’ = (d’ldt’), x1, = x,(t - 7) 

and 

x27 = X2(f - 7). 

Let the vectors x, X, X and Z be 

x = h, x21T 

x, = bin X2,P 

x = [xi, xi]’ 

z = [xi, x:y 

then (4) can be written in the matrix-vector notation as follows: 

where B is real and symmetric as 

0 1 
B= 10 1 I 

(3) 

(4) 

64 

Vb) 

If an orthogonal transformation is applied to (5a), then 

x = Py, P’P = I(PP’ = I), I: unit matrix 

Y = [Yl, Y21T 

and 

Y, = [Y,o Y,T 
and equation (Sa) becomes 

f+r)-f/3Prb+fePri+y=nPrBPy, 

(6) 

(7) 

Here B is easily diagonalized under the condition that matrix P is orthogonal, i.e., 

each column (or row) vector of P forms an orthonorfial-system (see [6], [91) 

PII =PIIEP2,=-& 
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Using these results, equation (7) can be rewritten as 

j; + ejr - ;@P’” -t $P ‘i + y = aB,y, (9) 

where 

In the above equation, the unperturbed equation (the equation with e = 0) is indicated 

by 

a 0 
j;+y= o 

[ 3 -a Y7 (10) 

and the solutions (modes) of this equation are obtained as 

yI = A, sin (w,t + 8,) 

y2 = A2 sin (a2t f 0,) 

1 - 0: = a cos (wt7) 

1 - 0: = - a cos (0~~7). 

(1 la) 

(llb) 

(1 lc) 

(114 

Next we will consider the perturbed equation of (9) (equation with E# 0) on the basis of 
these results. In order to accomplish this, the PTA and PTi of (9) should be equivalently 
linearized in the y domain. 

By the same way as in [6], we have the equivalent-linearized equations of (9)t: 

j,+c 1 
I 

- $A: + 2A:) + $(A! + 3A: + 6A:A:)))i, + y, = ay,, 

(12) 

2A: f A:) + $(3Aj + Ai + 6AiA:) 
I 

j2 + y2 = - ay2,. 

Thus, the equivalent-linearized equations have been obtained as in equation (12). 
The averaged equations with regard to the amplitudes and the phases can then be 
derived from substituting the unperturbed solutions [equation (1 l)] into these equa- 
tions, on condition that the amplitudes and the phases are slowly varying functions of 
time (compared to t). So, the averaged equations can be written as follows: 

A: + 2A:) +$A: + 3A: + 6A:A:))A: -5 sin (ug)A: U3a) 

2Af + A:) + $3A: + A: + 6A:A:) 
I 

A$ + $ sin (u27)A$ (13b) 

8, =o (13c) 

42 = 0. (134 
tin this 

speaking. t R 
aper the ratio of two frequencies (0,103 is assumed to be irrational (non-resonance). Strictly 
ere may be some cases where this ratto can be rational for particular values of a and I, but such 

cases are omitted. 
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From equation (13) it can be noted that the stability of modes is determined only by 
the amplitudes A, and A*. 

3. STABILITY PROBLEM 

The stationary states of modes are determined by reducing all the first-order time 
derivatives in the averaged equations (13a) and (13b) to zero. The stability of a 
stationary state is then distinguished by introducing small disturbances around the 
stationary state and determining whether all the eigenvalues of the resultant Jacobian 

(14) 

have negative real parts. 
The elements of the Jacobian associated with (13a) and (13b) are: 

J,, = - E 
I 

1 - $(A: + A:) + &(A: + A: + 4AfA:)) -z sin (w,T) 

J,z = - E 
i 

-$A: + &(A: + A:A:)) 

J2, = -6 
I 

- $A: + &‘A:A: + A;)) 

522 = l-$(A:+A$)+$$A:+A:+4A:A:) 
I 

+usin(~~r). 
*2 

(13 

(a) Stability of the zero state 
For the zero state to exist A I = A2 = 0. Hence, from equation (15) the zero state is 

stable if the following inequalities are simultaneously satisfied 

-r-zsin(0,7)<0, 

(16) 

-e+Q 
w2 

sin (0~7) < 0. 

(b) Stability of the single modes 
(i) First we assume A, # 0 and A2 = 0, then from equation (13a) the stationary value of 

A, is given by 

:A: +&A:) -z sin (~~7) = 0. (17) 

It is apparent that this mode is stable provided 

and 

-+$+~)<o (18a) 

-Q l- 
( 

$A: +&A:) + t2 sin (027) < 0. (18b) 

The spatial dependence for mode ol (in-phase single mode) can be obtained from 
equations (6), (8), (lla), and (1 lc) by setting 8, = 0 as 

xl = -$A, sin (o,t), 

(19) 

x2 = &A1 sin (o,t) 
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(ii) Next for A, = 0 and A2 # 0, A2 is then given by 

and this mode is stable if 

-csin(0,7)<0, 

271 

(20) 

(21) 

In the same manner as that described for mode 01, the spatial dependence for mode 
w2 (anti-phase single mode) is 

x, = -$A2 sin (u2f), 

(22) 

x2 = - -&A2 sin (u2f). 

(c) Double mode stability 
For the double mode to be stable, both A, and A2 must exist. Hence, these values 

are given by 

-E I- 
I 

$(A; + 2A:) + &(A: + 3Aj + 6A:A:)) - $ sin (0,~) = 0 

- e 
1 4 

I- 8 2A: + A:) + $$3A: + Ai + 6AfA:) 
I 

+ E sin (~~7) = 0. 

The characteristic equation for the double mode is 

(23) 

A2 - v,, + J22P + (JJ22 - J12J2,) = 0. (24) 

where I,,, J12, J2, and J22 are given in equation (15). For a stable double mode to exist, 
it is necessary and sufficient to fulfil the conditions 

J,,+J22<0 

(25) 

51,322 - 5,252, > 0. 

The spatial dependence is shown for the double mode 

xl = --&A, sin (o,t + 0,) + --&A2 sin (u2f + 0,), 

(26) 

x2 =&A, sin (0,r + 0,) - -$A2 sin (u2f + 19~) 

8, and e2 are arbitrary [see equations (6), (8). and (11) again]. 
Thus the four modes in the system under consideration have been analyzed, and 

their expressions (two single modes and one double mode) are given in equations (lq), 
(22). and (26). 

4. NUMERICAL RESULTS 

Consider the case in which the parameters of equation (4) are given by 

NLM Vol. 17. No. 4-D 

e-0.1, a=0.15, and /3=3.4. 
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First we survey the stability of the zero state. The result is shown in Fig. 1. Hence, 
it is possible to consider that in the regions of the unstable zero state, each oscillator 
in the system described by equation (41 behaves as a ‘soft’ oscillator. (On the other 
hand, in the stable regions, each oscillator behaves as a ‘hard oscillator.) This result 
agrees very well with the result obtained from the digital simu1ation.S 

0 1 2 3 4 5 6 7 8 

----r-C 

Fig. I. Zero state, Solid iine, analytical results (stable); dashed line, analytical results 
(unstable); open circles, digital simulation (stable); crosses, digital simulation (unstable). 

LN(A&@I N-PHASE 

AN(&/$‘?):ANTI -PHASE 

I 
AN ( uJa) 

I t / 1 4 L I I 

0 1 2 3 4 5 6 7 8 

(bt B-c 

Fig. 2. (a) Amplitudes of singk modes; (b) Frequencies of singk modes. So& tine, analytical 
results (stable); dashed line, analytical results (unstable); solid circles, digital simulation 

(in-phase); open circles, digital simulation (anti-phase). 

SNumericai integrations of equations 14) were performed with respect to time with the mod&d fourth-order 
Runge-Kutta method [131. 
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Next the results of the analysis for the single modes are given in Fig. 2. These 
results have been checked against the digital simulation and good correlation between 
analytical and simulated results is shown in these figures. 

Finally the double modes are analyzed. The results obtained are presented in Figs 
3-6. From these results, it is proved that the double modes occur only for 
sufficiently small values of 7. 

I . . . , I ~ 
0 0.05 0.1 

-7 

Fig. 3. Amplitudes of double modes. For this range of 7, the frequencies (0,. OJ of each mode 
are nearly equal to those at T=O. Amplitudes of unstable double modes are not shown 

(analytical result). 

Fii. 4. For caption see overleaf. 
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Cd) 

Fig. 4. Waveforms obtained by digital simulation. 

(a) 7 =QQ2 
T; 

1 - 

z 

-1 0 1 
- Xl 

(b) 7 =0.03 

Fig. 5. Regions of attraction for stable modes [9]. Z, zero state; DM. double mode, xl and x2 
represent the initial conditions on the oscillator outputs (x, = 0, x2 = 0 for - T 6 t < 0); (digital 

simulation). 

0 0.0 2 0.04 0.06 
-7 

Fig. 6. Stable region of B for a double mode in terms of T. Solid line shows analytical 
boundary; dotted line shows the boundary obtained from the digital simulation. 
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5. CONCLUSIONS 

275 

The properties of modes on a system of mutually coupled van der Pol oscillators 
containing fifth-order conductance characteristic, with the coupling delay, have been 
investigated by using the non-linear mode analysis and the results obtained have been 
checked against the digital simulation. From this investigation, we draw the following 
conclusions. 

(1) The regions of stable zero state and those of unstable zero state alternate in the 
space of system parameters and delay. 

(2) The regions in which the anti-phase single mode is stable and those in which the 
in-phase single mode is stable alternate in the space of system parameters and delay, 
and yet two single modes are stable in some intervals containing 

T=?T(~-1); n=1,2,3 ,.... 

(3) When 
of 7. 

the double modes occur, they are stable only for sufficiently small values 

In this paper the two-oscillator case was considered. Both theoretical and experi- 
mental studies for the cases of more than two oscillators will be reported at a later 
date. 
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R6rud : 

En utilisant I’analyse de mode non lindaire on dtudie un 
systhne d’oscillateurs de Van der Pol mutuellement coupI& 
contenant une caractgristique de conductance du cinquihme 
ordre avec retard de couplage. En particulier on a ddmontr6 
que l’itat z6ro. deux modes simples et un mode double sont 
stables seulement pour un suffisamrnent petit. 

On a vErifiE les risultats analytiques avec une simula- 
tion numerique. 
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Zusammenfassung: 

Unter Verwendung der nichtlinearen Schwingungsform-Analyse 
wird ein System miteinander gekoppelter van-der-Polscher 
Schwinger mit Kopplungsverzug und Leitungscharakteristiken 
der fuenften Ordnung untersucht. Im besonderen wi rd demon- 
striert, dass der Grundzustand, zwei Einzelschwingungs- 
formen und eine Doppelschwingungsform nur fuer genuegend 
kleine Werte fuer T stabil sind. Die analytischen ERgeb- 
nisse wurden mit Hilfe einer digitalen Simultaion bestaetigt. 


