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Abstract—A system of mutually coupled van der Pol oscillators containing fifth-order con-
ductance characteristic, with the coupling delay, are analyzed by using the non-linear mode
analysis. In particular, it has been demonstrated that zero state, two single modes, and one
double mode are stable only for sufficiently small .

The analytical results have been verified by using the digital simulation.

I. INTRODUCTION
The study of systems of mutually coupled non-linear oscillators is of interest to
several fields of engineering, statistical mechanics, electronics, and biological science,
and has been done experimentally and theoretically by several authors [1-3].

Recently, Datardina and Linkens [9] have investigated a coupled system of van der
Pol oscillators with fifth-power non-linear characteristics for modeling the myoelec-
trical activity of the human large intestine.

In this paper we consider the effects of coupling delay [1, 10-12] on the processes of
interaction of oscillators in the system discussed in [9] and theoretically investigate
the properties of such a system.

The structure and stability of modes are clarified by using the non-linear mode
analysis of Endo and Mori [4-6] and these results are compared with the results
obtained by the digital computer study (digital simulation).

2. MODE ANALYSIS

The system under consideration is described by the differential-difference equa-
tions

Xi+ £(s; — syxit+ ssx10%1 + 0'x] — kx}, =0
n

i+ E(s)— 53x32 + 5sx3)% + wixi— kx|, =0

where k is the coupling factor (positive constant), ' =(d/dt), "= (d*/dt'?), x|, =
xi(t'—7"), x3=x3(t'— '), and +' is the delay time (positive constant).

The normalized equations of equation (1) are obtained by changing the amplitude
and time as in

xi= \/ (&)swev =1,2,

7 = 1o, @
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and
t'=tlw.
By defining
e=&low, a=klo®
and
$3
=—=— (,a<l 3
B V(s155) (6a<D) ©)
S0
B +e(1-Bxi+xx +x,—ax;, =0
4
.fz + €(1 - ﬁx% + X;)x'2+ Xy — aX), = 0
where
"= (dlde), = (d¥d1), x), = x,(t— 1)
and
X3, = X(t = 7).
Let the vectors x, x,, X and Z be
x =[x, ;)7
xf = [xlﬂ xZV]T
X =[x}, x}]"
Z=[x},x3]"
then (4) can be written in the matrix-vector notation as follows:
i+ei—§Bx+%eZ+x—-an,=0 (Sa)
where B is real and symmetric as
01
B= [1 O] (5b)
If an orthogonal transformation is applied to (5a), then
x= Py, PTP = I(PPT = I), I: unit matrix
y=10y, 51"
and (6)
y? = [ylﬂ ny]T
and equation (5a) becomes
y+ ey-%BPTX+%ePTZ+y=aPTBPy,. @)

Here B is easily diagonalized under the condition that matrix P is orthogonal, i.e.,
each column (or row) vector of P forms an orthonormal-system (see [6], [9])

P1|=P|2=P2|=‘\%
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Py=—— ®)
V2
Using these results, equation (7) can be rewritten as

1

5eP TZ+y=aB,y, 9

yt+ey— §3P X+
where

1 0
B""[o—l]'

In the above equation, the unperturbed equation (the equation with e = 0) is indicated
by

sry=[o O v (10)

and the solutions (modes) of this equation are obtained as

y1= Ay sin(wit+ 6)) (11a)
y2= A, sin(wyt + 6)) (11b)
1 - wl=acos (1) (11¢c)
1 - wi=—acos(w;7). (11d)

Next we will consider the perturbed equation of 9 (equat.ion with e# 0) on the basis of
these results. In order to accomplish this, the P"X and P7Z of (9) should be equivalently
linearized in the y domain.

By the same way as in [6), we have the equivalent-linearized equations of (9)1:

5o+ e 1-Biat+ 24D + (At + 3a8+ 414D |3+ v = an,
(12)
s+ e{1-Boat+ A)+L0AL+ AL+ 6ATAD ]+ yi= - ey,

Thus, the equivalent-linearized equations have been obtained as in equation (12).
The averaged equations with regard to the amplitudes and the phases can then be
derived from substituting the unperturbed solutions [equation (11)] into these equa-
tions, on condition that the amplitudes and the phases are slowly varying functions of
time (compared to ). So, the averaged equations can be written as follows:

Al=— e{l -%(A% +2AY+ %(A? +3A%+ sAng)}A} - L sin (w4l (132)
]

Al=- e{l - §(2A§ + A)+ 3—12(3A? + AS+ 6A3A§)}A§ + w% sin (w;7)A2  (13b)

6,=0 (13¢)

6,=0. (13d)

tIn this paper the ratio of two frequencies (wy/w,) is assumed to be irrational (non-resonance). Strictly
speaking, there n‘;ay be some cases where this ratio can be rational for particular values of « and r, but such
cases are omitted.
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From equation (13) it can be noted that the stability of modes is determined only by
the amplitudes A, and A,.

3. STABILITY PROBLEM
The stationary states of modes are determined by reducing all the first-order time
derivatives in the averaged equations (13a) and (13b) to zero. The stability of a
stationary state is then distinguished by introducing small disturbances around the
stationary state and determining whether all the eigenvalues of the resultant Jacobian

_ d(A’))
Ti=qa& ( T, (14)
have negative real parts.
The elements of the Jacobian associated with (13a) and (13b) are:
Ji=—ell—- E(Az 2 3, . 4 241 a .
n= € 4 |+A2)+3—2'(A|+A2+4A|A2)}—“:1 sin (OJ|1’)
Jo=- e{ B4 (A‘ + AZA )}
121——6{ B (Az 2+A)}
Jp=- e{] —E(A2 + AH+ —(A‘ + Aj+ 4A2,A§)} + ;"— sin (w,7). 19
2

(a) Stability of the zero state
For the zero state to exist A, = A, =0. Hence, from equation (15) the zero state is
stable if the following inequalities are simultaneously satisfied

- e—Zsin (w7) <0,
w;
(16)

a .
— €+ —sin(w,7) <0.
w,

(b) Stability of the single modes
(i) First we assume A, # 0and A, = 0, then from equation (13a) the stationary value of
A, is given by

—e(l-—EAz-l»nA‘)-%l sin (w;7) = 0. an

It is apparent that this mode is stable provided

B, Al
( 4 6) <0 (18a)
and

( EA’+332A‘)+%2$in (wy7) <0, (18b)

The spatial dependence for mode w; (in-phase single mode) can be obtained from
equations (6), (8), (11a), and (11c) by setting 8, =0 as

\/ZA' sin (wyt),
(19)
X = \/2A‘ sin (@)
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(ii) Next for A, =0 and A,#0, A, is then given by

- —_B_ 2, A4 -ﬁ 1 =
e(l 8Az+32A)+wzsm(wz‘r) 0 (20)

and this mode is stable if

_o(1-Ba2,3 4)__‘1 .
e(l AL+ 3548) - L sin (@) <0,

21
- e( gt 16‘42) <0.

In the same manner as that described for mode w,, the spatial dependence for mode
w, (anti-phase single mode) is

Xy = Az sin ((l)zt)

\/ 2
22

Xy == ——Az sin (wzt)

V32
(c) Double mode stability

For the double mode to be stable, both A, and A, must exist. Hence, these values
are given by

- e{l —E(A2 +2A )+——(A“ +3A%+ 6A’A2)} -2 Sin(w;7)=0

(23)
- ef1-Bat+ ay+50at+ At+6ATAD)] + sin (wyr) = 0.
The characteristic equation for the double mode is
A=+ T)A +UnJn—TpJy) =0. (24)

where Jy;, Ji2, J5; and Jy, are given in equation (15). For a stable double mode to exist,
it is necessary and sufficient to fulfil the conditions

(25)
Juwn = Jipdu>0.
The spatial dependence is shown for the double mode
\/2A. sin (wt + 6)) +—= \/2A2 sin (wyt + 6,),
(26)

\/2A' sin (@t + 6)) — \/2A2 sin (wyt + 6y)

8, and 8, are arbitrary [see equations (6), (8), and (11) again].
Thus the four modes in the system under consideration have been analyzed, and

their expressions (two single modes and one double mode) are given in equations (19),
(22), and (26).

4, NUMERICAL RESULTS
Consider the case in which the parameters of equation (4) are given by

€e=0.1, a=0.15, and B =34

NLM Vol. 17, No, 4—D
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First we survey the stability of the zero state. The result is shown in Fig. 1. Hence,
it is possible to consider that in the regions of the unstable zero state, each oscillator
in the system described by equation (4) behaves as a ‘soft’ oscillator. (On the other
hand, in the stable regions, each oscillator behaves as a ‘hard oscillator.) This result
agrees very well with the result obtained from the digital simulation.}

L v veede b druneamoneskos et oS dr s s s sofrreve s s
0 1 2 3 4 5 6 7 8
i L

Fig. 1. Zero state. Solid line, analytical results (stable); dashed line, analytical resulis
(unstable); open circles, digital simulation (stable); crosses, digital simulation (unstable).
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Fig. 2. (a) Amplitudes of single modes; (b) Frequencies of single modes. Solid line, analytical
results (stable); dashed line, analytical results (unstable); solid circles, digital simulation
(in-phase); open circles, digital simulation (anti-phase).

$Numerical integrations of equations {4} were performed with respect to time with the modified fourth-order
Runge-Kutta method [13].
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Next the results of the analysis for the single modes are given in Fig. 2. These
results have been checked against the digital simulation and good correlation between
analytical and simulated results is shown in these figures.

Finally the double modes are analyzed. The results obtained are presented in Figs
3-6. From these results, it is proved that the double modes occur only for
sufficiently small values of r.

4 e A /ff

Ay <_A‘//7

0 0.05% 0.1
— T
Fig. 3. Amplitudes of double modes. For this range of 7, the frequencies (w,, w,) of each mode

are nearly equal to those at 7=0. Amplitudes of unstable double modes are not shown
(analytical result),

Fig. 4. For caption see overleaf.
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Fig. 5. Regions of attraction for stable modes [9). Z, zero state; DM, double mode, x, and x;
represent the initial conditions on the oscillator outputs (x, =0, x, =0 for — r < t <0); (digital
simulation).

@ 35p

i

0 002 004 006

—_— T

Fig. 6. Stable region of 8 for a double mode in terms of r. Solid line shows analytical
boundary; dotted line shows the boundary obtained from the digital simulation.
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5. CONCLUSIONS

The properties of modes on a system of mutually coupled van der Pol oscillators
containing fifth-order conductance characteristic, with the coupling delay, have been
investigated by using the non-linear mode analysis and the results obtained have been
checked against the digital simulation. From this investigation, we draw the following
conclusions.

(1) The regions of stable zero state and those of unstable zero state alternate in the
space of system parameters and delay.

(2) The regions in which the anti-phase single mode is stable and those in which the
in-phase single mode is stable alternate in the space of system parameters and delay,
and yet two single modes are stable in some intervals containing

r=mw(n-1); n=1,2,3,....

(3) When the double modes occur, they are stable only for sufficiently small values
of 7.

In this paper the two-oscillator case was considered. Both theoretical and experi-
mental studies for the cases of more than two oscillators will be reported at a later
date.
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B N =

~N N W

Résumé :

En utilisant 1'analyse de mode non linéaire on étudie un
systéme d'oscillateurs de Van der Pol mutuellement couplés
contenant une caractéristique de conductance du cinquiéme
ordre avec retard de couplage. En particulier on a démontré
que 1'état zéro, deux modes simples et un mode double sont
stables seulement pour un suffisamment petit.

On a vérifié les résultats analytiques avec une simula-
tion numerique.
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Zusammenfassung:

Unter Verwendung der nichtlinearen Schwingungsform-Analyse
wird ein System miteinander gekoppelter van-der-Polscher
Schwinger mit Kopplungsverzug und Leitungscharakteristiken
der fuenften Ordnung untersucht. Im besonderen wird demon-
striert, dass der Grundzustand, zwei Einzelschwingungs=-
formen und eine Doppelschwingungsform nur fuer genuegend
kleine Werte fuer T stabil sind. Die analytischen ERgeb-
nisse wurden mit Hilfe einer digitalen Simultaion bestaetigt.



