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A B S T R A C T

Usage-based insurance (UBI) has been attracting more and more attention; however, two open
research questions are how behavioral data of drivers affects driving risk and how driver be-
havior should affect UBI pricing schemas. This paper proposes a driver risk classification model to
evaluate the risk level of drivers based on in-car sensor data. A Behavior-centric Vehicle
Insurance Pricing model (BVIP) and a vehicle premium calculation prototype are developed in
this paper. Based on empirical data, our research results show that BVIP achieves better accuracy
in terms of risk-level classification and the prototype achieves good performance in terms of
effectiveness and usability.

1. Introduction

In recent years, a noticeable trend of data-driven business service in vehicle insurance and transportation industry is Usage-Based
Insurance (UBI). Numerous business opportunities and service modes are created because companies could get access to individual
behavior data (Miah et al., 2017). Vehicle insurance pricing (premium) is known as the amount of money that an insurant must pay
for an insurance policy of vehicle travel. Basing premiums on “how much you drive”, UBI premium would be transferred from annual
costs to variable charges such as miles and other driving behavior variables. It allows an insurance company to accurately target
discounts at careful drivers and charge more aggressive customers an appropriately higher amount based directly on how much the
vehicles are driven during the lifetime of an insurance policy (policy term). Information Technology (IT) provides facilities for
collecting instantaneous driving data and calculating various driving indicators through on-board diagnostics (OBD) and online
vehicle network platform (Baecke and Bocca, 2017; Baek and Jang, 2015). The real-time vehicle related parameters and driving
information data can be uploaded by OBD to the vehicle network platform. Specifically, IT extends the individual vehicle insurance
pricing indicators from traditional factors (e.g., age, gender and auto purchase price) to new driving factors like mileage-per-trip and
driver habits. Such an approach changes the existing business model of vehicle insurance that lower-risk drivers pay less and higher-
risk drivers pay more for their auto insurance (Litman, 2005).

UBI is now changing the incumbent business model of vehicle insurance. Traditional insurance and actuarial science has esti-
mated individuals’ driving risk based on driver-related personal information. Studies showed that demographic variables (such as
age, gender) and personalities have significant impacts on driving risk and insurance pricing (Guo and Fang, 2013; Litman, 2005;
Miyajima et al., 2007). However, driving behaviors are also powerful predictors for assessing individual driving risk. Automobile
insurance companies have been trying for years to convince customers to pay premiums based on their driving behavior; however
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such programs are still not widely used. According to Boulton’s report, people have questions like “Does the pricing model of UBI
lower premiums logically?” “Will premiums increase if insurance companies know too much about them?” (Boulton, 2013).
Therefore, insurers and researchers are still trying to find an appropriate path for UBI. Currently, basic usage-based premiums are
calculated by dividing existing premiums by pay as you drive and pay how you drive, offered by Metromile and Progressive companies,
respectively. These two insurance programs have emerged in the US, and a couple of case studies have examined these models for
premiums. For instance, Desyllas and his colleagues discuss an example of how firms can profit from business model innovation using
the prominent case of PAYD auto insurance (Desyllas and Sako, 2013). Unfortunately, few statistics are provided in these studies that
identify factors associated with individual driving risk and help predict high-risk drivers. In prior papers, most of the chosen driving
features (e.g., demographic data, mileage and time) were too general to capture driving risk. In fact, companies have been trying to
collect and take advantage of big data in the changing and competitive business environment (Jukić et al., 2015). For UBI research,
much of the available influential vehicle sensor data and indicators are still unemployed.

The key research question in this research is how to utilize massive behavior data to offer assistance for making personalized UBI
pricing strategy. It is noted that factors of personalized driving behavior are strongly correlated with the driver’s traffic accident rate.
Hence, a novel behavior-centric insurance model should be developed and applied to complete UBI studies as Paefgen et al. (2013)
indicated in his research.

Nevertheless, how to develop a personalized vehicle premium model according to the driving behavior data is one of the open
research issues for UBI research. To fill this research gap, this research proposes a behavior-centric pricing mechanism for vehicle
insurance and strives to develop novel features for UBI pricing. One important advancement of this study is to utilize supervised
machine-learning approach to train the risk-level classification model with relevant sensor features and extend the existing research
scope of usage-based insurance by designing a differential behavior-centric pricing mechanism based on in-car sensor data. The study
also adds practical insights on UBI business via a down-to-earth demonstration. The premium calculation prototype shows potential
practical value for organizations and companies to exploit UBI related business.

This study is organized as follows. In Section 2, we review the literature on user behavior variables, risk-level classification models
and insuring pricing methods. A behavior-centric vehicle insurance pricing model is proposed in Section 3. Section 4 describes a
prototype for vehicle premium calculation. The validity of the risk-level classification model and the prototype are evaluated in
Section 5. Section 6 summarizes contributions of this study and outlines future work.

2. Literature review

2.1. Development of UBI premium strategies

Conventional vehicle insurance premium is established through an actuarial rating. Insurance companies use actuarial science to
quantify the risks based on the policyholder’s basic information such as type of car owned, age and gender (Azzopardi and Cortis,
2013). The conventional vehicle insurance is inefficient and inequitable because it ignores the differential driving behavior of drivers.
Drivers who are similar in age, gender and automobile price may pay nearly the same premiums no matter how and how often they
drive.

Usage-based insurance premium as a business pricing strategy was first introduced in 1994 at Progressive. The built-in telematics
devices with GPS enabled tracking vehicle routing and emergency response. Progressive modeled premiums by combining factors of
speed, location, mileage and time when driving occurred (Desyllas and Sako, 2013). The new usage-based model offered various
benefits to both customers and insurers. Past studies proposed variant forms of usage-based premium options. Paefgen et al. (2013)
treated mileage as a most important rating factor into the insurance premium model. It is the simplest option to implement but is
constrained by the weight that can be placed on self-reported mileage estimates. Around that time, another method, Pay-at-the-Pump
(Sugarman, 1994), funded basic insurance coverage through a surcharge (about 50 cents per gallon) on fuel sales (Litman, 2007).
Efficient management of fuel sales is a critical issue in vehicle related industry (Suzuki, 2009). However, this model is less popular
nowadays because the payments of this model are only based on vehicle fuel consumption and do not incorporate risk factors into the
existing premium option. A premium model called Per-Mile Premiums (PMP) (Butler, 1993; Ferreira and Minikel, 2012) changes the
unit of exposure from the vehicle year to the vehicle miles or kilometers. Drivers should pay their insurance premium based on the
distance they drive. The mileage-based PMP model significantly improves actuarial accuracy since odometer audits provide more
accurate mileage data than the self-reported methods. Prior studies showed that PMP has a different financial impact on different
customer segments. PMP provides significant consumer savings, particularly to younger drivers and lower income households. Per-
Minute Premiums is a similar approach. It uses a small electronic device to calculate the minutes of vehicle operation as the unit of
exposure (Litman, 2007). The Per-Minute model allows insurance premium rates to vary by time of day. For instance, if drivers avoid
peak-period travel, they can reduce their insurance premiums. So drivers can adjust their driving patterns in order to receive an extra
incentive. Another method is called GPS-Based Pricing (Bomberg et al., 2009). It calculates insurance premiums based on when and
where driving occurs. An in-car sensor installed on the vehicle could track the related rating factors. In this case, users can monitor
their driving pattern using GPS data or vehicle routing systems (Santos et al., 2011), and insurers can improve the accuracy of their
insurance premiums with such data.

The most recent approach is Pay-How-You-Drive premium. It has already been recognized as the most promising differentiated
commercial vehicle insurance premium strategy in UBI (Nai et al., 2016). Because the premium is calculated based on driving
patterns, the Pay-How-You-Drive vehicle premiums become more personalized. Therefore, driving behavior indicators have drawn
many researchers’ attention, such as speed violations (Lahrmann et al., 2012), experience (Aseervatham et al., 2016) and driving time
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(Paefgen et al., 2013). These driving indicators could help the insurance industry to target driving risk classes more effectively
(Hultkrantz et al., 2012). All these mechanisms show that differentiated UBI premium models with detailed behaviors represent a
new vehicle insurance premium approach and influence the business.

2.2. Behavior-based variables for UBI

Since in-car sensors produce large amounts of auto-related data every trip, one problem is how to deal with the massive sensor
data. Prior researchers did some works on exposing the variables that hide in sensor data as a substitute for established rate factors in
insurance. For instance, researchers have proven that mileage is one of the most relevant factors for predicting accident risk
(Chipman et al., 1993). Some studies indicated that increased car use results in traffic intensities that may increase accident risk
(Dickerson et al., 1998). Jun et al. (2011) suggested that driving factors such as velocity and acceleration might have relationship
with car accidents. Speed is another significant related variable for predicting road accidents as Dickerson et al. (1998) mentioned.
Paefgen et al. (2013) combined different driving times and other variables with speed as impact factors for car insurance. Location
data such as road type and driving environment may also have great effect on predicting driving risk (Aarts and Van Schagen, 2006).
All these driving related variables provided us new insights for understanding driving risk and UBI.

2.3. The driving risk classification models

Driving behavior features can be leveraged to predict the driver’s risk level for auto insurance application (Paefgen et al., 2013).
The risk-level classification model could be trained when the data of applicant’s historical behavior data and driving risk level (a label
which reflects the user’s accident claim frequency and claim amount) is obtained. Several classic classification models have been
utilized in previous auto insurance premium studies, such as logistic regression, neural network and decision tree classifiers
(Guelman, 2012).

Siordia et al. (2010) developed an automatic driving risk classification mechanism based on expert knowledge. A system proposed
in this research and the system considers the three traffic safety basic elements: driver, road and vehicle. Guelman (2012) employed
the Gradient Boosting classification method to predict auto accident loss cost with a real dataset obtained from a Canadian insurance
company. The proposed method can train the model parameters with little data, and the experimental result has an advantage over
the Generalized Linear Model approach. Guo and Fang (2013) classified drivers into three risk groups based on crash and near-crash
rate using a K-mean cluster method (Guo and Fang, 2013). Fifteen location-based driving features are applied to three kinds of
classification models for risk-level prediction in Paefgen’s study (984 accident-free vehicles and 583 accident-involved vehicles in this
case). The Supervised Neural Network method achieved the best performance for insurance cost estimation while logistic regression
classification has better fitness from an actuarial view (Paefgen et al., 2013). Baecke and Bocca (2017) studied the added value of
driving behavior variables in addition to traditional accident risk predictors. Specifically, they chose Logistic Regression, Random
Forests, Artificial Neural Networks as main data mining techniques to classify the drivers’ vehicle telematics data. The results de-
monstrate that the standard telematics variables significantly improve the risk assessment of drivers.

2.4. Usage based insurance pricing models

Paefgen et al. (2013) applied supervised machine-learning approaches to select meaningful prediction variables from initial
sensor data and develop an auto insurance premium model (Paefgen et al., 2013). The experimental results reflect that vehicle sensor
data has great potential to predict driver’s insurance payment cost. Supervised models such as Logistic Regression and Neural
Network have achieved good performance in cost estimation. Husnjak et al. (2015) and some other researchers proposed the data
model that was used in billing for usage-based auto insurance. They presented a typical sample set of extrapolated environmental and
behavioral factors. Such information could provide some indirect instructions for insurance companies. A vehicle insurance loss cost
model is presented in Guelman’s paper (2012), where the theory of Gradient Boosting is leveraged to estimate the loss cost as an
additive model.

Several premium pricing models have been reviewed by David (2015). As illustrated in the paper, the Generalized Linear Models
(GLMs) usually consist of two parts-the estimation model of claim frequency and the estimation model of claim cost. The calculation
model for insurance premiums can be represented by the arithmetic product of the two mentioned components. Such insurance
models inspire us to decompose the insurance pricing model into two parts-the estimation of average vehicle insurance cost per mile
and the driver’s mileage.

3. Behavior-centric vehicle insurance pricing model

This research presents a differential pricing mechanism for commercial vehicle insurance through examining factors affecting
individual driving risk and estimating individual driving risk models based on detailed vehicle sensor data. The pricing model of
usage-based vehicle insurance can leverage the key idea of GLMs, because the data mining approach can help to analyze and estimate
the insurant’s driving risk level and potential insurance cost, while the total premium may be positively correlated with distance or
duration. A low-risk insurant who drives a long distance during the insurance period could incur high expenses.

Traditional vehicle insurance pricing model does not consider the impact of various potential driver behavior features extracted
from the vehicle telematics data (Guelman, 2012; Husnjak et al., 2015). Hsu et al. found that drivers’ road traffic accidents rates is
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positive related with their the purchase of vehicle insurance (Hsu et al., 2015). It is hard to directly deduce the insurance cost from
the driver behavior data, because the extracted features have different degrees of importance for the cost of vehicle insurance. Thus,
to efficiently leverage the behavior data, we employ an ensemble learning-based approach to obtain the user’s risk-level classification
model to calculate the potential compensation payouts.

In this section, firstly, we extract various related factors as shown in Table 1. Secondly, we employ an ensemble learning-based
classification approach for user’s driving risk prediction. Thirdly, a pricing model is established by combining the driver’s estimated
risk level and behavior features.

3.1. Variables for driving risk-level classification

The key for formulating a preconceived UBI premium for drivers is to determine their driving risk level. Prior researchers proved
that driving behavior activity patterns differ between crash-drivers and non-crash drivers. So the following work intend to extend our
understanding of UBI by finding the most influential behavior features.

UBI considers a much broader variety and more objective variables than self-reported data. We summarized the most influential
driving-related variables for predicting driving risk level in Table 1.

Incorporating appropriate features and variables into classification model is vital (Zhang et al., 2014). In Table 1, there are 5 main
categories of driving-related variables. The listed variables are having a direct or indirect relationship with driving accidents. The
variables of driving information and vehicle status that are essential for risk prediction have been added to vehicle insurance pricing
model for several decades. Geographical information and driver-related variables are also widely discussed in predict driving risk. In
this study, the behavioral variables that could be extracted from on-board diagnostics (OBD) devices or a driver’s mobile phone
(Sensor-related driving variables) are selected for further analysis. The behavioral variables could reflect driver’s operational choices
at real time in handling vehicle. These choices are directly linked to the probability of getting involved in a traffic accident (Tselentis
et al., 2017). However, either of the two kinds of devices will generate a large amount of behavior data per day, per trip or even per
hour. Based on prior research, we choose to extract the numeric data of 7 behavior-related variables from in-car sensors. The
variables of mileage, time and average speed are three conventional but valuable indicators for UBI. Specifically, this research divides
variable time into two indicators: time of day and day of week. However, more exposed driving-related data could reduce the
complexity and improve the accuracy of usage-based insurance pricing in practice (Paefgen et al., 2013). In fact, these four detailed
behavior variables play a more important role in predicting drivers’ risk level. (Jun et al., 2011) observed that drivers who had crash
experiences tended to drive at higher speed and exhibited higher tendencies of non-compliance with the posted speed limit. More
frequent rapid acceleration, deceleration (braking) rate and sharp turns may increase driving risk and damage levels (Quddus et al.,
2002). Thus, in this study, we try to integrate these more detailed behavior variables into the pricing model and risk-level classi-
fication model to explore their impact on UBI pricing.

3.2. The behavior-centric risk-level classification model

Driving risk can be described as the potential probability of vehicle crashes or losing something of value caused by the driver.
Driving risk level is proposed to represent the harmful degree of different types of behaviors. In this study, the drivers are classified
into five risk levels according to insurants’ traffic accident records. Based on the insurants’ driving risk level and the corresponding
behavior features as described in the previous section, it is possible to explore the potential relationship between driving-related
characteristics and risk results. This study employs the ensemble learning-based classification approach to train and learn the model
for risk-level prediction. Based on the features, a classifier is generated for training objects into different categories.

Ensemble learning methods utilize a series of classifiers (usually belonging to one type) to solve the classification problem (Kiang,
2003; Wang et al., 2013). Bagging is one of the most useful ensemble learning techniques (Han and Kamber, 2006). The main
contribution of the ensemble learning technique is combining multiple classifiers and making predictions based on the classification
result votes of each classifier, which could reduce the behavior data variance in a single classifier and make use of the diversity in
each of the classifiers. The idea of bagging (also known as Bootstrap Aggregating) explains how to deal with the training data using
bootstrap sampling (Han and Kamber, 2006). For a given dataset that consists of n samples, a sample is randomly selected from the
set and then put back into the set. After n times selection process, a new subset is built. Repeating this K times and getting K subsets
for classification model building. The base classifiers train the model parameters separately, and the classification results for the same

Table 2
Bagging algorithm procedure.

Input: Training Set D = (x1, y1), (x2, y2), …, (xm, ym)};
N is the number of samples in the original dataset and sampling set, K is the number of sampling set.

Procedure:
for k=1, 2, 3, …, K do
generate the sampling set Dk with N samples randomly selected from the original dataset;
train a base classifier Ck on the dataset Dk

end for
Output: = ∑ =∗C x argmax I C x y( ) ( ( ) )

y
k k
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sample are aggregated by a voting mechanism. The basic procedure of the bagging algorithm is described in the following table (see
Table 2).

It is noted that the classifier’s performance are context sensitive and the chosen methods in our study showed good performance
for the given data set. This study finds an effective approach that achieved better performance than the existing approaches such as
logistic regression, neural networks, and decision trees.

After employing Naive Bayes (John and Langley, 2013), Logistic Regression (Cessie and Houwelingen, 1992), SMO (Keerthi et al.,
2006), and Locally Weighted Learning (LWL) (Frank et al., 2002) methods in our context, this study shows that the best base classifier
for the bagging-based ensemble learning strategy is the Naive Bayes classifier (Han and Kamber, 2006; John and Langley, 2013; Yang
and Davis, 2002). This method has shown its strength in training the classifier for the samples in our experiments comparing with
other candidates. The Naive Bayes model originated from classical mathematical theory has stable classification efficiency and
outstanding performance for small-scale data set. It can be utilized to deal with multi classification tasks such as text mining tasks
(Han and Kamber, 2006) and be employed to makes perdition for the given vector set based on the value of the posterior probability
estimation. We estimate the possibility that X belongs to Category C in the following equation:

=P C X P X C P C
P X

( | ) ( | ) ( )
( )i
i i

(1)

where Ci denotes the estimated category for vector X. If the input value is continuous, we need further works to assume the con-
tinuous attribute obey Gauss distribution and conduct calculation. μCi and σCi denote the average value and standard deviation of
category Ci respectively. The two variables can be used to predict P x C( | )k i .

= − −
g x μ σ

π σ
e( , , ) 1

2

x μ
σ

( )
2

2

2
(2)

=P x C g x μ σ( | ) ( , , )k i k C Ci i (3)

After feature extraction and normalization, several lists of numerical values can be generated according to the several main
streams of behavior-related measures in our study. Here, using the sign r1, r2, …, rn to denote the score of the normalized value lists.
So the input data for the weight learning of driving risk is Input= < r1, r2, …, rn, label> . The label is an assigned risk level that is
determined by the quotient of the insurance payouts and the mileage in the records, which indicates the average insurance cost of a
driver for one mile. A higher risk level means the driver would have a higher insurance cost in the future. The supervised bagging-
based classification approach could perform iterations with the training data and obtain the final convergent classifier parameters.

In our study, the bagging-based classification approach serves as the risk-level prediction approach. Next, a fraction of data will be
selected from the dataset as the training set to be used for classifier parameter learning and turning on the explanatory variables.

3.3. The behavior-centric vehicle insurance pricing model (BVIP Model)

To alleviate the described research issue, this section proposes a personalized Behavior-centric Vehicle Insurance Pricing Model
(BVIP model) for UBI. The BVIP Model takes advantage of known vehicle insurance pricing models and charts a new path for cal-
culating differential vehicle insurance pricing. It incorporates the predicted behavior-based risk level provided by the proposed
ensemble learning driven classification model as described in Section 3.2. The insurants can be classified into different risk levels so
corresponding pricing strategies are applied. Thus, when new customers intend to choose UBI as the form of their vehicle insurance,
insurance companies can acquire the driver information such as driving risk level. However, the driving behavior data is usually
available as the record is stored in OBD. In this way, insurance companies could classify insurants’ driving behavior via proposed
bagging-based classification approach in order to calculate the actual driving risk level.

Fig. 1 illustrates the development of vehicle insurance pricing models, which are more personalized and more elaborate than
existing models. From conventional vehicle insurance to usage-based insurance, different factors have played a decisive role in
pricing models (see Fig. 1). In UBI, a pay-as-you-drive model is said to have many shortcomings, because it is focused only on the
number of driven kilometers and not on driving behavior (Kantor and Stárek, 2014). The pay-how-you-drive model is more promising
because it models the driving behavior patterns efficiently and integrates the behavior variables in model making (Tselentis et al.,
2017). Specifically, The BVIP Model combines the essential indicators in prior premium actuarial models with the detailed behavior
features in order to establish a differential vehicle insurance model for insurants.

A fixed cost is generally considered in structuring an insurance premium model since once a policy is purchased. In UBI premium
models, mileage is the most essential indicator. This means that usage-based vehicle insurance is sold by the vehicle-mile (or kilo-
meter) rather than the vehicle-year (Litman, 1997). The driver’s risk level is a key determiner for calculating vehicle insurance
premium as it is positively correlated with the accident rate and insurance cost during the insured period (Vukina and Nestić, 2015).
According to Tselentis et al. (2017)’s research, each driver could be assigned a risk level (a probability of crash involvement) based on
his/her driving behavior in UBI premium model. Thus, the unit cost of each driver based on historical behavior data can be estimated.
In the BVIP Model, the estimated average insurance cost of the driver per mile is multiplied by the mileage during the insured period
to obtain the final vehicle premium. It is noted that the behavior-centric pricing model would not only use the mileage (also known as
the pay-as-you-drive model) but also leverages the personalized behavior indicators to make a precise prediction of a driver’s future
vehicle insurance cost. The arithmetic product of the predicted risk level, an adjusted weight and the driving mileage is used to reflect
the estimation of the insurance cost per year, which is shown in the following equation.
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= + ∗ ∗InsurancePrice C Risk w Mp p0 (4)

C0 denotes the basic cost of a vehicle per policy term. It is given by the managers in an insurance company according to their
experience. M represents the mileage of the vehicle. Riskp indicates the risk level estimated by the behavior-centric classification
model. wp is a given weight that reflects the average unit insurance cost for the corresponding risk level. With this function, driving
behaviors are captured, and the personalized pricing for different drivers is calculated. The effectiveness of the premium function is
verified in latter sections.

4. Prototype for behavior-centric vehicle premium calculation

In this section, a BVIP prototype and its design logic are presented. In order to assess the efficacy of the proposed BVIP model, a
prototype for vehicle premium calculation is implemented. The prototype is designed to resolve a pragmatic problem (March and
Smith, 1995) – personalized vehicle insurance pricing, using a design process to add and test the premium decision-making prototype
system (von Alan et al., 2004).

The Vehicle Premium Calculation Prototype supports insurance agents’ determination of personal vehicle premium by identifying
insurant’s driving risk level and behavior score. The prototype is built with JavaScript and also uses various techniques such as
requires and bootstrap. Based on the BVIP Model, this prototype is designed to calculate behavior-centric vehicle premiums. Hence, an
insurant’s behavior, as one of the key factors, is included in the analysis processing. The Vehicle Premium Calculation Prototype
interface is comprised of three components: (1) access selector, (2) input boxes and (3) exhibit board of calculation results.

The access selector helps users choose a function module for individual/agency usage. For individual users, the prototype analyzes
and categorizes their behaviors, then generates a driving score and a feasible insurance fee. Users input their basic information,
condition of vehicle and sum insured amount into the input box. Then the prototype will calculate their driving scores based on their
matching behavior data extracted from their OBD device. The exhibit board will present the driving score and generate a feasible
insurance premium for a particular user. The driving score is displayed in a radar chart located at the bottom left of the interface,
reflecting the driver’s behavior. A feasible premium (color coded as dark blue) is displayed at the bottom right of the BVIP Model as
shown in Fig. 3b. For an insurance agency, the prototype creates personalized vehicle premiums for its clients and helps make vehicle
insurance pricing by analyzing customer trends and insurants’ driving risk-level categories.

The architecture of prototype is shown in Fig. 2. The computational formulas are based on the BVIP model. To deal with the non-
personalized vehicle premium issue, we integrate driver’s behavior data into the analysis process.

The calculation process includes the following steps:

(1) Inputting basic information. The input parameters include insurant ID, OBD device number, driver information and vehicle status
(see Fig. 3a). Specifically, OBD device number is the serial number of the On-Board Diagnostics device.

(2) Analyzing driving behavior. If applicants have an OBD device record, the system will calculate driving score by analyzing the data
stored in the device. The behavior variables include mileage, average speed, daytime/nighttime driving hours, weekday/
weekend driving hours, over speed times, rapid acceleration times, maximum deceleration and sudden turn times, as shown in
Fig. 3a. If the insurant does not have a valid OBD device record, this step will be skipped.

(3) Evaluating driving risk. The system will evaluate applicants based on their objective behavior records, background information
and geographic data. Driver location and the geographic data are retrieved using GPS.

(4) Generating insurance pricing and driving score. Based on the BVIP Model, the prototype will generate a driving score and feasible
insurance pricing for the insurance applicant.

Driver’s basic information/ Vehicle Status

Mileage
Time

Speed/ Location

Behavior Details

Decision
Factors

Per-Mile
Model

Per-Minute
Model

GPS-based
Model

Standard
Model

Behavior-centric
Model

Vehicle Insurance
Pricing Model Pay-as-you-drive Pay-how-you-drive

Conventional
Vehicle Insurance Usage Based Insurance

Fig. 1. Driving behavior-centric differential insurance pricing model.

Y. Bian et al. Transportation Research Part A 107 (2018) 20–34

26



To better understand how the prototype works, screenshots of exemplary calculation results are exhibited in Fig. 3b. The radar
chart shows the details of one insurant’s behavior, whose total driving score is 69.37. The sum insured is RMB 180,000 and the final
feasible insurance premium is RMB 1,928.75.

The 3D map in Fig. 4 shows the overall distribution of the observations. It presents the data storage and visualization functions of
the prototype. The X-axis represents total insured amount, the Y-axis represents premium and the Z-axis shows the driving score of
the insurants. With these functions, the insurance agent can see the whole picture of their clients more intuitively. The overall
situation and customer trends can help insurance agents to understand their insurants’ distribution and make further business
strategy.

5. Validation

This section contains two parts: the behavior-centric risk-level classification model validation and prototype evaluation. Intended
to detect the effectiveness of the proposed classification model, the validation procedure is conducted basing on real world data.

5.1. Sample selection and data processing

The dataset in our validation process contains two parts: insurants’ driving accident records and matched behavior data. The
behavior data were collected from an online platform (see Fig. 5) maintained by a Chinese data service company. This company has
been a provider of On-Board Diagnostics (OBD) devices and has cooperated with some insurance companies for years. The OBD
device is a computer-based system device that designed to monitor the performance of a vehicle engine's major components and to
access the GPS information, accelerometer information, etc. During vehicle operation, behavior data (consisting of instantaneous
velocity speed, ignition status of the vehicle, engine speed, acceleration, etc.) and geographic location (latitude and longitude)
updates every 1 s.

The description of the total mileage (unit: kilometer) per month (MIL), nighttime driving hours per month (NDH), workday
driving hours per month (WDH) and monthly average speed (AS) together with times of over speed (OST), acceleration (RA),
maximum deceleration (MD) and sharp turn (ST) from the OBD data is shown in the following Table 3. Specifically, we define the
driving behavior as over speed when the vehicle speed is higher than road speed limits. The over speed times is calculated by
matching the engine speed data with the road information (GPS signal). The standards of the limited speed in urban, countryside and
highway are different that ranging from 30 km/h to 120 km/h depends on the road type.

Fig. 2. Process view of vehicle premium calculator.
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The insurants’ accident records are acquired from a Chinese insurance company located in Southern China. 206 accident records
of insurants whose vehicles had an OBD device for more than 6months are obtained. This study processes the data as follows: (1)
Match the documented accident records with the particular insurant by their OBD device’s serial number; eventually obtain 206
accident records. (2) Remove the records with insurance policy period of less than 3months. (3) Match the insurants’ accident data
with their driving behavior data. (4) Process the missing data and errors in data recording. Finally, 198 individual observations (there
are 73 accident-free drivers and 125 accident-involved drivers in the data set) with 215,736 trip records are obtained in total.

The observational data is classified into five risk levels (Level I–Level V) according to insurants’ traffic accident involve times.
Thus, the driving risk level function could be presented as R n( ), n denotes for the accident involve times of the insurant see formula
(5).

Fig. 3. Details of vehicle premium calculator interface.
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Fig. 4. Overall distributions of insurants.

Fig. 5. Real-time vehicle monitoring platform.
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5.2. Risk-level classification validation

Our evaluation of the risk-level classification consists of two stages. The first stage demonstrates the effectiveness of our bagging-
based approach compared with several benchmark classification models. The second stage uses the bagging-based approach to
evaluate the proposed behavior-centric classification model together with previous usage-based classification methods for UBI.

5.2.1. Evaluation of the effectiveness of the bagging-based approach
First, the comparison results of proposed bagging-based ensemble learning method and several common classification models

such as Naive Bayes (John and Langley, 2013), Logistic Regression (Cessie and Houwelingen, 1992), SMO (Keerthi et al., 2006) and
Locally Weighted Learning (LWL) (Frank et al., 2002) are presented. Four common classification result analysis metrics are used to
evaluate the experimental results, including Correctly classified instances measure, Kappa statistic, Mean absolute error (MAE), and
Root mean squared error (RMSE). Correctly classified instances percentage is an intuitive measure that represents the rate of the
correctly classified instances and the total number of instances.

=Correctly classified instances percentage
correctly classified instances
total number of instances (6)

Kappa statistic is a normalized measure and is used to represent the difference degree between the classification results of the test
classifier and random classification. It can be calculated by the following equation:

= −
−

Kappastatistic P A P E
P E

( ) ( )
1 ( ) (7)

where P(A) indicates the percentage agreement and P(E) denotes the chance agreement. The larger Kappa measure indicates the
classifier prediction and the ground truth has a high consistency. Mean Absolute Error (MAE) computes the deviation between
predicted ratings and actual ratings. It accumulates the absolute value of the difference between the predicted risk level and the real
one, which is defined in the following equation, where pi denotes the prediction and ri denotes the actual rating.

∑= −
=

MAE
n

p r1 | |
i

n

i i
1 (8)

Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation by calculating the square root of
sum of squares, which can be represented in the following equation:

∑= −
=

RMSE
n

p r1 ( )
i

n
i i1

2
(9)

The dataset consists of multiple behavior features that were collected from the in-car sensors of 198 private and commercial
vehicles in several Chinese cities. The data used in this experiment contains 8 behavior-related features and 1 risk-level label. A
preliminary insurance pricing model can be established based on the predicted insurance cost (or accident risk level). Tenfold cross-
validation is employed to get the robust results. Nine out of ten instances are used to train the model and the remaining one-tenth
serves as the gold standard. The first stage experiment results are shown in the following table.

It is obvious that the proposed bagging-boosted classification approach achieved the best performance compared with the four
commonly used benchmarks for classification analysis. Specifically, for the correctly classified instances measure and Kappa statistic,
the higher value represents the better performance. And the bagging-boosted classification approach achieved 0.66 and 0.4939. For
the Mean absolute error and Root mean squared error, the lower rating suggests the better performance. The scores for the bagging
approach are 0.1434 and 0.3156.

The bagging-based ensemble-learning algorithm achieved the best result across all four kinds of evaluation metrics. In this study,
the base classifier for the bagging strategy is the Naive Bayes classifier. A significant improvement can be obtained using the en-
semble learning process with the multiple base classifiers. The second best classification model is the SMO classifier that achieves a

Table 3
Statistics description of driving related variables.

Accident-free drivers N=73 Accident-involved drivers N=125

Mean 1st Q 2nd Q Median 3rd Q Mean 1st Q 2nd Q Median 3rd Q

MIL 912.5 625.7 858.5 1184.0 1361.3 945.5 1194.5 1723.2
NDH 2.5 1.1 2.0 3.6 4.7 2.6 3.9 5.7
WDH 24.6 17.2 23.7 31.5 29.8 22.3 28.9 33.0
AS 40.7 27.0 40.2 54.4 52.6 41.6 47.8 57.5
OST 3.4 0.7 2.7 4.9 7.5 2.5 5.2 13.6
RA 2.8 1.1 2.0 4.0 8.6 4.4 7.2 13.1
MD 13.5 5.7 12.0 18.0 29.5 18.5 25.1 42.0
ST 9.2 3.0 6.0 11.0 21.9 9.5 21.0 27.5
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decent score among the four baselines. To show statistical significance of proposed model and benchmarks, this process check
whether there is a significant statistical difference between the results of proposed model and the second best method. As can be seen
from the table, the bagging classifier improves the SMO classifier. The T-test result indicates the improvement is statistically sig-
nificant at the 0.05 level.

5.2.2. Evaluation of behavior-centric classification model for UBI
At this stage, five benchmark approaches are chosen to compare with our proposed Behavior-centric classification model (BC

model). These baselines are established separately from the mileage (MC model), average speed (SC model) and time use (TC model)
aspects, following the illustration in prior section. Multifactorial driver classification (MC model) is another notable UBI model
(Paefgen et al., 2013). Several classic classification models have been utilized in Paefgen’s studies, which employ four usage-based
features as predictors (mileage, time of day, day of the week and average velocity). This study incorporates convictive behaviors-
related features (times of over speed, sudden turn, emergency brake and rapid acceleration) into the classification model. The
evaluation approaches are performed with SMO and bagging methods, as these two approaches had higher performance in stage 1
(see Table 5).

The results in Table 4 show that the proposed bagging-based ensemble learning approach that leverages comprehensive behavior
features achieved the best performance. The best benchmark is the one using four basic car usage-related features, as described in a
previous study with the bagging model (Paefgen et al., 2013). For the two baselines with four basic features, bagging-based clas-
sification performed better than the SMO classifier once again. The results indicate that our proposed behavior-boosted risk-level
approach is valid. Similarly, to ensure there is a significant improvement between the previous method and our classification model,
statistics tests are performed and the results are shown in Table 5.

The behavior-centric classification model with full features improves the bagging classifier over the prior four features classifi-
cation method. T-tests are performed to further show the statistical significance of our approach and the state-of-the-art approaches.
The T-test statistics results also indicate the improvement is significant at the 0.05 level.

5.3. The effectiveness of prototype for insurance business

System adaptability has been noted as key characteristic of success in insurance companies (Busquets et al., 2009). A well-
designed system should fit the potential users and their requirements (Vitharana et al., 2012). Thus a questionnaire was designed to
evaluate the effectiveness and usability of the prototype in insurance companies. Our survey respondents consist of two groups:

Table 4
Comparison of proposed model and benchmark methods.

Correctly classified instances percentage Kappa statistic Mean absolute error Root mean squared error

Locally Weighted Learning 0.55 0.3118 0.2236 0.346
Logistic 0.57 0.3765 0.179 0.3591
Naïve Bayes 0.6 0.4028 0.1516 0.353
SMO 0.63 0.4556 0.26 0.3464
Bagging_NB 0.66 0.4939 0.1434 0.3156
Improvements of SMO (second best) 3.13% 8.4% 44.85% 8.89%
P value in T-test 0.0412*a

a For MAE and RMSE, lower means better. To facilitate statistical significance test, this study subtract the original value by 1 for the T-test. Thus the SMO values are
0.74 and 0.6536. For Bagging, the values are 0.8566 and 0.6844. In this paper ‘*’ represents the level of significance (p < 0.05), ‘**’ represents the level of
significance (p < 0.01), and ‘***’ represents the level of significance (p < 0.001).

Table 5
Comparison of behavior-centric model with conventional modes.

Evaluation approach Correctly classified instances
percentage

Kappa statistic Mean absolute
error

Root mean squared
error

MC model Bagging 0.59 0.3793 0.2054 0.3335
TC model Bagging 0.53 0.2905 0.2112 0.3499
SC model Bagging 0.55 0.2401 0.2507 0.3597
MC model SMO 0.56 0.3145 0.2652 0.3538

Bagging 0.6 0.3957 0.1853 0.342
BC model SMO 0.63 0.4556 0.26 0.3464

Bagging 0.66 0.4939 0.1434 0.3156
Improvements of MC model (second

best)
Bagging 11% 24.82% 22.61% 7.72%

P value in T-test 0.0176*b

b To facilitate statistical significance test, this study subtract the original value by 1 for MAE and RMSE for the T-test. Thus the values for Conventional UBI driver
classification are 0.8147 and 0.658. For behavior-centric classification model, the values are 0.8566 and 0.6844.
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system users and domain experts. According to the evaluation procedure in (Ngai and Wat, 2005), 50 system users (20 insurants and
30 agents salesmen) and 10 domain experts (6 insurance managers and 4 university professors) are requested to fill questionnaires or
take interviews after the completion of prototype implementation. Ten measurement items indicated by the seven-point Likert scale
(1= strongly disagree, 4=undecided, 7= strongly agree) were used to assess the perception of prototype effectiveness and us-
ability. The evaluation results are shown in Table 6.

The mean scores of the 10 items rated by users are higher than 4 (undecided) that ranging from 4.48 to 5.36, whereas the experts
rated each item from 5.40 to 6.00. A one-sample t-test using the neutral value “4” was conducted for the each items. Results ensured
that the values of most median responses had a statistically significant difference from the neutral value at the 0.05, 0.01 and 0.001
level. Overall, the statistical results validated that the prototype could assist in assessing their driving risks and helping usage based
insurance services in general.

6. Discussions

6.1. Theoretical and practical implications

The mechanics of UBI is a worthwhile research topic for transportation researchers (Paefgen et al., 2014). The technological
advances of in-car sensors and information technology innovation enable insurance applicants to share more detailed driving in-
formation with an insurance company, which would inevitably affect the future development of vehicle insurance premium models.
This research proposed a novel BVIP Model for personalized vehicle insurance that employs data analysis approaches to utilize the
driver’s behavior data. We developed a system prototype to help insurance company to seek the most appropriate business premium
mode for different insurants. Specifically, this study used a bagging-based classification technique to obtain driver’s risk level using
features from the behavior data, which are obtained from a large real-world sample of insurants and their vehicle records. The results
show the behavior-centric classification approach performs well and improve the accuracy and reliability of prior methods.

This study makes several research contributions. It is the first study that extends the existing research scope of usage-based
insurance by designing a differential BVIP Model for UBI. First, the model employed more detailed behavior features. The effect of
these features was verified to be essential for driver’s risk level justification in the experiments. To obtain the premium discount,
drivers should adjust their damaging aggressive driving behavior such as reducing their instances of rapid acceleration and over
speeding. Second, most prior studies used a single classification method for driver risk assessment in UBI (Baecke and Bocca, 2017;
Guelman, 2012). As far as we know, the proposed BVIP Modelwas the first UBI model that employed the ensemble learning method to
model driving behavior of drivers. The results indicated that the ensemble-learning method is valid and achieves good performance.
Third, to answer the call of Tselentis et al. (2017), the BVIP Model was established by combining the driver’s estimated risk level and
behavior features, which provides a way for estimating risk for new insurants and for regulating insurants’ driving behavior by
charging them more premiums.

Moreover, this study adds new insights for understanding UBI business models via a down-to-earth demonstration that has
practical implications for several audiences. The aim of studying UBI is to develop a premium calculation system based on driving
behavioral characteristics (Tselentis et al., 2017). However, previous UBI papers rarely talk about this practical issue. That is, this
research goes one step further by not only studying the UBI premium models but also implementing a prototype of UBI premium
calculation system. By means of the prototype of premium calculation system, insurants and insurance agents could acquire a more
well-rounded view when developing related UBI strategies.

Table 6
Results of prototype evaluation.

Mean Std. deviation t-test #

Users (n= 50) Experts (n= 10) Users Experts Users Experts

Effectiveness
1. Assist in assessing driving risks associated with insurants. 5.36 5.60 1.241 1.075 7.746*** 4.707***

2. Provide an effective way to form personalized UBI pricing. 5.12 5.40 1.319 1.265 6.003*** 3.500**

3. Assist in operating UBI related business effectively. 5.18 5.50 1.424 1.354 5.859*** 3.503**

Usability
4. Learning to operate the prototype would be easy for me. 5.30 5.80 1.249 1.619 7.357*** 3.515**

5. My interaction with the prototype would be clear and understandable. 4.56 5.60 1.327 1.265 2.983** 4.001**

6. I find the prototype to be flexible to interact with. 4.80 5.40 1.229 1.174 4.603*** 3.772**

7. The prototype’s commands are self-explained and easy to understand. 4.48 5.90 1.418 1.197 2.394* 5.019***

8. I find the prototype easy to use. 4.72 6.00 1.278 1.247 3.982*** 5.071***

9. The system is user friendly. 4.92 5.80 1.085 1.135 5.996*** 5.014***

10. I’d like to recommend this prototype to other users. 4.90 5.50 1.129 1.354 5.635*** 3.503**

* Represents the level of significance (p < 0.05).
** Represents the level of significance (p < 0.01).
*** Represents the level of significance (p < 0.001).
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6.2. Research limitations and future works

This study is also subject to several limitations. First, because of the privacy issues, we couldn’t get access to respondents’ personal
information such as their risk perception and family status. However, their personal characteristics and risk perception level may play
a role in behavioral decision-making (Rhodes and Pivik, 2011). Second, this study used data of insurants located in China. In spite of
this, given the imperfect insurance system in China, one would expect that these behavioral indicators might play a different role in
usage-based vehicle insurance pricing calculation in other countries.

It is worth mentioning that because of the emergence of the differential vehicle premium models, many UBI-related research
questions are of interest. One interesting problem is to explore the economic effects of the personalized insurance pricing models on
both the insurance market and society. In the future, we’ll study the adverse UBI-selection activities of drivers with negative driving
records via a big data analysis approach. Specifically, when drivers’ behavior records worsen, what should insurance agents do to
keep their insurants paying behavior-centric premiums instead of traditional premiums? It is also interesting to include observations
from other countries to contrast with the China case. Moreover, we encourage researchers to apply economic methods in the in-
vestigation of social welfare issues and business impacts of UBI on benefit sharing between insurance agencies and insurants.
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