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Stochastic Averaging on Graphs:
Noisy Duffing-van der Pol Equation1

N. Sri Namachchivaya*, Richard Sowers^ and Lalit Vedula*

* Department of Aeronautical and Astronautical Engineering, ^Department of Mathematics
University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract. The purpose of this work is to improve the understanding of the solution
of the noisy Duffing-van der Pol equation. We achieve this by developing rigorous
methods to replace, in some limiting regime, the original complicated system by a
simpler, constructive, and rational approximation - a low-dimensional model of the
dynamical system. To this end, we study the equations as a random perturbation
of a two-dimensional Hamiltonian system. We achieve the model-reduction through
stochastic averaging and the reduced Markov process takes its values on a graph with
certain gluing conditions at the vertex of the graph. Examination of the reduced
Markov process on the graph yields many important results, namely, mean exit times,
probability density functions, and stochastic bifurcations.

INTRODUCTION

We examine the stochastic version of the Duffing-van der Pol equation,

q = (a + ̂ i)q + fiq + aq3 + bq2q + v^2 (I)

where a and /3 are the bifurcation parameters, £i and £2
 are white noise processes

with unit intensities. Equation (1) represents the generic normal form of the double
zero co-dimension two bifurcation if one allows both a and f3 to be bifurcation pa-
rameters [4], and there are many physical problems whose dynamics are described
by the above equation for some parameter values. For simplicity we consider only
a £ R+. This equation consists of both linear and nonlinear restoring and dissipa-
tive terms which allow one to model various mechanical and structural dynamics
problems. In this model, a sustained oscillation arises from a balance between
energy generation at low amplitude and energy dissipation at large amplitude.

In this paper we extend the work by Arnold et al. [I] and Liang and Sri Na-
machchivaya [7] to obtain analytical results, based on the work of Freidlin and
Wentzell [2], for the noisy Duffing-van der Pol equation away from the trivial so-
lution. Without loss of generality we have taken a = —1.0,6 = —1.0 and the
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qualitative behavior is examined for all values of the unfolding parameters (3 and
a £ M+ by making use of the system Hamiltonian.
In the absence of dissipation and random perturbations, system (1) has multiple
fixed points, one of which is connected to itself by a homoclinic orbit and the
reduced Markov process takes its values on a graph [2], The domain of the averaged
generator involves a gluing condition at the vertex of the graph. The first passage
time problem is studied for this averaged generator and the probability density
function is obtained by solving the Fokker-Planck equation.

STATEMENT OF THE PROBLEM

Equation (1) can be put into two first order equations:

ii = v, v = au — u3 + (/? — u2}v + uv^i + 1/1^2 (2)

In order to examine the stochastic behavior away from the trivial solution, we write
Eq. (2) as a weakly perturbed Hamiltonian system, where the Hamiltonian contains
strong nonlinear terms. Here we use the standard rescalings [3]:

a = e2a, j3 = e2/?, u = ex, v = e2y, z^2 = e2^2, v\ = e3z/i, f = tt.

By omitting the bars and putting things in a proper mathematical setting, we have

dZE
t = {VH(Ze

t} + eb(ZI)}dt + ^a(Z£
t}dWtj Ze

Q = z = (z, yf G M2 (3)

In obtaining eq. (3), we make use of the fact that 4^ Wet is also a standard Wiener
process. The corresponding set of unperturbed deterministic equations are given
by

Zt = VH(Zt), Z0 = z£-R2 (4)

with the Hamiltonian H given by

H(X,y)^^-a^ + ̂  « 6 R + (5)

The deterministic system (4) has three fixed points at (0,0), (*y/a,Q), (— -\/a?,0) with
eigenvalues A(0,o) = =t\/S, A(±v^j0) = ±z\/2a respectively. The periodic orbits
for H < 0 encircle one fixed point (the oscillations), while for H > 0, we have
periodic orbits which encircle all three fixed points (the rotations), and H = 0
corresponds to a homoclinic orbit connected at (0,0). The dissipative and the
stochastic components in Eq. (3) are defined as

T / \ def / 0 \ , N def / 0 0 \ / cxMx.y) = \ ,n 9\ , c r (x .w) = (6)
~ / ^ J
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where z/2 and v\ are the noise intensities. Thus, we shall asume that Eq. (4) is
perturbed by a small intensity random diffusive motion described by £,

= \ EM^W
«,j *

where 0^(2) = ((j(^)crr(^))^. In order to make the time scales transparent, we
deal with finite time intervals by defining the equations in slow time t — } et

dZs
t = {-VH(Z*} + b(Zs

t}}dt + <r(ZfidWt, Zs
0=z£ E2 (8)

Here, we have made use of the fact that the law of {Z*\ t > 0} is the same as the
law of {Z^ie] t > 0}. It is clear that Zf defined in Eq. (8) is a Markov process on
R2 whose generator is

with domain £>(£e) = C2(R2). The purpose of this work is to replace, in some
limiting regime, Eq. (8) by a simpler, constructive, and rational approximation - a
low-dimensional model of the dynamical system. We achieve the model reduction
from a two-dimensional Markov process in Z% to a one-dimensional process in H
through stochastic averaging,

STOCHASTIC AVERAGING ON GRAPHS

The Hamiltonian system (4) has multiple fixed points, one of which is connected
to itself by a homoclinic orbit, and H(Z^) no longer converges to a Markov process.
The machinery of the classical analysis [6] has until recently yielded little in the
way of reduction for stochastic systems with more complex Hamiltonian structure,
such as in the case of noisy Duffing-van der Pol equations where H looks like a
collection of non-degenerate inverted hills.

The first extension of averaging to include multiple fixed points with homoclinic
orbits was given by Freidlin and Wentzell [2]. A clever treatment in a neighborhood
of the separatrix where the unperturbed orbits have arbitrarily long periods was
carried out. Here the reduced Markov process takes its values in a graph with
certain gluing conditions defined at vertices connecting the edges of the graph.
In this work, as in Freidlin and Wentzell [2], we consider the graph F, shown in
Fig. 1, homeomorphic to the set of connected components of the level sets of the
Hamiltonian. Thus, by introducing ¥ : R2 — > F, the reduced Markov process takes
its values on a graph and it was shown by Freidlin and Wentzell [2] that processes
¥(Z*) on F converge weakly to a diffusion process on F,

The usual averaging procedure relies upon an implicit assumption that the in-
stantaneous frequency must be non-zero or the periods of oscillations or rotations
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are finite. Hence, a subtle treatment is necessary in a neighborhood of the homo-
clinic orbit where the unperturbed orbits have arbitrarily long periods. In order to
remedy this problem, two different models, one which is valid away from the ho-
moclinic orbit, the other valid in a boundary layer about the hornoclinic orbit are
introduced. After some tedious analysis, a gluing condition which allows a unified
treatment of the problem in the entire domain is obtained. The reader is referred to
Freidlin and Wentzell [2] for details. We make use of these results to calculate the
characteristics of the limiting process for the noisy Duffing- van der Pol equations.
The complete set of equations for the averaged generator and the gluing conditions
are presented. Let (Zt

e; P*) be the diffusion process on IR2 corresponding to the
differential operator (8). Here, ¥£

z is the law of Zf.

Then, the distributions of the processes ¥(^£) in the space of continuous func-
tions with values in ¥(R2) with respect to P® converge weakly as e — > 0 to the
probability measure P^. Here (¥(£),P¥) is the process on the graph defined by
operators L{ as

+ ^(H)fl' (10)

on the three edges of the graph, where H is only a local coordinate in each edge,
since it can take the same value for different trajectories. In evaluating the drift
and diffusion coefficients for each edge we make use of Eq. (8). We change the time
integral to the path integral with respect to the fast variable Z^ while averaging
over one period of the fast motion of Zj. This process effectively removes the fast

(b)

FIGURE 1.
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variable Zf and yields on each edge Ii of the graph

i r *\ )
Ti(H] Jo

= ^ j _ G(x)^Q(x, H}dx = PB}(H) - Bf(H)

3l(H} = 2 T' ^Q(x,H}dx, Bf(H] = 2 /"*' x<
JXi~ J Xt~

[Bt(H) + Ct(H)}

B,

C,
z'

..,-
CT fx'+ fir

= dt = 2 JZ_
Jo JXi- v^(^

i rT> i
*(H) = ̂  \ [2Q(x, H)F(x)] dt = ̂ -^

•L^ti) Jo J-^tt)
rT*(H)

(H) = / 2Q(x, H)F(x)dt = v2
2Bf(H) + ^B}

Jo

Q(x, H)^ ax2 - , G(x) ^ft-x2, F(x) =

where x^ are the points where the periodic orbit intersects the x— axis, i.e., the
points where y = 0. The gluing condition for the vertex O that corresponds to the
saddle point is given by

= o (ii)

where f - ( O ) = lim.fj^H(O)fi(H) for (//", i) G Ii. The '+' sign is taken if the coordi-
nate H on the edge Ii is greater that H(O) and the ' — ' sign is taken otherwise. In
addition the function (H, i) — >• f i ( H ) is continuous on F. Thus, the domain of the
averaged generator (10) is given by

<) d-f \ ft € C(F) : ̂ (±)a2(0)f>(0) = 0 \
I i=i J

Making use of the relation "^ — 2Ci(H), the generator (10) reduces to

£ift(H) = + (^(H)fl(H)}' (12)

For different values of H^ we have different path integrals (oscillations or rotations)
and thus different drift A(H) and diffusion coefficients v2

HH(H). They are evaluated
as follows:
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1. a > 0, H < 0: The integrals are calculated along the paths which correspond
to the "oscillations". Due to the Z? symmetry of the Hamiltonian we have two such
edges and these are denoted by i = 1,2

4H TT «2(m2- l)
, H =

(2-m 2) 2

Tt(H) = 2(^=^)*F(m), d(H) = 2(^I)' ^E(m) + ^(2 - m2)F(m)]

- 2(1 - m2)F(m)] (13)

2(2 - m2)2] £(m) + (2 - m2)(m2 - l)F(m)}

Where F(m), E(m) are complete elliptic integrals of the first and the second kinds
with the modulus m. Ti(H] is the period of the periodic orbit.

2. a > 0 , H > 0: In this case, the integrals are calculated along the paths
which correspond to the "rotations".

-21/1(1 - m2) + (2m2 - 1) F(

(14)

) + ("2 + ra2)(1 ~
The H process can move from one region of closed trajectories to another. The aim
of this paper is to consider the results pertaining to the ends of the edges where
there is a homoclinic orbit connecting a saddle point and to examine the fate of the
trajectories which leave the region where they originated. We are also interested
in the qualitative changes in the probability densities pa which are solutions of the
Fokker-Planck equation (FPE) associated with the generator (10).

MEAN FIRST PASSAGE TIME

The scale and speed measures on each edge connecting the vertex are given by

rH rn
S,(H] = I Si(rj)dri, and M,(H) = I m

J Zi J Zi
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where

-2/.' !W • "*<" - ™c*f H
and H is an interior point for each edge /,-. For i = 3, the lower and upper limits of
integration are H and z3 respectively. In order to examine the boundary behavior,
we consider the quantities £4- and A^-. Here, S2- roughly measures the time to reach
the left or right boundary starting from an interior point Hi G I\\0 while AT«
measures the time to reach an interior point Hi starting from the boundary Zi or
O. For a thorough discussion on boundary classification, see [5]. Consider the
vertex O, then

fH(0) fH(0)
= / { / {mi(y)dy}si(z)}dz,

JH Jz
fH(0) fH(0)

Nt(0) = { {s,(y)dy}m,(z)}dz
JH Jz

The ends of the edges /,- are fixed points of elliptic or saddle type. The Feller
classification defines whether the end of an edge in the H coordinate is accessible
from the inside and whether the inside is accessible from the end of an edge. This
provides information as to whether a trajectory will reach the homoclinic orbit or
equivalently the vertex O. If the homoclinic orbit is accessible then the analysis
needed to study the fate of the trajectory requires the "gluing" condition (11).

Based on Sz-(6,-) and AT,- (&,•), we find that the boundaries 61 and 62 are en~
trance boundaries while 63 (which corresponds to H — > oo) is a natural bound-
ary. Since Ty(Ji) = T(h), where T)(h} is the area bounded by E(h) (E(h] =
{(x,y) G K2 : H(x,y) = h}), it is clear that Si(H) and Mi(H) are finite as H -»•
H(O). Thus, according to the Feller classification, vertex O is accessible and the
gluing condition is needed to solve the mean exit time problem.

Suppose that at time t = 0, the state of the system corresponds to some point
defined by H(Q) = h within T> which is the domain of attraction with boundary &D.
Here T> is defined by the deterministic part and may have some physical significance.
Let Zi be the points on the edge of the graph corresponding to the boundary d*D.
We are interested in the time rc = min{rt-} where rt- = inf{t > 0; H(t) = Zi} is the
hitting time of the averaged process to the level Zi.

Define the
mean time to reach either z\, z^ or z3 by the function u(h) = E[rc : fl"(0) = h].
Since the averaged process is Markov with the generator (10) it follows from the
classical theory of Markov processes

A«.-W = -i, (M)er \o (15)
with the boundary and gluing conditions given by

3

ui(zi) = Q V i J and ^(±)<7?(OX(O) = 0
1=1
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The generator (10) is defined for continuous functions u(ft) , / i G F. Hence, at the
vertex O we have Ui(O) = u2(O) = u3(O). Thus, we have six boundary conditions
for determining uniquely the mean first passage time. The solution of Eq. (15) is
given by

rh r /"?
ut(h) = -2 / / ms

J Zi L.J Zi
fZ3 r fZ3

"'""^A [/ s3(r,)dr, + (33[S3(z3)-S3(h)}+a3 (16)

Imposing the boundary conditions at h = z\,z<i and z3 yields ai = a2 = <^3 =
0. Applying the continuity and gluing conditions at the vertex O, the constants
A, /?2? /?3 can be determined for various values of the system parameters a, /3,1/1,1/2-
The gluing conditions for the Duffing-van der Pol equation are obtained by taking

1.4

1.2

1

jo,
LU
cO.6

1
0.4

-8. -0.1 0 0.1 0.2 0.3 0.4
H

FIGURE 2. Variation of the mean exit time, r, with the energy level H

appropriate limits of the drift and diffusion terms given by Eq.(13) and Eq.(14).
The dissipation effect at the vertex is given by the standard Melnikov function
associated with the homoclinic orbit

Bi(O) = - Bf(O) (17)

Bi(O) = —Va* {5/3 - 4a} , for i = 1,2, and B3(O) = — \/a3{5/3 - 4a)
15 15

while the noise effects at the vertex O are given by

and al(O) = —
15

/J + 4z/22a}

Now, taking the appropriate signs and making use of Eq.(??) the gluing condition
(11) for the Duffing-van der Pol equation simplifies to

u'1(0)+u'2(0)-2u'3(0}=Q, (19)
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In this work, the numerical calculations were performed with the aid of Mathematica
3.0. Figure 2 shows the variation of the mean exit time with H for z\ = —0.1,
z2 = -0.15, z3 = 0.4, a = 1, (3 = 1, 1/1 = 1, i/2 = 1 .

STATIONARY DENSITY

In this section, we shall examine the stationary behavior of the Fokker-Planck
equation associated with the generator (12). In order to obtain the FPE, let
E(K) = {(x,y) G M.2 : H ( x ^ y ) = ft}. The inner product with respect to the
Lebesgue measure is given by the usual definition

= / / f ( x j y ) , g ( x j y ) d x d y
J JvhIV(h)

where I^(ft) is the area bounded by E(h). Making use of the relation D'(ft) = T(ft)
(where the prime denotes differentiation with respect to the energy level, ft), the
appropriate inner product in the local coordinate H is given by

(f(H),g(H))H
 d=f / f(H}g(H)T(H)dH (20)

JH
The adjoint equation, and the boundary conditions are determined by considering
the inner product (20),

J>) r£ft(H)gi(H)T>(z)'dH = (±) f"£*gt(H)ft(H)dH
«•=! J° i=l J°

where

£*(<*(#)) = -^n (Bi(H)gi(Htf + J^n (^(H^(H})' (21)
J-i\fl ) & -*-i\H-)

and once again the ' + ' sign is taken if the coordinate H on the edge /t is greater
than H(O) and the ' —' sign is taken otherwise. First, at the exterior vertices
indicated by &,-, the first boundary condition is easily satisfied since // = 0 at
an entrance or natural boundary. The second boundary condition implies that
the probability current at the boundaries, 6t- is zero. However, at the interior
vertex O we have to be very careful. Imposing the condition that the probability
density is continuous at the vertex O (i.e., gi(O) = 3*2(0} = gs(O) = g(O) ),
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FIGURE 3. Variation of the stationary density with the modulus, m

and taking into consideration the gluing condition (11), the first boundary condition
in the above expression is identically zero. Now, making use of the fact that / is
continuous at the vertex O (i.e., /i(G) = f2(O) = /s(0) = f(O), the second
boundary condition reduces to

(22)

where J^ denotes the probability flux in each edge /«• of the vertex O. Eq. (22)
implies that the probability flux is conserved. Now, taking the appropriate signs
and making use of Eq.(17) and Eq.(??) the flux condition (22) for the Duffing-van
der Pol equation is obtained as

g'1(0)+g'2(0)-2g'3(0) =

It is clear that

(al(H)g't(H)} - 2 (B,(H)gi(H)) = -1G?

Integrating Eq. 24, we obtain

dr\

(23)

(24)

(25)

where Gf and Di are to be determined from the appropriate boundary conditions
and the flux condition at the vertex O. Since the flux is zero at exterior ver-
tices indicated by 6t-, it can be shown that Gf are identically zero. Making use
of the continuity conditions, the flux condition and the normalization condition,
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fHg(H)dH = 1, we can determine the constants D{. Figure 3 shows the variation
of the stationary density with the modulus m for a = 1, (3 = 1, i/i = 1, z/2 = 1- (the
relation between the modulus, m, and the Hamiltonian, H, is given in Eq. (13)
and Eq. (14)).

CONCLUSIONS

In this paper we extend the work by Arnold et al. [I] and Liang and Sri Na-
machchivaya [7] to obtain analytical results, close to the homoclinic orbits, for the
behavior of the stochastic version of the Duffing-van der Pol equation, away from
the trivial solution (global).
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