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Abstract

Chaos synchronization has received a signification
attention in nonlinear science. Over the past two
decades, many types of synchronization have been
announced. This paper introduces another novel type
of chaos synchronization-improved full state hybrid
projective synchronization (IFSHPS), which includes
FSHPS, complete synchronization, anti-
synchronization and projective synchronization as its
special item. The study first proposed the
synchronization that response system also has the
constant diagonal matrix. Based on the Lyapunov
stability theorem and the adaptive control techniques,
the IFSHPS scheme is given and illustrated with
generalized Lorenz system and Lii system as example.
With the effective scheme parameters identification
and IFSHPS of chaotic system can be realized
simultaneously. Numerical simulations are presented
to demonstrate the effectiveness of the proposed
synchronization scheme.

Keywords: IFSHPS, active control, lyapunov stability
theory.

1. Introduction

During the last two decades, synchronization in
chaotic dynamic systems has received a great deal of
interest among scientists from various research fields
[1-7] such as neural networks, secure communications
and time series analysis of chaotic systems. The idea of
synchronization is to use the output of the master
system to control the slave system so that the output of
response system follows the output of the master
system asymptotically. In the literature, there exist
many types of synchronization such as complete
synchronization,  anti-synchronization,  projective
synchronization [8-9]. In most cases of drive-response
synchronization, all the states of response system
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synchronize to the corresponding states of drive system
in term of the same synchronization regime. For
example, when we say that two systems are complete-
synchronized (or phase-synchronized, or something
else) with each other, it means that each pair of the
states between the interactive systems is complete-
synchronized (or phase-synchronized, or something
else).

Recently, Hu etc [10, 11, 12] investigated a new
type of chaotic synchronization-full state hybrid
projective synchronization (FSHPS). The feature of
this synchronization phenomenon is that the scaling
factors of the synchronization can be arbitrarily
designed to different state variables by means of
control. Do the phenomenons that drive system and
response system have scaling factors at the same time?
There is no double that it is an interesting problem. But
to the best of our knowledge, there is no investigation
results reported in the literature. Inspired by above
works, in this paper, we show that the phenomenon,
which called improved full state hybrid projective
synchronization (IFSHPS), does exist. Especially,
response system also has the constant diagonal matrix.

For two dynamical systems

x(t) = F(x) « drive system, (a)
(b)

where x=(x,,x,,,%,) v = (v 5,0, 9,) € R

y(t) =G(x,y) « response system,

are state variables of the drive system (a) and the
response system (b).

Definition 1 (IFSHPS).For the drive system (a) and
response system (b), if there exists nonzero constant

matrix a = diag(e, 05,7+ ,) f = diag(p,,f,.-.p,) €

R"*" such that 1im||ay— ﬂx" =0 .We are said to be
t—o0

IFSHPS (an acronym for improved full-state hybrid

projective synchronization), where & and [ are called

scaling matrix, a,,a,,---,a, and 8,,f,,---, B, are called

scaling factors.
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At present, most of theoretical results about
synchronization of chaos focus on the systems whose
models are identical, similar or with mismatched
parameters. However, in many practical world such as
laser array and biological systems, it is hardly the case
that every component can be assumed to be identical.
More and more applications of chaos synchronization
in secure communications make it much more
important to synchronize two different and different
order chaotic systems in recent years. So, the study of
synchronization for strictly different dynamical
systems and different order dynamical systems is both
very important from the perspective of control theory
and very necessary from perspective of practical
application.

The aim of this paper is to study the IFSHPS of
drive and response systems with fully unknown
parameters. The rest of this Letter is organized as
follows. In section 2, the adaptive IFSHPS scheme of
chaotic systems with different order presented.
Generalized Lorenz and Lii chaotic systems are applied
to investigate IFSHPS, and numerical simulations are
used to verify the effectiveness of the proposed scheme
in Section 3. Finally, a conclusion ends the paper.

2. Adaptive IFSHPS of chaotic systems
with different order

In this section we will choose generalized Lorenz
system, Lii system to illustrate the adaptive IFSHPS
with different order. Our purpose is to achieve the
IFSHPS of Lii system and the former three states of
generalized Lorenz system. Therefore, we divide the
drive system (Generalized Lorenz system [13]) into
two parts.

X (1) = alx, = x,) +dx,

X, (1) = bx; —x,x; = x, (1)
X, (1) = x,x, —cx,
and
% (1) =—x —ax, (2)

which has a chaotic attractor as shown in Fig.1 when
a=1,b=26,c=0.7,d =1.5 with the initial values
x0)=1,x,(0)=1,x,0)=1,x,(0)=1.
The response system (Lii system [14]) is
() =a,(,—y)+uy
() ==nys+ey, +u,
)'/3(1‘) =) _b1y3 +u,
which has a chaotic attractor as shown in Fig.2 when
a,=36 , b,=3 and c, =14 with the initial values

1(0)=2,3,(0)=3,,(0)=4.

3)
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Figure 1. Phase map of Generalized Lorenz
system
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Figure 2. Phase map of Lii system
Our purpose is to achieve the IFSHPS between drive
system and response system with unknown parameters.
In the study,a.,b,c,d and a,, b, ¢, are unknown

system parameters, (u,,u,,u;)" is the controller to be

determined.
Let us define the state errors between the drive
system (1) and the response system (2) as

=0y - fx,e, =0y, - Bx,, e =y, - Bix,
The following is the error dynamics:
& =aoq(a,(v, =) +u) = fi(alx, —x)+dx,)
&, =0, (= yyy oy, tuy) = fy(bx, —x,x,—x,) (4)
& =00y, =y +uy) = B (xx, —cx;)

Theorem: If the controller is choose as follow:



u, =1/, (=04 (v, —y,) + Bx,d
+ B (x,—x)a—e),
u, =1/ 0o, (a0, + B, (—x, —x,x;)
—a, .8, + Pyxb—ey),
u, =1/, (- oy, + Bixx, +053y31;1

- pix;¢—ey)

A

and the estimatesa ,b ,¢,d , a,, b and ¢, obey the

®)

following update laws:

a= —Be(x,—x,)
b=—Pre ©6)
¢ = fiex,
d=-Pex,
and
al =a,e,(y, =)
[;1 =-o,e,), (7)
é1 =a,e,y,

Then the error system is globally stable. Hence, the
response system (3) associated the proposed control
law (5) and the drive system (1) can globally
asymptotically achieve the IFSHPS, and the unknown
parameters can be estimated.

Proof: Choose the following Lyapunov function
V as follows:

AT A

1 o Amn A
V=E(e1Tel+ezTe2+e3Te3+aTa+bTb+c é+d'd

ATA
¢ q)

+a,"a,+b"b +
where
a=(i—-a) , b=>b-b) , é=(F-c) , d=(d-d) ,
4= —-a) , b= -b) , & =@ —c) With the
choice of the controller (5) and updating laws (6) and
(7), the derivative with respect to time is

V=-=e'e<0

that is, ¥ <0 is negative. Then according to the
Lyapunov stability theorem, the IFSHPS of chaotic
systems (1) and (3) is achieved.

3. Simulations results

In this section numerical simulations are given to
verify the effectiveness of adaptive method for
achieving synchronization of two different order
systems.
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3.1. Complete simulation

results

synchronization

Firstly, we give the special cases of projective
synchronization where ¢, =1and B =1, i=1,23 is
complete synchronization. The system “unknown”
parameters are chosen to be a=1 , b=26 ,
¢=0.7,d=15,a,=36,b =3 and ¢, =14 .So that
generalized Lorenz and Lii systems have chaotic
attractor. The initial states of the drive system and
response system are X =(1,1,1,1)" , Y=(2,34)" ,
respectively. The simulations results are shown from
Fig.3-6.
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Figure 3. The time evolution of the errors with
the scaling factors o; =1 and p; =1, i=1,2,3
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Figure 4. Parameters a,b,c,dand a,, b,, c,,
estimation of chaotic systems
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Figure 6. Complete synchronization of chaotic 0
systems with the different order: signal x,and 20
Vi, i=1 !2’3 o 10
Fig.3 shows the behavior of complete synchronization .
error states via adaptive control method. Fig.4 shows
the Parameters estimation. The time series -10
of x,and y, ; x, and y, are shown in Fig.5. Red line 207
depicts the response system; blue line depicts the drive t
system with the unknown parameters and different &0 =

initial values. The plots of x, versus y, , x, W\N\J\W}\Mf\m
20

versus y, and x, versus y, after transient states are

shown in Fig.6. 20 WWVWWWVW

3.2. Anti-synchronization simulation results -B0
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Secondly, where a;, =1 and f;=-1, i=1,23 is Figure 9. Time series of anti-synchronization

anti-synchronization. The same simulations results as
complete synchronization are shown from Fig.7-10.
The following maps give the anti-synchronization error,
parameters estimation, time series and the attractors

inR?.
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3.3. IFSHPS simulation results

In this section, we give the IFSHPS simulation
results. Without loss of generality, we set the scaling
factors ¢, =2 ,, =05, 0,=1, 3, =-05, 3, =15,

B,=2.

The simulation results are shown in Fig.11, 12, 13,
and 14. From Fig.11 we can see the error vector
e converge to zero as time ¢ goes to infinity. Fig.12
shows the results of parameters identification. In
Fig.13 blue line depicts the response system; red line
depicts the drive system with the unknown parameters
and  different  initial values. The  plots
of x, versus y, , x, versus y, and x; versus y, after

transient states are shown in Fig.14.The above % =2 2 &
numerical simulations show that the IFSHPS of two
different structure chaotic systems with unknown
parameters is realized.
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Figure 11. IFSHPS errors of generalized
Lorenz and Lii chaotic systems with fully
unknown parameters
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Figure 14. Improved FSHPS of chaotic
systems with the different order: signal x,and
y, i=1,2,3

4. Summary

The paper first proposed the synchronization that
response system also has scaling factors a .In this
letter, we used the term “IFSHPS” (an acronym for
improved full-state hybrid projective synchronization.)
distinguish the “FSHPS”. The scaling factors
a and f# of this synchronization can be arbitrarily

designed to different state variables by means of
control.

In this paper the adaptive IFSHPS scheme has been
proposed for chaotic systems with fully unknown
parameters. A unified controller and a parameters
update law are designed to achieve the chaotic systems
with different order, based on the Lyapunov stability
theorem. In the simulation, the special cases of the
IFSHPS are also given. Many groups of numerical
examples are presented to illustrate the effectiveness of
the proposed synchronization.
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