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Abstract 
 

Chaos synchronization has received a signification 
attention in nonlinear science. Over the past two 
decades, many types of synchronization have been 
announced. This paper introduces another novel type 
of chaos synchronization-improved full state hybrid 
projective synchronization (IFSHPS), which includes 
FSHPS, complete synchronization, anti-
synchronization and projective synchronization as its 
special item. The study first proposed the 
synchronization that response system also has the 
constant diagonal matrix. Based on the Lyapunov 
stability theorem and the adaptive control techniques, 
the IFSHPS scheme is given and illustrated with 
generalized Lorenz system and Lü system as example. 
With the effective scheme parameters identification 
and IFSHPS of chaotic system can be realized 
simultaneously. Numerical simulations are presented 
to demonstrate the effectiveness of the proposed 
synchronization scheme. 
 
Keywords: IFSHPS, active control, lyapunov stability 
theory. 
 
1. Introduction 
 

During the last two decades, synchronization in 
chaotic dynamic systems has received a great deal of 
interest among scientists from various research fields 
[1-7] such as neural networks, secure communications 
and time series analysis of chaotic systems. The idea of 
synchronization is to use the output of the master 
system to control the slave system so that the output of 
response system follows the output of the master 
system asymptotically. In the literature, there exist 
many types of synchronization such as complete 
synchronization, anti-synchronization, projective 
synchronization [8-9]. In most cases of drive-response 
synchronization, all the states of response system 

synchronize to the corresponding states of drive system 
in term of the same synchronization regime. For 
example, when we say that two systems are complete-
synchronized (or phase-synchronized, or something 
else) with each other, it means that each pair of the 
states between the interactive systems is complete-
synchronized (or phase-synchronized, or something 
else). 

 Recently, Hu etc [10, 11, 12] investigated a new 
type of chaotic synchronization-full state hybrid 
projective synchronization (FSHPS). The feature of 
this synchronization phenomenon is that the scaling 
factors of the synchronization can be arbitrarily 
designed to different state variables by means of 
control. Do the phenomenons that drive system and 
response system have scaling factors at the same time? 
There is no double that it is an interesting problem. But 
to the best of our knowledge, there is no investigation 
results reported in the literature. Inspired by above 
works, in this paper, we show that the phenomenon, 
which called improved full state hybrid projective 
synchronization (IFSHPS), does exist. Especially, 
response system also has the constant diagonal matrix. 

For two dynamical systems 
)()( xFtx = ← drive system,                             (a) 

( t ) ( , )y G x y= ← response system,                    (b) 

where nTT ),,,(,),,,( R∈== n21n21 yyyyxxxx
are state variables of the drive system (a) and the 
response system (b). 

Definition 1 (IFSHPS).For the drive system (a) and 
response system (b), if there exists nonzero constant 
matrix ),,,diag( 21 nααα=α ∈= ),,,diag( 21 nββββ

nn ×R such that 0lim =−
∞→

xy
t

βα .We are said to be 

IFSHPS (an acronym for improved full-state hybrid 
projective synchronization), where α and β are called 
scaling matrix, n21 ααα ,,, and n21 βββ ,,, are called 
scaling factors. 
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At present, most of theoretical results about 
synchronization of chaos focus on the systems whose 
models are identical, similar or with mismatched 
parameters. However, in many practical world such as 
laser array and biological systems, it is hardly the case 
that every component can be assumed to be identical. 
More and more applications of chaos synchronization 
in secure communications make it much more 
important to synchronize two different and different 
order chaotic systems in recent years. So, the study of 
synchronization for strictly different dynamical 
systems and different order dynamical systems is both 
very important from the perspective of control theory 
and very necessary from perspective of practical 
application. 

The aim of this paper is to study the IFSHPS of 
drive and response systems with fully unknown 
parameters. The rest of this Letter is organized as 
follows. In section 2, the adaptive IFSHPS scheme of 
chaotic systems with different order presented. 
Generalized Lorenz and Lü chaotic systems are applied 
to investigate IFSHPS, and numerical simulations are 
used to verify the effectiveness of the proposed scheme 
in Section 3. Finally, a conclusion ends the paper. 
 
2. Adaptive IFSHPS of chaotic systems 
with different order 
 

In this section we will choose generalized Lorenz 
system, Lü system to illustrate the adaptive IFSHPS 
with different order. Our purpose is to achieve the 
IFSHPS of Lü system and the former three states of 
generalized Lorenz system. Therefore, we divide the 
drive system (Generalized Lorenz system [13]) into 
two parts. 

1 2 1 4

2 1 1 3 2

3 1 2 3

( ) ( )
( )
( )

x t a x x dx
x t bx x x x
x t x x cx

= − +⎧
⎪ = − −⎨
⎪ = −⎩

                       (1) 

and  
( )1 1 4x t x ax= − −                         (2) 

which has a chaotic attractor as shown in Fig.1 when 
1=a , 26=b , 0.7c = , 5.1=d with the initial values 

1(0)1 =x , 1(0)2 =x , 1(0)3 =x , 1(0)4 =x . 
The response system (Lü system [14]) is 

1 1 2 1 1

2 1 3 1 2 2

3 1 2 1 3 3

( ) ( )
( )
( )

y t a y y u
y t y y c y u
y t y y b y u

= − +⎧
⎪ = − + +⎨
⎪ = − +⎩

                      (3) 

which has a chaotic attractor as shown in Fig.2 when 
361 =a , 31 =b  and 14c1 = with the initial values 

2(0)1 =y , 2 (0) 3y = , 3 (0) 4y = . 

 
Figure 1. Phase map of Generalized Lorenz 

system 

 
Figure 2. Phase map of Lü system 

Our purpose is to achieve the IFSHPS between drive 
system and response system with unknown parameters. 
In the study, a , b , c , d and 1a , 1b , 1c are unknown 

system parameters, T
1 2 3( )u ,u ,u is the controller to be 

determined.  
Let us define the state errors between the drive 

system (1) and the response system (2) as 
1 1 1 1 1e y xα β= − , 2 2 2 2 2e y xα β= − , 3 3 3 3 3e y xα β= −  

The following is the error dynamics: 
1 1 1 2 1 1 1 2 1 4

2 2 1 3 1 2 2 2 1 1 3 2

3 3 1 2 1 3 3 3 1 2 3

( ( ) ) ( ( ) )
( ) ( x )
( ) ( )

e a y y u a x x dx
e y y c y u bx x x
e y y b y u x x cx

α β
α β
α β

= − + − − +⎧
⎪ = − + + − − −⎨
⎪ = − + − −⎩

  (4) 

Theorem: If the controller is choose as follow: 
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1 1 1 2 1 1 4

1 2 1 1

2 2 2 1 3 2 2 1 3

2 2 1 2 1 2

3 3 3 1 2 3 1 2 3 3 1

3 3 3

ˆ1/ ( ( )
ˆ( )a )

1/ ( ( )
ˆˆ        )

ˆ1/ (
ˆ )

u y y x d
x x e ,

u y y x x x

y c x b e ,

u y y x x y b
x c e

α α β
β
α α β

α β

α α β α
β

⎧ = − − +
⎪

+ − −⎪
⎪ = + − −⎪
⎨

− + −⎪
⎪ = − + +⎪
⎪ − −⎩

         (5) 

and the estimates â , b̂ , ĉ , d̂ , 1â , 1̂b and 1̂c obey the 
following update laws: 

1 1 2 1

2 2 1

3 3 3

1 1 4

ˆ ( )

ˆ

ˆ

ˆ

a e x x

b e x

c e x

d e x

β

β
β

β

⎧ = − −
⎪
⎪ = −⎪
⎨

=⎪
⎪

= −⎪⎩

                       (6) 

and 

1 1 1 2 1

1 3 3 3

1 2 2 2

ˆ ( )

ˆ

ˆ

a e y y

b e y

c e y

α

α
α

⎧ = −
⎪⎪ = −⎨
⎪ =⎪⎩

                       (7) 

Then the error system is globally stable. Hence, the 
response system (3) associated the proposed control 
law (5) and the drive system (1) can globally 
asymptotically achieve the IFSHPS, and the unknown 
parameters can be estimated. 

Proof: Choose the following Lyapunov function 
V as follows:  

    
T T T T T T T
1 1 2 2 3 3

T T T
1 1 1 1 1 1

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(
2

ˆ ˆˆ ˆ ˆ ˆ )

e e e e e e a a b b c c d d

a a b b c c

= + + + + + +

+ + +

V
 

where 
ˆ ( )a a a= − , ˆ ( )b b b= − , ˆ ( )c c c= − , ˆ ( )d d d= − ,

1 1 1ˆ ( )a a a= − , 1 1 1
ˆ ( )b b b= − , 1 1 1ˆ ( )c c c= − .With the 

choice of the controller (5) and updating laws (6) and 
(7), the derivative with respect to time is 

T 0V e e= − <  
that is, 0V < is negative. Then according to the 
Lyapunov stability theorem, the IFSHPS of chaotic 
systems (1) and (3) is achieved. 

 
3. Simulations results 
 

In this section numerical simulations are given to 
verify the effectiveness of adaptive method for 
achieving synchronization of two different order 
systems.  

 

3.1. Complete synchronization simulation 
results 
 

Firstly, we give the special cases of projective 
synchronization where 1=iα and 1=iβ , 1,2,3=i is 
complete synchronization. The system “unknown” 
parameters are chosen to be 1=a , 26=b , 

7.0c = , 5.1=d , 361 =a , 31 =b  and 141 =c .So that 
generalized Lorenz and Lü systems have chaotic 
attractor. The initial states of the drive system and 
response system are T(1,1,1,1)X = , T(2,3,4)Y = , 
respectively. The simulations results are shown from 
Fig.3-6. 

 
Figure 3. The time evolution of the errors with 

the scaling factors αi =1 and βi =1, i=1,2,3 

 
Figure 4. Parameters a,b,c,d and a1, b1, c1, 

estimation of chaotic systems 
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Figure 5. Time series of generalized Lorenz 

and Lü chaotic systems 

 
Figure 6. Complete synchronization of chaotic 
systems with the different order: signal xi and 

yi, i=1,2,3 
Fig.3 shows the behavior of complete synchronization 
error states via adaptive control method. Fig.4 shows 
the Parameters estimation. The time series 
of 1x and 1y ; 2x and 2y are shown in Fig.5. Red line 
depicts the response system; blue line depicts the drive 
system with the unknown parameters and different 
initial values. The plots of 1x versus 1y , 2x  
versus 2y and 3x versus 3y after transient states are 
shown in Fig.6. 

 
3.2. Anti-synchronization simulation results 

 
Secondly, where 1=iα and iβ 1= − , 1,2,3=i is 

anti-synchronization. The same simulations results as 
complete synchronization are shown from Fig.7-10. 
The following maps give the anti-synchronization error, 
parameters estimation, time series and the attractors 
in 2R . 

  
Figure 7. The time evolution of the errors with 

the scaling factorsαi =1 and βi =1, i=1,2,3 

 
Figure 8. Parameters a,b,c,d and a1, b1, c1, 

estimation of chaotic systems 

 

 
Figure 9. Time series of anti-synchronization  
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Figure 10. The attractors in R2 

 
3.3. IFSHPS simulation results 
 

In this section, we give the IFSHPS simulation 
results. Without loss of generality, we set the scaling 
factors 21 =α , 5.02 =α , 13 =α , 5.01 −=β , 5.12 =β ,

23 =β . 
The simulation results are shown in Fig.11, 12, 13, 

and 14. From Fig.11 we can see the error vector 
e converge to zero as time t goes to infinity. Fig.12 
shows the results of parameters identification. In 
Fig.13 blue line depicts the response system; red line 
depicts the drive system with the unknown parameters 
and different initial values. The plots 
of 1x versus 1y , 2x versus 2y and 3x versus 3y after 
transient states are shown in Fig.14.The above 
numerical simulations show that the IFSHPS of two 
different structure chaotic systems with unknown 
parameters is realized. 

 

 
Figure 11. IFSHPS errors of generalized 

Lorenz and Lü chaotic systems with fully 
unknown parameters 

 

 
Figure 12. Parameters a,b,c,d and a1, b1, c1, 

estimation of chaotic systems 

 

 

 
Figure 13. The attractors in R2and R3 
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Figure 14. Improved FSHPS of chaotic 

systems with the different order: signal xi and 
yi, i=1,2,3 

 
4. Summary 
 

The paper first proposed the synchronization that 
response system also has scaling factors α .In this 
letter, we used the term “IFSHPS” (an acronym for 
improved full-state hybrid projective synchronization.) 
distinguish the “FSHPS”. The scaling factors 
α and β of this synchronization can be arbitrarily 
designed to different state variables by means of 
control.  

In this paper the adaptive IFSHPS scheme has been 
proposed for chaotic systems with fully unknown 
parameters. A unified controller and a parameters 
update law are designed to achieve the chaotic systems 
with different order, based on the Lyapunov stability 
theorem. In the simulation, the special cases of the 
IFSHPS are also given. Many groups of numerical 
examples are presented to illustrate the effectiveness of 
the proposed synchronization. 
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