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Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce,
and duckweed to reduce phosphorus in rice mill wastewater

Suresh Kumar and Surinder Deswal

Department of Civil Engineering, National Institute of Technology, Kurukshetra, India

ABSTRACT
The objective of this study was to investigate the reduction of phosphorus from rice mill waste-
water by using free floating aquatic plants. Four free floating aquatic plants were used for this
study, namely water hyacinth, water lettuce, salvinia, and duckweed. The aquatic plants reduced
the total phosphorus (TP) content up to 80% and chemical oxygen demand (COD) up to 75%
within 15days. The maximum efficiency of TP and COD reduction was observed with water lettuce
followed by water hyacinth, duckweed, and salvinia. The study also aims to predict phosphorus
removal by three modeling techniques, for example, linear regression (LR), artificial neural network
(ANN), and M5P. Prediction has been done considering hydraulic retention time (HRT), hydraulic
loading rate (HLR), and initial concentration of phosphorus (Cin) as input variables whereas the
reduction rate of TP (R) has been considered as a predicted variable. ANN shows promising results
as compared to M5P tree and LR modeling. The model accuracy is analyzed using three statistical
evaluation parameters which are coefficient of determination (R2), root mean square error (RMSE),
and means absolute error (MAE).

Abbreviations: %: percentage; �C: degree centigrade; A: surface area of tub; ANN: artificial neural
network; APHA: American Public Health Association; BOD: biochemical oxygen demand; cm: centi-
meter; CaCO3: calcium carbonate; Cin: initial concentration of total phosphorus; Cout: final concen-
tration of total phosphorus; CO2: carbon dioxide; c/p: carbon/phosphorus; COD: chemical oxygen
demand; d: day; DIP: dissolved inorganic phosphorus; DNA: deoxyribonucleic acid; EC: electric con-
ductivity; Eq.: equation; Fig.: figure; g: gram; g/l: gram per litter; HLR: hydraulic loading rate; HRT:
hydraulic retention time; ln: natural log; L � W � D: length � width � depth; MAE: means absolute
error; MLP: multilayer perceptron; m2: square meter; max: maximum; mg/g: milligram per gram;
mg/l: milligram per liter; min: minimum; min: minute; ml: milliliter; pH: potential of hydrogen;
RRSE: root relative squared error; R: reduction rate; R2: coefficient of determination; RAE: relative
absolute error; ROL: radial oxygen loss; RMSE: root mean square error; St. dev.: standard deviation;
T: experiment time; Temp.: temperature; TP: total phosphorus; V: volume of tub
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Introduction

Phytoremediation is a technique in which plants are used to
remove, transfer, stabilize, or degrade the contamination
from soil and water. It is a low-cost and solar-energy-driven
process and helpful in removing nutrients from water and
wastewater. These nutrients, if unattended, ultimately cause
eutrophication of water bodies. Eutrophication is when a
waterbody becomes overly enriched with nutrients. Nitrogen
and phosphorus are the main nutrients responsible for
eutrophication. These nutrients support algal bloom, which
depletes oxygen from water and results in the mortality of
aquatic animals. Some algal blooms are toxic in nature and
harmful for plants and animals. Improving the quality of a
waterbody through physical and chemical methods could be
expensive and strenuous. Phytoremediation is a suitable
alternative for removing nutrients from water and waste-
water, which requires availability of aquatic plants and some

maintenance. The removal efficiency of various aquatic
plants for toxic elements has been studied by several
researchers and the results have been satisfactory. Aquatic
plants can reduce various types of pollutants from waste-
water, such as nitrogen, phosphorus, nitrate, potassium,
calcium, magnesium, sodium, heavy metals, and
organic matter.

Daud et al. (2018) used duckweed for landfill leachate
treatment, Rahman and Hasegawa (2011) used floating
plants to remove arsenic from water, Singh et al. (2012)
used duckweed to remove lead from wastewater, Favas and
Pratas (2013) studied the potential of aquatic plants to
remove uranium from water, Axtell et al. (2003) studied the
removal of lead and nickel from wastewater by using aquatic
plants, Abu Bakar et al. (2013) used phytoremediation to
remove arsenic, zinc, and aluminum from gold mine waste-
water, Tanhan et al. (2007) used phytoremediation for the
removal of cadmium, zinc, and lead from wastewater,
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Azeez and Sabbar (2012) used Lemna minor L. to remove
pollutants from oil refinery wastewater, Saha et al. (2017)
studied removal of chromium from mine wastewater by
using water hyacinth. Reddy et al. (2015) studied pollutant
removal from sugar industry wastewater by using floating
aquatic plants. Mishra et al. (2013) studied heavy metal
removal from paper mill wastewater by using aquatic plants.
Ajayi and Ogunbayio (2012) studied pollutant removal from
textile, metallurgical, and pharmaceutical wastewaters by
using water hyacinth.

In this paper, phosphorus reduction efficiency of four
free floating aquatic plants, namely water hyacinth, water
lettuce, salvinia, and duckweed, is compared. Phosphorus is
a macronutrient essential for floral life, and it is found in
various forms in water: (a) dissolved inorganic phosphorus
(DIP), (b) particulate inorganic phosphorus, (c) dissolved
organic phosphorus, and (d) particulate organic phosphorus.
DIP is the most bio-absorbable form of phosphorus. All the
other forms must be first converted into DIP and then uti-
lized by aquatic plants (Ready et al. 1999). In a plant body,
phosphorus is accumulated as polyphosphate, which is acid
soluble and used for plant metabolism and for the produc-
tion of deoxyribonucleic acid (DNA) and protein. Insoluble
phosphorus stored in plant biomass are used by plants dur-
ing a scarcity of phosphorus in the environment. Excess
phosphorus concentration in water leads to toxic algal
bloom, which causes low oxygen levels, fish mortality, and
loss of aquatic biodiversity. Phosphorus is eliminated
through various mechanisms such as direct uptake by plants,
assimilation by microbes, filtration by rhizosphere, adsorp-
tion on roots, and precipitation with the help of metal ions.
Phosphorus removal depends on the growth rate and phos-
phorus content of plants. It is faster when the phosphorus
concentration of water is lower than a specific limit. Water
lettuce can tolerate up to 50mg/l phosphate, and the accu-
mulation rate was 6.12 ± 0.95mg/g dry weight of plant after
35 days of investigation under greenhouse condition (Ready
et al. 1999). A summary of phosphorus removal by aquatic
plants and their system details are given in Table 1.
Although studies on contamination removal from waste-
water are numerous, only a few studies have been performed
on parboiled rice mill wastewater. Therefore, we performed
a study on rice mill wastewater and investigated the per-
formance of each aquatic plant compared with the control
and with each other.

The objective of this study was to compare the phos-
phorus reduction capabilities of four aquatic free floating
plants, namely water hyacinth, water lettuce, salvinia, and
duckweed, in parboiled rice mill wastewater. This study also
aimed to quantify the biomass growth of each plant. All
plants’ growth was inhibited in rice mill wastewater and lim-
ited growth was observed in 10%, 20%, and 30% dilution
with tap water. Hence, a dilution of 1:1 of raw wastewater
and tap water was chosen to perform the experiment. In
this paper, the authors also try to predict the values of total
phosphorus (TP) reduction from rice mill wastewater by
using soft computing techniques like linear regression (LR),
artificial neural network (ANN), and M5P. The ANN

models show the most promising results as compared to
M5P tree and LR models. Soft computing techniques have
been found very useful in the past studies related to envir-
onmental engineering, to predict, control, and monitor
problems, such as meteorology, soil pollution, air pollution,
environmental impact assessment, environmental hydraulics,
environmental geology, etc. Karul et al. (2000) used a three-
layer feed forward algorithm model to predict the eutrophic
mechanism in three water bodies. The correlation coefficient
was found to be between 0.60 and 0.75. Baxter et al. (2004)
developed a model for turbidity removal from water. They
obtained a high coefficient of determination R2¼ 0.96 and a
low value of mean absolute error, MAE ¼ 0.08 NTU.
Onkal-Engin et al. (2005) used back propagation based
ANN model to determine the relationship between sewage
odor and BOD. The correlation coefficients obtained from
training and testing data sets were 0.98 and 0.91, respect-
ively. The RMS errors were 0.04 for training data set and
0.07 for testing data set. Karaca and €Ozkaya (2006) devel-
oped a model to determine relationship between leachate
flow rate and local meteorological data, based on back
propagation algorithm. The coefficient of determination (R2)
and mean squared error (MSE) obtained from this model
were 0.847 and 0.00168, respectively. Akratos et al. (2008)
used ANN technique to estimate the values of biochemical
oxygen demand (BOD) and chemical oxygen demand
(COD) and found the coefficient of determination, R2¼ 0.52
for BOD removal, and R2¼ 0.44 for COD removal. Zhang
et al. (2008) used self-organizing map (SOM) to predict sol-
uble reactive phosphorus in integrated constructed wetlands
(ICWs) by using dissolved oxygen (DO) and conductivity as
input variable, obtained coefficient of determination,
R2¼ 0.951 and MAE: 0.048. El-Gendy (2008) investigated
the removal of heavy metals by water hyacinth and predict
the output with the help of exponential and LR equations.
The model achieved high coefficient of determination of
0.996 with an average absolute deviation of 1.7%.
Yetilmezsoy and Sapci-Zengin (2009) developed a ANN
model with nine input variables and 12 hidden neurons to
predict COD removal from an up-flow anaerobic sludge
blanket (UASB) reactor for treating cotton textile waste-
water. They found that the ANN model prediction was satis-
factory and the coefficient of correlation obtained was 0.82.
Akratos et al. (2009a, 2009b) used ANN model to predict
orthophosphate, TP, and total nitrogen (TN) removal in
constructed wetland and found low values of regression
coefficient. They observed the coefficient of determination
(R2) as 0.43 and 0.53 for TP and TN removal, respectively.
Bagheri et al. (2015) predict the removal of TP in sequenc-
ing batch reactor by using radial basis function (RBF) and
multilayer perceptron (MLP) and got the coefficient of
determination 0.95 and 0.99, respectively. Zhang and Pan
(2014) used back propagation ANN-genetic algorithm to
predict phosphate removal efficiency by hydrated ferric
oxide-based nanocomposite and got the coefficient of deter-
mination as 0.9931. Ozengin et al. (2016) applied ANN
computing technique for the estimation of TN and TP
removal from water. The correlation coefficient between
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predicted values and observed values were as high as 0.9463
for TN and 0.9161 for TP. Erg€on€ul et al. (2020) predict the
bioaccumulation efficiency of heavy metals by water lettuce.
They used LR equation to predict output variable and

obtained the coefficient of determination as 0.984. So based
on the above discussed studies, it is evident that soft com-
puting is a strong statistical tool in learning the problems
related to water and wastewater in the field of

Table 1. Summary of studies on phosphorus reduction from polluted water/wastewater using aquatic plants.

References Polluted water/waste water quality System and study details Observations

Debusk et al. (1995) 1:1 diluted primary lagoon dairy
effluent

Initial concentration: 7.3 mg/l

Batch study
HRT: 7 days
Tank volume: 70 l
Plants: water hyacinth and duckweed

Phosphorus removal by water hyacinth and
duckweed: 97% and 67%, respectively

Maximum uptake by water hyacinth in winter
and summer: 59 and 200 mg/m2 d,
respectively

Maximum uptake by duckweed: 20 mg/m2 d
in both seasons.

Fonkou et al. (2002) Domestic sewage
Initial phosphorus concentration:

47.5 mg/l

HRT: 10 days
Total area of 7 ponds: 702 m2

Depth: 0.5–0.9 m
Flow rate: 45 m3/d
Plant: water lettuce

Phosphorus removal: 73.9%

Sooknah and Wilkie (2004) Anaerobically digested flushed dairy
manure

wastewater diluted with tap
water 1:1

HRT: 31 days
Tank dimensions L � B � H:

0.5 � 0.36 � 0.4 m
Working depth: 0.3 m
Plants used: water lettuce, pennywort and

water hyacinth

Plants failed to grow in undiluted wastewater
due to high salinity and high COD

Maximum phosphorus removal by water
hyacinth, pennywort and water lettuce
were 98.5%, 71.3%, and 64.2%, respectively

Kutty et al. (2009) STP effluent HRT: 6 days
Tank dimensions L � W � D:

90 � 40 � 25 cm
Plant: water hyacinth

Total phosphorus removal: 72%

Mohedano et al. (2012) Swine wastewater
Mean initial concentration of Pond 1

and Pond 2: 92 and 10 mg/l,
respectively

Pond 1
Pond dimensions: (L � W � D):

20.7 � 7.5 � 0.8
Pond volume: 102 m3

HRT: 102 days
Pond 2
Dimensions L � W � D: 15 � 6 � 0.4
Pond volume: 34 m3

HRT: 34 days
Plant used: duckweed

Pond 1 and Pond 2 removal rate were 89%
and 47%, respectively.

Li et al. (2013) Livestock wastewater HRT: 40 days
Tank dimensions L � W � D:

120 � 60 � 60 cm
Working depth: 45 cm
Plants: Elodea nuttallii, Potamogeton

pectinatus, and Duckweed

Total phosphorus removal by Elodea nuttallii,
Potamogeton pectinatus, and Duckweed:
84.4%, 90.5%, and 95.95%, respectively

Shah et al. (2014) Municipal wastewater
Initial phosphorus concentration:

2.1 mg/l

HRT: 30 days
Tank dimensions L � W � D:

1.52 � 1.83 � 0.91 m
Plants used: water hyacinth, duckweed, and

water lettuce

Average phosphorus removal by water
hyacinth, duckweed, and water lettuce
were 18.76%, 15.25%, and 10.69%,
respectively

Mukherjee et al. (2015) 1:1 diluted rice mill effluent Batch study
HRT: 15 days
Tank volume: 10 L
Depth: 13 cm
Diameter: 38 cm
Temp: 26–37 �C
Plant: water lettuce

Total phosphorus removal: 71–73%

Niveth et al. (2016) Domestic sewage
initial phosphorus concentration:

23.4 mg/l

HRT: 10 days
Tank dimensions L � B � H: 1 � 0.3 � 0.3 m
Plant: water lettuce

Phosphorus removal: 81.3%

Rezania et al. (2014) Domestic wastewater
Initial phosphate concentration:

0.53Rezania mg/l

HRT: 21Rezania days
Tank dimensions L � B � H:

48 � 90 � 90 cm
Plant: water hyacinth

Optimum phosphate removal at 15 days: 70%

Victor et al. (2016) Industrial wastewater initial
phosphorus concentration:
39.23 mg/l

HRT: 20 days
Tank dimensions: 1.6 m diameter and

0.5 m depth

Phosphorus removal: by water hyacinth and
water lettuce were 65% and 50.04%,
respectively

Indah et al. (2019) Treated swine water
Of initial total phosphorus

concentration: 82.77 mg/l

Batch study
Tank water volume: 10 l, surface area:

0.10 m2, temp: 25–37 �C, HRT: 21 days
Plant used: Eichhornia crassipes, Pistia

stratiotes, Limnobium laevigatum, and
Lemna sp.

Removal rate by Eichhornia
crassipes, Pistia stratiotes, Limnobium

laevigatum, and Lemna sp. were 19.05%,
32.34%, 31.13%, and 43.62%, respectively

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 3



environmental engineering. The use of soft computing in
the area of phosphorus removal by free floating aquatic
plants is still unexplored. To the best knowledge of authors,
there is no such research found in which modeling is used
for the prediction of phosphorus removal by free floating
aquatic plants. However, some research found on con-
structed wetlands in which modeling is used to predict
phosphorus removal. Hence an effort has been made to pre-
dict phosphorus removal by using LR, ANN, and
M5P techniques.

Materials and methods

Study site

These experiments were performed in a rice mill in
Kurukshetra district, Haryana, India. Kurukshetra is located
at 160 km northward to the national capital, New Delhi. It is
located at 29�58010.246800N latitude and 76�52041.811600E
longitude coordinates, and its elevation is 258m above the
mean sea level.

Experimental setup and procedure

Experimental setup
A batch scale mesocosm study was performed in five identi-
cal polyvinyl chloride tubs, with dimensions of 44.25 cm in
diameter, 13 cm in depth, 0.1541m2 in surface area, and
20 L in volume (Figure 1). The study was conducted from
May 1, 2019 to May 15, 2019. During the study, the average
high temperature was 38 �C and average low temperature
was 22 �C. On May 1, the tanks were filled with rice mill
wastewater and tap water in a dilution ratio of 1:1. Of the
five tubs, one was used as control in which no aquatic plant
was placed, and the other four were planted with salvinia,
water lettuce, water hyacinth, and duckweed, respectively.
On the same day, water samples were checked for TP, COD,
pH, and conductivity (EC). Water samples were monitored
daily. When the water level dropped due to evaporation and
transpiration, tap water was used to top up the water level
in the tubs.

Plant collection and sample analysis
Aquatic plants were collected from nearby wetlands and
their roots washed with tap water to remove dirt. All the
plants were placed in tap water for 5 days to remove soil
and other materials deposited on roots. After 5 days, healthy
plants were selected, and their dead leaves were chopped off.
The selected plants were put in 20% diluted rice mill waste-
water for 1week to acclimatize them to the rice mill waste-
water environment. Plants were selected from the 20%
diluted water and finally placed in their designated tubs.
Out of all plants, 15 plants of water lettuce with a total
weight of 200 g, 10 plants of water hyacinth with a total
weight of 300 g, 200 g of salvinia and, 50 g of duckweed
selected for final experiments. Samples were collected from
water tubs by using 50mL sample bottles to obtain water
from three sites; these samples were then mixed. All the
parameters were analyzed in triplicate within 4 h of the sam-
ple collection according to the American Public Health
Association (APHA) methods (APHA 2005).

Physicochemical characterization of wastewater

Table 2 shows the physiochemical characterization of the
effluent collected from the rice mill.

Overview of modeling techniques used in this study

Artificial neural network
ANN is the most common soft computing technique prac-
ticing almost in every stream. This technique is highly com-
plex and nonlinear, based on the human nervous system. It
is used to model the complicated relationship between input
and output. There are many types of ANN applications, and
the selection of the best depends on the nature of the work
and the availability of the data. The most commonly used
ANN in the field of environmental hydraulics is MLP
(Govindaraju 2000). ANN with backpropagation algorithm,
composed of three layers: input layer, hidden layer, and out-
put layer and is used in this study. Logistic sigmoid function
(Eq. (1)) is used as an activation function.

Figure 1. Pictorial view of the experimental setup.
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The activation function used in this study is as follows:

f ujð Þ ¼
1

1þ e�uj
(1)

M5P tree model
Model trees were first introduced by Quinlan (1992), then
the concept was rebuilt and improved by Wang et al. (1997)
into a program known as the M5P. M5P model is the modi-
fication and combination of conventional tree with LR at
the terminal nodes. In this model, data are divided into sub-
sets and all the subsets make a tree. Out of the many tree
structures made with subsets, a tree structure with minimal
errors is to be constructed. To eliminate the problem of
overfitting, the tree must be pruned back by replacing a
sub-tree with a leaf. Thus, the second stage in the design of
a model tree involves pruning the overgrown tree and
replacing the sub-trees with LR functions.

Performance evaluation criteria

To check the effectiveness of ANN and M5P tree modeling,
three parameters are used to evaluate the model
performance:

1. Coefficient of determination (R2).
2. Root mean square error (RMSE).
3. Mean absolute error (MAE).

All the above parameters are calculated using training
and testing data sets. The formula of the above parameters
are as follows:

R2 ¼ n
P

aipi �
P

ai
P

pi
� �2

n
P

aið Þ2 � P
aið Þ2

h i
n
P

pið Þ2 �
P

pi
� �2h i (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 pi � aið Þ2
n

s
(3)

MAE ¼
Pn

i¼1 pi � aij j
n

(4)

where a is actual value, p is predicted value, and n is the
number of observations.

Data set for static analysis

A detailed study on rice mill wastewater has been conducted
to get credible data. There are about 106 number of data
available each for water hyacinth and water lettuce on TP
reduction. Both types of data sets are divided into two separ-
ate parts: training (70%) and testing (30%). Tables 3 and 4
show the features of training and testing data set of water hya-
cinth and water lettuce, respectively, in which hydraulic load-
ing rate (HLR), hydraulic retention time (HRT), and initial
concentration of total phosphorous (Cin) are considered as
input parameters whereas reduction rate of total phosphorous
(R) is considered as output parameter. Tables 5 and 6 show
the correlation matrix among input and output variables data
for water hyacinth and water lettuce plant, respectively. The
original data set is modified according to the requirement of
the paper. The reduction rate was calculated as:

R ¼ Cin � Cout

Cin
(5)

Cin, initial concentration of TP and Cout, final concentration
of TP.

HLR is calculated as:

HLR ¼ V
A�HRT

(6)

V, volume of tub (m3); A, surface area of tub (m2), and
HRT is in days.

Table 2. Physicochemical characterization of wastewater.

Parameter Unit Raw water Diluted water

pH – 5.04 6.8
Conductivity ms/cm 2,651 1,945
Temperature �C 37.3 34.5
COD mg/l 2,560 1,280
BOD mg/l 1,096 –
Total phosphorus mg/l 32.4 16.2
Total nitrogen mg/l 0.3 –
Dissolved oxygen mg/l 0.5 –

Table 3. Characteristics of water hyacinth dataset used in this study.

Parameter Unit

Train data Test data

Min Max Mean St. dev. Min Max Mean St. dev.

R – 0.028 0.761 0.377 0.217 0.031 0.772 0.425 0.216
HRT days 1 13 5.342 3.465 1 14 5.313 3.355
HLR m3/m2.d 0.007 0.097 0.033 0.029 0.007 0.097 0.031 0.028
Cin mg/l 3.872 16.2 8.907 3.934 4.115 16.2 10.583 3.95

Table 4. Characteristics of water lettuce dataset used in this study.

Parameter Unit

Train data Test data

Min Max Mean St. dev. Min Max Mean St. dev.

R – 0.06 0.769 0.385 0.189 0.077 0.8 0.44 0.235
HRT days 1 12 5.123 2.803 1 14 5.813 4.533
HLR m3/m2 d 0.008 0.097 0.03 0.026 0.007 0.097 0.037 0.033
Cin mg/l 3.502 16.2 8.668 3.799 4.312 16.2 11.104 3.63

Table 5. Correlation matrix among input and output variables (water hyacinth).

HRT HLR Cin R

HRT 1
HLR �0.77547 1
Cin 0.470793 �0.3158 1
R 0.89957 �0.77708 0.719158 1

Table 6. Correlation matrix among input and output variables (water lettuce).

HRT HLR Cin R

HRT 1
HLR �0.77547 1
Cin 0.466329 �0.3139 1
R 0.946906 �0.81698 0.651836 1

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 5



Various mechanisms of phosphorus removal

Direct uptake by plants
Phosphorus is a vital macronutrient, which is essential for
plant growth. Approximately 1.1–2.2mg/g (dry weight of
plant) of phosphorus is required for normal plant growth
(Ready et al. 1999). DIP is easily absorbed by plants, which
is stored as polyphosphate in plant biomass. The accumula-
tion of phosphorus is rapid during peak growing seasons.
Phosphorus removal from water depends on the harvesting
of plants, though most of the phosphorus is released back
into the water column after the decomposition of plants.
The rate of uptake by plants depends on the type of plant,
root and soot ratio, c/p (carbon/phosphorus) ratio of detrital
tissue, and physicochemical properties of water.

Assimilation by periphyton and microorganism
Periphyton is a biofilm float in an aquatic ecosystem. It con-
sists of algae, cyanobacteria, autotrophic, and heterotrophic
microbes, and detritus that are attached to plants.
Periphyton uptake phosphorus from the water column for
their growth. Periphyton is capable of assimilating both
organic and inorganic phosphorus (Ready et al. 1999) and
can induce changes in the pH and DO of water.
Microorganisms convert organic phosphorus into inorganic
phosphorus, which is ultimately uptaken by plants
and periphyton.

Adsorption
Radial oxygen loss (ROL) and the presence of oxidizing bac-
teria cause iron or manganese plaques (metal hydroxides)
formed on the roots surface (Emerson et al. 1999; Batty
et al. 2002). Metals like copper and zinc, or phosphorus can
be sorbed on these metal hydroxides (Ye et al. 2001).

Precipitation as phosphate
Photosynthesis and respiration initiate changes in the pH of
water column, which can reach as high as 10. In a system
where enough dissolved calcium is present in the water col-
umn, phosphorus precipitates as calcium phosphate (Ready
et al. 1999). Moreover, periphyton is responsible for changes
in the pH of water, which helps in the precipitation of phos-
phorus with CaCO3 within the periphyton mat (Ready
et al. 1999).

Factors affecting the performance of an aquatic
treatment system

Temperature
Temperature plays a crucial role in the performance of the
plant. Almost all the pollutants’ removal rate is dependent
on the temperature of water and air. For removing nutrients
from wastewater, plant uptake and microbial activity play
major roles. At temperatures below 10 �C, the growth rate of
plants decreases and microbes do not function optimally,
indicating low removal efficiency. Microorganisms respon-
sible for nutrient removal work optimally at temperatures

more than 15 �C (Akratos and Tsihrintzis 2007). At temper-
atures below 15 �C, phosphate and TP removal were 50.7%
and 41.8%, respectively, whereas at temperatures above
15 �C, the results improved to 79.2% and 70.1%, respectively
(Akratos and Tsihrintzis 2007). Studies have shown that the
removal rates of the TN and TP by water cress in eutrophic
water of 22 �C were higher than that of 10 and 35 �C (Deng
and Ni 2013).

Type of plant
Selection of proper plant is a key factor which affects water
purification capacity of aquatic plant system. It has been
shown that the removal rate of yellow flag for TN and TP
are 2.82 and 5.31 times than removal rate of canna’s, thalia-
dealbata’s and willow herb’s (Wu et al. 2012). The studies
have shown that the order of TN purification capacities was
A. Calamus>M. Korsakowil> L. Sagittifolial. For TP the
order of removal was A. Calamus> L. Salicaria>M.
Korsakowil>A. Orientale> S. Sagittifolia (Fu and He 2015).

Hydraulic retention time
HRT plays a major role in nutrient removal. At retention
time of 10 h or less, the removal rate is proportional to the
retention time, which was 10–70% for TN removal and
30–80% for TP removal. As the time increased to more than
10 h, the TN removal was 50% and TP removal was 60%
(Sato et al. 2002). Akratos and Tsihrintzis (2007) showed
that TP removal for HRT for 6 days was 33.6%, and as the
HRT increases, the removal rate also increases to 56.3% for
8 days, 76.5% for 14 days, and 88.1% for 20 days. Thus, the
removal rate is dependent on HRT.

Hydraulic loading rate
HLR plays a major role in pollutant removal. The relation-
ship between loading rate and removal rate is inversely pro-
portional (Sato et al. 2002). For the TN and TP, the loading
rate proposed by Sato et al. (2002) for TN and TP are
0.5–1 g/m2/d and 0.05–0.15 g/m2/d, respectively. At a low
loading rate, the removal rate is proportional to the loading
rate, but when it exceeds 1 g/m2/d for TN and 0.15 g/m2/d
for TP, the removal rate becomes constant.

Results and discussions

Visual observations

In undiluted wastewater, the growth of all aquatic plants
was inhibited possibly because of low oxygen level and high
organic matter concentration. The leaves of the plants
started turning yellow and finally dried up. Sooknah and
Wilkie (2004) and Mukherjee et al. (2015) showed similar
results using water lettuce to treat dairy manure wastewater
and parboiled rice mill wastewater, respectively. In the
second phase, and the wastewater was diluted with tap water
in a ratio of 1:1. From Day 2, water started turning black,
which may be due to exhaustion of DO in water. The leaves
of the water lettuce started turning yellow, possibly owing to
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high concentration of COD and low level of DO in water.
From Day 3, periphyton started growing in the salvinia tub;
water hyacinth showed some progress in this period. From
Day 6, periphyton started growing in all the tubs except the
control; new leaves began to grow on water lettuce. After
Day 9, the growth rate of all plants was fast, except salvinia.
Salvinia started decomposing and finally settled down at the
bottom, and periphyton was present in all the tubs. The
plants covered the entire surface area with vegetation within
15 days. After Day 9, water turned brown and then cleared
in all the tubs. This phenomenon might have occurred in
the control tub owing to periphyton.

Plant biomass and relative growth rate (RGR)
determination

The production of all the aquatic plants was measured based
on their growth rate. The overall process lasted for 15 days.
Fresh biomass was measured on the first day, that is, before
plantation, and on the last day of the experiment. The RGR
was calculated to quantify the production. The RGR is
defined as the change in size or mass of a plant with respect
to its initial size or mass. In this study, RGRs of all four
plants were calculated using the following formula

RGR ¼ lnW2 � lnW2

T
(7)

W1, weight of the biomass of the plant at the beginning
of the experiment; W2, weight of the biomass of the plant at
the end of the experiment; ln, natural log; and T, experi-
ment time.

This formula has been widely used to measure the growth
rate of plants (Indah et al. 2019). The initial weight of all
plants based on the fresh biomass was measured using a
digital balance. After the completion of experiment, the final
weight of all the plants based on fresh biomass was meas-
ured, and their relative growth was calculated according to
the aforementioned formula. Plants predominantly exhibit a
positive growth rate; however, in some cases plants may
exhibit a negative growth rate. In this study, all the plants
exhibited a positive growth rate, except Salvinia. The RGR
of Salvinia was �0.1386 g/g per day. This negative growth is
attributed to various reasons such as high conductivity, the
best grow conductivity for Salvinia is ranging from 240 to
500mS/cm (Owens et al. 2014) which is much less than the
conductivity of rice mill wastewater used in this experiment.
There may be some others factors like high concentration of
COD and phosphorus were responsible for this negative
growth. Water hyacinth showed the highest RGR of
0.09877 g/g/day, followed by water lettuce with 0.0780 g/g/
day and duckweed with 0.0462 g/g/day growth rates.

Phosphorus reduction

Phosphorus removal from water column occurs through
various mechanisms, which includes uptake by plants,
assimilation by periphytons, adsorption, and precipitation.
The effectiveness of four aquatic plants for removing

phosphorus was tested, and it is evident from the results
that these plants are capable of removing phosphorus.
Water lettuce showed the maximum efficiency among all the
plants, followed by water hyacinth, salvinia, duckweed, and
control. Water lettuce showed the maximum removal effi-
ciency of 80.04% on Day 15, followed by water hyacinth
(77.2%), salvinia (61.38% on Day 10), duckweed (70.21% on
Day 13), and control (67.38% on Day 11). The growth rate
of salvinia was negative; the phosphorus removal may have
occurred owing to the periphyton present in the salvinia
tub. After Day 15, phosphorus concentration in the water
started increasing possibly owing to the decomposition of
leaves and roots of these plants. Figure 2 shows the details
of phosphorus removal by the four aquatic plants. Similar
results were obtained by different researchers, Akinbile and
Yusoff (2012) performed a study on aquaculture wastewater
by using water hyacinth and water lettuce and found that
water hyacinth reduces phosphorus by 85%, whereas water
lettuce reduces phosphorus by approximately 70% in
3weeks. Moreover, Mukherjee et al. (2015) performed a
laboratory-scale experiment on parboiled rice mill waste-
water by using water lettuce in a small container of 38 cm
diameter and 10 L capacity and found that phosphorus
removal efficiency was 73% within 2weeks. Similarly, Kutty
et al. (2009) used water hyacinth and found the TP removal
was 72% in 6 days. Li et al. (2013) used livestock wastewater
and found the TP removal by duckweed to be 96% in
40 days. Rezania et al. (2014) used domestic wastewater and
found the results to be 70% on Day 15.

COD reduction

The reduction in COD concentration is presented in Figure
3. COD removal is higher in aquatic plant systems than in a
control system. COD removal efficiency was the highest in
the water lettuce tub (74.53%), followed by water hyacinth
(71.87%), duckweed (62.19%), and salvinia (60%). The least
removal was in the control system (50%).

Similar results were obtained by various researchers.
Mukherjee et al. (2015) performed laboratory-scale experi-
ments on rice mill wastewater by using water lettuce and
found COD removal to be 76%. Sooknah and Wilkie (2004)
performed an experiment using anaerobically digested
flushed dairy manure wastewater diluted with tap water in a
1:1 ratio and floating aquatic plants and found COD reduc-
tion of 80% by water hyacinth and water lettuce
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Figure 2. Reduction of total phosphorus by aquatic plants.
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individually. Akinbile and Yusoff (2012) performed a study
on aquaculture wastewater by using water hyacinth and
water lettuce and found that COD removal was 59% by
water hyacinth and 54% by water lettuce by the end of
Week 4.

pH and EC variation

The results before and after treatment show an increase in
pH value of all the systems. The initial pH of the aquatic
plant systems and control system was 6.8. As the experiment
progressed, the pH increased. The maximum changes were
observed in the control system and the minimum changes
in the water hyacinth tub. The pH values went up to 9 in all
the tubs, except water hyacinth. Figure 4 shows the pH vari-
ation of all the tubs. The increase in pH was due to the
photosynthesis of plants and periphyton present in water
(National Oceanic and Atmospheric Administration 2019).
They took CO2 from water and expelled oxygen, and as the
CO2 dissolved in water, it becomes carbolic acid, which
resulted in low pH. Thus, CO2 removal increases the pH.

The conductivity remained close to the initial concentra-
tion of 1,945ms/cm. Due to high conductivity, the growth of
salvinia was inhibited. Sooknah and Wilkie (2004) reported
that the conductivity of 2,683ms/cm is toxic for water lettuce
and the conductivity of 4,040ms/cm is toxic for water hya-
cinth. Figure 5 shows the conductivity variation of all tubs.

Static analysis

A comparative analysis of the data has been done by using
LR, ANN, and M5P tree modeling techniques. The data
obtained from two most efficient plants have been consid-
ered for this analysis. WEKA 3.8 software was used to derive
regression or equation coefficients using training data-set.

Results of LR

In case of phosphorus removal by water hyacinth plant, the
following equation is the outcome of training data set after
applying LR (Eq. (8))

R ¼ 0:0337 �HRT� 1:5442 �HLRþ 0:0224 �Cin þ 0:0473

(8)

The parameters used for the performance evaluation
are shown in Table 9. The values obtained are: R2¼ 0.978,
RMSE ¼ 0.0448, MAE ¼ 0.0341, and R2¼ 0.957, RMSE ¼
0.0624, MAE ¼ 0.0526 for training data set and testing data
set, respectively.

In case of water lettuce plant, the following equation is
the outcome of training data set after applying LR (Eq. (9))

R ¼ 0:0438 �HRT� 1:4022 �HLRþ 0:0138 �Cin þ 0:0833

(9)

The parameters used for the performance evaluation are
shown in Table 10. The values obtained are: R2¼ 0.9873,
RMSE ¼ 0.0298, MAE ¼ 0.0253, and R2¼ 0.99, RMSE ¼
0.0428, MAE ¼ 0.0337 for training data set and testing set,
respectively. The performance of LR models for both the
aquatic plants are shown in Figure 10 (water hyacinth) and
Figure 12 (water lettuce).

Results of ANN model

ANN is a trial and error method which consist of three
main components viz. input layer, hidden layer, and output
layer. In this case, ANN is implemented to predict the
reduction of TP by two aquatic plants, that is, water hya-
cinth and water lettuce. The model developed in this study
is based on trial and error process for both the plants. All
the parameters are checked by varying their values. The
models with maximum coefficient of determination (R2) and
least errors (MAE and RMSE) are selected. In case of water
hyacinth, one hidden layer with eight neurons closely pre-
dicted the results to the actual values of reduction in TP
(Figure 6). Other parameters used in this model: momentum
¼ 0.2, learning rate ¼ 0.1, and iteration ¼ 1,500. In case of
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water lettuce, best results are obtained by using one hidden
layer with six neurons having momentum ¼ 0.2, learning
rate ¼ 0.1, and iteration ¼ 2,000 (Figure 7). The perform-
ance of ANN models for both aquatic plants is shown in
Figure 10 (water hyacinth) and Figure 12 (water lettuce). As
shown in Tables 9 and 10, the values of R2, RMSE, and
MAE of ANN models are 0.9945, 0.0243, and 0.02 for water
hyacinth, and 0.9962, 0.0201, and 0.014 for water lettuce,
respectively for test data set. The results of ANN model
show that the use of ANN model is suitable to predict the
reduction of phosphorus by aquatic plants from wastewater.

Developing the ANN model is a trial and error process
similar to developing GP, SVM, M5P, and RF models, based
on the same dataset. Design of ANN includes the number of
hidden layers, neurons in hidden layers, momentum, learn-
ing rate, and iterations.

Results of M5P tree model

M5P model is the modification and combination of conven-
tional tree with LR at the terminal nodes. In this model,
data are divided in subsets and all the subsets make a tree.
Out of lot of trees made with subsets, the tree with min-
imum errors is to be constructed. The optimum results were
obtained by setting the value of parameter M (instances) to
6.0. Tables 9 and 10 show the statistical evaluation param-
eter of the models for both water hyacinth and water lettuce,
respectively. It is clear from Figures 10 and 12 that the pre-
diction of phosphorus removal from water by both aquatic
plants is close to the actual value. The performance evalu-
ation parameters obtained from these models are R2 values
(0.9758 and 0.9868), MAE values (0.0415 and 0.0368), and

RMSE values (0.0486 and 0.0455) in testing period for water
hyacinth and water lettuce, respectively. When M5P model
tree is pruned to get the results using smoothed linear mod-
els, there are five conditional linear equations (Figure 8 and
Table 7) best fit for water hyacinth and three conditional
equations best fit for water lettuce (Figure 9 and Table 8)
developed, respectively.

Comparison of models

Figures 10 and 12 show a comparison of the modeling tech-
niques used to predict phosphorous reduction from rice mill
wastewater by water hyacinth and water lettuce plants,
respectively. A LR relation is formed with the training data
and the results are compared with the machine learning

Figure 6. Details of water hyacinth ANN model (input layer, hidden layer, and
output layer).

Figure 7. Details of water lettuce ANN model (input layer, hidden layer, and
output layer).

Figure 8. Diagram of M5P model with different conditions and rules (water
hyacinth) (number of rules: 5).

Table 7. Pruned model tree equations for different conditions
(water hyacinth).

Tree rule Equation

LM num: 1 R ¼ 0.0522 � HRT þ 0.0149 � Cin � 0.0609
LM num: 2 R ¼ 0.0566 � HRT þ 0.0164 � Cin � 0.05
LM num: 3 R ¼ 0.0623 � HRT þ 0.0189 � Cin � 0.0662
LM num: 4 R ¼ 0.025 � HRT þ 0.0467 � Cin � 0.0757
LM num: 5 R ¼ 0.0331 � HRT þ 0.0202 � Cin þ 0.0678

Figure 9. Diagram of M5P model with different conditions and rules (water let-
tuce) (number of rules: 3).

Table 8. Pruned model tree equations for different conditions (water lettuce).

Tree rule Equation

LM num: 1 R ¼ 0.0689 � HRT þ 0.0113 � Cin � 0.0371
LM num: 2 R ¼ 0.0488 � HRT þ 0.0058 � Cin þ 0.0832
LM num: 3 R ¼ 0.0412 � HRT þ 0.0149 � Cin þ 0.0776
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based ANN and M5P tree methods. The results of training
and testing data with the LR model suggest that the models
work fairly well in prediction of phosphorus reduction
observed with water hyacinth and water lettuce plant. The
RMSE values observed during testing with LR equations in
estimating the phosphorous reduction using water hyacinth
plant and water lettuce plant are 0.0624 (R2¼ 0.957) and
0.0428 (R2¼ 0.99), respectively, which is fairly acceptable.
However interestingly, in case of the data observed with
water hyacinth plant, the prediction of phosphorous reduc-
tion is relatively superior with machine learning based mod-
els (ANN and M5 tree) as compared to the LR model. The
error values (RMSE and MAE) observed with ANN and M5
tree models are quite less in the training as well as in testing
stage (Table 9). The estimated data points lie in the closer
proximity of the perfect prediction line (x¼ y). The model-
ing results obtained from the inter-comparison of ANN and
M5 tree models suggest that the prediction of phosphorous
reduction (water hyacinth) with ANN is significantly better
than that of the M5 tree model. The RMSE and MAE
achieved with ANN are 0.0243 and 0.0200, respectively,
while from M5P tree are 0.0486 and 0.0415, respectively.
Elucidated from Figure 11, the residual errors from experi-
mental and predicted values are minimal in the case of
ANN as the error line is relatively closer to the zero error

line or base line as compared to M5 and LR. Thus, the over-
all modeling comparison shows that ANN is performing
better, followed by the M5 and LR models, respectively. So
this tool can be effectively employed in predicting the actual
phosphorous reduction.

In the same way, all three modeling techniques are used
to estimate the phosphorous reduction from water lettuce
plant. The selection of input attributes is similar to water
hyacinth plant. The LR equation developed using the train-
ing data is checked for accuracy on the testing data and the
results are compared with ANN and M5P tree model. The
performance of LR model is inferior in training as compared
to M5P model but slightly improves during testing
(Table 10). However, the comparison of both models (LR
and M5P) with ANN specifies the strong performance of
the ANN model in generalizing the data on phosphorous
reduction. Figure 12 reveals that the predicted LR and M5P
data points are much more scattered as compared to ANN
data points. Based on the test results (Table 10), the error
values are minimal with the ANN (RMSE ¼ 0.0201, MAE ¼

Table 9. Performance of models with water hyacinth plant.

Training data Testing data

Model R2 MAE RMSE R2 MAE RMSE

ANN 0.995 0.0159 0.0214 0.994 0.0200 0.0243
MP5 0.987 0.0256 0.0337 0.975 0.0415 0.0486
Linear regression 0.978 0.0341 0.0448 0.957 0.0526 0.0624

Table 10. Performance of models with water lettuce plant.

Training data Testing data

Model R2 MAE RMSE R2 MAE RMSE

ANN 0.9946 0.0163 0.0204 0.9962 0.0140 0.0201
M5 0.9906 0.0203 0.0257 0.9868 0.0368 0.0455
Linear regression 0.9873 0.0253 0.0298 0.9900 0.0337 0.0428
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Figure 10. Scattered diagram of actual and predicted phosphorus reduction by
water hyacinth using LR, ANN, and M5P tree model in testing dataset.
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Figure 11. Residual error versus test data-set number using different regression
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0.0140). ANN model shows stronger approximations of the
phosphorous reduction followed by the LR and the M5P
tree, respectively. Elucidated from Figure 13, the residual
errors from experimental and predicted values are minimal
in the case of ANN as the error line is relatively closer to
the zero error line or base line as compared to LR and M5P.

In reviewing the previous studies, few studies have been
found that use machine learning to predict the removal of
phosphorus from wastewater. Most of the studies are related
to the constructed wetlands which utilized machine learning
based methods. Although, some studies found on free float-
ing aquatic plants pertaining to the removal of heavy metals
but the application of machine learning is yet to be docu-
mented for the case of phosphorous removal from water by
free floating plants. The authors, however, found some
research papers on prediction of phosphorus reduction from
other treatment processes, as well as the prediction of heavy
metal removal by free floating plants using machine learning
based regression models. The results of those existing studies
are therefore incorporated into this work and summarized
in a table along with the results of the current study
(Table 11).

Conclusion

The growth of all aquatic plants was found to be inhibited
in undiluted raw rice mill wastewater. A dilution approach
of mixing tap water with the wastewater in 1:1 ratio was
adopted. Among the plants, water lettuce showed the

maximum efficiency as it reduced 80.04% of the phosphorus
and 74.53% of COD from the water within 15 days. Water
hyacinth showed the highest RGR of biomass (0.09877 g/g/
d), whereas salvinia showed a negative growth rate. Thus,
aquatic plants have the potential to remove nutrients and
organic matter from water. A statistical comparison between
two modeling techniques with reference to LR has been
done. ANN model predicted better results as compare to
M5P tree and LR. In case of water hyacinth, the RMSE is
0.0243, 0.0486, and 0.0624 for ANN model, M5P, and LR
model, respectively. In case of water lettuce, the RMSE is
0.0201, 0.0455, and 0.0428 for ANN model, M5P and LR
model, respectively. So it can be concluding from the results
that ANN model is better than M5P and LR. After a period
of 15 days, the phosphorus content of the water started
increasing due to the falling of leaves. Hence, it is advisable
that plants must be harvested after15 days. Although this
mesocosm study was successful but to verify the success and
feasibility of the system, pilot-scale, and full-scale field stud-
ies are required.
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Table 11. Summary of the modeling used in phosphorus and heavy metal removal.

Reference System Model Input variables Output variable Performance

Thisstudy Water hyacinth Linear regression,
ANN, M5P

Hydraulic retention time (HRT),
hydraulic loading rate (HLR),
and initial concentration of
phosphorus (Cin)

Phosphorus reduction (R) RMS ERror
LR: 0.0624 ANN: 0.0243
M5P: 0.0486

This study Water lettuce Linear regression,
ANN, M5P

Hydraulic retention time (HRT),
hydraulic loading rate (HLR),
and initial concentration of
phosphorus (Cin)

Phosphorus reduction (R) RMS error
LR: 0.0428
ANN: 0.0201
M5P: 0.0455

Zhang et al. (2008) Integrated constructed
wetlands (ICWs)

Self-organizing map (SOM) DO and conductivity Soluble reactive
phosphorus

R2: 0.951
MAE scaled: 0.048

El-Gendy (2008) Water hyacinth Exponential and
linear regression

Initial concentration, time Heavy metal removal R2: 0.996
Average absolute

deviation: 1.7%
Zhang and Pan (2014) Column phosphate

removal by hydrated
ferric oxide-based
nanocomposite

Back propagation ANN-
genetic algorithm

Initial pH, sulfate
concentration, operation
temperature and
adsorbent dosage

Phosphate removal
efficiency

R2: 0.9931
MAE: 3.4

Bagheri et al. (2015) Sequencing
batch reactor

Multilayer
perceptron (MLP)

Influent concentration (Cin),
filling time (FT), reaction
time, aeration intensity,
sludge residence time (SRT),
and MLVSS

Total phosphorus (mg/l) R2: 0.99
RMSE: 0.15 mg/l

Bagheri et al. (2015) Sequencing
batch reactor

Radial basis function (RBF) Influent concentration (Cin),
filling time (FT), reaction
time, aeration intensity,
sludge residence time (SRT),
and MLVSS

Total phosphorus (mg/l) R2: 0.95
RMSE: 0.19 mg/l

Ozengin et al. (2016) Subsurface horizontal
flow constructed
wetland planted with
P. australis

Phragmites australis

MLP feed forward and
Levenberg–Marquardt
back-propagation
architecture

HRT, dissolved oxygen (DO),
pH, temperature (T), NH4–N,
NO3, NO2, ortho-
phosphate (OP)

Total phosphorus R2: 0.91
MAE: 0.14

Erg€on€ul et al. (2020) Water lettuce Linear regression Exposure duration Bioaccumulation efficiency
of heavy metals

R2: 0.984
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