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Abstract The solution of a vehicle routing problem calls for the determination of a set of
routes, each performed by a single vehicle which starts and ends at its own depot, such that
all the requirements of the customers are fulfilled and the global transportation cost is mini-
mized. The routes have to satisfy several operational constraints which depend on the nature
of the transported goods, on the quality of the service level, and on the characteristics of the
customers and of the vehicles. One of the most common operational constraint addressed in
the scientific literature is that the vehicle fleet is capacitated and the total load transported
by a vehicle cannot exceed its capacity.

This paper provides a review of the most recent developments that had a major impact in
the current state-of-the-art of exact algorithms for vehicle routing problems under capacity
constraints, with a focus on the basic Capacitated Vehicle Routing Problem (CVRP) and on
heterogeneous vehicle routing problems.

The most important mathematical formulations for the problem together with various
relaxations are reviewed. The paper also describes the recent exact methods and reports a
comparison of their computational performances.
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1 Introduction

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimization
problems and is concerned with the optimal design of routes to be used by a fleet of vehi-
cles to serve a set of customers. Since it was first proposed by Dantzig and Ramser (1959),
hundreds of papers were devoted to the exact and approximate solution of the basic version
of the VRP, known as the Capacitated Vehicle Routing Problem (CVRP), in which a ho-
mogeneous fleet of vehicles is available and the only considered constraint is the vehicle
capacity. An important variant of the basic CVRP, which received a great attention in the
scientific literature, arises when the vehicle fleet is characterized by different capacities and
costs. This problems is generally known as heterogeneous VRP.

An interesting survey covering early exact methods for the CVRP is given by Laporte
and Nobert (1987). The book edited by Toth and Vigo (2002) provides a comprehensive
overview of exact methods for the CVRP and other variants proposed up to the end of the
twentieth century. This work was updated by the survey of Cordeau et al. (2007).

Many different heuristics are proposed in the literature for the CVRP and its variants.
Among the various surveys on heuristic algorithms for the CVRP, we mention the surveys
of Laporte and Semet (2002) and of Gendreau et al. (2002) in the book edited by Toth
and Vigo (2002). A specific survey on heterogeneous VRPs can be found in Baldacci et al.
(2008a) which also covers lower bounds for heterogeneous VRPs.

In this paper, an updated version of the survey paper published in Baldacci et al. (2007),
we provide a review of the most recent developments in the exact solution of the CVRP
and of the heterogeneous VRPs on undirected graphs that were not covered in the previous
survey works and that had a major impact in the current state-of-the-art of exact algorithms
for this problem family. In particular, we present the different mathematical formulations
used in the literature and discuss their interrelations, combinations and properties that were
exploited in the most successful recent exact approaches. The structure of such algorithms
is also discussed and a comparative analysis of their performance on the solution of well-
known test instances from the literature is given. As previously mentioned, we concentrate
here on the undirected version of the problem which is the most widely studied. As far as
we know, the most recent exact approaches specifically designed for the directed CVRP are
those proposed by Fischetti et al. (1994) and by Pessoa et al. (2008).

This paper is organized as follows. In the following section we formally describe the
CVREP, the different variants of the heterogeneous VRP and introduce the notation that will
be used throughout the paper. Section 3 reviews mathematical formulations for the CVRP
and its heterogeneous variants. In Sect. 4, we describe the valid inequalities proposed for
the different mathematical formulations together with a comparison of various relaxations.
Sections 5 to 7 review the most recent exact algorithms, while a comparison of their compu-
tational performances is reported in Sect. 8. Finally, the last section offers conclusions and
suggestions for future research.

2 Problems definition and basic notation

In this section we give a formal definition of the CVRP and of the variants of the heteroge-
neous VRP studied in the literature. In this section, we introduce as well the relevant notation
required to define suitable models used by the exact approaches.

In the CVRP all customers correspond to deliveries, the demands are deterministic,
known in advance and may not be split among different routes. The vehicles are identical, all
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based at a single depot, and only the capacity restrictions for the vehicles are imposed. The
objective is to minimize the total cost of the routes (i.e., their length or travel time) needed to
serve all the customers. More precisely, the CVRP may be described as the following graph
theoretic problem.

Let G = (V, E) be a complete and undirected graph where V = {0, ..., n} is the vertex
set and E is the edge set. Vertex set V. = {1, ..., n} corresponds to n customers, whereas
vertex O corresponds to the depot. A nonnegative cost, d;;, is associated with each edge
{i, j} € E and represents the travel cost spent to go from vertex i to vertex j. In several
practical cases the cost matrix [d;;] satisfies the triangle inequality. Each customer i € V.
is associated with a known nonnegative demand, q;, to be delivered (the depot having a
fictitious demand gy = 0). A set of m identical vehicles, each with capacity Q, is available
at the depot. Without loss of generality we assume that ¢; < Q for eachi € V..

In the variant of CVRP that is generally considered in the literature and that we study
here, all available vehicles must be used, each performing exactly one route. We also assume
that m is not smaller than m;,, which is the minimum number of vehicles needed to serve
all the customers. The value of m,;, may be determined by solving the Bin Packing Problem
(BPP) associated with the CVRP, which calls for the determination of the minimum number
of bins (i.e., vehicles), each with capacity Q, required to load all the # items (i.e., customers),
each with nonnegative weight ¢;, i € V..

The CVRP consists of finding a collection of exactly m simple cycles or routes with
minimum cost, defined as the sum of the costs of the edges belonging to the routes, and such
that:

(i) each route visits the depot vertex;
(ii) each customer vertex is visited by exactly one route;
(iii) the sum of the demands of the vertices visited by a route does not exceed the vehicle
capacity Q.

The CVRP is known to be N'P-hard (in the strong sense), and generalizes the well-
known Traveling Salesman Problem (TSP), which calls for the determination of a minimum
cost simple cycle visiting all the vertices of G (Hamiltonian cycle), and arising when Q >
Y icv.qi andm = 1.

In the heterogeneous VRP, the vehicle fleet is composed of m different vehicle types,
with M = {1, ..., m}. For each type k € M, m,; vehicles are available at the depot, each
having a capacity equal to Q. Each vehicle type is also associated with a nonnegative fixed
cost, equal to Fi, modelling, e.g., rental or capital amortization costs. In addition, for each
edge {i, j} € E and for each vehicle type k € M a nonnegative routing cost, dl.kj is given.
A route is defined as the pair (R, k), where R = (i,12,...,ig), With i; =iz =0 and
{i2,...,i|jr—1} € V., is a simple cycle in G containing the depot, and k is the type of vehicle
associated with the route. A route (R, k) is feasible if the total demand of the customers
visited by the route does not exceed the vehicle capacity Q; (i.e., Zlhli; ! qi, < Q). The
cost of a route corresponds to the sum of the costs of the edges forming the route, plus the
fixed cost of the vehicle associated with it (i.e., Ihﬂl_l d{;ih“ + Fy).

The most general version of the heterogeneous VRP consists of designing a set of feasible
routes with minimum total cost, and such that:

(i) each customer is visited by exactly one route;
(i1) the number of routes performed by vehicles of type k € M is not greater than m.

Several variants of this general problem were presented in the literature, depending on
the available fleet and the type of considered costs. In particular, the following problem
characteristics were considered:
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(i) the vehicle fleet is composed by an unlimited number of vehicles for each type, i.e.,
m, =400, Vk € M;
(i1) the fixed costs of the vehicles are not considered, i.e., F, =0, Vk € M
(iii) the routing costs are vehicle-independent, i.e., dl.kj1 = dikf, Vki,ky € M, ky # ko, and

Y{i, jl € E.

Related problems that received attention in the literature are the Site-Dependent VRP
(SDVRP) and the Multi-Depot VRP (MDVRP).

In the SDVRP there is a limited heterogeneous fleet available for the service, no vehicle
fixed costs are considered, routing costs are vehicle-independent, and each customer may
include restrictions on the vehicle types that may visit it. It may be observed that SDVRP
is a special case of the general heterogeneous VRP described above, where the routing cost
dfj of all edges incident to customer j is set to infinity for all vehicles types k that are
incompatible with customer j.

The MDVRP is an extension of the CVRP where a customer can be served by an
unlimited fleet of identical vehicles of capacity Q, located at p depot. Let [c/z’;j] be a
(n+ p) x (n+ p) symmetric cost matrix, where E,,Jrk ; is the travel cost for going from depot
k=1,..., ptocustomeri € V.. Any MDVRP instance can be converted into an equivalent
heterogeneous VRP instance generating m = p different vehicle types and setting for each
vehicle type k € M:

0r=0, my=n, F,=0 and

dyr i, ifi=0
k /11+k Jjo ) .o
dij = {dl-j, otherwise, Vi, jle E.

Table 1 summarizes the different problem variants that were actually considered in the
literature. The different problem variants have been referred in the literature using differ-
ent names. However, there is a certain homogeneity towards calling heterogenous VRPs
the variants with limited number of vehicles, and Fleet Size and Mix those with unlimited
number of vehicles. Therefore, we adopted the unified naming convention introduced by
Baldacci et al. (2008a), that uses two acronyms (HVRP and FSM) and adds them two letters
indicating whether fixed or routing costs are considered: “F” for fixed costs and “D” for
vehicle-dependent routing costs, respectively.

Thus, we will refer to the problem variants as follows (see Table 1):

(a) Heterogeneous VRP with Fixed Costs and Vehicle-Dependent Routing Costs (HVRPFD).
This variant corresponds to the most general variant described above;

Table 1 Heterogeneous VRP:

problem variants presented in the ~ Problem Fleet Fixed Routing

literature variant size costs costs
HVRPFD Limited Considered Dependent
HVRPD Limited Not considered Dependent
SDVRP Limited Not considered Site-dependent
FSMFD Unlimited Considered Dependent
FSMD Unlimited Not considered Dependent
MDVRP Unlimited Not considered Depot-dependent
FSMF Unlimited Considered Independent
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(b) Heterogeneous VRP with Vehicle Dependent Routing Costs (HVRPD);

(c) Fleet Size and Mix VRP with Fixed Costs and Vehicle Dependent Routing Costs
(FSMFD);

(d) Fleet Size and Mix VRP with Vehicle Dependent Routing Costs (FSMD);

(e) Fleet Size and Mix VRP with Fixed Costs (FSMF).

As to SDVRP and MDVRP we kept the original acronyms that are consistently adopted
in the literature. All the problems described above are A/P-hard as they are generalizations
of the CVRP.

3 Mathematical formulations

In this section we describe the mathematical formulations of the CVRP and its heteroge-
neous variants that are used as a base for the most recent exact solution approaches. In par-
ticular, we examine two and three-index vehicle flow, commodity flow and set partitioning
formulations.

In addition to the notation already introduced, for a subset S € V,, let S=V \ S
be the complement of S and let §(S) be the cutset defined by S (i.e., §(S) ={{i, j} € E:
ieS,j¢Sori¢s, je S} Moreover, we denote by r(S) and by g (S) the optimal solution
value of the BPP associated with customer set S and the total demand of the customers in S,
respectively. Also, let E(S) denote the set of edges in G with both end-vertices in S and,
given two disjoint vertex sets Sy, S,, let E(S; : S») denote the set of edges crossing from S
to Sy (i.e., E(S):82) =48(51)NS(S,)). Finally, let 8§ ={S: S C V., |S| > 2}.

3.1 Vehicle flow formulations

The so-called vehicle flow formulations use binary decision variables to indicate if a vehicle
travels between a pair of vertices in G. In three-index models there is a specific variable for
each vehicle and vertex pair, whereas two-index models aggregate this information over the
different vehicles.

The two-index vehicle flow formulation of the CVRP was originally proposed by Laporte
et al. (1985) and is as follows. Let x;; be an integer variable which may take value {0, 1},
vii,j} € E\ {0, j} : j € V.} and value {0, 1, 2}, V{0, j}, j € V., with x;; = 1 when edge
{i, j} is traveled and xo; = 2 when a route including the single customer j is selected in the
solution. Then, CVRP can be formulated as the following integer program.

min Z d,-jx,-j (])
{i,j}eE

st. Y x;=2 (YheV), )

{i.j}es({n)
Y xi;=2[q(8)/01 (¥Se$), €)
{i.j}€s(S)

> xo=2m, 4
JjeVe

xij €{0, 1} (V{i,j} e EN{{0, j}:j € VeD, ®)

ij € {07 1’ 2} (V{O! J}V.] € Vc) (6)
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Constraints (2) are the degree constraints for each customer. Constraints (3) are the so-
called Rounded Capacity (RC) inequalities which, for any subset S of customers that does
not include the depot, impose that at least [¢(S)/ Q] vehicles enter and leave it. Constraint
(4) states that m vehicles must leave and return to the depot, while constraints (5) and (6)
are the integrality constraints.

Golden et al. (1977) formulated the CVRP using three-index binary variables xf‘j as ve-
hicle flow variables to indicate whether vehicle k travels directly from customer i to cus-
tomer j (xi"j = 1 if vehicle k travels directly from customer i to customer j, O if not).
In addition, for each vertex and each vehicle there is an assignment variable y{‘ (ieV,;
k=1, ...,m) that takes value 1 if customer i is served by vehicle k in the optimal solution,
and O otherwise. The three-index vehicle flow formulation for the CVRP is:

min Z d;j ixlk] @)
{ k=1

i,jleE
s.t. > xb=2y (YheVik=1,....m), ®)
{i,jles({n})
o oxf=2y (YSesheSk=1,....m), )
{i,j}€s(S)
doyk=1 (viev, (10)

k=1

Y v=m (1)

k=1
Y a0 (k=1.....m), (12)
ieVe
x5 e{0.1} (Vi jl e EN{0.j}:j eV k=1.....m), (13)
x; €{0,1,2} (0, j}.jeVek=1,....m), (14)
yel{o,1) (VieV,k=1,...,m). (15)

Degree constraints (8) state that each customer served by a vehicle k has exactly two incident
edges traveled by k. Constraints (9) are the subtour elimination constraints which prohibit
subtours not containing the depot. Constraints (10) impose that each customer is assigned to
exactly one vehicle and constraint (11) ensures that all vehicles are used. Finally, constraints
(12) model the demand limitations imposed by the capacity Q of each vehicle.

The three-index vehicle flow formulation for the CVRP can be extended to model the
HVRPED as follows:

min Y S did + 3 Fo 16
{i,j}eE k=1 k=1

st Y qyf <0 (k=1,...,m), (17)

ieVe

(8), (9), (10), (11), (13), (14) and (15).
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Fig. 1 Flow paths for a route of
three customers

Starting depot Ending depot

In the above model, the objective function (16) states to minimize the total routing cost plus
the total fixed cost of the vehicles used. Similarly to constraints (12), constraints (17) impose
the demand limitations imposed by the heterogeneous vehicle fleet.

3.2 Two-commodity flow formulation

The two-commodity flow formulation of the CVRP proposed by Baldacci et al. (2004)
is based on the two-commodity flow formulation introduced by Finke et al. (1984) for
the TSP.

To model single customer routes, this formulation requires the extended graph G =
(V, E) obtained from G by adding vertex n + 1 which is a copy of depot vertex 0. Thus
V=vVU{n+1,V.=V\{0,n+ 1}, E= EU{{i,n+1},i € V,} and di,41 = dy;, Vi € V..
Note that graph G has the same family of subsets § of graph G. In graph G, a route
R = (i1, iz, ..., ig)) is a simple path from vertex i; =0 to vertex ijgy =n + 1.

This formulation uses two flow variables, y;; and y;;, to represent an edge {i, j} € E of
a feasible CVRP solution along which the vehicle carries a combined load of Q units. If a
vehicle travels from i to j then the flow y;; represents the load of the vehicle and the flow
y;i represents the empty space on the vehicle (i.e., y;; = Q — y;;). The flow variables y;;,
i,j€V,i# j, define two flow paths for any route of a feasible solution: one path from
vertex 0 to vertex n + 1 is given by the flow variables representing the vehicle load, while
the second path from vertex n 4 1 to vertex 0 is defined by the flow variables representing
the empty space on the vehicle.

Figure 1 shows an example of a three-customer route for a vehicle of capacity Q = 15
and the two paths P* and P? represented by the flow variables {y;;} defining the route.
Path P“ is given by the variables representing the vehicle load: (yos, Y82, ¥29, Yon+1). For
example, the flow yog = 14 indicates that the vehicle leaves the depot with a load equal to
the total demand of the three customers. Path P# is defined by the variables representing the
empty space on the vehicle: (y,419, Y92, Y28, ¥s0). Note that y,.19 = 15 indicates that the
vehicle arrives empty at the depot. Note also that for every edge {i, j} of the route we have

yij +yi=Q.
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Let x;; be a binary variable equal to 1 if edge {i, j} € E is in the solution, 0 otherwise.
The two-commodity flow formulation for the CVRP is as follows:

min Z dijxij (18)
{i,j}eE
st Y =y =2q (ieV), (19)
jev
Z yoj =q(Ve), (20)
JeVe
Y vio=mQ—q(Vo), @1
JeVe
Z)’n+1j =mQ, (22)
JeVe
> xy=2 (VheV, (23)
{i,jres{nh)
vij +yji = 0xi;  (V{i, j} € E), 24)
yij =0,y >0 (V{i, j} € E), (25)
x;; €{0,1} (V{i, j} € E). (26)

Constraints (19)—(22) and the nonnegative constraints (25) define a feasible flow pattern
from the source vertices 0 and n + 1 to sink vertices in V, U {0}. The outflow at source
vertex 0 (20) is equal to the total customer demand, while the inflow at source n + 1 (22)
corresponds to the total capacity of the vehicle fleet. Equation (19) states that the inflow
minus the outflow at each customer i € V, is equal to 2¢;, while the inflow at vertex 0 (21)
corresponds to the residual capacity of the vehicle fleet. Constraints (24) define the edges
of a feasible solution and constraints (23) force any feasible solution to contain two edges
incident to each customer.

Note that the two-commodity formulation can be rewritten in terms of variables y;; only,
once variables x;; are substituted with variables y;; using (24). In this case, the integrality
constraints (26) should be replaced by y;; + y;; € {0, Q}, V{i, j} € E.

The two-commodity flow formulation for the CVRP has been recently extended by Bal-
dacci et al. (2009, to appear) to model the FSMF. Other FSMF mathematical formulations
have been proposed by Yaman (2006), who described six mathematical formulations, called
HVRP, to HVRP¢. The first four formulations are based on Miller-Tucker-Zemlin con-
straints, while the last two formulations use three-index vehicle flow variables to indicate
if a vehicle of a specific type travels between a given pair of customers. In addition, Yaman
(2006) made use of commodity-flow variables to eliminate subtours: model HVRPs used
aggregated commodity-flow variables, whereas model HVRPg disaggregated such variables
over the different vehicle types.

3.3 Set partitioning formulation

The set partitioning formulation of the CVRP was originally proposed by Balinski and
Quandt (1964) and associates a binary variable with each feasible route.
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Let R be the index set of all feasible routes and let a;, be a binary coefficient that is
equal to 1 if vertex i € V belongs to route £ € R and takes the value 0 otherwise (note
that age = 1, V£ € R). In the following we will use R, to indicate the subset of vertices (i.e.,
R, =1{0,iy,is,...,i,}) visited by route £ € R. Such a route represents the trip of one vehicle
leaving the depot, delivering the demands of the customers in R, \ {0}, and returning to the
depot. Each route £ € R has an associated cost ¢, that is equal to the optimal solution cost
of the TSP instance defined by R,.

Let & be a (0-1) binary variable that is equal to 1 if and only if route £ € R belongs to
the optimal solution. The set partitioning formulation for the CVRP is as follows:

min ) e @
LeR

st Y angr=1 (VieV), (28)
LeR
DE=m, (29)
LeR
£€{0,1} (VLeR). (30)

Constraints (28) specify that each customer i € V., must be covered by one route and con-
straint (29) requires that m routes are selected.

This model is valid for any type of cost matrix [d;;]. However, if the cost matrix [d;;]
satisfies the triangle inequality, then equality constraints (28) can be written as a ‘>’ in-
equality, thus obtaining the so-called set covering formulation that preserves the optimal
objective function value (see Bramel and Simchi-Levi 2002). The set partitioning formula-
tion is very general and can take into account several route constraints (e.g., time windows,
precedences, route lengths) since route feasibility is implicitly considered in the definition
of set R.

The set partitioning formulation described above remains valid if the set of routes R is
enlarged with the set ROR containing, in addition to elementary routes, non-elementary
routes, which are routes in which the vehicle is permitted to visit customers more than once.
In this case, coefficient a;, is a general integer coefficient that is equal to the number of
times customer i is visited by route £. Note that the overall integer programming formulation
remains valid, since constraints (28) ensure that the variables representing non-elementary
routes will be automatically eliminated when £ is binary.

The above set partitioning formulation can be extended to model the HVRPFD as fol-
lows. Let R be the index set of all feasible routes for a vehicle of type k € M. Each route
£ € Ry has an associated cost cé‘ . Let Rf‘ C Ry be the index subset of the routes for a vehicle
of type k covering customer i € V,.

Let slf‘ be a binary variable that is equal to 1 if and only if route £ € R; belongs to the
optimal solution. The set partitioning model is as follows:

min » Y cfEf (31)

keM LeRy
st Y Y gf=1 (VieV, (32)
keM e Rt
D g <m (VkeM), (33)
LeRy
EF 0,1} (VL e Ry, Vk € M). (34)
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Constraints (32) specify that each customer i € V, must be covered exactly by one route and
constraints (33) require that at most m; routes are selected for a vehicle of type k € M.

4 Relaxations and valid inequalities

Valid lower bounds on the VRP can be derived from the LP relaxations of the different math-
ematical formulations described in the previous section. Some of the resulting LP programs
cannot be solved directly, even for moderate size VRPs, since either the number of vari-
ables or constraints is exponential in the problem size. Thus, the lower bounds are usually
computed using cutting plane and column generation techniques. In addition, to strengthen
the relaxations, a variety of valid inequalities have been described in the literature for the
different formulations.

In this section, we review the most effective valid inequalities described in the literature
together with a comparison of various CVRP relaxations.

4.1 Valid inequalities for the two-index formulation

Valid inequalities for the vehicle flow formulations have been described by Laporte and
Nobert (1984), Cornuéjols and Harche (1993), Fischetti et al. (1995), Augerat et al. (1995)
and Letchford et al. (2002) and a description of some of them for the two-index formulation
can be found in Naddef and Rinaldi (2002). Some of these inequalities are rather intricate,
and not all of them have been successfully implemented within a branch-and-cut algorithm.
Thus, in this section, we will only provide a summary of the main known results. Conditions
under which some of these inequalities induce facets of the CVRP polytope are discussed in
Cornuéjols and Harche (1993).

Valid inequalities for the two-index formulation similar to the RC inequalities, can be
obtained according to the way in which the right-hand side of constraints (3) is computed.
Fractional Capacity (FC) inequalities take the form:

s
> x,-jZZE, VS e 8. (35)
{i.j}€d(S) Q

Note that as g (S) can be smaller than Q, the following Subtour Elimination (SE) inequalities
are not dominated by the FC inequalities:

> xijz2, VSes (36)
{i.j}es(S)

Given the set of all feasible routes R, let P denote the index set of all feasible
m-partitions P = {{, ..., £,} of V.. Let R(S) be the minimum number of vehicles needed
to satisfy all customer demands in S in a feasible m-partition. For any nonempty set S C V,,
the value R(S) can be computed as

R(S) = min{|{t; € P R, NS # D)), (37)

For a given set S, we have R(S) > r(S) > [¢(S)/ Q] = max{1, ¢(S)/0}.

A CVRP example, proposed by Cornuéjols and Harche (1993), having eight customers
and four vehicles, each one with capacity Q = 7, where the customer demands are ¢; =5,
gGr=q3s=q1=3,q95 =q¢ = q7 =4, qs = 2, and S is given by the first four customers, shows
that R(S) can be different from r(S). Indeed, for the example, we have R(S) =4, r(S) =3,
and [q(S)/Q1=2.
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Using the definition of R(S), Augerat et al. (1995) introduced the Generalized Capacity

(GC) inequalities. Let B = {1, ..., S;} be a collection of ¢ (> 1) disjoint subsets of V., then
t
Yo xy > 2min Zm& €P:R,NS, ;é(z)}l} (38)
h=1{i,j}€3(Sp)

is a valid inequality for the CVRP.

A weak version, and more tractable valid inequalities than GC can be obtained as follows.
Let H be a subset of V, containing all the subsets in B and assume that g (S;) < Q holds
for h =1,...,t. Then, define r(H|Si, Sz, ..., S;) to be the optimal solution value of a bin
packing problem with one item of size ¢; for each i € H \ |J},_, Si, where all items in each
subset S € B are constrained to stay together in the same bin. Then, if H = V,, the Weak
Generalized Capacity (WGC) inequality is defined as

t
STox+d) D xip =2 +2r(VelS), Sa. L S, (39)

{i,jyes(Ve) h=1{i,j}€8(Sy)
or, equivalently, since Y ; jcsy,) Xij = 2m, as

t

D0 =2 +20(Vel St 2L S) — m). (40)

h=1{i,j}es(Sp)

If in inequality (40) set V. is replaced by any of its subsets H containing all the sets Sj,,
h=1,...,t, then the resulting inequality

> x,j+Z S %z 2+ 2 (HIS1 Sh . S) 1)

{i,j}es(H) h=1 {i,j}e8(Sp)

is a valid CVRP inequality, called Framed Capacity (FrC) inequality, which generalizes
inequality (40).

Araque et al. (1990) defined the multistar inequalities for the CVRP with unit demands.
These inequalities take the form:

o Z xij+ B Z Xij =Y (42)

{i,j}eE(N) {i,j}€E(N:S)

where N C V, is the so-called nucleus, S C V. \ N is the set of so-called satellites, and «,
B, v are constants which depend on |N| and |S|. Araque et al. also introduced the partial
multistar inequalities, which take the form:

o Z xij+/3 Z Xij <V, (43)

{i.j}€E(N) {i.j}€E(C:S)

where C C N is the set of so-called connector vertices, and, again, «, 8 and y are constants
which depend on |N|, | S| and |C].

Letchford et al. (2002) generalized the multistar and partial multistar inequalities to the
CVREP, yielding the so-called homogeneous multistar and partial multistar inequalities. The
same authors also described a procedure called polygon procedure, that can be used to gen-
erate all known homogeneous inequalities in the literature, along with some new ones.
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Gouveia (1995) proposed a related, but not identical, set of valid inequalities, called
Generalized Large Multistar (GLM) inequalities:

Z xijzé(q(S)+Z£I.f< Z x“’))’ vses. “44)

{i.j}€s(S) jes {i,h}eE(S:{j})

It is easy to see that the GLM inequalities dominates the FC inequalities. These inequal-
ities have been called by Letchford et al. (2002) inhomogeneous, since the coefficients of
the edges in E(S : {j}) vary depending on the vertex j € S involved. Letchford et al. intro-
duced additional valid inhomogeneous inequalities, the Knapsack Large Multistar (KLM)
inequalities, which generalize the GLM inequalities:

3 xij2%<zai+zaj > x,-h>, vSes, (45)

{i,j1e8(S) ieS jes {i,h}eE(S:{j})

where «, 8 > 0 are such that the inequality ZieVE a;y; < B is valid for the 0-1 knapsack
polytope KP(Q, q) = conv{y € {0, 1}l : 3, g¢;y; < Q}. Their validity follows from the
fact that as Zich o;y; < B is a valid inequality for KP(Q, q), then any feasible CVRP
solution must also be feasible for a modified CVRP instance in which the vector of the
demands ¢ and the vehicle capacity Q are replaced by o and S, respectively. Inequality (45)
is then the GLM inequality for the modified CVRP instance.

Given an edge subset F C E, assume that there is no feasible CVRP solution which uses
only edges in F. Then, at least one edge belonging to set £ \ F must be in the solution.
Thus, the following inequality, called hypotour (HI) inequalities (see Augerat 1995), is a
valid CVRP inequality:

> ox=l (46)

{i.J}ES(E\F)

Other classes of valid inequalities have been presented for the integer polytope associated
with the two-index formulation. In particular, some of the other valid inequalities are based
on the successful results of polyhedral combinatorics developed for the TSP by Chvital
(1973) and by Grotschel and Padberg (1979, 1985). These include, among others, comb
inequalities, path-bin inequalities, etc. (see Naddef and Rinaldi 2002).

4.2 Valid inequalities for the two-commodity formulation

All the valid inequalities known for the CVRP are clearly valid inequalities for the two-
commodity formulation. These inequalities are expressed in terms of variables x;; defined
for the two-index formulation, but can be added to the two-commodity formulation once
variables x;; are replaced with variables y;; using equations y;; + y;; = Qx;;, V{i, j} € E.
In addition, Baldacci et al. (2004) have proposed the following valid inequalities, called
commodity flow (CF) inequalities:

(Q—q/)yij—q;y;i=0

, V{i,jl€E. 47
(Q—aq1)yji —qiyij =0

Baldacci et al. (2004) have shown that the LP relaxation of the two-commodity formulation
with the addition of CF inequalities (47) satisfies the GLM inequalities.
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Baldacci et al. (2009, to appear) introduced new classes of valid inequalities that explic-
itly take into account the heterogenous fleet and that are used to strengthen the linear pro-
gramming relaxation of the two-commodity formulation used to model the FSMF. Yaman
(2006) investigated the use of different valid inequalities to strengthen the linear relaxation
of the different mathematical formulations proposed for the FSMF. The following families
of valid inequalities were added by Yaman (2006) to possibly improve the lower bounds:
covering, SE and GLM inequalities. Baldacci et al. (2009, to appear) described also new
covering-type inequalities, that generalize those proposed by Yaman (2006).

4.3 Valid inequalities for the three-index formulation

In the case of the three-index formulation, it is quite simple to see that any solution x of
the three-index formulation can be transformed into a feasible solution of the two-index
formulation by using the setting:

m

xij=y xf V(i j)leE. (48)

k=1

Then, any valid inequality in the form ax < 8 for the two-index formulation can be trans-
formed into a valid inequality for the three-index formulation as follows:

Y a ) i <b (49)
=1

i.jl€E Kk

The resulting families of valid inequalities have been called by Letchford and Salazar
Gonzilez (2006) aggregated inequalities. In addition, any valid inequality for the so-called
multiple knapsack polytope, conv{(y', ..., y™) € {0, 1} : (10), (12) and (15) hold}, yields
a valid inequality for the three-index formulation that only involves variables y. Moreover,
if we relax the equations (10) in, say, a Lagrangean fashion, the three-index formulation
decomposes into m independent identical subproblems. Each subproblem corresponds to
finding a capacitated circuit (i.e., a circuit passing through a set of vertices whose total de-
mand does not exceed Q) passing through the depot. Therefore, any valid inequality for the
capacitated circuit polytope yields a valid inequality for the three-index formulation which
involves only a single k € {1, ..., m}. These two last families of valid inequalities have been
called Multiple Knapsack (MK) inequalities and One-Vehicle (OV) inequalities, respectively
(see Letchford and Salazar Gonzalez 2006).

4.4 Valid inequalities for the set partitioning formulation

Valid inequalities for the set partitioning formulation can be derived by noting that any
solution & of the set partitioning formulation can be transformed into a solution x of the
two-index formulation by setting:

xj=Y n5E. Vi jleE, (50)

teR
where the coefficients nfj are defined as follows:
— if £ is a single customer route covering customer /, then néh =2 and nfj =0,V{i,j}e

EN\A0, h};
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— if £ is not a single customer route, then nf'j =1 for each edge {i, j} covered by route &
and 7;; = 0 otherwise.

Then, any CVRP valid inequality designed for the two-index formulation can be transformed
into a valid inequality for the set partitioning formulation. The family ¥ of these inequalities
can be expressed in a general form as:

Y x=p. tefF, (51

{i,jleE

and using (50), inequalities (51) become the following valid inequalities for the set parti-
tioning formulation:

Y ' (R)& =B, teF, (52)

teRr

where o (R,) = Z{i’j}eE afjnfj.

Results on which inequalities are implied by the LP relaxation of the set partitioning
formulation have been reported by Baldacci et al. (2004) and by Letchford and Salazar
Gonzélez (2006). It can be easily shown that any fractional set partitioning solution satisfies
the degree equations (2) and the bound inequalities x;; < 1,V({i, j} € E\ {{0, j}: j € V.}
and xo; <2,V{0, j}, j e V..

In particular, Baldacci et al. (2004) have shown that the LP relaxation of the set partition-
ing formulation implies the FC, SE and GLM inequalities. More precisely, let us consider
for each set S € 4 the surrogate constraint obtained by adding (28) corresponding to the
customers in S after having multiplied the equation associated with i € S by ¢;:

Y bS)E=4q(S), VSeSs, (53)

LeR(S)

where b,(S) = Ziesqt'ail’ Vie R,and R(S)={L € R: R, NS #P}. Since by(S) <
min[Q, Q — by(S)], (53) imply that the LP relaxation of the set partitioning formulation
satisfies the following inequalities:

> ézzmax[1 s 1 3 bz(g)&], VS € 8. (54)

LeR(S) Q Q LeR(S)

Note that the right-hand-side of (54) can be smaller than [g(S)/ Q1 for some S € 4§, however,
Baldacci et al. (2004) showed that ), R & = [q(8)/ 01 for any subset S € 4 such that
b(S) <30, VL€ R(S).

By noting that any route £ € R(S) contains at least two edges, one having an ending
vertex in S and the other in S U {0}, the following inequality holds for any S € 4:

Yo nfE=2 ) &, (55)

LeR (i,j}es(S) LeR(S)
and as
b$)=Y q; D ubke (56)
j€s  {LMEES:{h
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from inequalities (54) and expression (50) we obtain the following valid inequalities:

> x,-jZZmax{l ICINEY Z > x,h}, (57)

(i.j}es(S) ]Es (i h}eE(S:

for all S € 4, thus the LP relaxation of the set partitioning formulation satisfies SE, FC
and GLM inequalities. From the definition of KLM inequalities, it is easy to note that the
LP relaxation of the set partitioning formulation implies also the KLM inequalities. More-
over, Letchford and Salazar Gonzalez (2006) have shown that the LP relaxation of the set
partitioning formulation implies by projection some hypotour-like inequalities.

It is quite easy to find examples of fractional set partitioning solutions violating the fol-
lowing inequalities:

Y p($E=2[q(8)/Q1, VSeS, (58)

LeR(S)

where p¢(S) = D i1escs) nfj, which are the projections of the RC inequalities in the set
partitioning space. Using inequalities (54), Baldacci et al. (2008b) have observed that in-
equalities (58) can be strengthened as follows:

D E=T1q(8)/Q1, VSes. (59)

LeR(S)

Indeed, inequalities (59) are a lifting of inequalities (58). The following example, due to
Baldacci et al. (2008b), show a fractional set partitioning solution satisfying inequalities
(58) but violating inequalities (59), for a given set S.

Consider a subset of customers S = {iy, iy, i3, i4, i5, i} having demands equal to g;, =
gi, = qi, = qis = 20, gi; = g;; = 70, while the vehicle capacity is Q = 100. Let £ be

a fractional solution where the variables corresponding to the five routes R;, Ry, ..., Rs
have values & = & = --- =& = 0.5 and where Ry N S = {iy, i2, i4, 15}, Ry N S = {i, i3},
R3N S ={iy,ic}, ReN S ={is, ic} and Rs NS = {iy, i3}. Thus, [¢(S)/ Q] =[220/100] =3
and p;(S) =4, p2(S) =--- = ps(S) = 2. This solution satisfies constraint (58) for S since:

481 4 28, + 283 + 28, + 255 = 6 =2[¢(S)/ Q1.

but violates the corresponding constraint (59) since:

E+&E+&5+E+E5=25<5[q(5/0T.

Baldacci et al. (2008b) have considered other valid inequalities which have been designed
for the general Set Partitioning problem. Let H = (R, &) be the conflict graph where each
vertex corresponds to a route and the edge set & contains every pair {£, £}, V¢, ¢’ € R,
¢ < ¢, such that R, N Ry # {0}. Let C be the set of all cliques of H. Then, the following
inequalities, called clique inequalities:

Ya<icee, (60)

teC

are valid inequalities for the set partitioning formulation.
Inequalities (59) and clique inequalities (60) can be easily extended to the HVRPFD case
(see Baldacci and Mingozzi 2009).
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4.5 Comparison of various CVRP relaxations

Before the works of Baldacci et al. (2004) and Letchford and Salazar Gonzalez (2006)
no systematic study was performed on how the different CVRP formulations presented in
Sect. 3 relate to each other. The aim of this section is to briefly review the main results
concerning dominance relations among the different LP relaxations of the various CVRP
formulations.

A first result, due both to Baldacci et al. (2004) and Letchford and Salazar Gonzalez
(2006), shows that the lower bound obtained by the LP relaxation of the two-index formu-
lation with the RC inequalities replaced by the GLM inequalities coincides with the lower
bound obtained from the LP relaxation of the two-commodity formulation plus the CF in-
equalities. Note that the number of variables and constraints of the LP relaxation of the
two-commodity formulation plus the CF inequalities increases polynomially with the size
of the problem, whereas the LP relaxation of the two-index formulation with (3) replaced
by (44) is exponential in size. On the other hand, the separation problem for the GLM in-
equalities can be solved in polynomial time (see Letchford et al. 2002).

Concerning a comparison between the two-index formulation and the three-index for-
mulation, Letchford and Salazar Gonzalez (2006) have shown that if we consider for the
three-index formulation aggregated inequalities, OV inequalities and MK inequalities only,
one can construct a cutting plane algorithm based on the two-index formulation which gives
lower bounds of the same quality. What is more, from a computational point of view, a cut-
ting plane method based on the two-index version, having far fewer variables, is likely to
run much faster in practice.

If we compare the set partitioning formulation and the two-index formulation, from the
observations made in the previous section, the lower bound obtained from the LP relaxation
of the set partitioning formulation is at least as good as the one obtained by using degree
equations, bounds and KLM inequalities in the two-index formulation.

Finally, allowing non-elementary routes in the set partitioning formulation weakens the
formulation. Indeed, it is quite easy to find feasible solutions of the LP relaxation of the
set partitioning formulation with non-elementary routes which do not satisfy even the SE
inequalities.

5 Branch-and-cut methods

The first sophisticated branch-and-cut algorithm based on the two-index formulation for
the CVRP was proposed by Augerat et al. (1995). The algorithm used a variety of valid
inequalities, such as the RC, GC and HI inequalities described in the previous section. These
last inequalities led to significant improvements in the quality of the lower bound. A detailed
description of the work of Augerat et al. (1995) can be found in Naddef and Rinaldi (2002).

Based on the original work of Augerat et al. (1995), other branch-and-cut methods based
on the two-index formulation have been recently proposed by Ralphs et al. (2003) and
Lysgaard et al. (2004). Ralphs et al. (2003) described a branch-and-cut algorithm based
on the two-index formulation and on the addition of the RC inequalities in a cutting plane
fashion. Lysgaard et al. (2004) used a variety of valid inequalities, including the RC, FrC,
strengthened comb, multistar, partial multistar, extended HI inequalities, and classical Go-
mory mixed integer cuts.

Baldacci et al. (2004) described a branch-and-cut algorithm based on the two-commodity
formulation of the CVRP, where the RC and CF inequalities are used in a cutting plane
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fashion to strengthen the lower bound obtained by the LP relaxation of the two-commodity
formulation.

Below we briefly review two of the most important aspects of any branch-and-cut algo-
rithm: the separation algorithms and the branching strategies.

5.1 Separation algorithms

The most important aspect of any branch-and-cut algorithm is designing exact or heuristic
algorithms that effectively separate a given fractional point from the convex hull of the
integer solutions. Given a (fractional) point x*, the separation problem associated with a
glven family ¥ of valid inequalities consists of finding a member ax > 8 of ¥, such that
ax* < B.

Several heuristic and exact separation algorithms have been designed for the separation
problems associated with the valid inequalities described in Sect. 4. A detailed description
of some of these algorithms can be found in Augerat et al. (1995, 1998), Naddef and Rinaldi
(2002) and Lysgaard et al. (2004).

The FC, SE, GLM and KLM inequalities can be separated in polynomial type. Indeed, if
we consider the KLM inequalities (45), which include the FC and GLM ones, since

> o= Y ot ¥
{i,j1€s(S) {i,j}eE({0}:S) {i,j}€E(S:S)
and
Z Xip =2=x0; + Z Xin + Z Xih,
{i.h}es({j}) {i.h}eE({j}:S) {i,h}eE({j}:S)

the inequalities can be rewritten as:

D mit )

{i.jteE({0}:5) {i,j}€E(S:S)
> Z <xoj Z Xip + Z xih)
Jjes {i.h}eE{j}:S) {i,h}eE{j}:S)
+ = Z(x] > x. VSes, (61)
jeE {i.h}eE(S:(j})

or, equivalently, as
Z<1_ >x0’+z< Z ﬂ it Z ﬁxh’>
=N {j.hyes({jh {h,jres{jh)

+ ) A=(+a)/Bx;

{i,j}eE(S:S)
oy
ZZ( > ﬁx1h+ > Fxh,-), VS e 8. (62)
JjeVe Mj.hyes{jh {h.jres{jh

The term at the right-hand-side of the above inequality does not depend on S and if
a; < B,VieV,,and x;; =0 if o; + o; > B, then all coefficients are nonnegative. Then,
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given ¢; and B and a fractional solution x*, the most violated KLM inequality can be found
by computing a minimum s—¢ cut on an undirected capacitated graph G = (V, E) with
V =V,U{s,t}. The edge setis E = E*U {{s, j}:j € V.JU{{j,t}: j € V.}. Every edge
{s, j} is associated with a capacity (1 — «;/B)xg;, while a capacity » ; ycs¢i "‘F"x;fh +
Z{h,j}eé({j}) %”x;‘j is assigned to each edge {j, t}. The remaining edges {i, j} are associ-
ated with capacities {(1 — (o; + aj)/ﬂ)x,.*j}. Let (S,V \ §) be the minimum s—¢ cut of
G and assume that ¢ € S. One can see that if the cut capacity is strictly smaller than
ZjeVp(Z{j,h}eé({j]) %hx}“h + Z{h’j}es(m) %x,’;j) then vertex set S = S\ {¢} defines the most
violated KLM inequality. Otherwise, no such violated inequality exists.

Although the SE, FC, GLM and KLM inequalities can be separated in polynomial time,
their use tends to be ineffective in the context of branch-and-cut algorithms. Valid inequali-
ties which play a crucial role in the development of a cutting plane algorithm for the CVRP
are the RC inequalities. However, the separation problem for these constraints was shown
to be strongly NP-hard (see Naddef and Rinaldi 2002). Thus, a number of heuristic algo-
rithms have been designed for their separation (see Augerat et al. 1995, 1998; Lysgaard et al.
2004), and one of the most simple and effective techniques is the so-called greedy random-
ized algorithm. The greedy randomized algorithm is an iterative procedure that is applied
to a number of customer subsets § C § generated a priori. At each iteration, the following
procedure is repeated for each S € 8.

1. Leti* € V. \ S be the customer such that:

ko *
> wem| Yol
(j.h}

{J.h}ed(E(S:{i* D) €8(E(S:i}))

2. If the current solution x* violates the RC inequalities corresponding to the subset S’ =
S U {i*} then this inequality is added to the LP program, S is updated as S = S’ and the
procedure is repeated until S contains all the customers in V..

The initial family 4§ is usually built by randomly generating a certain number of customer
subsets.

Fukasawa et al. (2006) implemented exact separation procedures for the RC inequalities
based on mixed-integer models. They observed that the heuristic procedures typically de-
crease the separation times by two orders of magnitude without any significant loss in terms
of bound quality. Ralphs et al. (2003) described a decomposition-based separation method-
ology for the RC inequalities that takes advantage of the ability to solve small instances
of the TSP efficiently. Specifically, when standard separation heuristic procedures fail to
separate a candidate point, they attempt to decompose it into a convex combination of TSP
tours; otherwise the tours present in this decomposition are examined for violated capacity
constraints; if not, the Farkas’ lemma provides a hyperplane separating the point from the
TSP polytope.

Letchford et al. (2002) described separation heuristic algorithms for the multistar and
partial multistar inequalities, while separation algorithms for the other classes of inequal-
ities, including the comb, FrC and HI inequalities, have been described by Augerat et al.
(1995) and Lysgaard et al. (2004).

The complete set of the separation routines used by Lysgaard et al. (2004) can be found
in the software package CVRPSEP (see Lysgaard 2003), which is publicly available.
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5.2 Branching strategies

Two branching strategies have been used by the different branch-and-cut algorithms for
the CVRP proposed in the literature: the branching on sets strategy and the branching on
variables strategy.

The branching on sets strategy has been introduced by Augerat et al. (1995). This
strategy consists of choosing a set S, S € V,, |S| > 2, for which 0 < p(S) < 2, where
p(S) = Z{i,j}eB(S) xij —2[q(S)/ Q1 , and creating two subproblems: one by adding the con-
straint ) ;5505 Xij = 2[q(S)/ Q1 and the other by adding the constraint  ; ;55 Xij =
2[q(8)/ 01 +2.

The selection of the subset S is usually carried out in two steps: first, a candidate list of
subsets is built heuristically and, second, one subset is selected from this list according to
some criterion. Some of the strategies used to define the candidate list are the following:

— Select set S with maximum demand.

— Select set S which is farthest from the depot.

Select set S such that } ; 55 Xij is as close as possible to 3.

— Select set S such that }_; .5, Xij is as close as possible to 2.75.

The set S to branch on is then selected by LP testing (see Applegate et al. 2006), i.e., by
solving both linear programs induced by the two possible branches. The best set of the
candidate list is then chosen as the one for which the minimum of the two objective function
values is the largest.

When a suitable set S cannot be found, the branching on variables strategy is adopted.
This involves the selection of an edge {7, j} having a fractional value of x;;, and the gener-
ation of two subproblems: one by fixing x;; = 1 and the other by fixing x;; = 0. The edge
{i, j} is selected in such a way that x;; is as close as possible to 0.5. Ties are broken by
choosing the edge {i, j} having maximum cost d;;.

6 Branch-and-cut-and-price methods

Fukasawa et al. (2006) suggested an approach to combine both two-index and set parti-
tioning formulations using equations (50) linking the two-index variables x with the set
partitioning variables &. Let a g-route (see Christofides et al. 1981) be a not necessarily
simple cycle covering the depot and a subset of customers, whose total demand is equal to
q . Note that the set of g-routes contains the set of feasible CVRP routes. In the formulation
considered by Fukasawa et al. (2006), the variables correspond to the set of g-routes, while
the set of constraints is defined by the set partitioning formulation constraints plus feasible
CVRP inequalities designed for the two-index formulation. In addition to the RC inequal-
ities, they also used the FrC, strengthened comb, multistar, partial multistar, GLM and HI
inequalities, all presented in Lysgaard et al. (2004). Since the resulting formulation has an
exponential number of both columns and rows, column and cut generation procedures for
computing the lower bound and a branch-and-cut-and-price algorithm for solving the CVRP
were proposed.

More precisely, Fukasawa et al. (2006) considered the following relaxation of the CVRP:
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min Zczég (63)
eR
st Y agk =1 (YieV), (64)
eR
da=m, (65)
teR
D A (R)&E =B (VeF), (66)
teR
£>0 (VLeR), (67)

where o' (R;) = Z{i,_/’}eE afj nfj and the set of routes R corresponds to the set of g-routes.
Note that in this case, the coefficient nfj is a general integer coefficient that is equal to the
number of times edge {i, j} is traversed by g-route £. In the formulation, the set ¥ represents
the family of the different valid inequalities designed for the two-index formulation (i.e., the
FrC, strengthened comb, multistar, partial multistar, GLM and HI inequalities).

Fukasawa et al. (2006) used a pricing and cut generation technique to solve the LP pro-
gram above. At first, the LP program (i.e., master problem) includes only the degree con-
straints (64) and (65) and a restricted set of g-routes. The resulting lower bound has been
integrated by Fukasawa et al. in an enumeration scheme to solve the CVRP to optimality.
The enumeration scheme is based on the branching on sets strategy described in Sect. 5.2.

The cut generation is performed by converting a solution £ of the LP program into a
corresponding solution x using (50). If this solution is fractional, it is given as input to
the CVRPSEP package in order to separate the different classes of valid inequalities. The
violated inequalities found are then translated back into the £ variables to be introduced in
the LP program.

The pricing subproblem consists of finding g-routes with minimum reduced cost. Al-
though this problem is NP-hard, it can be solved in pseudo-polynomial time as follows.
Let u = (ug, uy,...,u,) be a vector of dual variables, where u;,i € V., and u, are asso-
ciated with constraints (64) and (65), respectively. Moreover, let w,, t € ¥, be the dual
variables of constraints (66).

Given a dual solution (&, W), the reduced cost of any g-route £ € R is equal to:

Cp=cp— Zailﬁi — Zat(Rz)@p (68)

ieV teF

Define the modified cost d; ; of edge {i, j} with respect to the dual solution (i, ) as follows:

- | . > o
dij=dij—Eui—iuj—;otfjw,, V{i,jl € E. (69)

It is easy to see that for a given ¢ € R, Cp = Z“.j)eE nfjgij. Then, the g-route having the
most negative reduced cost can be computed as follows.

Let f(g,1) be the cost of the least cost path, not necessarily simple, P = (0, i1, ..., i),
with iy =i, from the depot O to customer i with total load ¢ = ZLI gi;- Such a path is
called g-path. A g-path with the additional edge {0,i} is called g-route and has cost
f(q,i) + dp;. The g-path functions, with the additional restriction imposing that the path
should not contain loops formed by three consecutive vertices (see Christofides et al. 1981),
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can be computed in pseudo-polynomial time with a complexity of O(n%Q). Given a dual
solution (&, W), the g-route having the most negative reduced cost (if any) can be computed
as follows:

(i) compute g-path functions f(.) using the modified edge cost d;
(ii) let 8;, i € V., be computed as 8(i) = min, <4<o{ f(q,i) + do;} and let g, be the value
of g corresponding to the minimum;
(iii) compute i* = argmin; .y, {3(i)}.

Then, the most negative g-route (if any) has cost f(g;,i*) + doi+.

As usual in column generation, Fukasawa et al. (2006) found to be computationally con-
venient to add at each iteration more than one g-route having negative reduced cost. This op-
eration has been embedded in the dynamic programming procedure used to compute g-path
functions f(.). Additional features of the branch-and-cut-and-price algorithm of Fukasawa
et al. (20006) are:

1. Cycle elimination. To strengthen the formulation, s-cycle-free g-route (with s up to 4)
have been computed.

2. Heuristic acceleration. In order to speed up the lower bound computation, different
heuristic procedures are used to produce negative reduced cost g-routes. When no nega-
tive g-route is found using the heuristics, the full dynamic programming algorithm is run
to check if none exists.

3. Dynamic selection of column generation. The master problem is usually highly degen-
erate and degeneracy implies alternative optimal dual solutions. Consequently, the gen-
eration of new columns and their associated variables may not change the value of the
objective function of the master problem, the master problem may become large, and
the overall method may become slow computationally. Moreover, in some CVRP in-
stances, the increase in the lower bound value with respect to the one achieved by the
pure branch-and-cut method is very small and is not worth the computing time required
by the additional column generation approach. Thus, the exact algorithm presented by
Fukasawa et al. (2006) decides at the root node, according to the best balance between
running time and bound quality, either to use the pure branch-and-cut method or the
branch-and-cut-and-price strategy.

Choi and Tcha (2007) proposed lower bounds for the FSMF based on the set partition-
ing formulation, that were computed by using g-route relaxation and column generation
techniques. These authors also described lower bounds for the FSMFD and the FSMD.

An exact method for the FSMFE, FSMFD and FSMD variants was recently proposed by
Pessoa et al. (2009, to appear). These authors extend to the FSMF, FSMFD and FSMD vari-
ants the branch-and-cut-and-price method proposed for the CVRP by Fukasawa et al. (2006)
and described above.

7 Set partitioning with additional cuts

Baldacci et al. (2008b) proposed an exact method based on the following set partitioning
formulation with additional cuts:

min ZC[S@ (70)
leR

S.t. Zai(& =1 (VieV), (71)
LeR
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Y E=m, (72)

LeR

D & =10q(5)/Q1 (VSe¥), (73)
LeR(S)
D o (R)& =B (VreF), (74)
LeR
Y & <1 (vCeo), (75)
teC
& €{0,1} (VLeR), (76)

where o' (R¢) = Y iyep @ nfj and again the set F represents the family of the different
valid inequalities designed for the two-index formulation. Constraints (73) and (75) cor-
respond to the strengthened capacity constraints and clique inequalities, respectively, de-
scribed in Sect. 4.4.

The method proposed by Baldacci et al. (2008b) is based on a bounding procedure that
computes a lower bound on the CVRP by finding a near-optimal solution of the dual of
the LP relaxation of the integer problem above. Let u = (ug, uy, ..., u,) be a vector of dual
variables, where u;, i € V., and u are associated with constraints (71) and (72), respectively.
Moreover, let vs, S € 8, w;, t € F, and g¢, C € C, be the dual variables of constraints (73),
(74) and (75), respectively. The dual problem is as follows:

max Y u; +muo+ Y [q($)/Qlvs+ ) _Bw + ) gc (77)
eV Ses teF CeC

S.t. Za,-gu; + Zb[(S)US
ieV Ses

+) @ ROw + Y ge<e (VEeR), (78)
teF CeCy

u;eR (VieV), (79)
vs >0 (VSed), (30)
w, >0 (VteF), (81)
gc <0 (VCe0), (82)

where C; = {C € C : £ € C} and the coefficient b,(S) is equal to 1, V¢ € R, such that
R, NS # @ and b,(S) = 0 otherwise.

Given a near optimal dual solution (u’, v’, w’, g’) of value 7/, the exact method of Bal-
dacci et al. (2008b) consists of finding, by means of the integer programming solver CPLEX
(2006), an optimal integer solution of the set partitioning formulation with additional cuts
resulting from the following reductions:

1. the route set R is replaced with the subset R’ C R containing all the routes whose
reduced cost, with respect to the dual variables (u', v’, w’, g’), is smaller than the gap
zup — 7/, where zy p is a valid upper bound on the CVRP;

2. the set of constraints (73), (74) and (75) is replaced by the set of active constraints which
are generated during the lower bound computation.
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The effectiveness of the method is based on having an efficient procedure for generating a
near optimal dual solution (u’, v, w’, g’). As the dual solution gets better, the reduced costs
of the routes of an optimal CVRP solution get smaller and, hopefully, the size of subset R’
that must be generated to find an optimal solution gets smaller.

Baldacci and Mingozzi (2009) presented an exact algorithm for the HVRPFD that gener-
alizes the bounding procedures and the exact method for the CVRP described above. They
introduced new bounding methods that are particularly effective when the vehicle fixed cost
contribution to the total cost is relevant. It is worth noting that the exact algorithm proposed
for the HVRPFD by Baldacci and Mingozzi is able to solve all the heterogeneous VRP
variants listed in Table 1.

Below we briefly review two of the key ingredients of the method used by Baldacci et
al. (2008b) and by Baldacci and Mingozzi (2009): the procedure used for generating a near
optimal dual solution and the method used to generate feasible CVRP routes.

7.1 Bounding procedure

The bounding procedure used to compute a near-optimal solution of the dual problem is an
additive bounding method that computes a lower bound on the CVRP as the sum of the solu-
tion costs obtained by three heuristics, called H', H? and H? for solving the dual problem.
The procedure is based on the additive method of Fischetti and Toth (1989) for combinator-
ial optimization problems and it extends the bounding procedure proposed by Baldacci et al.
(2006) for the asymmetric VRP on a multi-graph. The three heuristic procedures are used in
sequence and do not require the a priori generation of the entire route set R.

Both Procedure H' and H? consider capacity inequalities (73) and are based on the
following theorem.

Theorem 1 (Baldacci et al. 2008b) Associate penalties 1; € R, i € V.., with constraints (71),
Ao € R with constraint (72) and os > 0, S € &, with constraints (73). Define

ce — MRy) — o (Ry)
Zievc dieqi

b; = g; mi , VieV, 83
q %25,‘.{ } i€ (83)
where R; C R is the index subset of the routes covering customer i € V., A(Ry) =
Z,.Ev( aiehi and 0 (Ry) =Y 5.4 be(S)os.
A feasible solution (u,v,w,g) of the dual problem of cost z(A, o) is given by setting
w =0, g =0 and by computing u and v according to the following expressions:

Lt,‘:bi-f-)x,', ieV,, Uy = Ao and Vg = Oy, Ses. (84)

Note that expressions (83) cannot be used directly as they involve the entire route set R.

Baldacci et al. (2008b) used procedures H' and H?. In particular, H' is an extension of
the bounding method proposed by Christofides et al. (1981) and it is based on the g-route
relaxation of the CVRP route. H? is a column and cut generation procedure that considers
feasible CVRP routes, but solves the master problem using Lagrangean relaxation. Both H'!
and H? use subgradient optimization procedures to solve max, wlz(A, )}

The last procedure, procedure H3, is a column and cut generation procedure based on
the simplex method and that considers both capacity and clique inequalities. It is worth
mentioning that Baldacci et al. (2008b) found it to be computationally convenient to con-
sider capacity and clique inequalities only, as the improvement to the lower bound value
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given by the valid inequalities designed for the two-index formulation is not worth the extra
computing time required.

In procedure H?, the capacity constraints (73) are heuristically separated by converting
a solution & of the master problem into a corresponding solution x using equations (50). If
this solution is fractional, it is given as input to the CVRPSEP package in order to find any
subset S whose RC inequality (3) is violated by x. Then, for any such S, the corresponding
constraint (73) is added to the master problem.

The separation problem associated with the clique inequalities (75) is strongly
NP-hard as it corresponds to find the maximal weighted clique of the conflict graph as-
sociated with a given fractional solution (see Garey and Johnson 1990). Nevertheless, Bal-
dacci et al. (2008b) found it to be computationally convenient to separate clique inequalities
using the CLIQUER 1.1 package Niskanen and Ostergard (2003), which is composed of
a set of C routines for finding cliques in an arbitrary weighted graph based on the exact
branch-and-bound algorithm developed by Ostergard (2002).

Baldacci and Mingozzi (2009) proposed a new integer relaxation of the HVRPFD,
called RP. The relaxation can provide a better lower bound than the linear programming
relaxation of the set partitioning formulation of the HVRPFD for those HVRPFDs where
the vehicle fixed cost contribution to the optimal cost is relevant or dominates the routing
cost contribution.

RP involves two types of integer variables: & € {0,1}, i € V., k € M and y; € Z,
k € M. Variable &;; is equal to 1 if and only if customer i € V. is served by a vehicle of type
k € M. Variable y; represents the number of vehicles of type k used in the solution.

Let Bix be the marginal routing cost for covering customer i € V. with a vehicle of type
k € M. We assume that the values B;;, i € V., k € M, satisfy the following inequalities:

Y Bu<ch Vee R VkeM. (85)

: k
i€ER,

It can be shown that the following integer problem, called RP, provides a valid lower bound
on the HVRPFD for any solution §;; of inequalities (85).

min Y 3" Buki+ Y Fiy (86)

keMieV, keM

st Y qiEn=q(Vo), (87)
keM i€V,
Y aifin < Qv (Vke M), (88)
ieVe

i <mp (VkeM), (39)
£r€{0,1} (VieV.,VkeM), (90)
v €ZT (VkeM). 91)

Relaxation RP is used by two bounding procedures, called DP' and DP?, that correspond
to two different methods for computing B;; satisfying inequalities (85). DP' uses g-route
relaxation while DP? uses column generation. Both procedures are based on a dual ascent
procedure and solve problem RP by dynamic programming.
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7.2 Route generation algorithm

The exact method of Baldacci et al. (2008b) and Baldacci and Mingozzi (2009) use a dy-
namic programming procedure, called GENROUTE, to generate feasible CVRP routes. Pro-
cedure GENROUTE is based on the observation that any route R can be decomposed, for
every i € R, into two paths P; and P; going from depot O to vertex i. These two paths are
internally disjoint and their total customer demand is less than or equal to Q. GENROUTE
consists of two phases: in the first phase, it generates the set of simple paths ending at ver-
tices in V,, while, in the second phase, the paths are combined to generate feasible CVRP
routes.

Consider the reduced cost ¢, of route £ with respect to the four dual vectors , v, w and
gandthesets $C 8, F C F and C C C:

Co=co— Y aull; = Y bu(Ss — ) &' (ROB, — ) Ze, (92)

ieV N teF CeCy

where G, ={C € C:C > ¢}.

Given a dual solution (if,7, W, g), sets 8 C 8, F C F and € C € of valid inequalities
and two user-defined parameters ¥ and A, GENROUTE produces the largest subset B of
the route set R satisfying the following conditions:

maxeeg{C;} < mingeg\g{ce},
[B| <A, (93)

maxees(Ce} < y.

The parameters y and A allow GENROUTE to generate the route subsets required by pro-
cedures H?, H3 and by the exact method for generating the final route R’ C R.

8 Computational experiments

In this section we report a summary of the computational results for the CVRP and for the
different variants of the heterogeneous VRP obtained by the most effective exact methods
proposed in the literature.

8.1 Computational experiments for the CVRP

Both analytical and computational results on the CVRP can be found in Augerat et al.
(1995), Naddef and Rinaldi (2002), Ralphs et al. (2003), Baldacci et al. (2004, 2008b)
Letchford et al. (2002), Lysgaard et al. (2004) and Fukasawa et al. (2006). However, ex-
tensive computational results over a common set of instances taken from the literature have
been performed only by the last three of these exact methods. Moreover, according to the
results reported, the last three exact methods represent the most effective exact methods cur-
rently available for the CVRP, both for the quality of the lower bounds produced and for
the number of instances solved to optimality. Thus, in this section, we report a comparison
of the results obtained by three exact algorithms of Lysgaard et al. (2004), Fukasawa et al.
(2006) and Baldacci et al. (2008b).

Six classes of test instances called A, B, E, M, P and F are usually adopted to per-
form computational results on the exact algorithms for the CVRP. Classes A, B and P
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were proposed by Augerat (1995). Instance class M was proposed by Christofides et al.
(1979) while classes E and F were produced by Christofides and Eilon (1969) and Fisher
(1994), respectively. The data of all instances including the best upper bounds known
and the solutions of the instances solved to optimality can be found at the URL address
http://branchandcut.org/VRP/data. For all the instances considered, the computational re-
sults presented in the literature use integer-valued distances obtained by rounding to the
nearest integer the Euclidean distance between each pair of vertices. More precisely, the
cost of edge {i, j} is set to d;; = |e;; + 0.5], where ¢;; is the corresponding Euclidean dis-
tance between vertices i and j.

Classes A, B, E and P contain different instances with number of customers between
12 and 100 and different number of vehicles (up to 14 vehicles), whereas class M contains
instances with number of customers between 100 and 199 with up to 17 vehicles. Class F
contains three instances, with 44 customers and 4 vehicles, 71 customers and 4 vehicles, and
134 customers to serve with 7 vehicles.

Table 2 reports a summary of the computational results over the common set of instances
of the five classes A, B, E, M and P considered by Lysgaard et al. (2004), Fukasawa et al.
(2006) and Baldacci et al. (2008b).

Column #Inst of the table reports the total number of instances in the corresponding
class. For each exact method and for each class, the table reports the following data:

#Opt: number of instances solved to optimality by the method;
%LB: average percentage ratio of the lower bound with respect to the optimal solution
value;
t;5: average running time in seconds for computing the lower bound;
t!: average running time in seconds of the exact method.

For the exact method of Fukasawa et al. (2006), column #B&C reports the number of in-
stances, for the corresponding class, for which column generation was not used. In this case,
the exact algorithm of Fukasawa et al. (2006) becomes the exact branch-and-cut algorithm
of Lysgaard et al. (2004).

The averages of the running times of the exact methods (column ') are computed over
all the instances solved to optimality by all methods. For the exact methods of Fukasawa
et al. (2006) and Baldacci et al. (2008b), column #> reports the averages of the running times
(in seconds) of the two exact methods over all the instances solved to optimality by both
methods. The last lines of the table report summation and averages over all the classes.

The computational results of Lysgaard et al. (2004) have been performed on a machine
equipped with an Intel Celeron running at 700 MHz, while Baldacci et al. (2008b) and
Fukasawa et al. (2006) have performed their computational results on machines equipped
with Pentium 4 processors running at 2.6 GHz and 2.4 Ghz, respectively. According to
computational benchmarks of the different machines mentioned above, the machine used
by Baldacci et al. (2008b) is about ten percent faster and at least five times faster than
the machines used by Fukasawa et al. (2006) and by Lysgaard et al. (2004), respectively.
A time limit of eight hours was imposed by Lysgaard et al. (2004) to their branch-and-cut
algorithm except for instance E-n76-k7 that was solved to optimality in about 33 hours. No
time limits were imposed to the exact methods of Fukasawa et al. (2006) and Baldacci et al.
(2008Db). In particular, the method of Baldacci et al. (2008b) terminates without finding the
optimal solution whenever either CPLEX or procedure GENROUTE (see Sect. 7.2) run out
of memory.

Table 2 indicates that, on the set of instances considered, the lower bound produced by
Baldacci et al. (2008b) is on average superior to the other lower bounds in all the classes.
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The method of Fukasawa et al. (2006) solved to optimality all the 74 instances, 26 of them
were solved without using the column generator. Taking the computers used by the different
authors into account in examining the computational results, Table 2 indicates that on the
instances solved to optimality by all the methods, the algorithm of Baldacci et al. (2008b) is
on average faster than both the algorithms of Lysgaard et al. (2004) and of Fukasawa et al.
(2006), while the method of Fukasawa et al. compares favorably with that of Lysgaard et al.
In addition, as shown by columns ¢2, the algorithm of Baldacci et al. is on average faster
than the method of Fukasawa et al. on the set of 71 instances solved to optimality by both
methods.

Table 3 reports detailed results on instance classes E and M, which represent difficult
CVRP instances. In the table, column labelled “z*” reports the cost of the optimal solution
of the corresponding instance. For each exact method and for each instance (whose name
includes the number of vertices and the number of vehicles), the table reports the following
data:

%LB: percentage ratio of the lower bound with respect to the optimal solution value;
t;p: running time in seconds for computing the lower bound;
tg: running time in seconds of the exact method; for the exact method of Lysgaard et al.
(2004) “~” denotes that the time limit has been reached while for the exact method
of Baldacci et al. (2008b) “~" denotes that the memory limit has been reached.

[Tt

In addition, column labelled “s” reports the size of the cycles eliminated by the column
generation procedure of Fukasawa et al. (2006) (“—” indicates that the column generation
was not used).

Three instances, namely E-n101-k8, P-n76-k5 and P-n101-k4, cannot be solved to opti-
mality by the exact method of Baldacci et al. (2008b). Table 3 shows that instance E-n101-k8
have been solved to optimality by the method of Fukasawa et al. (2006) in 801 963.0 sec-
onds. Instances P-n76-k5 and P-n101-k4 have been solved to optimality by Lysgaard et al.
(2004) and by Fukasawa et al. (2006) but without using column generation.

The results on these three instances, that are loosely constrained, testify the fact that set
partitioning based methods may not work well on loosely constrained instances (i.e., in-
stances where n is large and m is small), since the number of promising routes can be huge
in such cases. On the other hand, as shown by Table 3, difficult CVRP instances, such as
instance E-n76-k10, which cannot be solved to optimality by the branch-and-cut algorithm
of Lysgaard et al., can be solved to optimality by both the algorithms of Fukasawa et al. and
Baldacci et al. in 80722.0 and in 174.4 seconds, respectively. Thus, set partitioning based
methods complement branch-and-cut approaches, which tend to work better on loosely con-
strained instances.

Lysgaard et al. (2004) and Fukasawa et al. (2006) considered and solved to optimality
three instances of the class F (namely, F-n45-k4, F-n72-k4 and F-n135-k7). These instances
have not been considered by Baldacci et al. (2008b) due to the complexity involved in the
computation of the g-path functions as they are characterized by large vehicle capacities.
Indeed, Fukasawa et al. (2006) solved the instances without using column generation. In
particular, instance F-n135-k7 has been solved to optimality by Lysgaard et al. (2004) in
3092.0 seconds and by Fukasawa et al. (2006) in 7 065.0 seconds. Finally, it is worth men-
tioning that instance F-n135-k7 was solved to optimality also by Augerat et al. (1995) in
18 871.0 seconds on a Sun Sparc 10, and by Baldacci et al. (2004) in 6 599.0 seconds on a
machine equipped with a Pentium III 933 MHz processor. To date, instance F-n135-k7 is
the largest non-trivial CVRP instance solved to optimality in the literature.
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8.2 Computational experiments for the heterogeneous VRPs

In this section, we report a summary of the computational results obtained by the exact
methods of Baldacci and Mingozzi (2009) and of Pessoa et al. (2009, to appear) on the main
sets of instances from the literature. The instances correspond to the different variants of the
heterogeneous VRP listed in Table 1. The complete details of the instances can be found in
Baldacci and Mingozzi (2009).

Pessoa et al. considered in their computational experiments only the FSMF, FSMFD
and FSMD variants, while Baldacci and Mingozzi considered the whole set of instances
corresponding to the problems listed in Table 1.

It is worth noting that computational results about lower bounds for the FSMF, FSMFD
and FSMD can also be found in Choi and Tcha (2007), Yaman (2006) and Baldacci et al.
(20009, to appear). The computational results show that the lower bounds obtained by these
authors are dominated by the lower bounds obtained by Baldacci and Mingozzi and Pessoa
et al.

The algorithm described in Baldacci and Mingozzi (2009) was run on a personal com-
puter with an AMD Athlon 64 X2 Dual Core 42004 processor at 2.6 GHz, while the al-
gorithm described in Pessoa et al. (2009, to appear) was run on a personal computer with a
Pentium Core 2 Duo at 2.13 GHz.

Table 4 summarizes the results obtained over all the variants considered by the two meth-
ods. This table reports the following columns: the total number of instances in each class
(#Inst), the number of instances solved to optimality by each method (#Opt), the average
percentage ratio of the lower bound with respect to the optimal solution value (%LB), the
average running time in seconds for computing the lower bound (#;), the average running
time in seconds of the exact method computed over all the instances solved to optimality
by all methods (f7or). In the table, the two classes MDVRP1 and MDVRP2 correspond to
the two sets of MDVRP instances proposed by Cordeau et al. (1997) and by Baldacci and
Mingozzi (2009), respectively.

Table 4 shows that the exact method of Pessoa et al. (2009, to appear) solved to optimality
29 out of 36 instances considered. Five more instances were solved to optimality by the exact
method of Baldacci and Mingozzi (2009) with respect to the instances solved by the method
of Pessoa et al. Overall, the exact method of Baldacci and Mingozzi (2009) was able to
solve to optimality 74 out of 86 instances considered. The table shows that the lower bound
computed by Baldacci and Mingozzi on average dominates the lower bound computed by
Pessoa et al.

9 Conclusions

In the last few years some innovative exact approaches for vehicle routing problems under
capacity constraints were proposed, producing a significant improvement on the size of the
instances that can be solved to optimality. Indeed, these algorithms have brought above one
hundred the number of customers that may be handled, thus doubling this limit with respect
to the best available methods.

The key factor of the success of these approaches is the effective combination of set par-
titioning and two-index vehicle flow formulations of the problem. In particular, the inclusion
of known families of cuts into column generation based algorithms, significantly improved
the quality of the resulting lower bounds that are now very close to the optimal solution
values.
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Table 4 Summary of the computational experiments for the heterogeneous VRPs

Variant #Inst Lower bounds Exact methods

Pessoa et al. Baldacci and Pessoa et al. Baldacci and

(2009, to appear)® Mingozzi (2009)b (2009, to appear) Mingozzi (2009)

%LB t1p %LB t1p #Opt  troT #Opt  troT
HVRPFD 12 - - 99.6 224.8 - - 10 259.9
HVRPD 8 - - 99.2 128.9 - - 7 564.8
SDVRP 13 - - 99.1 1839 - - 9 880.6
FSMFD 12 99.7 2438 99.7 1435 10 963.46 11 172.9
FSMD 12 99.2 3305 99.5 81.9 10 2309.0 12 281.1
MDVRPI 9 - - 99.2  310.5 - - 7 875.3
MDVRP2 8 - - 99.7 189.5 - - 7 4788.6
FSMF 12 99.6 2295 99.8 147.0 9 4741.2 11 125.4
Sum. 86 (29 74(34)

4Computing time in seconds of a Pentium Core 2 Duo at 2.13 GHz

bComputing time in seconds of an AMD Athlon 64 X2 Dual Core 4200+ at 2.6 GHz

Nevertheless, some space for further improvement remains since pure branch-and-cut
approaches are still the better ones on loosely constrained instances, i.e., where the average
number of customers per vehicle is larger than 30.

On the other hand the set partitioning based approaches proved quite general. In fact, they
are able to easily incorporate additional characteristics of the problem arising in practical
applications, such as time windows, precedence constraints and a heterogeneous fleet. There
is therefore a large room for research activities in this specific field whose achievement may
also give important insight in the heuristic solution of real-world vehicle routing problems.

Acknowledgement  Work partially supported by Italian MiUR under PRIN research project.

References

Applegate, D. L., Bixby, R. E., Chvital, V., & Cook, W. J. (2006). The traveling salesman problem: A com-
putational study. Princeton: Princeton University Press.

Araque, J. R., Hall, L., & Magnanti, T. (1990). Capacitated trees, capacitated routing and associated poly-
hedra (Technical Report Discussion Paper 9061). CORE, Louvain La Nueve.

Augerat, P. (1995). Approche polyédrale du probleme de tournées de véhicules. PhD thesis, Institut National
Polytechnique de Grenoble.

Augerat, P, Belenguer, J. M., Benavent, E., Corberdn, A., Naddef, D., & Rinaldi, G. (1995). Computational
results with a branch and cut code for the capacitated vehicle routing problem (Technical Report 1
RR949-M). ARTEMIS-IMAG, Grenoble, France.

Augerat, P., Belenguer, J. M., Benavent, E., Corberdn, A., & Naddef, D. (1998). Separating capacity con-
straints in the CVRP using tabu search. European Journal of Operational Research, 106, 546-557.

Baldacci, R., & Mingozzi, A. (2009). A unified exact method for solving different classes of vehicle routing
problems. Mathematical Programming, 120(2), 347-380.

Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for the capacitated vehicle
routing problem based on a two-commodity network flow formulation. Operations Research, 52(5),
723-738.

Baldacci, R., Bodin, L., & Mingozzi, A. (2006). The multiple disposal facilities and multiple inventory loca-
tions rollon-rolloff vehicle routing problem. Computers and Operations Research, 33(9), 2667-2702.

@ Springer



244 Ann Oper Res (2010) 175: 213-245

Baldacci, R., Toth, P., & Vigo, D. (2007). Recent advances in vehicle routing exact algorithms. 4OR: A Quar-
terly Journal of Operations Research, 5(4), 269-298.

Baldacci, R., Battarra, M., & Vigo, D. (2008a). Routing a heterogeneous fleet of vehicles. In B. L. Golden, S.
Raghavan, & E. Wasil (Eds.), The vehicle routing problem: latest advances and new challenges (Vol. 43,
pp- 3-27). Berlin: Springer.

Baldacci, R., Christofides, N., & Mingozzi, A. (2008b). An exact algorithm for the vehicle routing prob-
lem based on the set partitioning formulation with additional cuts. Mathematical Programming Ser. A,
115(2), 351-385.

Baldacci, R., Battarra, M., & Vigo, D. (2009, to appear). Valid inequalities for the fleet size and mix vehicle
routing problem with fixed costs. Networks. DOI: 10.1002/net.20331

Balinski, M., & Quandt, R. (1964). On an integer program for a delivery problem. Operations Research, 12,
300-304.

Bramel, J., & Simchi-Levi, D. (2002). Set-covering-based algorithms for the capacitated VRP. In P. Toth &
D. Vigo (Eds.), SIAM monographs on discrete mathematics and applications: Vol. 9. The vehicle routing
problem (pp. 85-108). Philadelphia: STAM.

Choi, E., & Tcha, D. W. (2007). A column generation approach to the heterogeneous fleet vehicle routing
problem. Computers and Operations Research, 34, 2080-2095.

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle dispatching problem. Operational Research
Quarterly, 20, 309-318.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In N. Christofides, A. Min-
gozzi, P. Toth, & C. Sandi (Eds.), Combinatorial optimization (pp. 315-338). New York: Wiley.
Chap. 11.

Christofides, N., Mingozzi, A., & Toth, P. (1981). Exact algorithms for the vehicle routing problem based on
spanning tree and shortest path relaxation. Mathematical Programming, 10, 255-280.

Chvital, V. (1973). Edmonds polytopes and weakly Hamiltonian graphs. Mathematical Programming, 5,
29-40.

Cordeau, J. F.,, Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot
vehicle routing problems. Networks, 30, 105-119.

Cordeau, J. F, Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Vehicle routing. In C. Barnhart & G.
Laporte (Eds.), Transportation, handbooks in operations research and management science (Vol. 14,
pp. 367—428). Amsterdam: North-Holland.

Cornuéjols, G., & Harche, F. (1993). Polyhedral study of the capacitated vehicle routing. Mathematical Pro-
gramming, 60, 21-52.

CPLEX. (2006). ILOG CPLEX 9.0 callable library. ILOG.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80-91.

Finke, G., Claus, A., & Gunn, E. (1984). A two-commodity network flow approach to the traveling salesman
problem. Congressus Numerantium, 41, 167-178.

Fischetti, M., & Toth, P. (1989). An additive bounding procedure for combinatorial optimization problems.
Operational Research, 37(2), 319-328.

Fischetti, M., Toth, P., & Vigo, D. (1994). A branch-and-bound algorithm for the capacitated vehicle routing
problem on directed graphs. Operational Research, 42, 846—859.

Fischetti, M., Salazar Gonzalez, J. J., & Toth, P. (1995). Experiments with a multi-commodity formulation
for the symmetric capacitated vehicle routing problem. In 3rd meeting of the EURO working group on
transportation Barcelona (pp. 169-173).

Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum K -trees. Operational
Research, 42, 626-642.

Fukasawa, R., Longo, H., Lysgaard, J., de Aragao, M.P., Reis, M., Uchoa, E., & Werneck, R.F. (2006). Robust
branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming (A),
106, 491-511.

Garey, M. R., & Johnson, D. S. (1990). Computers and intractability; A guide to the theory of NP-
completeness. New York: Freeman.

Gendreau, M., Laporte, G., & Potvin, J.-Y. (2002). Metaheuristics for the capacitated VRP. In P. Toth &
D. Vigo (Eds.), SIAM monographs on discrete mathematics and applications: Vol. 9. The vehicle routing
problem (pp. 129-154). Philadelphia: STAM.

Golden, B. L., Magnanti, T. L., & Nguyen, H. Q. (1977). Implementing vehicle routing algorithms. Networks,
7, 113-148.

Gouveia, L. (1995). A result on projection for the vehicle routing problem. European Journal of Operational
Research, 85, 610-624.

Grotschel, M., & Padberg, M. W. (1979). On the symmetric traveling salesman problem: I and II. Mathemat-
ical Programming, 16, 265-280.

@ Springer


http://dx.doi.org/10.1002/net.20331

Ann Oper Res (2010) 175: 213-245 245

Grotschel, M., & Padberg, M. W. (1985). Polyhedral theory. In E. L. Lawler, J. K. Lenstra, A. H. G. Rin-
nooy Kan, & D. B. Shmoys (Eds.), The traveling salesman problem: A guided tour of combinatorial
optimization (pp. 231-305). Chichester: Wiley.

Laporte, G., & Nobert, Y. (1984). Comb inequalities for the vehicle routing problem. Methods of Operations
Research, 51, 271-276.

Laporte, G., & Nobert, Y. (1987). Exact algorithms for the vehicle routing problem. Annals of Discrete Math-
ematics, 31, 147-184.

Laporte, G., & Semet, F. (2002). Classical heuristics for the capacitated VRP. In P. Toth & D. Vigo (Eds.),
SIAM monographs on discrete mathematics and applications: Vol. 9. The vehicle routing problem
(pp- 109-128). Philadelphia: STAM.

Laporte, G., Nobert, Y., & Desrochers, M. (1985). Optimal routing under capacity and distance restrictions.
Operational Research, 33, 1058-1073.

Letchford, A. N., & Salazar Gonzdlez J. J. (2006). Projection results for vehicle routing. Mathematical Pro-
gramming, 105(2-3), 251-274.

Letchford, A. N., Eglese, R. W., & Lysgaard, J. (2002). Multistars, partial multistars and the capacitated
vehicle routing problem. Mathematical Programming, 94, 21-40.

Lysgaard, J. (2003). CVRPSEP: A package of separation routines for the capacitated vehicle routing problem
(Technical Report). Dept. of Mgt. Science and Logistics, Aarhus School of Business.

Lysgaard, J., Letchford, A. N., & Eglese, R. W. (2004). A new branch-and-cut algorithm for the capacitated
vehicle routing problem. Mathematical Programming, 100(2), 423—445.

Naddef, D., & Rinaldi, G. (2002). Branch-and-cut algorithms for the capacitated VRP. In P. Toth & D. Vigo
(Eds.), SIAM monographs on discrete mathematics and applications: Vol. 9. The vehicle routing problem
(pp- 53-81). Philadelphia: STAM.

Niskanen, S., & Ostergard, P. R. J. (2003). Cliquer user’s guide (Technical Report 48). Helsinki University
of Technology Communications Laboratory.

Ostergard, P. R. J. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,
120(1-3), 197-207.

Pessoa, A., de Aragio, M. P., & Uchoa, E. (2008). Robust branch-cut-and-price algorithms for vehicle rout-
ing problems. In B. L. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: Latest
advances and new challenges (Vol. 43, pp. 297-325). Berlin: Springer.

Pessoa, A., & Uchoa, E. de Aragdo, M.P. (2009, to appear). A robust branch-cut-and-price algorithm for the
heterogeneous fleet vehicle routing problem. Networks. DOI: 10.1002/net.20330

Ralphs, T. K., Kopman, L., Pulleyblank, W. R., & Trotter, L. E. (2003). On the capacitated vehicle routing
problem. Mathematical Programming (B), 94, 343-359.

Toth, P., & Vigo, D. (2002). SIAM monographs on discrete mathematics and applications: Vol. 9. The vehicle
routing problem. Philadelphia: STAM.

Yaman, H. D. (2006). Formulations and valid inequalities for the heterogeneous vehicle routing problem.
Mathematical Programming Ser. A, 106, 365-390.

@ Springer


http://dx.doi.org/10.1002/net.20330

	Exact algorithms for routing problems under vehicle capacity constraints
	Abstract
	Introduction
	Problems definition and basic notation
	Mathematical formulations
	Vehicle flow formulations
	Two-commodity flow formulation
	Set partitioning formulation

	Relaxations and valid inequalities
	Valid inequalities for the two-index formulation
	Valid inequalities for the two-commodity formulation
	Valid inequalities for the three-index formulation
	Valid inequalities for the set partitioning formulation
	Comparison of various CVRP relaxations

	Branch-and-cut methods
	Separation algorithms
	Branching strategies

	Branch-and-cut-and-price methods
	Set partitioning with additional cuts
	Bounding procedure
	Route generation algorithm

	Computational experiments
	Computational experiments for the CVRP
	Computational experiments for the heterogeneous VRPs

	Conclusions
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


