
Digital Object Identifier 10.1109/MCI.2014.2326101
Date of publication: 14 July 2014

Thomas Weise
UBRI, School of Computer Science and
Technology, University of Science
and Technology of China, Hefei, China

Raymond Chiong
Faculty of Science and Information Technology,
The University of Newcastle,
Callaghan, Australia

Jörg Lässig
Department of Computer Science,
University of Applied Sciences
Zittau/Görlitz, Görlitz, Germany

Ke Tang
UBRI, School of Computer Science and
Technology, University of Science
and Technology of China, Hefei, China

Shigeyoshi Tsutsui
Department of Management and
Information Science, Hannan University,
Matsubara, Japan

Wenxiang Chen
Computer Science Department, Colorado
State University, Fort Collins, USA

Zbigniew Michalewicz
School of Computer Science,
The University of Adelaide, Adelaide, Australia
Polish-Japanese Institute of Information
Technology and the Institute of Computer
Science, Polish Academy of Sciences, Poland

Xin Yao
UBRI, School of Computer Science and
Technology, University of Science and
Technology of China, Hefei, China
CERCIA, School of Computer Science,
The University of Birmingham, Birmingham, UK

Benchmarking Optimization
Algorithms: An Open Source
Framework for the Traveling

Salesman Problem

Abstract—We introduce an experimentation procedure for evaluating and
comparing optimization algorithms based on the Traveling Salesman Prob-
lem (TSP). We argue that end-of-run results alone do not give sufficient
information about an algorithm’s performance, so our approach analyzes the
algorithm’s progress over time. Comparisons of performance curves in dia-
grams can be formalized by comparing the areas under them. Algorithms
can be ranked according to a performance metric. Rankings based on dif-
ferent metrics can then be aggregated into a global ranking, which provides
a quick overview of the quality of algorithms in comparison. An open
source software framework, the TSP Suite, applies this experimental proce-
dure to the TSP. The framework can support researchers in implementing
TSP solvers, unit testing them, and running experiments in a parallel and
distributed fashion. It also has an evaluator component, which implements
the proposed evaluation process and produces detailed reports. We test the
approach by using the TSP Suite to benchmark several local search and

©Imagestate

40 IEEE Computational intelligence magazine | august 2014� 1556-603x/14©2014ieee

august 2014 | IEEE Computational intelligence magazine 41

evolutionary computation methods. This results in a large set
of baseline data, which will be made available to the research
community. Our experiments show that the tested pure global
optimization algorithms are outperformed by local search, but
the best results come from hybrid algorithms.

I. Introduction

In the field of metaheuristic optimization, experimentation is
perhaps the most important tool to assess and compare the
performance of different algorithms. However, most studies
limit themselves to presenting means and standard devia-

tions of final benchmark results. This article proposes an experi-
mental procedure that can provide deeper insights into an
algorithm’s behavior and more holistic comparisons. We imple-
ment this procedure exemplarily for the Traveling Salesman
Problem (TSP) in a software framework called the TSP Suite,
which eases algorithm implementation, parallel and distributed
experimentation, as well as automatic evaluation. We then use
the TSP Suite to compare the performance of several local search
methods and members of the main Evolutionary Computation
(EC) algorithm families [1], e.g., Evolutionary Algorithms (EAs),
Memetic Algorithms (MAs), Estimation of Distribution Algo-
rithms (EDAs), and Ant Colony Optimization (ACO).

The TSP [2–4] is one of the most well-known combinato-
rial optimization tasks. A TSP is defined as a fully-connected
graph with n nodes. Each edge has a weight, representing the
distance. A candidate solution is a tour that visits each node in
the graph exactly once and returns back to its starting node.
The objective function ,f subject to minimization, is the sum
of the weights of all edges in the tour, i.e., the total tour length.
This optimization version of the TSP is NP -hard [4]. It has
been researched for decades, and algorithms that can exactly
solve instances with tens of thousands of nodes and approxi-
mate the solution of million node problems with an error of
less than one part per thousand within feasible time exist [5].

Still, the TSP remains an interesting subject for research for
two reasons. First, the problem is easy to understand. Many
results and standard benchmark instances with known optima
are available. This makes the problem ideal for testing new
approaches, be it general algorithms or improvements such as
adaptation strategies. Second, while current experimentation
approaches only focus on singular results, investigating the
behavior and progress of TSP solvers is an equally important
issue and may lead to the development of better solvers with
better results.

Experiments for analyzing the behavior of an algorithm
over runtime are cumbersome. They generate much data and
their manual evaluation can take more time than the algo-
rithm implementation itself. The COmparing Continuous
Optimizers (COCO) [6] system for numerical optimization,
used in the Black-Box Optimization Benchmarking (BBOB)
workshops, is one of the first approaches aiming to reduce the
workload of an experimenter by automatizing most of the
steps involved. Its evaluation procedure generates statically
structured papers that contain diagrams with runtime behavior

information. The necessary data is automatically collected
from automatically executed experiments.

UBCSAT [7], on the other hand, is an experimental frame-
work for satisfiability (SAT) problems. It focuses on a specific
algorithm family, the stochastic local search (SLS) [8]. SLS
methods can be implemented by utilizing a trigger architecture
defined on top of a default algorithm structure. In COCO, the
objective function will automatically gather log data before
returning its result to the algorithm. In UBCSAT, this is done
in its trigger architecture. The trigger architecture can also
compute complex statistics online and provide them to the
running algorithm. COCO and UBCSAT have in common
that they both explore algorithm behavior over runtime instead
of focusing only on final results. They are thus different from
contests such as the DIMACS challenge [9] or the Large-Scale
Global Optimization [10] competitions.

In this paper, we introduce a new experimental procedure
for evaluating and comparing optimization algorithms. Differ-
ent from COCO, we prescribe a more general data collection
scheme (see Section II-A). The proposed evaluation process
makes use of diagrams similar to those in COCO and UBC-
SAT (see Section II-B), but it does not stop there: It combines
the results from different evaluation criteria and constructs
text-based discussions and conclusions, resulting in comprehen-
sive reports instead of rigidly structured papers.

The focus of COCO, UBCSAT, and our proposed
approach is on analyzing and comparing concrete algorithm set-
ups. They complement frameworks such as the Sequential
Parameter Optimization Toolbox (SPOT) [11], which finds
good setups via efficient automatic parameter tuning. One
could, for example, use the SPOT to configure an algorithm
before analyzing it with COCO.

We first discuss our approach to experimentation with opti-
mization algorithms in general and for TSP solvers in particular
(Section II). It will become clear that, in order to gain a deeper
insight into the behavior of an algorithm, a very large amount
of work is necessary, both for measurement and evaluation.
Next, we introduce the TSP Suite, an open source Java software
framework for experimentation with TSP solvers, in Section
III. The TSP Suite implements our experimental procedure and
provides automatic data collection and benchmarking capabili-
ties, as well as a component for automatically evaluating the
gathered data and comparing the performance of different
algorithms. This suite allows researchers working on the TSP to
conduct more comprehensive experiments in a shorter amount
of time and significantly reduces the work needed to gain valu-
able results and insights.

The TSP Suite also contains implementations of several
different TSP solvers, including local search algorithms, EAs,
MAs, EDAs, and ACO methods. We report the results of a
large set of experiments with these methods in Section IV as a
proof-of-concept for the TSP Suite and will provide all col-
lected data on the web so that other researchers may use it for
comparison. The system can be downloaded from http://
www.logisticPlanning.org/tsp/.

42 IEEE Computational intelligence magazine | august 2014

II. Experimentation with Optimization Algorithms
In this section, we will discuss several issues that arise when
experimentally analyzing metaheuristics in general and TSP
solvers in particular. Some of these issues, such as the time mea-
sures and considerations about performance, may also be rele-
vant to theoretical algorithm analysis [12–14].

A. Data Collection
Before beginning an experiment, a benchmark dataset must be
chosen. There must also be a definition of how to measure an
algorithm’s performance. Such a definition will always be based
on runtime, so how to measure the time must be clarified.

1) Benchmark Datasets
The most well-known benchmark dataset for the TSP is the
TSPLib [15]. This library contains 110 instances of symmetric
TSPs with scales n ranging from 14 to 85900. There are 93
instances with less than 2000 nodes. For each instance, the
globally optimal tour is known.

Another dataset, based on the DIMACS 2008 challenge [9],
was used in extensive experiments with the results [16, 17]
published in [4]. This dataset contains instances with n between
1000 and 1000000, not all of which have been provably solved
to optimality. The website of Cook [18] holds further large-
scale TSP instances.

The decision on which benchmark set to use depends on the
goal of the research: The DIMACS instances and similar large-
scale problems allow researchers to explore the limit of what TSP
solvers can achieve and to push this boundary forward. If the
goal is to perform many experiments for statistical analysis
repeatedly, with different parameter settings, then the TSPLib is

the better choice, since its (mainly) smaller instances
allow for faster experiments.

2) What Is Performance?
Relevant literature like the webpage and chapters
on the DIMACS challenge [9] as well as the Large-
Scale Global Optimization competition [10] typi-
cally report tuples of (benchmark instance, result,
runtime) as outcomes of experiments, as shown in
Figure 1a. However, most of the common meta-
heuristics are anytime algorithms [19]. Anytime algo-
rithms can provide an approximate solution for a
problem at any point during their runtime and the
approximation quality may improve if more time is
given. If such an algorithm is applied to the TSP, the
point at which the algorithm is terminated and its
result is reported becomes an arbitrary choice of the
experimenter.

This means that the reported results from Figure
1a may actually be singular snapshots of the perfor-
mance curves depicted in Figure 1b. Based on Fig-
ure 1a, one may assume that the depicted algo-
rithms A, B, and C are viable alternatives depending
on the available computational budget. Figure 1b

debunks this assumption by uncovering that method C always
has a better approximation quality than the other two. Proper
experimentation should thus avoid reducing algorithm performance to
singular points.

The other extreme, to record all the solution improvements
an algorithm makes, is not a feasible option. There could be
millions of such events, leading to unmanageably large log files.
Thus, an intermediate approach is necessary, which collects a
limited amount of data but sufficient information to approxi-
mate an algorithm’s runtime behavior.

Performance can be defined as the solution quality (tour
length) that can be reached within a given time frame or as
the time needed to reach a given solution quality. The former
is very commonly seen in benchmarking [10], but the latter
has several advantages [6]. We suggest using both methods and
to strategically define a fixed set of points in time (vertical
lines in Figure 1c) and goal objective values ft (horizontal
lines) at which “log points” are to be collected, as illustrated
in Figure 1d.1

3) What Is Time?
Any collected measurement from a run holds one objective
value and a value for the elapsed time. The question of how to
measure time seems trivial, but it actually has a major impact
on the results the evaluation procedure will provide. We can
define four time measures for TSPs:

a) Absolute Runtime AT: Runtime, traditionally, is measured
as the absolute time AT that has elapsed since the algorithm
was started. This has several advantages. For example, many
1These log points will not necessarily be exactly on the specified thresholds, as finding
a tour of length 107 would, e.g., satisfy a threshold tour length 128.

Figure 1 The problem of reporting singular results and how to collect multiple data
samples per run. (a) Reported results in the literature: Methods A, B, and C appear
to be viable alternatives for different available computational budgets. (b) Potential
actual behavior of anytime algorithms: Method C is better. (c) Strategically placed
horizontal and vertical cuts where log points from different runs of an anytime
algorithm are to be taken. (d) The log points caught at these cuts provide sufficient
data to reconstruct the original curves.

Runtime

O
bj

ec
tiv

e
V

al
ue

Reported Results for
Methods A, B, and C

Runtime

(a) (b)

O
bj

ec
tiv

e
V

al
ue

Arbitrary Data Points
from Runs of A, B, and C

O
bj

ec
tiv

e
V

al
ue

O
bj

ec
tiv

e
V

al
ue

Runtime Runtime

(c) (d)

august 2014 | IEEE Computational intelligence magazine 43

related papers report CPU times in millisec-
onds. Also, clock time is a quantity that
makes physical sense. Furthermore, the mea-
surements will include all actions performed
by the algorithm, be it memory allocations
or complex matrix operations. However,
CPU times are inherently incomparable since they largely
depend on the machine, operating system, and software envi-
ronment. If a runtime of 30 minutes on an Intel Pentium II
processor was reported about ten years ago, this result is basi-
cally meaningless today.

b) Normalized Runtime NT: One idea to reduce the incom-
parability of absolute runtime is to normalize it with a system-
dependent “performance value” Z [9], i.e., to provide a normal-
ized runtime NT. Before applying a TSP solver A to a given
problem instance ,I we also apply a standardized algorithm ,B
the Double-Ended Nearest Neighbor Heuristic [20], to I and
measure its runtime .Z I^ h The operations that B performs are
similar to those that any TSP solver will carry out. Z I^ h thus
should contain most of the system-dependent aspects that
would influence the runtime of ,A ranging from the processor
speed to whether the cache is large enough to hold a whole
candidate solution for .I All AT values measured for A are
divided by Z I^ h to obtain the corresponding NT values. If the
same algorithm A is executed on two different computers, for
instance, the performance curves over NT should still look
approximately the same.

c) Function Evaluations FE: In the field of optimization, the
runtime of an algorithm is often measured in terms of function
evaluations (FEs), i.e., the total number of constructed solutions
passed to the objective function [6, 10]. This measure is entirely
independent of the clock time and system effects. However, it
does not reveal “hidden complexities” of the algorithms such as
the runtime of model updating in an EDA. Moreover, 1 FE
may have largely different costs in different algorithms. The
complexity of creating a tour in ACO is in (),nO 2 for cross-
over in an EA it may be in (),nO while a local search that
swaps two cities in a tour of known length needs ()1O steps to
obtain and evaluate the new solution. Thus, comparing algo-
rithms based on consumed FEs may be grossly unfair.

d) Distance Evaluations DE: The three examples in the previ-
ous paragraph have in common that their different complexi-
ties of 1 FE are related to the number of times city distances
are computed. When choosing the next city to move to, an ant
in ACO computes a probability value for each not-yet-visited
city.  This value also depends on the distance to the city, i.e.,
creating a new tour in ACO takes a number of distance evalua-
tions in ()nO 2 . The length of a new tour created by crossover
in an EA is the sum of ()n nO! distances, while only

()8 1O! distances need to be computed in the case of the
local search move mentioned above. Counting the number of
distance evaluations (DEs) may thus often be a fairer machine-
independent runtime measure for TSP solvers. In other
domains, there are similar elementary operations that could be
counted, such as variable flips [7] in SAT problems.

In summary, measuring runtime is actually a non-trivial
issue. A data point collected from a run of an optimization
algorithm on a TSP instance, in our proposed approach, is a
five-dimensional tuple of the best achieved objective value fb
and the four time measures AT, NT, FE, and DE.

B. Data Evaluation
Carrying out an experiment means to apply the same algo-
rithm to a set of benchmark problem instances, performing
several independent runs for each of them. From each run, a
list of “log points” is collected, which can then be analyzed to
gain insights into the algorithm’s performance.

1) Literature Comparison
Comparison with other studies in the literature becomes easy if
data is collected as discussed above. If a paper reports results in
terms of the arithmetic mean of fb after a specific time mea-
sured in FEs, we can look up how long it takes for the bench-
marked algorithm to reach the same or better solution quality
in mean. Such a comparison is one of the basic requirements
asked for by any reviewer. It should be noted that the literature
often reports results in terms of runtime measures AT or FE,
which have the drawbacks discussed above. Thus, such compar-
isons may not be fair, regardless of whether they are done man-
ually or automatically with the TSP Suite.

2) Statistical Tests
For each defined runtime or objective value threshold, statisti-
cal comparisons between different benchmarked algorithms are
possible, although it is normal to only compare the final results
of the algorithms.

For this purpose, non-parametric tests like the Mann-Whitney
U test should be used, since they make fewer assumptions about
the underlying distribution of the measured data. If N 22 algo-
rithms are compared, performing . N N0 5 1-^ h tests directly is
not advisable. Instead, additional provisions such as (at least) the
conservative Bonferroni correction [21] or (better) more sophisti-
cated tests together with post-hoc methods [22, 23] are needed.
Statistical tests require the full set of measured data for all com-
pared algorithms and therefore cannot be performed with results
from the literature, which are condensed to means or medians.

3) Data Normalization
We often may want to aggregate data over multiple problem
instances. The objective values f) of the globally optimal tours are
known for all TSPLib instances, but they differ significantly. We use
the best objective value fb that a process has discovered until a
given point in time to compute a relative error / .F f f fb b= -))^ h
F 0b = means the globally optimal solution has been found and

Experimentation is perhaps the most important
tool to assess and compare the performance of
different algorithms.

44 IEEE Computational intelligence magazine | august 2014

F 1b = means the best discovered solution is twice as long as the
optimum. We will refer to Fb as error and to corresponding goal
thresholds Ft as goal errors.

In addition to having different optimal tour lengths, the
TSPLib instances also differ in terms of their scales .n This makes
it hard to draw diagrams aggregating benchmarking information
from different problem instances. Such aggregation is necessary,
however, since no paper can contain 110 separate figures, which
would be impossible to interpret. The COCO/BBOB [6] sys-
tem often presents the FE axes of diagrams scaled with the prob-
lem dimension. We found that scaling FE and AT values with n
usually leads to curves similar enough for meaningful aggrega-
tion (although we are still looking for a better option here).
Since creating an entirely new solution requires n distance eval-
uations in order to compute the tour length, DE can be scaled
by .n2 NT does not need to be scaled, since the complexity of
algorithm B used for time normalization already contains .n

4) Progress Curves
Based on the collected data points, it is possible to approximate
the progress of an algorithm in terms of the median or other
quantiles (based on all runs) of the error Fb over a given time
measure. An example for such diagrams is given in Figure 5a
later in this paper.

5) Estimated Running Time (ERT)
For each of the goal objective values ft that are specified for
the data collection of a given benchmark instance (and the
corresponding error ,Fth it is possible to compute the estimated
running time ERT FT t^ h needed to attain it (for a time mea-
sure)T [6].

The ERT can be plotted in two different ways. One can put
Ft on the x-axis and ERT on the y-axis for fixed benchmark
instances (see Figure 5b later in this paper). This shows how the
runtime of an algorithm increases as the goal error reduces.
Alternatively, a fixed threshold Ft can be chosen, the problem
scale n is put on the x-axis, and the mean or median ERT for
Ft and the benchmark instances of that scale are on the y-axis.
This provides information about how the runtime needed to
get a given approximation quality increases with .n

6) Empirical (Cumulative) Distribution Function (ECDF)
For a time measure ,T the empirical cumulative distribution
function ECDFT^ h [6, 7, 24] returns the fraction of runs that
have reached a given goal error Ft (normally, .F 0t = h It is
plotted over the runtime and should, ideally, reach 1 as
quickly as possible. Figure 6 later in this paper is an example
for ECDF diagrams.

7) Curve Comparison
Diagrams that display the ERT or ECDF are
more than just visual aids. However, it is not
easy to formalize statements like “this curve
tends to be lower than that one.” One idea to do
so is to compare the area under the curve(s)
(AUC) [25, 26]. Algorithms that can find bet-

ter solutions faster tend to have smaller areas under their prog-
ress and ERT curves as well as larger areas under their ECDF.

For some problem instances and goal errors ,Ft the ERT
may go to infinity and so would the AUC. Here, one can first
compare the length on the x-axis for which the ERT is infinite.
If one algorithm has a shorter section here, it is better. In case
of a tie (or if both discover the global optimum and thus have
all-finite ERTs), the areas are compared and the one with the
smaller area is considered as better.

8) Information Aggregation via Ranking
We now can compare algorithms from many different perspec-
tives and, often, findings will be consistent over different statis-
tics. Yet, there should be a formal concept to join them into
conclusions. A simple approach here is to rank each algorithm
according to each aspect. Let us assume that we compare five
algorithms according to their ECDF over the DEs. The
TSPLib provides 110 benchmark cases and for each of those,
we can draw a diagram. The AUC-based comparison will lead
to a ranking of the algorithms in each of these diagrams. We
then can re-rank the algorithms for ECDFDE according to
their median rank over all the individual diagrams. The result-
ing ranking can now contribute to a “global” ranking, which is
a ranking that orders the algorithms according to their median
ranks from many different aspects, including, e.g., ,ECDFDE

,ERTNT and progress in terms of FE and NT. Of course,
depending on research goals, the global ranking can also be
based on a narrower set of performance metrics.

The ranking approach has the advantage that it can reduce
many information sources into a simple conclusion. Such a
conclusion would provide a general idea about the perfor-
mance relationship of different algorithms that can then be fur-
ther explored by a researcher.

III. The TSP Suite
Most studies on the TSP limit their analyses to comparing their
results with those from the literature or, at best, using statistical
tests on the end results. Thorough experimentation requires a
significant amount of work. If it is done by hand, the time
needed to evaluate the benchmark results may equal or even
exceed the time spent in implementing the TSP solver and
running the experiments.

However, as mentioned in the introduction, thorough
experimentation is necessary for solid research in metaheuris-
tics. In this section, we present our open source software sys-
tem: the TSP Suite. It is a Java 1.7 framework that assists algo-
rithm developers in implementing and testing their methods,
running experiments and collecting data, as well as evaluating

The TSP Suite allows researchers to conduct more
comprehensive experiments in a shorter amount of
time and significantly reduces the work needed to gain
valuable results and insights.

august 2014 | IEEE Computational intelligence magazine 45

and comparing results. We describe the exper-
imental procedure with the TSP Suite step-
by-step in the following section.

A. Implementing the Algorithm
Since the TSP Suite is a Java framework, the
optimization algorithm to be investigated must
be implemented as a Java class (program). This class must be an
extended class of a class called TSPAlgorithm and implement
a method solve taking as input an instance of the class
ObjectiveFunction. This instance provides, among others,
1)	a method to compute the tour length of a candidate solu-

tion (either in path or adjacency representation [27]);
2)	a method to compute the distance between two nodes;
3)	 a function that returns true when the algorithm should

terminate, either because the granted computational budget
has elapsed or the global optimum has been discovered2;

4)	the random number generator to be used during the run
of the algorithm; as well as

5)	 information about the elapsed runtime and best solution
discovered so far.

Additionally, similar to the objective functions used in the
COCO framework [6], it automatically gathers all logging
information (in memory).

To be executable, the algorithm class must have a specific
main method, which is a single line of code that can basically
be copied from the documentation of the TSP Suite. By option-
ally implementing some methods, an algorithm may be
extended with typed parameters (such as an integer value for
the population size of an EA) that can be passed in via the
command line or in a configuration file.

JUnit tests [28], which can automatically apply a TSP solver
to some of the benchmark instances and check if it produces
invalid results, are provided. In order to unit-test a new algo-
rithm, one additional class with a single one-line method
needs to be provided. Although testing cannot guard against
errors entirely, it may help to reduce them. The TSP Suite
comes with extensive documentation on how to implement
and test TSP solvers.

There are very few requirements on the algorithm type,
structure, and implementation imposed by the TSP Suite. This
makes it easy to both benchmark existing algorithms and to re-
use TSP Suite-based algorithms for other purposes.

B. Executing the Experiment
To execute the experiment, the algorithm will be instantiated
and applied to all benchmark instances 30 times each by
default. A folder structure with one folder per benchmark case
and one log file per run will be produced. These log files follow
an easy-to-parse text format and contain, among others,
1)	the benchmarking data captured according to Sections

II-A2 and II-A3;

2The default termination criterion is to exhaust 100n3FEs, 100n4DEs, or 1h of CPU
time, or when the optimum is found. This can be changed via the command line of
the system.

2)	the algorithm name and class;
3)	all parameter settings (if typed parameters have been

specified);
4)	 information about the software (Java version, OS) and

hardware (processor, available memory) environment;
5)	the seed of the random number generator; and
6)	if specified, the name, e-mail address, and website of the

experimenter.
A log file thus serves as a complete, publishable documentation
of a single run, maximizing replicability of experiments.

As mentioned before, there are 110 symmetric TSPLib
instances and the system conducts by default 30 runs per
instance. If each run would use up the maximum time of 1h
even on the smallest instances, the experiment could take
about 138 days to complete. In order to decrease the runtime,
all processors on a machine can be utilized for executing
independent runs. From our experience, a complete experi-
ment with a sub-par algorithm takes about 1 week on an
8-core machine. Additionally, several instances of the same
program may be executed in a cluster. If their output paths
point to the same shared folder, the runs to be performed are
automatically divided among them. This way, the workload of
the experiment is parallelized and distributed, but not the
algorithms themselves. Thus, no additional provisions from
the algorithm implementer (apart from not using globally
shared variables) are required.

C. Evaluating and Documenting the Results
Once an experiment has been conducted using the TSP Suite,
the evaluator program can be applied to the output folder(s)
with the log files. This evaluator generates a comprehensive
report, which includes all the steps detailed in Section II-B.
The report is structured into three parts.

The first part contains a description of the TSP, the experi-
ment, and the evaluation process, i.e., a more extensive version
of the text in this paper up to the start of Section III. This
makes the report a standalone document that can be under-
stood with no further context needed.

The second part of the report is focused on the evaluation
of individual algorithms separately. If the evaluator is fed with
results from multiple experiments, this part contains one sec-
tion for each of them. In such a section, the parameter settings
of the experiment are listed, several curves are plotted, and an
automatic comparison with results from the literature is per-
formed and presented in tabular form.

If multiple experiments have been conducted, a third sec-
tion is added to the report, which provides statistical algo-
rithm comparisons. Here, curves of the algorithms can be

The TSP Suite is a Java 1.7 framework that assists
algorithm developers in implementing and testing
their methods, running experiments and collecting
data, as well as evaluating and comparing results.

46 IEEE Computational intelligence magazine | august 2014

plotted together in the same diagrams and are compared by
using the AUC-approach detailed in Section II-B7. Statistical
comparisons of end results and runtimes are performed based
on the Mann-Whitney U test with Bonferroni correction.
For each of the above aspects, the algorithms are ranked and
these rankings are reflected in descriptive texts and conclu-
sions. A final section aggregates all the single rankings and
makes a suggestion about which algorithms tend to perform
the best in overall. This aggregate combines rankings resulting
from the following sources:
1)	the aggregated rank for mean ECDF over all benchmark

instances;
2)	separate ranks for ECDF over benchmark instances

grouped by n in powers of two;
3)	the aggregated rank for ERT over Ft and all benchmark

instances;
4)	separate ranks for ERT over Ft and over benchmark

instances grouped by n in powers of two;
5)	the aggregated rank for ERT over ;n
6)	separate ranks for Fb over runtime, over benchmark

instances grouped by n in powers of two;
7)	separate ranks for Fb over runtime, for each individual

benchmark instance; and
8)	statistical test results, involving comparison of the final

result and the runtime to optimality and to . .F 0 01b #

All time-dependent statistics are computed and ranked separately
for the three time measures DE, FE, and NT. In summary, the

aggregated ranking rewards algorithm speed, good
results, and the ability to discover global optima.

Each section, result, or diagram is always accom-
panied with descriptive texts. Additionally, each eval-
uation step in the last two parts of the report can
independently be turned on or off and configured
via command line parameters of the evaluator. This
way, researchers can adapt the ranking towards their
specific research goals. If the main goal is to find
algorithms that can find the global optimum, then all
modules not focused on that goal can be turned off.
The algorithm comparison will then rank the results
solely based on this aspect.

As for the output format, the user can choose
between XHTML with PNG figures and LaTeX
with EPS figures. In the latter case, one can choose
among the following document classes: standard
article, ACM conference, IEEE article, IEEE con-
ference, and Springer conference. The LaTeX out-
put can be automatically compiled into a PDF for-
mat. Its figures can easily be re-used for writing
papers and articles. XHTML, on the other hand,
has a smoother layout due to not needing page
breaks and can easily be published on the web.

IV. Proof-of-Concept: An Experimental Study
We used the TSP Suite to conduct an extensive set
of experiments with different metaheuristic TSP
solvers. We designed these experiments with two

goals in mind: 1) to create a large amount of comparison data
and algorithm implementations that covers the major EC algo-
rithm families as well as local search methods, and 2) to explore
several questions about the performance of these algorithms.

A. Prerequisites
In order to make the comparison fair, we have endeavored to
apply the algorithms in similar configurations. All algorithms
worked on the path representation [27], where solutions are
encoded as permutations of integer numbers. Here, each node
has an id in n1f and if id b is listed directly after id a in a
permutation, b will be visited directly after a in the tour.

All algorithms except PACO and TEHBSA (see the next
section) used the same four unary search operations (neighbor-
hoods) sketched in Figure 2. If one of these operators creates a
new tour xl from an existing tour x with known length ,f x^ h
then the length f xl^ h of xl can be computed in ()1O DEs.

The reversing operator reverses a sub-sequence of a tour [27,
29]. As a two-opt move, this procedure deletes two edges and
adds two new ones. The left-rotation operator rotates a sub-
sequence of a tour one step to the left and the right-rotation
operator rotates one step to the right [27, 30]. Both are possible
three-opt moves, i.e., delete and insert (at most) three edges.
Finally, the swap move simply exchanges two nodes [27, 31] and
is a possible four-opt move, as it leads to the deletion and inser-
tion of at most four edges.

f(x’) = f(x) - dist(BC) - dist(GH) + dist(BG) + dist(CH)

x = (A,B|C,D,E,F,G|H,I) (x’ = rev(x, 3, 7) = (A,B|G,F,E,D,C|H,I)

f(x’) = f(x) - dist(BC) - dist(CD) - dist(GH)
 + dist(BD) + dist(GC) + dist(CH)

x = (A,B|C|D,E,F,G|H,I) (x’ = rol(x, 3, 7) = (A,B|D,E,F,G|C|H,I)

f(x’) = f(x) - dist(BC) - dist(FG) - dist(GH)
 + dist(BG) + dist(GC) + dist(FH)

x = (A,B|C,D,E,F|G|H,I) (x’ = ror(x, 3, 7) = (A,B|G|C,D,E,F|H,I)

f(x’) = f(x) - dist(BC) - dist(CD) - dist(FG) - dist(GH)
 + dist(BG) + dist(GD) + dist(FC) + dist(CH)

x = (A,B|C|D,E,F|G|H,I) (x’ = swap(x, 3, 7) = (A,B|G|D,E,F|C|H,I)

(a)

(b)

(c)

(d)

Figure 2 Examples of the four search operations that modify a candidate solution x
in path representation (as permutation) according to two input indices , .. ,i j n1!
along with efficient methods for computing the objective value ()f xl of the resulting
new permutation .xl (a) Reversing operator: rev , , .x i j^ h (b) Left-rotation operator:
rol , , .x i j^ h (c) Right-rotation operator: ror , , .x i j^ h (d) Swap operator: swap , , .x i j^ h

august 2014 | IEEE Computational intelligence magazine 47

B. Research Questions
We also conducted comprehensive experi-
ments to test whether the experimental proce-
dure discussed in Section II can provide mean-
ingful answers to research problems. Some
general questions are posed, such as whether
global, local, or hybrid optimization algorithms can perform well
on the TSP. There are questions with a narrower scope too, such
as whether Frequency Fitness Assignment ffa^ h [32] is a good
diversity enhancement strategy in an MA for the TSP.

1) Which EC Method Would Be Most Suited for the TSP?
In order to find some directions regarding which EC method
is better for solving TSPs, we conducted experiments with sev-
eral setups of three main branches of EC, namely an EA [33–
35], an ACO [36], and an EDA [37]:

The EA uses the four aforementioned neighborhoods (see
Figure 2) as mutation operators, and for each offspring it ran-
domly chooses one to apply. It has a crossover rate of 1/3, and
was tested with either the well-known Edge Crossover [38] or a
new Savings Crossover operator. Savings Cross-
over constructs a new tour with the Savings
heuristic [20], but only uses edges present in
either of the parents. If cycles would occur, it
reverts back to the original heuristic.

Population-based ACO (PACO) [39] is a
version of the ACO algorithm that maintains a
set (population) of k solutions. The edges pres-
ent in those solutions define the pheromones.
In each iteration, m solutions are generated as
in standard ACO and the best of them replaces
the oldest one in the population.

The Edge-Histogram based Sampling Algo-
rithm [40, 41] is an EDA, which is here applied
in the template-based version (TEHBSA) [41].
It uses a candidate set containing the 20 nearest
nodes to any other node. This allows the reduc-
tion of the edge histogram matrix size to ,n20
but in this case the sampling process may arrive
at a point where following the model would
lead to a cycle in the tour. The tour is then
either augmented with the closest unvisited
node or a random node. We have also tested a
TEHBSA version that maintains a complete
edge histogram.

2) Does Seeding Improve the Results
of Metaheuristic TSP Solvers?
Usually, the EA, PACO, and TEHBSA begin
their search with random solutions, empty
populations, and uniformly initialized models,
respectively. However, the algorithms can
instead be seeded. They can receive their initial
population of solutions from heuristics for the
TSP (discussed, e.g., in [20]).

We tested seeded versions (hEA, hPACO, hTEHBSA) of all
three algorithms in order to confirm whether this approach is
beneficial. The first two individuals in a seeded population are
generated with the Edge-Greedy and Double Minimum Span-
ning Tree heuristic. The remaining slots are filled alternatingly
with individuals resulting from the Savings, Double-Ended
Nearest Neighbor, and Nearest Neighbor Heuristic, which are
started at different, randomly chosen initial nodes.

3) Can Pure EC Approaches Outperform
Local Search Methods on the TSP?
Currently, some of the most efficient approaches for solving
the TSP are local search methods [42]. We therefore also
benchmarked four local search algorithms in order to verify

VNS1m Move
Selection

1: First Improving Move
b: Best Improving Move
_: Not Applicable

hTEHBSA256hrns _PACO5,25mns

_EA128+256s hMA16,64mnsers

e: Edge
s: SavingsCrossoverh: Seeded

_: RandomInitialization
Local

Search

64
256

n
2n

Population/
Sample Size

3
5

10
25

Population
Size k

10
25

Sample
Size m

Augmentation
h: Histogram
d: Nearest Neighbor Node
r: Random Node

Local
Search

Initialization Savings Heuristic
m: Double Minimum Spanning Tree
s:
_: Random

DEA128+256m Initialization Spanning Tree
m: Double Minimum

s: Savings Heuristic

16
128

2

64
256

4
8

+
,Selection Diversity

ffa: ffa and (n,m)
fuss: fuss

rs: Random
_: (n,m)

md d

d d d

dd d

d

d

dd

nd d

+

+

mns: MNS
rns: RNS

_: None

MNS: MNS
VNS: VNS
RNS: RNS

HC: Hill Climbing

Figure 3 The notation for setups of the algorithms explored in our experiments (DEA, EA,
hMA, TEHBSA, PACO, and local search) as introduced in Section IV and used in Figure 4.
The gray boxes hold one example setup for each algorithm. The notation elements in the
setup names are connected to the corresponding parameters and parameter values. “_”
represents default values not explicitly signified in the setup name.

The best results have been achieved when global
search methods are seeded and hybridized with
local search.

48 IEEE Computational intelligence magazine | august 2014

whether EC methods can outperform them (on the TSPLib
instances):

a) A simple Hill Climber (HC) that applies the aforemen-
tioned four search operators in a loop.

b) The Variable Neighborhood Search (VNS) [43] imple-
mented in the TSP Suite is based on the same four neigh-
borhoods. In its main loop, it first shuffles them randomly

and then performs a neighborhood descend. Once it
reaches an optimum it cannot escape from anymore, a
random part of the solution is shuffled and the procedure
begins again with shuffling the neighborhoods.

c) Instead of descending the neighborhoods in a specific
order and always returning to the first neighborhood
when an improvement is made, we also tested an

hP
A

C
O

3,
10

m
ns

 (
ra

nk
 1

),
hP

A
C

O
3,

25
m

ns
(2

.5
),

hP
A

C
O

5,
10

m
ns

(2
.5

),
hP

A
C

O
5,

25
m

ns
(4

),
hP

A
C

O
10

,1
0m

ns
(5

),
hP

A
C

O
10

,2
5m

ns
(6

),

hM
A

16
+

64
m

ns
e

(7
),

hM
A

2+
8m

ns
e

(8
),

hM
A

2+
4m

ns
e

(9
),

hM
A

16
,6

4m
ns

e
(1

0)
,

hM
A

2+
8m

ns
s

(1
1)

,
hM

A
2,

8m
ns

e
(1

2)
,

hM
A

2+
4m

ns
s

(1
3)

,

hM
A

12
8+

25
6m

ns
e

(1
4)

,
hM

A
16

+
64

m
ns

s
(1

5)
,

hM
A

16
+

64
m

ns
ef

fa
(1

6)
,

hT
E

H
B

S
A

64
hm

ns
(1

7)
,

hM
A

16
,6

4m
ns

ef
fa

(1
8)

,
hT

E
H

B
S

A
64

d
m

ns
(1

9)
,

hM
A

16
+

64
m

ns
er

s
(2

0)
,

hM
A

12
8,

25
6m

ns
e

(2
1)

,
hM

A
12

8+
25

6m
ns

ef
fa

(2
2)

,
h

PA
C

O
3,

10
rn

s
(2

3)
,

hM
A

12
8+

25
6m

ns
s

(2
4.

5)
,

M
N

S
m

(2
4.

5)
,

h
PA

C
O

3,
25

rn
s

(2
6)

,
hM

A
2,

4m
ns

e
(2

7)
,

hM
A

12
8+

25
6m

ns
ef

us
s

(2
8)

,
h

PA
C

O
5,

25
rn

s
(2

9)
,

hM
A

16
,6

4m
ns

er
s

(3
0)

,
hM

A
12

8,
25

6m
ns

ef
us

s
(3

1)
,

h
PA

C
O

10
,2

5r
n

s
(3

2)
,

hM
A

12
8,

25
6m

ns
ef

fa
(3

3)
,

h
PA

C
O

10
,1

0r
n

s
(3

4)
,

hM
A

12
8+

25
6m

ns
er

s
(3

5)
,

hT
E

H
B

S
A

25
6h

m
ns

(3
6)

,
hM

A
16

+
64

m
ns

ef
us

s
(3

7)
,

hT
E

H
B

S
A

64
rm

ns
(3

8)
,

hM
A

16
,6

4m
ns

s
(3

9)
,

hT
E

H
B

S
A

nd
m

ns
(4

0.
5)

,
hT

E
H

B
S

A
nh

m
ns

(4
0.

5)
,

hM
A

16
,6

4m
ns

ef
us

s
(4

2)
,

hM
A

12
8+

25
6m

ns
sf

us
s

(4
3)

,

hM
A

12
8,

25
6m

ns
er

s
(4

4)
,

M
N

S
s

(4
5)

,
h

PA
C

O
5,

10
rn

s
(4

6)
,

hT
E

H
B

S
A

2n
hm

ns
(4

7)
,

hM
A

16
+

64
m

ns
sf

fa
(4

8.
5)

,
hT

E
H

B
S

A
25

6d
m

ns
(4

8.
5)

,

hT
E

H
B

S
A

2n
d

m
ns

(5
0)

,
hT

E
H

B
S

A
25

6r
m

ns
(5

1)
,

hT
E

H
B

S
A

2n
rm

ns
(5

2.
5)

,
hT

E
H

B
S

A
n

rm
ns

(5
2.

5)
,

hM
A

12
8+

25
6m

ns
sf

fa
(5

4)
,

hM
A

12
8,

25
6m

ns
s

(5
5)

,

M
N

S
(5

6)
,

hM
A

2,
8m

ns
s

(5
7)

,
hM

A
12

8,
25

6m
ns

sf
us

s
(5

8)
,

hM
A

16
,6

4m
ns

sf
fa

(5
9)

,
hM

A
12

8,
25

6m
ns

sf
fa

(6
0)

,
hM

A
12

8,
25

6m
ns

sr
s

(6
1)

,

hM
A

12
8+

25
6m

ns
sr

s
(6

2.
5)

,
hM

A
2,

4m
ns

s
(6

2.
5)

,
hM

A
16

,6
4m

ns
sf

us
s

(6
4)

,
hM

A
16

+
64

m
ns

sf
us

s
(6

5)
,

h
M

A
2+

8r
n

ss
(6

6)
,

h
M

A
2+

4r
n

se
(6

7)
,

h
M

A
16

+
64

rn
ss

(6
8.

5)
,

h
M

A
2+

4r
n

ss
(6

8.
5)

,
h

M
A

2+
8r

n
se

(7
0)

,
hM

A
16

,6
4m

ns
sr

s
(7

1)
,

hM
A

16
+

64
m

ns
sr

s
(7

2)
,

h
TE

H
B

S
A

64
h

rn
s

(7
3)

,

h
TE

H
B

S
A

n
d

rn
s

(7
4)

,
h

TE
H

B
S

A
64

rr
n

s
(7

5)
,

h
TE

H
B

S
A

64
d

rn
s

(7
6)

,
h

M
A

16
+

64
rn

se
(7

7.
5)

,
h

TE
H

B
S

A
25

6h
rn

s
(7

7.
5)

,
h

TE
H

B
S

A
n

h
rn

s
(7

9)
,

h
M

A
12

8+
25

6r
n

ss
(8

0)
,

h
TE

H
B

S
A

2n
h

rn
s

(8
1)

,
h

TE
H

B
S

A
25

6d
rn

s
(8

2)
,

h
M

A
16

,6
4r

n
ss

(8
3)

,
R

N
S

b
m

(8
4)

,
h

TE
H

B
S

A
2n

d
rn

s
(8

5)
,

h
TE

H
B

S
A

2n
rr

n
s

(8
6)

,
h

M
A

12
8+

25
6r

n
ss

fu
ss

(8
7.

5)
,

h
TE

H
B

S
A

25
6r

rn
s

(8
7.

5)
,

h
TE

H
B

S
A

n
rr

n
s

(8
9)

,
R

N
S

1s
(9

0)
,

R
N

S
b

s
(9

1)
,

h
M

A
2,

8r
n

ss
(9

2)
,

hM
A

12
8,

25
6r

ns
sr

s
(9

3)
,

R
N

S
1

(9
4)

,
h

M
A

16
,6

4r
n

ss
ff

a
(9

5)
,

V
N

S
b

m
(9

6)
,

h
M

A
12

8,
25

6r
n

ss
(9

7)
,

h
M

A
12

8+
25

6r
n

ss
ff

a
(9

8)
,

hM
A

12
8+

25
6r

ns
sr

s
(9

9)
,

h
M

A
16

+
64

rn
ss

ff
a

(1
00

),
hM

A
16

+
64

rn
ss

rs
(1

01
),

h
M

A
12

8,
25

6r
n

ss
fu

ss
(1

02
),

R
N

S
1m

(1
03

),
h

M
A

16
,6

4r
n

ss
fu

ss
(1

04
),

h
M

A
12

8,
25

6r
n

ss
ff

a
(1

05
),

V
N

S
b

s
(1

06
),

R
N

S
b

(1
07

),
hM

A
16

,6
4r

ns
sr

s
(1

08
),

h
M

A
2,

8r
n

se
(1

09
),

h
M

A
12

8+
25

6r
n

se
(1

10
.5

),
h

M
A

16
+

64
rn

ss
fu

ss
(1

10
.5

),

h
M

A
12

8+
25

6r
n

se
ff

a
(1

12
),

h
M

A
16

+
64

rn
se

ff
a

(1
13

),
h

M
A

12
8,

25
6r

n
se

rs
 (

11
4)

,
h

M
A

12
8,

25
6r

n
se

ff
a

(1
15

),
hM

A
12

8,
25

6r
ns

ef
us

s
(1

16
),

hM
A

12
8+

25
6r

ns
ef

us
s

(1
17

.5
),

h
M

A
12

8+
25

6r
n

se
rs

(1
17

.5
),

hM
A

16
,6

4r
ns

ef
us

s
(1

19
.5

),
V

N
S

1
s

(1
19

.5
),

h
M

A
12

8,
25

6r
n

se
(1

21
),

h
M

A
16

+
64

rn
se

rs
(1

22
.5

),
h

M
A

16
,6

4r
n

se
ff

a
(1

22
.5

),
h

M
A

16
,6

4r
n

se
(1

24
),

h
M

A
2,

4r
n

ss
(1

25
),

h
M

A
2,

4r
n

se
(1

26
),

hM
A

16
+

64
rn

se
fu

ss
(1

27
.5

),

h
M

A
16

,6
4r

n
se

rs
(1

27
.5

),
V

N
S

1
m

(1
29

),
V

N
S

1
(1

30
),

V
N

S
b

(1
31

),
hE

A
12

8+
25

6e
(1

32
)

,
hE

A
16

+
64

e
(1

33
),

hE
A

12
8+

25
6s

(1
34

.5
),

hE
A

16
,6

4e
(1

34
.5

),

hE
A

16
,6

4s
(1

36
),

hE
A

16
+

64
s

(1
37

),
hP

A
C

O
3,

25
(1

38
),

hP
A

C
O

5,
25

(1
39

),
hP

A
C

O
10

,2
5

(1
40

),
hP

A
C

O
3,

10
(1

41
),

hP
A

C
O

5,
10

(1
42

.5
),

hT
E

H
B

S
A

25
6h

(1
42

.5
),

hP
A

C
O

10
,1

0
(1

44
.5

),
PA

C
O

3,
25

(1
44

.5
) ,

hT
E

H
B

S
A

25
6d

(1
46

),
hT

E
H

B
S

A
2n

d
(1

47
),

hT
E

H
B

S
A

2n
h

(1
48

.5
),

hT
E

H
B

S
A

2n
r

(1
48

.5
),

H
C

s
(1

50
),

hT
E

H
B

S
A

25
6r

(1
51

),
PA

C
O

5,
25

(1
52

),
hT

E
H

B
S

A
n

h
(1

53
),

PA
C

O
3,

10
(1

54
),

hT
E

H
B

S
A

64
r

(1
55

),
hE

A
12

8,
25

6e
(1

56
),

hT
E

H
B

S
A

64
h

(1
57

.5
),

PA
C

O
10

,2
5

(1
57

.5
),

hT
E

H
B

S
A

64
d

(1
59

.5
),

hT
E

H
B

S
A

n
r

(1
59

.5
),

hT
E

H
B

S
A

n
d

(1
61

),
D

E
A

16
,6

4s
(1

62
),

PA
C

O
5,

10
(1

63
),

D
E

A
16

+
64

s
(1

64
.5

),
hE

A
12

8,
25

6s
(1

64
.5

),
H

C
(1

66
),

PA
C

O
10

,1
0

(1
67

),
D

E
A

12
8+

25
6m

(1
68

.5
),

D
E

A
12

8,
25

6s
(1

68
.5

),
D

E
A

12
8+

25
6s

(1
70

),

D
E

A
12

8,
25

6m
(1

71
),

E
A

12
8+

25
6e

(1
72

),
D

E
A

16
,6

4m
(1

73
),

E
A

16
+

64
e

(1
74

),
D

E
A

16
+

64
m

(1
75

),
E

A
16

,6
4e

(1
76

),
E

A
16

+
64

s
(1

77
),

E
A

16
,6

4s
(1

78
),

E
A

12
8+

25
6s

(1
79

),
TE

H
B

S
A

64
d

(1
80

),
TE

H
B

S
A

n
d

(1
81

),
TE

H
B

S
A

25
6d

(1
82

),
TE

H
B

S
A

2n
d

(1
83

),
TE

H
B

S
A

2n
r

(1
84

),
E

A
12

8,
25

6s
(1

85
),

TE
H

B
S

A
2n

h
(1

87
),

TE
H

B
S

A
n

h
(1

87
),

TE
H

B
S

A
n

r
(1

87
),

TE
H

B
S

A
64

h
(1

89
.5

),
TE

H
B

S
A

64
r

(1
89

.5
),

E
A

12
8,

25
6e

(1
91

),
TE

H
B

S
A

25
6h

(1
92

),
an

d

TE
H

B
S

A
25

6r
(1

93
)

Fi
g

u
r

e
4

Ra
nk

in
gs

 o
f t

he
 1

93
 a

lg
or

ith
m

 c
on

fig
ur

at
io

ns
 a

cc
or

di
ng

 to
 th

e
m

et
ric

s
de

fin
ed

 in
 S

ec
tio

n
III

-C
, s

pe
ci

fie
d

in
 th

e
no

ta
tio

n
gi

ve
n

in
 F

ig
ur

e
3.

 T
he

 a
lg

or
ith

m

fa
m

ili
es

 a
re

 re
pr

es
en

te
d

by
 d

iff
er

en
t c

ol
or

s
as

 fo
llo

w
s:

 lo
ca

l s
ea

rc
h,

 EA
,

 h
MA

,
 PA

C
O

, D
EA

, a
nd

 T
EH

B
SA

. N
am

es
 o

f a
lg

or
ith

m
s

th
at

 a
re

 h
yb

rid
iz

ed
 w

ith
 MN

S

ar
e

un

de
rli

ne
d

an
d

th
os

e
th

at
 e

m
pl

oy
 R

N
S

ar
e

w
rit

te
n

in
 b

ol
d

fa
ce

. T
he

 b
es

t-
ra

nk
ed

 v
er

si
on

 o
f e

ac
h

al
go

rit
hm

 fa
m

ily
 is

 d
is

pl
ay

ed
 in

 a
 f

ra
m

e
. T

he
 b

es
t p

ur
e

gl
ob

al

se
ar

ch
 is

 d
is

pl
ay

ed
 in

 a
 r

ed
 fr

am
e

an
d

th
e

be
st

 n
on

-h
yb

rid
, s

ee
de

d
gl

ob
al

 s
ea

rc
h

ha
s

a
 b

lu
e

fra
m

e
.

august 2014 | IEEE Computational intelligence magazine 49

algorithm that tries to pick a random,
different neighborhood for each move it
makes. We call this method “Random
Neighborhood Search” (RNS). Both
VNS and RNS were tested in versions
that either take the best (VNSb, RNSb) or first discovered
(VNS1, RNS1) improving move of a neighborhood.

d) Inspired by [44], we developed a new local search method
called Multi-Neighborhood Search (MNS). The MNS
algorithm performs a ()nO 2 scan of the solution and col-
lects all improving moves under the four defined neighbor-
hoods in a queue. The best move is extracted from the
queue and immediately executed. This may invalidate some
moves in the queue, e.g., if it is a rev that directly intersects
with rol (see Figure 2). These moves are pruned from the
queue. Non-intersecting moves are not affected and some
moves may be modified
but are still applicable: A
rol fully included inside a
reversed sub-sequence, for
instance, simply becomes a
corresponding ror move.
To walk through a queue
of length l and find the
best remaining move while
pruning invalidated ones
can be done in ()lO steps.
If the queue is empty, it is
filled again. Otherwise, the
best remaining move is
applied. If no further moves
can be discovered, a ran-
dom fraction of the tour is
randomly shuffled, exactly
in the same way as in VNS
or RNS.

We started these four algo-
rithms either at a random solu-
tion, with one generated by the
Savings, or the Double Mini-
mum Spanning Tree Heuristic.

4) Can Local Search
Methods Benefit from Being
Hybridized with EC
Methods?
MAs [45], which combine EAs
with local search, are amongst
the best optimization algorithms
for combinatorial problems. We
created hybrid versions of the
three EC approaches from Sec-
tion IV-B2 to verify whether
these can outperform the local
search methods.

We refer to our hybrid (seeded) hEA as the hMA. Here, the
crossover rate has been set to 1 and each solution that is generated
will be refined with a local search method. For this purpose, we
have slightly modified versions of RNS (which randomly chooses
between the best- and first-improvement selection policy per call)
and MNS. These versions will stop when converging to an opti-
mum that is different than the input solution. We also tested ver-
sions of hPACO and hTEHBSA that have undergone the same
hybridization. The tested setups of these hybrid global search al-
gorithms have a name suffix indicating the local search used for
hybridization (see Figure 3) and are always seeded (prefix hh.

0
1

(a)

0-1-2 32 4 5

0.5

1

1.5

2

2.5

3

log10(FE/n)

F
b

TEHBSA:
 6 Setups

EA: 6 Setups

VNS1

RNS1

MNS

PACO:
 6 Setups

TEHBSA:
 6 Setups

EA: 6 Setups

VNS1

RNS1

MNS

PACO:
 6 Setups0

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

Ft
(b)

lo
g 1

0(
m

ed
ia

n
E

R
T

D
E

/n
2)

Figure 5 Examples of (manually post-processed) progress and ERT diagrams for the six best non-seeded
and non-hybridized setups of each algorithm family. (a) A progress diagram showing the median smallest
error (Fb) achieved after a given amount of FEs has been consumed (log-scaled) on the benchmark
instance gr48. (b) The median estimated running time ERTDE in terms of DEs to reach a relative error
threshold Ft over the 8 TSPLib instances with 32 # n 1 64.

Proper experimentation should avoid reducing
algorithm performance to singular points.

50 IEEE Computational intelligence magazine | august 2014

5) Further Questions
Methods for preventing convergence have recently received
much attention in the EC community. In order to verify
whether such approaches can be beneficial in solving TSPs, we
applied three of them in the hMA: Fitness Uniform Selection
(fuss) [46], ffa, and random selection (rs). Furthermore, we also
investigated the performance of the Genetic Programming
based developmental approach (Developmental EA, DEA in
short) for the TSP introduced in [47].

C. Evaluation Results
Each of the algorithms described in Section IV-B was imple-
mented in the TSP Suite. We investigated 193 different setups
of these algorithms based on the parameter values given in Fig-
ure 3. The experiments resulted in about 20GB of log files,

which will be made available
online. Due to space con-
straints, we will limit our-
selves to the main conclusions
and representative examples
of the generated diagrams
obtained with the evaluator
component. The global rank-
ing of the setups given in Fig-
ure 4 directly provides
answers to the research ques-
tions from Section IV-B.

In their non-hybridized
and non-seeded var iants,
none of the tested EC
approaches (EA, PACO, and
TEHBSA) performed well. In
Figure 5, where examples of
the ERT and progress dia-
grams for the six best such
setups of each algorithm fam-
ily are plotted, it can be seen
that the benchmarked local
search algorithms are faster in
obtaining solution qualities
below . .F 0 05t =

The ranking in Figure 4
shows that the seeded global
optimization algorithm vari-
ant s (hEA , hTEHBSA ,
hPACO) have performed bet-
ter than the non-seeded ones.
They started at good solution
qualities, but are still outper-
formed by the investigated
local search algorithms.

The best results have been
achieved when global search
methods are seeded and
hybridized with local search.

Figure 6 contains some examples of ECDF plots for the six
best-ranked hybridized and seeded variants of the global search
algorithms.

Figure 6a shows that several hMA setups can find globally
optimal solutions in more than 50% of all runs over all the
benchmark problems. In this respect, the hMA is slightly better
than the hybrid hPACO, but hPACO with local search can find
solutions with %F 1b # more often and is faster (Figure 6b).

PACO has performed the best among the tested EC methods
and also provided the overall best results when seeded and hybrid-
ized with local search. This trend is very clear, especially if we con-
sider that only 24 PACO-based configurations had been tested
versus 80 hMA-based and 48 TEHBSA-based setups.

MNS has performed better than the other local search algo-
rithms, both in pure and hybrid forms, likely because one

0.5

0.2

0.1

0.6

0.5

0.4

0.3

0.8

0.7

1.0

0.9

1
0

2.5 31.5 2 3.5 4 4.5 5 6.565.5
log10(DE/n2)

(a)

E
C

D
F

 fo
r

F
t =

 0

0

hPACO+

MNS:
 6 Setups

hMA+

MNS:
 6 Setups

MNSm

hTEHBSA+

MNS:
 6 Setups

RNSbm

VNSbm

dEA:
 6 Setups

hPACO+

MNS:
 6 Setups

hMA+

MNS:
 6 Setups

MNSm

hTEHBSA+

MNS:
 6 Setups

RNSbm

VNSbm

dEA:
 6 Setups0

2 30 1 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

log10(NT)

(b)

E
C

D
F

 fo
r

F
t =

 0
.0

1

Figure 6 Examples of (manually post-processed) ECDF diagrams containing the six best seeded variants of
all algorithm families. These happened to always be hybridized with MNS (except for DEA, for which no
hybrid setups were tested, and the local search algorithms themselves). (a) The ECDF over DEs (scaled by
n2 on a log-scaled axis) for goal ,F 0t = i.e., the fraction of runs that have discovered the globally optimal
solution after a given number of DEs. (b) The ECDF over NT (log-scaled) for goal . ,F 0 01t = i.e., the fraction
of runs that have discovered a solution not more than 1 percent longer than the globally optimal solution
after a given amount of normalized runtime.

august 2014 | IEEE Computational intelligence magazine 51

()nO 2 -scan of the solution can result in mul-
tiple improvements. With ranks 24.5 (seeded)
and 56 (not seeded), it outperformed all pure
and seeded EC methods as well as most of
their hybrids.

Although ffa appears to be a slightly better
convergence prevention strategy for the hMA
than fuss or rs, the hMA using neither of them can perform
even better. While the always seeded DEA was able to outper-
form the non-seeded EA and TEHBSA variants, it was infe-
rior to a simple seeded HC. Edge Crossover is better than the
new Savings Crossover.

To sum up, the best local search (MNS) together with the
best pure global search (PACO) produces the best hybrid
search. Pure PACO performs better than the pure EA. Their
hybridized versions with MNS show the same behavior. One
may thus assume that hybridization would have an almost addi-
tive effect. However, this is not always true, since all tested
hybrid algorithms are seeded and the (seeded) hEA is better
than the (seeded) hPACO.

Based on the results presented, we hope that our experi-
mental approach can lead to the development of better algo-
rithms through identifying behaviors and trends of different
algorithms. Prior to these experiments using the TSP Suite,
some of us would expect an MA to be the best hybrid EC
method for the TSP. The results, however, tell us that PACO is
the method of choice.

V. Conclusions and Future Work
This paper has made four contributions to the research on
combinatorial optimization with metaheuristics in general and
the TSP in particular.

First, we proposed an experimentation procedure that
allows for analyzing and comparing optimization algorithms
from several different points of view. This procedure marks a
step forward between the traditional experimental analysis and
data mining applied to performance data from optimization
processes. It is not limited to the TSP and may be useful in
other domains as well.

Second, this experimentation procedure is realized in a gen-
eral open source framework for the implementation, unit test-
ing, experimentation, and analysis of TSP algorithms. The TSP
Suite, including its source code, extensive documentation,
example data, and example reports, can be downloaded from
http://www.logisticPlanning.org/tsp/. With the TSP Suite,
experiments can be run in a parallel or distributed fashion and
evaluation reports containing high-level, human-readable con-
clusions can be produced.

Third, the TSP Suite has been used to obtain a baseline set
of data generated from several local search methods as well as
members of the main EC algorithm families (EAs, MAs, ACO,
EDAs) in pure, seeded, and hybridized versions. This allows
users of the TSP Suite to acquire data from algorithms that are
related and suitable for comparison purposes. All of these
implementations and collected data will be made available.

Fourth, with the experiments we have shown that the
TSP Suite is an efficient tool for answering both general and
specific research questions. This also validates the experimen-
tal procedure (which is not limited to TSPs). We confirmed
that local search can outperform pure global search methods
on the TSP, but that EC methods hybridized with local search
can be even better. PACO and the new MNS have been
found to be the best global and local optimization algorithms
in the tests, respectively.

There are five major strands of future work, which will be
followed by the authors.

First, we are working to set up a centralized website that
provides the TSP Suite and its documentation as well as all the
generated benchmarking results for download. This site will
allow other researchers to upload their results and maintain an
up-to-date list of the best TSP solvers.

Second, the collection of algorithms in our TSP Suite is far
from complete. We are currently implementing Branch and
Bound methods and Lin-Kernighan local search [48]. Compre-
hensive experiments with these two methods will be performed.

Third, the experimentation approach described in Section
II-B will be extended to other well-known optimization tasks
such as Knapsack or Set Covering problems. We plan to repeat
our initial analysis for viable time measures (Section II-A3) and
then re-use existing code from the TSP Suite.

Fourth, at present the TSP Suite can compare different
experiments, but it cannot automatically analyze what influences
their parameters may have. For example, in Section IV-C, we had
to manually conclude that Edge Crossover is better than our
new Savings Crossover. It would be more convenient if the
TSP Suite could automatically derive such conclusions (instead
of treating each algorithm setup as a different algorithm).

Fifth, there are several limitations with the current version
of the experimental procedure that need to be addressed, some
of which are 1) The global ranking of algorithms depends
strongly on the mixture of statistics it is based on, so this mix-
ture needs to be further discussed and analyzed; 2) The com-
parison of the areas under performance curves is our first for-
mal idea to compare dynamic behaviors, but probably not
statistically robust; 3) The best discovered solution must be pre-
served by the TSP Suite in the log files, which entails perform-
ing an ()nO copy operation whenever the running algorithm
registers an improvement. This may potentially skew the mea-
sured CPU times. Since a running algorithm can query the
system for the best solution it has found so far, it is relieved
from making this copy itself, which may offset this expense; 4)
Additionally, we are looking for better methods to mine the
data gathered during the experimental runs.

The TSP Suite, including its source code, extensive
documentation, example data, and example reports,
can be downloaded from http://www.logisticPlanning.
org/tsp/.

52 IEEE Computational intelligence magazine | august 2014

[18] W. J. Cook. (2011). Traveling salesman problem. [Online]. Available: http://www.
tsp.gatech.edu/
[19] M. S. Boddy and T. L. Dean, “Solving time-dependent planning problems,” Dept.
Comput. Sci., Brown Univ., Rhode Island, Providence, Tech. Rep. CS-89-03, Feb.
1989.
[20] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem: A case study in
local optimization,” in Local Search in Combinatorial Optimization. Princeton, NJ: Princeton
Univ. Press, 1995, pp. 215–310.
[21] O. J. Dunn, “Multiple comparisons among means,” J. Amer. Stat. Assoc., vol. 56, no.
293, pp. 52–64, 1961.
[22] J. Demšar, “Statistical comparisons of classif iers over multiple data sets,” J. Mach.
Learn. Res., vol. 7, pp. 1–30, Jan. 2006.
[23] S. García and F. Herrera, “An extension on ‘Statistical comparisons of classif iers
over multiple data sets’ for all pairwise comparisons,” J. Mach. Learn. Res., vol. 9, pp.
2677–2694, Dec. 2008.
[24] H. H. Hoos and T. Stützle, “Evaluating Las Vegas algorithms—Pitfalls and rem-
edies,” in Proc. 14th Conf. Uncertainty Artificial Intelligence, July 24–26, 1998, pp. 238–245.
[25] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no.
8, pp. 861–874, 2006.
[26] A. P. Bradley, “The use of the area under the ROC curve in the evaluation of ma-
chine learning algorithms,” Pattern Recognit., vol. 30, no. 7, pp. 1145–1159, 1997.
[27] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic, “Genetic
algorithms for the travelling salesman problem: A review of representations and opera-
tors,” J. Artif. Intell. Res., vol. 13, no. 2, pp. 129–170, 1999.
[28] K. Beck, JUnit Pocket Guide. Sebastopol, CA: O’Reilly, 2009.
[29] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI: Univ. Michigan
Press, 1975.
[30] D. B. Fogel, “An evolutionary approach to the traveling salesman problem,” Biol.
Cybern., vol. 60, no. 2, pp. 139–144, 1988.
[31] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. London,
U. K.: Springer-Verlag, 1996.
[32] T. Weise, M. Wan, K. Tang, P. Wang, A. Devert, and X. Yao, “Frequency fitness as-
signment,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 226–243, Apr. 2014.
[33] K. A. de Jong, Evolutionary Computation: A Unified Approach. Cambridge, MA: MIT
Press, 2006, vol. 4.
[34] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary Computation.
London, U.K.: Oxford Univ. Press, 1997.
[35] T. Weise. (2009). Global optimization algorithms—Theory and application. [On-
line]. Available: http://www.it-weise.de/projects/book.pdf
[36] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization—Artif icial ants
as a computational intelligence technique,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp.
28–39, 2006.
[37] P. Larrañaga and J. A. Lozano, Eds., Estimation of Distribution Algorithms—A New Tool
for Evolutionary Computation (Genetic Algorithms and Evolutionary Computation). Berlin
Heidelberg, Germany: Springer-Verlag, 2001, vol. 2.
[38] L. D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems and traveling
salesman: The genetic edge recombination operator,” in Proc. 3rd Int. Conf. Genetic Algo-
rithms, Fairfax, VA, June 4–7, 1989, pp. 133–140.
[39] M. Guntsch and M. Middendorf, “Applying population based ACO to dynamic op-
timization problems,” in Ant Colonies to Artificial Ants—Proc. 3rd Int. Workshop Ant Colony
Optimization, Brussels, Belgium, Sept. 12–14, 2002, vol. 2463, pp. 111–122.
[40] S. Tsutsui, “Probabilistic model-building genetic algorithms in permutation rep-
resentation domain using edge histogram,” in Proc. 7th Int. Conf. Parallel Problem Solving
Nature (PPSN VII), Granada, Spain, Sept. 7–11, 2002, vol. 2439, pp. 224–233.
[41] S. Tsutsui, “Parallelization of an evolutionary algorithm on a platform with multi-
core processors,” in Proc. Artificial Evolution: Revised Selected Papers 9th Int. Conf. Evolution
Artificielle, Strasbourg, France, Oct. 26–28, 2009, vol. 5975, pp. 61–73.
[42] K. Helsgaun, “General k-opt submoves for the Lin–Kernighan TSP heuristic,” Math.
Program. Comput., vol. 1, nos. 2–3, pp. 119–163, 2009.
[43] P. Hansen, N. Mladenović, and J. A. M. Pérez, “Variable neighbourhood search:
Methods and applications,” Ann. Oper. Res., vol. 175, no. 1, pp. 367–407, 2010.
[44] L. D. Whitley and W. Chen, “Constant time steepest descent local search with looka-
head for NK-landscapes and MAX-kSAT,” in Proc. Genetic Evolutionary Computation Conf.
ACM, Philadelphia, PA, July 7–11, 2012, pp. 1357–1364.
[45] Y. Ong, M. H. Lim, and X. Chen, “Memetic computation—Past, present & future
[Research Frontier],” IEEE Comput. Intell. Mag., vol. 5, no. 2, pp. 24–31, 2010.
[46] M. Hutter and S. Legg, “Fitness uniform optimization,” IEEE Trans. Evol. Comput.,
vol. 10, no. 5, pp. 568–589, 2006.
[47] J. Ouyang, T. Weise, A. Devert, and R. Chiong, “SDGP: A developmental approach
for traveling salesman problems,” in Proc. IEEE Symp. Computational Intelligence Production
Logistics Systems, IEEE Computer Society Press, Singapore, Apr. 15–19, 2013, pp. 78–85.
[48] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-
salesman problem,” Oper. Res., vol. 21, no. 2, pp. 498–516, 1973.

�

Acknowledgment
The authors at UBRI would like to acknowledge support from
the National Natural Science Foundation of China under
Grants 61175065, 61329302, and 61150110488, the Techno-
logical Fund of Anhui Province for Outstanding Youth under
Grant 1108085J16, the Special Financial Grant 201104329
from the China Postdoctoral Science Foundation, the Chinese
Academy of Sciences (CAS) Fellowship for Young Interna-
tional Scientists 2011Y1GB01, and the European Union 7th
Framework Program under Grant 247619. The second author
would like to acknowledge support from the University of
Newcastle Faculty of Science and Information Technology’s
Strategic Initiatives Research Fund (Grant Code 10.31415).
The experiments reported in this paper were executed on the
supercomputing system in the Supercomputing Center of Uni-
versity of Science and Technology of China.

References
[1] C. Blum, R. Chiong, M. Clerc, K. A. De Jong, Z. Michalewicz, F. Neri, and T. Weise,
“Evolutionary optimization,” in Variants of Evolutionary Algorithms for Real-World Applica-
tions, R. Chiong, T. Weise, and Z. Michalewicz, Eds. Berlin, Germany: Springer-Verlag,
2011, ch. 1, pp. 1–29.
[2] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Prob-
lem: A Computational Study. Princeton, NJ: Princeton Univ. Press, 2007.
[3] E. L. G. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimization. New York: Wiley Interscience,
1985.
[4] G. Z. Gutin and A. P. Punnen, Eds., The Traveling Salesman Problem and its Varia-
tions (Combinatorial Optimization, vol. 12). Norwell, MA: Kluwer Academic Publishers,
2002.
[5] W. J. Cook. (2013). World TSP. [Online]. Available: http://www.math.uwaterloo.
ca/tsp/world/
[6] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter blackbox optimization
benchmarking: Experimental setup,” INRIA Futurs, Équipe TAO, Univ. Paris Sud, Or-
say, France, Tech. Rep. RR-6828, Mar. 24, 2012.
[7] D. A. D. Tompkins and H. H. Hoos, “UBCSAT: An implementation and experi-
mentation environment for SLS algorithms for SAT and MAXSAT,” in Proc. Revised Se-
lected Papers 7th Int. Conf. Theory Applications Satisfiability Testing, Vancouver, Canada, May
5–13, 2004, vol. 3542, pp. 306–320.
[8] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Applications. San
Francisco, CA: Morgan Kaufmann, 2005.
[9] D. S. Johnson and L. A. McGeoch. (2008). 8th DIMACS implementation challenge:
The traveling salesman problem. [Online]. Available: http://dimacs.rutgers.edu/Chal-
lenges/TSP/
[10] K. Tang, Z. Yang, and T. Weise, “Special session on evolutionary computation for
large scale global optimization at 2012 IEEE world congress on computational intelli-
gence (CEC@WCCI-2012),” Nature Inspired Comput. Applicat. Lab., Univ. Sci. Tech-
nol. China, Hefei, China, Tech. Rep., June 14, 2012.
[11] T. Bartz-Beielstein, “SPOT: An R package for automatic and interactive tuning of
optimization algorithms by sequential parameter optimization,” Cologne Univ. Appl.
Sci., Gummersbach, Germany, Tech. Rep. CIOP TR 05-10, 2010.
[12] T. Chen, K. Tang, G. Chen, and X. Yao, “Analysis of computational time of simple
estimation of distribution algorithms,” IEEE Trans. Evol. Comput., vol. 14, no. 1, pp.
1–22, 2010.
[13] J. Lässig and D. Sudholt, “Experimental supplements to the theoretical analysis of
migration in the island model,” in Parallel Problem Solving from Nature XI (Lecture Notes
in Computer Science, vol. 6238). Kraków, Poland: Springer, Sept. 11–15, 2010, pp.
224–233.
[14] J. Lässig and K. H. Hoffmann, “Threshold-selecting strategy for best possible ground
state detection with genetic algorithms,” Phys. Rev. E, vol. 79, no. 4, p. 046702, 2009.
[15] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA J. Comput., vol.
3, no. 4, pp. 376–384, 1991.
[16] D. S. Johnson and L. A. McGeoch, “Experimental analysis of heuristics for the STSP,”
in The Traveling Salesman Problem and its Variations [4]. Dordrecht, The Netherlands: Klu-
wer Academic Publishers, 2002, ch. 9, pp. 369–443.
[17] D. S. Johnson, G. Z. Gutin, L. A. McGeoch, A. Yeo, W. Zhang, and A. Zverovitch,
“Experimental analysis of heuristics for the ATSP,” in The Traveling Salesman Problem and
its Variations [4]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2002, ch.
10, pp. 445–487.

