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Abstract—We introduce an experimentation procedure for evaluating and 
comparing optimization algorithms based on the Traveling Salesman Prob-
lem (TSP). We argue that end-of-run results alone do not give sufficient 
information about an algorithm’s performance, so our approach analyzes the 
algorithm’s progress over time. Comparisons of performance curves in dia-
grams can be formalized by comparing the areas under them. Algorithms 
can be ranked according to a performance metric. Rankings based on dif-
ferent metrics can then be aggregated into a global ranking, which provides 
a quick overview of the quality of algorithms in comparison. An open 
source software framework, the TSP Suite, applies this experimental proce-
dure to the TSP. The framework can support researchers in implementing 
TSP solvers, unit testing them, and running experiments in a parallel and 
distributed fashion. It also has an evaluator component, which implements 
the proposed evaluation process and produces detailed reports. We test the 
approach by using the TSP Suite to benchmark several local search and 
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evolutionary computation methods. This results in a large set 
of baseline data, which will be made available to the research 
community. Our experiments show that the tested pure global 
optimization algorithms are outperformed by local search, but 
the best results come from hybrid algorithms.

I. Introduction

In the field of metaheuristic optimization, experimentation is 
perhaps the most important tool to assess and compare the 
performance of different algorithms. However, most studies 
limit themselves to presenting means and standard devia-

tions of final benchmark results. This article proposes an experi-
mental procedure that can provide deeper insights into an 
algorithm’s behavior and more holistic comparisons. We imple-
ment this procedure exemplarily for the Traveling Salesman 
Problem (TSP) in a software framework called the TSP Suite, 
which eases algorithm implementation, parallel and distributed 
experimentation, as well as automatic evaluation. We then use 
the TSP Suite to compare the performance of several local search 
methods and members of the main Evolutionary Computation 
(EC) algorithm families [1], e.g., Evolutionary Algorithms (EAs), 
Memetic Algorithms (MAs), Estimation of Distribution Algo-
rithms (EDAs), and Ant Colony Optimization (ACO).

The TSP [2–4] is one of the most well-known combinato-
rial optimization tasks. A TSP is defined as a fully-connected 
graph with n nodes. Each edge has a weight, representing the 
distance. A candidate solution is a tour that visits each node in 
the graph exactly once and returns back to its starting node. 
The objective function ,f  subject to minimization, is the sum 
of the weights of all edges in the tour, i.e., the total tour length. 
This optimization version of the TSP is NP -hard [4]. It has 
been researched for decades, and algorithms that can exactly 
solve instances with tens of thousands of nodes and approxi-
mate the solution of million node problems with an error of 
less than one part per thousand within feasible time exist [5].

Still, the TSP remains an interesting subject for research for 
two reasons. First, the problem is easy to understand. Many 
results and standard benchmark instances with known optima 
are available. This makes the problem ideal for testing new 
approaches, be it general algorithms or improvements such as 
adaptation strategies. Second, while current experimentation 
approaches only focus on singular results, investigating the 
behavior and progress of TSP solvers is an equally important 
issue and may lead to the development of better solvers with 
better results.

Experiments for analyzing the behavior of an algorithm 
over runtime are cumbersome. They generate much data and 
their manual evaluation can take more time than the algo-
rithm implementation itself. The COmparing Continuous 
Optimizers (COCO) [6] system for numerical optimization, 
used in the Black-Box Optimization Benchmarking (BBOB) 
workshops, is one of the first approaches aiming to reduce the 
workload of an experimenter by automatizing most of the 
steps involved. Its evaluation procedure generates statically 
structured papers that contain diagrams with runtime behavior 

information. The necessary data is automatically collected 
from automatically executed experiments.

UBCSAT [7], on the other hand, is an experimental frame-
work for satisfiability (SAT) problems. It focuses on a specific 
algorithm family, the stochastic local search (SLS) [8]. SLS 
methods can be implemented by utilizing a trigger architecture 
defined on top of a default algorithm structure. In COCO, the 
objective function will automatically gather log data before 
returning its result to the algorithm. In UBCSAT, this is done 
in its trigger architecture. The trigger architecture can also 
compute complex statistics online and provide them to the 
running algorithm. COCO and UBCSAT have in common 
that they both explore algorithm behavior over runtime instead 
of focusing only on final results. They are thus different from 
contests such as the DIMACS challenge [9] or the Large-Scale 
Global Optimization [10] competitions.

In this paper, we introduce a new experimental procedure 
for evaluating and comparing optimization algorithms. Differ-
ent from COCO, we prescribe a more general data collection 
scheme (see Section II-A). The proposed evaluation process 
makes use of diagrams similar to those in COCO and UBC-
SAT (see Section II-B), but it does not stop there: It combines 
the results from different evaluation criteria and constructs 
text-based discussions and conclusions, resulting in comprehen-
sive reports instead of rigidly structured papers.

The focus of COCO, UBCSAT, and our proposed 
approach is on analyzing and comparing concrete algorithm set-
ups. They complement frameworks such as the Sequential 
Parameter Optimization Toolbox (SPOT) [11], which finds 
good setups via efficient automatic parameter tuning. One 
could, for example, use the SPOT to configure an algorithm 
before analyzing it with COCO.

We first discuss our approach to experimentation with opti-
mization algorithms in general and for TSP solvers in particular 
(Section II). It will become clear that, in order to gain a deeper 
insight into the behavior of an algorithm, a very large amount 
of work is necessary, both for measurement and evaluation. 
Next, we introduce the TSP Suite, an open source Java software 
framework for experimentation with TSP solvers, in Section 
III. The TSP Suite implements our experimental procedure and 
provides automatic data collection and benchmarking capabili-
ties, as well as a component for automatically evaluating the 
gathered data and comparing the performance of different 
algorithms. This suite allows researchers working on the TSP to 
conduct more comprehensive experiments in a shorter amount 
of time and significantly reduces the work needed to gain valu-
able results and insights.

The TSP Suite also contains implementations of several 
different TSP solvers, including local search algorithms, EAs, 
MAs, EDAs, and ACO methods. We report the results of a 
large set of experiments with these methods in Section IV as a 
proof-of-concept for the TSP Suite and will provide all col-
lected data on the web so that other researchers may use it for 
comparison. The system can be downloaded from http://
www.logisticPlanning.org/tsp/.
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II. Experimentation with Optimization Algorithms
In this section, we will discuss several issues that arise when 
experimentally analyzing metaheuristics in general and TSP 
solvers in particular. Some of these issues, such as the time mea-
sures and considerations about performance, may also be rele-
vant to theoretical algorithm analysis [12–14]. 

A. Data Collection
Before beginning an experiment, a benchmark dataset must be 
chosen. There must also be a definition of how to measure an 
algorithm’s performance. Such a definition will always be based 
on runtime, so how to measure the time must be clarified.

1) Benchmark Datasets
The most well-known benchmark dataset for the TSP is the 
TSPLib [15]. This library contains 110 instances of symmetric 
TSPs with scales n  ranging from 14 to 85900. There are 93 
instances with less than 2000 nodes. For each instance, the 
globally optimal tour is known.

Another dataset, based on the DIMACS 2008 challenge [9], 
was used in extensive experiments with the results [16, 17] 
published in [4]. This dataset contains instances with n  between 
1000 and 1000000, not all of which have been provably solved 
to optimality. The website of Cook [18] holds further large-
scale TSP instances.

The decision on which benchmark set to use depends on the 
goal of the research: The DIMACS instances and similar large-
scale problems allow researchers to explore the limit of what TSP 
solvers can achieve and to push this boundary forward. If the 
goal is to perform many experiments for statistical analysis 
repeatedly, with different parameter settings, then the TSPLib is 

the better choice, since its (mainly) smaller instances 
allow for faster experiments.

2) What Is Performance? 
Relevant literature like the webpage and chapters 
on the DIMACS challenge [9] as well as the Large-
Scale Global Optimization competition [10] typi-
cally report tuples of (benchmark instance, result, 
runtime) as outcomes of experiments, as shown in 
Figure 1a. However, most of the common meta-
heuristics are anytime algorithms [19]. Anytime algo-
rithms can provide an approximate solution for a 
problem at any point during their runtime and the 
approximation quality may improve if more time is 
given. If such an algorithm is applied to the TSP, the 
point at which the algorithm is terminated and its 
result is reported becomes an arbitrary choice of the 
experimenter.

This means that the reported results from Figure 
1a may actually be singular snapshots of the perfor-
mance curves depicted in Figure 1b. Based on Fig-
ure 1a, one may assume that the depicted algo-
rithms A, B, and C are viable alternatives depending 
on the available computational budget. Figure 1b 

debunks this assumption by uncovering that method C always 
has a better approximation quality than the other two. Proper 
experimentation should thus avoid reducing algorithm performance to 
singular points.

The other extreme, to record all the solution improvements 
an algorithm makes, is not a feasible option. There could be 
millions of such events, leading to unmanageably large log files. 
Thus, an intermediate approach is necessary, which collects a 
limited amount of data but sufficient information to approxi-
mate an algorithm’s runtime behavior.

Performance can be defined as the solution quality (tour 
length) that can be reached within a given time frame or as 
the time needed to reach a given solution quality. The former 
is very commonly seen in benchmarking [10], but the latter 
has several advantages [6]. We suggest using both methods and 
to strategically define a fixed set of points in time (vertical 
lines in Figure 1c) and goal objective values ft  (horizontal 
lines) at which “log points” are to be collected, as illustrated 
in Figure 1d.1

3) What Is Time?
Any collected measurement from a run holds one objective 
value and a value for the elapsed time. The question of how to 
measure time seems trivial, but it actually has a major impact 
on the results the evaluation procedure will provide. We can 
define four time measures for TSPs:

a) Absolute Runtime AT: Runtime, traditionally, is measured 
as the absolute time AT that has elapsed since the algorithm 
was started. This has several advantages. For example, many 
1These log points will not necessarily be exactly on the specified thresholds, as finding 
a tour of length 107 would, e.g., satisfy a threshold tour length 128.

Figure 1 The problem of reporting singular results and how to collect multiple data 
samples per run. (a) Reported results in the literature: Methods A, B, and C appear 
to be viable alternatives for different available computational budgets. (b) Potential 
actual behavior of anytime algorithms: Method C is better. (c) Strategically placed 
horizontal and vertical cuts where log points from different runs of an anytime 
algorithm are to be taken. (d) The log points caught at these cuts provide sufficient 
data to reconstruct the original curves.
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related papers report CPU times in millisec-
onds. Also, clock time is a quantity that 
makes physical sense. Furthermore, the mea-
surements will include all actions performed 
by the algorithm, be it memory allocations 
or complex matrix operations. However, 
CPU times are inherently incomparable since they largely 
depend on the machine, operating system, and software envi-
ronment. If a runtime of 30 minutes on an Intel Pentium II 
processor was reported about ten years ago, this result is basi-
cally meaningless today.

b) Normalized Runtime NT: One idea to reduce the incom-
parability of absolute runtime is to normalize it with a system-
dependent “performance value” Z  [9], i.e., to provide a normal-
ized runtime NT. Before applying a TSP solver A  to a given 
problem instance ,I  we also apply a standardized algorithm ,B  
the Double-Ended Nearest Neighbor Heuristic [20], to I  and 
measure its runtime .Z I^ h  The operations that B  performs are 
similar to those that any TSP solver will carry out. Z I^ h thus 
should contain most of the system-dependent aspects that 
would influence the runtime of ,A  ranging from the processor 
speed to whether the cache is large enough to hold a whole 
candidate solution for .I  All AT values measured for A  are 
divided by Z I^ h to obtain the corresponding NT values. If the 
same algorithm A  is executed on two different computers, for 
instance, the performance curves over NT should still look 
approximately the same.

c) Function Evaluations FE: In the field of optimization, the 
runtime of an algorithm is often measured in terms of function 
evaluations (FEs), i.e., the total number of constructed solutions 
passed to the objective function [6, 10]. This measure is entirely 
independent of the clock time and system effects. However, it 
does not reveal “hidden complexities” of the algorithms such as 
the runtime of model updating in an EDA. Moreover, 1 FE 
may have largely different costs in different algorithms. The 
complexity of creating a tour in ACO is in ( ),nO 2  for cross-
over in an EA it may be in ( ),nO  while a local search that 
swaps two cities in a tour of known length needs ( )1O  steps to 
obtain and evaluate the new solution. Thus, comparing algo-
rithms based on consumed FEs may be grossly unfair.

d) Distance Evaluations DE: The three examples in the previ-
ous paragraph have in common that their different complexi-
ties of 1 FE are related to the number of times city distances 
are computed. When choosing the next city to move to, an ant 
in ACO computes a probability value for each not-yet-visited 
city.  This value also depends on the distance to the city, i.e., 
creating a new tour in ACO takes a number of distance evalua-
tions in ( )nO 2 . The length of a new tour created by crossover 
in an EA is the sum of ( )n nO!  distances, while only 

( )8 1O!  distances need to be computed in the case of the 
local search move mentioned above. Counting the number of 
distance evaluations (DEs) may thus often be a fairer machine-
independent runtime measure for TSP solvers. In other 
domains, there are similar elementary operations that could be 
counted, such as variable flips [7] in SAT problems.

In summary, measuring runtime is actually a non-trivial 
issue. A data point collected from a run of an optimization 
algorithm on a TSP instance, in our proposed approach, is a 
five-dimensional tuple of the best achieved objective value fb  
and the four time measures AT, NT, FE, and DE.

B. Data Evaluation
Carrying out an experiment means to apply the same algo-
rithm to a set of benchmark problem instances, performing 
several independent runs for each of them. From each run, a 
list of “log points” is collected, which can then be analyzed to 
gain insights into the algorithm’s performance.

1) Literature Comparison
Comparison with other studies in the literature becomes easy if 
data is collected as discussed above. If a paper reports results in 
terms of the arithmetic mean of fb  after a specific time mea-
sured in FEs, we can look up how long it takes for the bench-
marked algorithm to reach the same or better solution quality 
in mean. Such a comparison is one of the basic requirements 
asked for by any reviewer. It should be noted that the literature 
often reports results in terms of runtime measures AT or FE, 
which have the drawbacks discussed above. Thus, such compar-
isons may not be fair, regardless of whether they are done man-
ually or automatically with the TSP Suite.

2) Statistical Tests
For each defined runtime or objective value threshold, statisti-
cal comparisons between different benchmarked algorithms are 
possible, although it is normal to only compare the final results 
of the algorithms.

For this purpose, non-parametric tests like the Mann-Whitney 
U test should be used, since they make fewer assumptions about 
the underlying distribution of the measured data. If N 22  algo-
rithms are compared, performing . N N0 5 1-^ h tests directly is 
not advisable. Instead, additional provisions such as (at least) the 
conservative Bonferroni correction [21] or (better) more sophisti-
cated tests together with post-hoc methods [22, 23] are needed. 
Statistical tests require the full set of measured data for all com-
pared algorithms and therefore cannot be performed with results 
from the literature, which are condensed to means or medians.

3) Data Normalization
We often may want to aggregate data over multiple problem 
instances. The objective values f ) of the globally optimal tours are 
known for all TSPLib instances, but they differ significantly. We use 
the best objective value fb  that a process has discovered until a 
given point in time to compute a relative error / .F f f fb b= - ) )^ h  
F 0b =  means the globally optimal solution has been found and 

Experimentation is perhaps the most important  
tool to assess and compare the performance of 
different algorithms.
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F 1b =  means the best discovered solution is twice as long as the 
optimum. We will refer to Fb  as error and to corresponding goal 
thresholds Ft  as goal errors.

In addition to having different optimal tour lengths, the 
TSPLib instances also differ in terms of their scales .n  This makes 
it hard to draw diagrams aggregating benchmarking information 
from different problem instances. Such aggregation is necessary, 
however, since no paper can contain 110 separate figures, which 
would be impossible to interpret. The COCO/BBOB [6] sys-
tem often presents the FE axes of diagrams scaled with the prob-
lem dimension. We found that scaling FE and AT values with n  
usually leads to curves similar enough for meaningful aggrega-
tion (although we are still looking for a better option here). 
Since creating an entirely new solution requires n  distance eval-
uations in order to compute the tour length, DE can be scaled 
by .n2  NT does not need to be scaled, since the complexity of 
algorithm B  used for time normalization already contains .n

4) Progress Curves
Based on the collected data points, it is possible to approximate 
the progress of an algorithm in terms of the median or other 
quantiles (based on all runs) of the error Fb  over a given time 
measure. An example for such diagrams is given in Figure 5a 
later in this paper.

5) Estimated Running Time (ERT)
For each of the goal objective values ft  that are specified for 
the data collection of a given benchmark instance (and the 
corresponding error ,Fth  it is possible to compute the estimated 
running time ERT FT t^ h needed to attain it (for a time mea-
sure )T  [6].

The ERT can be plotted in two different ways. One can put 
Ft  on the x-axis and ERT on the y-axis for fixed benchmark 
instances (see Figure 5b later in this paper). This shows how the 
runtime of an algorithm increases as the goal error reduces. 
Alternatively, a fixed threshold Ft  can be chosen, the problem 
scale n  is put on the x-axis, and the mean or median ERT for 
Ft  and the benchmark instances of that scale are on the y-axis. 
This provides information about how the runtime needed to 
get a given approximation quality increases with .n

6) Empirical (Cumulative) Distribution Function (ECDF)
For a time measure ,T  the empirical cumulative distribution 
function ECDFT^ h [6, 7, 24] returns the fraction of runs that 
have reached a given goal error Ft  (normally, .F 0t = h  It is 
plotted over the runtime and should, ideally, reach 1 as 
quickly as possible. Figure 6 later in this paper is an example 
for ECDF diagrams.

7) Curve Comparison
Diagrams that display the ERT or ECDF are 
more than just visual aids. However, it is not 
easy to formalize statements like “this curve 
tends to be lower than that one.” One idea to do 
so is to compare the area under the curve(s) 
(AUC) [25, 26]. Algorithms that can find bet-

ter solutions faster tend to have smaller areas under their prog-
ress and ERT curves as well as larger areas under their ECDF.

For some problem instances and goal errors ,Ft  the ERT 
may go to infinity and so would the AUC. Here, one can first 
compare the length on the x-axis for which the ERT is infinite. 
If one algorithm has a shorter section here, it is better. In case 
of a tie (or if both discover the global optimum and thus have 
all-finite ERTs), the areas are compared and the one with the 
smaller area is considered as better.

8) Information Aggregation via Ranking
We now can compare algorithms from many different perspec-
tives and, often, findings will be consistent over different statis-
tics. Yet, there should be a formal concept to join them into 
conclusions. A simple approach here is to rank each algorithm 
according to each aspect. Let us assume that we compare five 
algorithms according to their ECDF over the DEs. The 
TSPLib provides 110 benchmark cases and for each of those, 
we can draw a diagram. The AUC-based comparison will lead 
to a ranking of the algorithms in each of these diagrams. We 
then can re-rank the algorithms for ECDFDE  according to 
their median rank over all the individual diagrams. The result-
ing ranking can now contribute to a “global” ranking, which is 
a ranking that orders the algorithms according to their median 
ranks from many different aspects, including, e.g., ,ECDFDE  

,ERTNT  and progress in terms of FE and NT. Of course, 
depending on research goals, the global ranking can also be 
based on a narrower set of performance metrics.

The ranking approach has the advantage that it can reduce 
many information sources into a simple conclusion. Such a 
conclusion would provide a general idea about the perfor-
mance relationship of different algorithms that can then be fur-
ther explored by a researcher.

III. The TSP Suite
Most studies on the TSP limit their analyses to comparing their 
results with those from the literature or, at best, using statistical 
tests on the end results. Thorough experimentation requires a 
significant amount of work. If it is done by hand, the time 
needed to evaluate the benchmark results may equal or even 
exceed the time spent in implementing the TSP solver and 
running the experiments.

However, as mentioned in the introduction, thorough 
experimentation is necessary for solid research in metaheuris-
tics. In this section, we present our open source software sys-
tem: the TSP Suite. It is a Java 1.7 framework that assists algo-
rithm developers in implementing and testing their methods, 
running experiments and collecting data, as well as evaluating 

The TSP Suite allows researchers to conduct more 
comprehensive experiments in a shorter amount of 
time and significantly reduces the work needed to gain 
valuable results and insights.
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and comparing results. We describe the exper-
imental procedure with the TSP Suite step-
by-step in the following section.

A. Implementing the Algorithm
Since the TSP Suite is a Java framework, the 
optimization algorithm to be investigated must 
be implemented as a Java class (program). This class must be an 
extended class of a class called TSPAlgorithm and implement 
a method solve taking as input an instance of the class 
ObjectiveFunction. This instance provides, among others,
1)	a method to compute the tour length of a candidate solu-

tion (either in path or adjacency representation [27]);
2)	a method to compute the distance between two nodes; 
3)	 a function that returns true when the algorithm should 

terminate, either because the granted computational budget 
has elapsed or the global optimum has been discovered2;

4)	the random number generator to be used during the run 
of the algorithm; as well as

5)	 information about the elapsed runtime and best solution 
discovered so far.

Additionally, similar to the objective functions used in the 
COCO framework [6], it automatically gathers all logging 
information (in memory).

To be executable, the algorithm class must have a specific 
main method, which is a single line of code that can basically 
be copied from the documentation of the TSP Suite. By option-
ally implementing some methods, an algorithm may be 
extended with typed parameters (such as an integer value for 
the population size of an EA) that can be passed in via the 
command line or in a configuration file.

JUnit tests [28], which can automatically apply a TSP solver 
to some of the benchmark instances and check if it produces 
invalid results, are provided. In order to unit-test a new algo-
rithm, one additional class with a single one-line method 
needs to be provided. Although testing cannot guard against 
errors entirely, it may help to reduce them. The TSP Suite 
comes with extensive documentation on how to implement 
and test TSP solvers.

There are very few requirements on the algorithm type, 
structure, and implementation imposed by the TSP Suite. This 
makes it easy to both benchmark existing algorithms and to re-
use TSP Suite-based algorithms for other purposes.

B. Executing the Experiment
To execute the experiment, the algorithm will be instantiated 
and applied to all benchmark instances 30 times each by 
default. A folder structure with one folder per benchmark case 
and one log file per run will be produced. These log files follow 
an easy-to-parse text format and contain, among others,
1)	the benchmarking data captured according to Sections 

II-A2 and II-A3;

2The default termination criterion is to exhaust 100n3FEs, 100n4DEs, or 1h of CPU 
time, or when the optimum is found. This can be changed via the command line of 
the system.

2)	the algorithm name and class;
3)	all parameter settings (if typed parameters have been 

specified);
4)	 information about the software (Java version, OS) and 

hardware (processor, available memory) environment;
5)	the seed of the random number generator; and
6)	if specified, the name, e-mail address, and website of the 

experimenter.
A log file thus serves as a complete, publishable documentation 
of a single run, maximizing replicability of experiments.

As mentioned before, there are 110 symmetric TSPLib 
instances and the system conducts by default 30 runs per 
instance. If each run would use up the maximum time of 1h 
even on the smallest instances, the experiment could take 
about 138 days to complete. In order to decrease the runtime, 
all processors on a machine can be utilized for executing 
independent runs. From our experience, a complete experi-
ment with a sub-par algorithm takes about 1 week on an 
8-core machine. Additionally, several instances of the same 
program may be executed in a cluster. If their output paths 
point to the same shared folder, the runs to be performed are 
automatically divided among them. This way, the workload of 
the experiment is parallelized and distributed, but not the 
algorithms themselves. Thus, no additional provisions from 
the algorithm implementer (apart from not using globally 
shared variables) are required.

C. Evaluating and Documenting the Results
Once an experiment has been conducted using the TSP Suite, 
the evaluator program can be applied to the output folder(s) 
with the log files. This evaluator generates a comprehensive 
report, which includes all the steps detailed in Section II-B. 
The report is structured into three parts.

The first part contains a description of the TSP, the experi-
ment, and the evaluation process, i.e., a more extensive version 
of the text in this paper up to the start of Section III. This 
makes the report a standalone document that can be under-
stood with no further context needed.

The second part of the report is focused on the evaluation 
of individual algorithms separately. If the evaluator is fed with 
results from multiple experiments, this part contains one sec-
tion for each of them. In such a section, the parameter settings 
of the experiment are listed, several curves are plotted, and an 
automatic comparison with results from the literature is per-
formed and presented in tabular form.

If multiple experiments have been conducted, a third sec-
tion is added to the report, which provides statistical algo-
rithm comparisons. Here, curves of the algorithms can be 

The TSP Suite is a Java 1.7 framework that assists 
algorithm developers in implementing and testing 
their methods, running experiments and collecting 
data, as well as evaluating and comparing results.
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plotted together in the same diagrams and are compared by 
using the AUC-approach detailed in Section II-B7. Statistical 
comparisons of end results and runtimes are performed based 
on the Mann-Whitney U test with Bonferroni correction. 
For each of the above aspects, the algorithms are ranked and 
these rankings are reflected in descriptive texts and conclu-
sions. A final section aggregates all the single rankings and 
makes a suggestion about which algorithms tend to perform 
the best in overall. This aggregate combines rankings resulting 
from the following sources:
1)	the aggregated rank for mean ECDF over all benchmark 

instances;
2)	separate ranks for ECDF over benchmark instances 

grouped by n  in powers of two;
3)	the aggregated rank for ERT over Ft  and all benchmark 

instances;
4)	separate ranks for ERT over Ft  and over benchmark 

instances grouped by n  in powers of two;
5)	the aggregated rank for ERT over ;n
6)	separate ranks for Fb  over runtime, over benchmark 

instances grouped by n  in powers of two;
7)	separate ranks for Fb  over runtime, for each individual 

benchmark instance; and
8)	statistical test results, involving comparison of the final 

result and the runtime to optimality and to . .F 0 01b #

All time-dependent statistics are computed and ranked separately 
for the three time measures DE, FE, and NT. In summary, the 

aggregated ranking rewards algorithm speed, good 
results, and the ability to discover global optima.

Each section, result, or diagram is always accom-
panied with descriptive texts. Additionally, each eval-
uation step in the last two parts of the report can 
independently be turned on or off and configured 
via command line parameters of the evaluator. This 
way, researchers can adapt the ranking towards their 
specific research goals. If the main goal is to find 
algorithms that can find the global optimum, then all 
modules not focused on that goal can be turned off. 
The algorithm comparison will then rank the results 
solely based on this aspect.

As for the output format, the user can choose 
between XHTML with PNG figures and LaTeX 
with EPS figures. In the latter case, one can choose 
among the following document classes: standard 
article, ACM conference, IEEE article, IEEE con-
ference, and Springer conference. The LaTeX out-
put can be automatically compiled into a PDF for-
mat. Its figures can easily be re-used for writing 
papers and articles. XHTML, on the other hand, 
has a smoother layout due to not needing page 
breaks and can easily be published on the web.

IV. Proof-of-Concept: An Experimental Study
We used the TSP Suite to conduct an extensive set 
of experiments with different metaheuristic TSP 
solvers. We designed these experiments with two 

goals in mind: 1) to create a large amount of comparison data 
and algorithm implementations that covers the major EC algo-
rithm families as well as local search methods, and 2) to explore 
several questions about the performance of these algorithms.

A. Prerequisites
In order to make the comparison fair, we have endeavored to 
apply the algorithms in similar configurations. All algorithms 
worked on the path representation [27], where solutions are 
encoded as permutations of integer numbers. Here, each node 
has an id in n1f  and if id b  is listed directly after id a  in a 
permutation, b  will be visited directly after a  in the tour.

All algorithms except PACO and TEHBSA (see the next 
section) used the same four unary search operations (neighbor-
hoods) sketched in Figure 2. If one of these operators creates a 
new tour xl from an existing tour x  with known length ,f x^ h  
then the length f xl^ h of xl can be computed in ( )1O  DEs.

The reversing operator reverses a sub-sequence of a tour [27, 
29]. As a two-opt move, this procedure deletes two edges and 
adds two new ones. The left-rotation operator rotates a sub-
sequence of a tour one step to the left and the right-rotation 
operator rotates one step to the right [27, 30]. Both are possible 
three-opt moves, i.e., delete and insert (at most) three edges. 
Finally, the swap move simply exchanges two nodes [27, 31] and 
is a possible four-opt move, as it leads to the deletion and inser-
tion of at most four edges.

f(x’) = f(x) - dist(BC) - dist(GH) + dist(BG) + dist(CH)

x = (A,B|C,D,E,F,G|H,I) (  x’ = rev(x, 3, 7)     = (A,B|G,F,E,D,C|H,I)

f(x’) = f(x) - dist(BC) - dist(CD) - dist(GH) 
 + dist(BD) + dist(GC) + dist(CH)

x = (A,B|C|D,E,F,G|H,I) (  x’ = rol(x, 3, 7)     = (A,B|D,E,F,G|C|H,I)

f(x’) = f(x) - dist(BC) - dist(FG) - dist(GH) 
 + dist(BG) + dist(GC) + dist(FH)

x = (A,B|C,D,E,F|G|H,I) (  x’ = ror(x, 3, 7)     = (A,B|G|C,D,E,F|H,I)

f(x’) = f(x) - dist(BC) - dist(CD) - dist(FG) - dist(GH) 
 + dist(BG) + dist(GD) + dist(FC) + dist(CH)

x = (A,B|C|D,E,F|G|H,I) (  x’ = swap(x, 3, 7)  = (A,B|G|D,E,F|C|H,I)

(a)

(b)

(c)

(d)

Figure 2 Examples of the four search operations that modify a candidate solution x  
in path representation (as permutation) according to two input indices , .. ,i j n1!
along with efficient methods for computing the objective value ( )f xl  of the resulting 
new permutation .xl  (a) Reversing operator: rev , , .x i j^ h  (b) Left-rotation operator: 
rol , , .x i j^ h  (c) Right-rotation operator: ror , , .x i j^ h  (d) Swap operator: swap , , .x i j^ h
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B. Research Questions
We also conducted comprehensive experi-
ments to test whether the experimental proce-
dure discussed in Section II can provide mean-
ingful answers to research problems. Some 
general questions are posed, such as whether 
global, local, or hybrid optimization algorithms can perform well 
on the TSP. There are questions with a narrower scope too, such 
as whether Frequency Fitness Assignment ffa^ h [32] is a good 
diversity enhancement strategy in an MA for the TSP.

1) Which EC Method Would Be Most Suited for the TSP?
In order to find some directions regarding which EC method 
is better for solving TSPs, we conducted experiments with sev-
eral setups of three main branches of EC, namely an EA [33–
35], an ACO [36], and an EDA [37]:

The EA uses the four aforementioned neighborhoods (see 
Figure 2) as mutation operators, and for each offspring it ran-
domly chooses one to apply. It has a crossover rate of 1/3, and 
was tested with either the well-known Edge Crossover [38] or a 
new Savings Crossover operator. Savings Cross-
over constructs a new tour with the Savings 
heuristic [20], but only uses edges present in 
either of the parents. If cycles would occur, it 
reverts back to the original heuristic.

Population-based ACO (PACO) [39] is a 
version of the ACO algorithm that maintains a 
set (population) of k  solutions. The edges pres-
ent in those solutions define the pheromones. 
In each iteration, m  solutions are generated as 
in standard ACO and the best of them replaces 
the oldest one in the population.

The Edge-Histogram based Sampling Algo-
rithm [40, 41] is an EDA, which is here applied 
in the template-based version (TEHBSA) [41]. 
It uses a candidate set containing the 20 nearest 
nodes to any other node. This allows the reduc-
tion of the edge histogram matrix size to ,n20  
but in this case the sampling process may arrive 
at a point where following the model would 
lead to a cycle in the tour. The tour is then 
either augmented with the closest unvisited 
node or a random node. We have also tested a 
TEHBSA version that maintains a complete 
edge histogram.

2) Does Seeding Improve the Results  
of Metaheuristic TSP Solvers?
Usually, the EA, PACO, and TEHBSA begin 
their search with random solutions, empty 
populations, and uniformly initialized models, 
respectively. However, the algorithms can 
instead be seeded. They can receive their initial 
population of solutions from heuristics for the 
TSP (discussed, e.g., in [20]).

We tested seeded versions (hEA, hPACO, hTEHBSA) of all 
three algorithms in order to confirm whether this approach is 
beneficial. The first two individuals in a seeded population are 
generated with the Edge-Greedy and Double Minimum Span-
ning Tree heuristic. The remaining slots are filled alternatingly 
with individuals resulting from the Savings, Double-Ended 
Nearest Neighbor, and Nearest Neighbor Heuristic, which are 
started at different, randomly chosen initial nodes.

3) Can Pure EC Approaches Outperform  
Local Search Methods on the TSP?
Currently, some of the most efficient approaches for solving 
the TSP are local search methods [42]. We therefore also 
benchmarked four local search algorithms in order to verify 

VNS1m Move
Selection

1: First Improving Move
b: Best Improving Move
_: Not Applicable

hTEHBSA256hrns _PACO5,25mns

_EA128+256s hMA16,64mnsers

e: Edge
s: SavingsCrossoverh: Seeded

_: RandomInitialization
Local

Search

64
256

n
2n

Population/
Sample Size

3
5

10
25

Population
Size k

10
25

Sample
Size m

Augmentation
h: Histogram
d: Nearest Neighbor Node
r: Random Node

Local
Search

Initialization Savings Heuristic
m: Double Minimum Spanning Tree
s:
_: Random

DEA128+256m Initialization Spanning Tree
m: Double Minimum

s: Savings Heuristic

16
128

2

64
256

4
8

+
,Selection Diversity

ffa: ffa and (n,m)
fuss: fuss

rs: Random
_: (n,m)

md d

d d d

dd d

d

d

dd

nd d

+

+

mns: MNS
rns: RNS

_: None

MNS: MNS
VNS: VNS
RNS: RNS

HC: Hill Climbing

Figure 3 The notation for setups of the algorithms explored in our experiments (DEA, EA, 
hMA, TEHBSA, PACO, and local search) as introduced in Section IV and used in Figure 4. 
The gray boxes hold one example setup for each algorithm. The notation elements in the 
setup names are connected to the corresponding parameters and parameter values. “_” 
represents default values not explicitly signified in the setup name.

The best results have been achieved when global 
search methods are seeded and hybridized with  
local search.
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whether EC methods can outperform them (on the TSPLib 
instances):

a) A simple Hill Climber (HC) that applies the aforemen-
tioned four search operators in a loop.

b) The Variable Neighborhood Search (VNS) [43] imple-
mented in the TSP Suite is based on the same four neigh-
borhoods. In its main loop, it first shuffles them randomly 

and then performs a neighborhood descend. Once it 
reaches an optimum it cannot escape from anymore, a 
random part of the solution is shuffled and the procedure 
begins again with shuffling the neighborhoods.

c) Instead of descending the neighborhoods in a specific 
order and always returning to the first neighborhood 
when an improvement is made, we also tested an 
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algorithm that tries to pick a random, 
different neighborhood for each move it 
makes. We call this method “Random 
Neighborhood Search” (RNS). Both 
VNS and RNS were tested in versions 
that either take the best (VNSb, RNSb) or first discovered 
(VNS1, RNS1) improving move of a neighborhood.

d) Inspired by [44], we developed a new local search method 
called Multi-Neighborhood Search (MNS). The MNS 
algorithm performs a ( )nO 2  scan of the solution and col-
lects all improving moves under the four defined neighbor-
hoods in a queue. The best move is extracted from the 
queue and immediately executed. This may invalidate some 
moves in the queue, e.g., if it is a rev that directly intersects 
with rol (see Figure 2). These moves are pruned from the 
queue. Non-intersecting moves are not affected and some 
moves may be modified 
but are still applicable: A 
rol fully included inside a 
reversed sub-sequence, for 
instance, simply becomes a 
corresponding ror move. 
To walk through a queue 
of length l  and find the 
best remaining move while 
pruning invalidated ones 
can be done in ( )lO  steps. 
If the queue is empty, it is 
filled again. Otherwise, the 
best remaining move is 
applied. If no further moves 
can be discovered, a ran-
dom fraction of the tour is 
randomly shuffled, exactly 
in the same way as in VNS 
or RNS.

We started these four algo-
rithms either at a random solu-
tion, with one generated by the 
Savings, or the Double Mini-
mum Spanning Tree Heuristic.

4) Can Local Search 
Methods Benefit from Being 
Hybridized with EC 
Methods?
MAs [45], which combine EAs 
with local search, are amongst 
the best optimization algorithms 
for combinatorial problems. We 
created hybrid versions of the 
three EC approaches from Sec-
tion IV-B2 to verify whether 
these can outperform the local 
search methods.

We refer to our hybrid (seeded) hEA as the hMA. Here, the 
crossover rate has been set to 1 and each solution that is generated 
will be refined with a local search method. For this purpose, we 
have slightly modified versions of RNS (which randomly chooses 
between the best- and first-improvement selection policy per call) 
and MNS. These versions will stop when converging to an opti-
mum that is different than the input solution. We also tested ver-
sions of hPACO and hTEHBSA that have undergone the same 
hybridization. The tested setups of these hybrid global search al-
gorithms have a name suffix indicating the local search used for 
hybridization (see Figure 3) and are always seeded (prefix hh.
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Figure 5 Examples of (manually post-processed) progress and ERT diagrams for the six best non-seeded 
and non-hybridized setups of each algorithm family. (a) A progress diagram showing the median smallest 
error (Fb ) achieved after a given amount of FEs has been consumed (log-scaled) on the benchmark 
instance gr48. (b) The median estimated running time ERTDE in terms of DEs to reach a relative error 
threshold Ft  over the 8 TSPLib instances with 32 #  n 1 64.

Proper experimentation should avoid reducing 
algorithm performance to singular points.
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5) Further Questions
Methods for preventing convergence have recently received 
much attention in the EC community. In order to verify 
whether such approaches can be beneficial in solving TSPs, we 
applied three of them in the hMA: Fitness Uniform Selection 
(fuss) [46], ffa, and random selection (rs). Furthermore, we also 
investigated the performance of the Genetic Programming 
based developmental approach (Developmental EA, DEA in 
short) for the TSP introduced in [47].

C. Evaluation Results
Each of the algorithms described in Section IV-B was imple-
mented in the TSP Suite. We investigated 193 different setups 
of these algorithms based on the parameter values given in Fig-
ure 3. The experiments resulted in about 20GB of log files, 

which will be made available 
online. Due to space con-
straints, we will limit our-
selves to the main conclusions 
and representative examples 
of the generated diagrams 
obtained with the evaluator 
component. The global rank-
ing of the setups given in Fig-
ure 4 directly provides 
answers to the research ques-
tions from Section IV-B.

In their non-hybridized 
and non-seeded var iants, 
none of the tested EC 
approaches (EA, PACO, and 
TEHBSA) performed well. In 
Figure 5, where examples of 
the ERT and progress dia-
grams for the six best such 
setups of each algorithm fam-
ily are plotted, it can be seen 
that the benchmarked local 
search algorithms are faster in 
obtaining solution qualities 
below . .F 0 05t =

The ranking in Figure 4 
shows that the seeded global 
optimization algorithm vari-
ant s  (hEA , hTEHBSA , 
hPACO) have performed bet-
ter than the non-seeded ones. 
They started at good solution 
qualities, but are still outper-
formed by the investigated 
local search algorithms.

The best results have been 
achieved when global search 
methods are seeded and 
hybridized with local search. 

Figure 6 contains some examples of ECDF plots for the six 
best-ranked hybridized and seeded variants of the global search 
algorithms.

Figure 6a shows that several hMA setups can find globally 
optimal solutions in more than 50% of all runs over all the 
benchmark problems. In this respect, the hMA is slightly better 
than the hybrid hPACO, but hPACO with local search can find 
solutions with %F 1b #  more often and is faster (Figure 6b).

PACO has performed the best among the tested EC methods 
and also provided the overall best results when seeded and hybrid-
ized with local search. This trend is very clear, especially if we con-
sider that only 24 PACO-based configurations had been tested 
versus 80 hMA-based and 48 TEHBSA-based setups.

MNS has performed better than the other local search algo-
rithms, both in pure and hybrid forms, likely because one 

0.5

0.2

0.1

0.6

0.5

0.4

0.3

0.8

0.7

1.0

0.9

1
0

2.5 31.5 2 3.5 4 4.5 5 6.565.5
log10(DE/n2)

(a)

E
C

D
F

 fo
r 

F
t =

 0

0

hPACO+

MNS:
 6 Setups

hMA+

MNS:
 6 Setups

MNSm

hTEHBSA+

MNS:
 6 Setups

RNSbm

VNSbm

dEA:
 6 Setups

hPACO+

MNS:
 6 Setups

hMA+

MNS:
 6 Setups

MNSm

hTEHBSA+

MNS:
 6 Setups

RNSbm

VNSbm

dEA:
 6 Setups0

2 30 1 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

log10(NT)

(b)

E
C

D
F

 fo
r 

F
t =

 0
.0

1

Figure 6 Examples of (manually post-processed) ECDF diagrams containing the six best seeded variants of 
all algorithm families. These happened to always be hybridized with MNS (except for DEA, for which no 
hybrid setups were tested, and the local search algorithms themselves). (a) The ECDF over DEs (scaled by 
n2  on a log-scaled axis) for goal ,F 0t =  i.e., the fraction of runs that have discovered the globally optimal 
solution after a given number of DEs. (b) The ECDF over NT (log-scaled) for goal . ,F 0 01t =  i.e., the fraction 
of runs that have discovered a solution not more than 1 percent longer than the globally optimal solution 
after a given amount of normalized runtime.



august 2014 | IEEE Computational intelligence magazine    51

( )nO 2 -scan of the solution can result in mul-
tiple improvements. With ranks 24.5 (seeded) 
and 56 (not seeded), it outperformed all pure 
and seeded EC methods as well as most of 
their hybrids.

Although ffa appears to be a slightly better 
convergence prevention strategy for the hMA 
than fuss or rs, the hMA using neither of them can perform 
even better. While the always seeded DEA was able to outper-
form the non-seeded EA and TEHBSA variants, it was infe-
rior to a simple seeded HC. Edge Crossover is better than the 
new Savings Crossover.

To sum up, the best local search (MNS) together with the 
best pure global search (PACO) produces the best hybrid 
search. Pure PACO performs better than the pure EA. Their 
hybridized versions with MNS show the same behavior. One 
may thus assume that hybridization would have an almost addi-
tive effect. However, this is not always true, since all tested 
hybrid algorithms are seeded and the (seeded) hEA is better 
than the (seeded) hPACO.

Based on the results presented, we hope that our experi-
mental approach can lead to the development of better algo-
rithms through identifying behaviors and trends of different 
algorithms. Prior to these experiments using the TSP Suite, 
some of us would expect an MA to be the best hybrid EC 
method for the TSP. The results, however, tell us that PACO is 
the method of choice.

V. Conclusions and Future Work
This paper has made four contributions to the research on 
combinatorial optimization with metaheuristics in general and 
the TSP in particular.

First, we proposed an experimentation procedure that 
allows for analyzing and comparing optimization algorithms 
from several different points of view. This procedure marks a 
step forward between the traditional experimental analysis and 
data mining applied to performance data from optimization 
processes. It is not limited to the TSP and may be useful in 
other domains as well.

Second, this experimentation procedure is realized in a gen-
eral open source framework for the implementation, unit test-
ing, experimentation, and analysis of TSP algorithms. The TSP 
Suite, including its source code, extensive documentation, 
example data, and example reports, can be downloaded from 
http://www.logisticPlanning.org/tsp/. With the TSP Suite, 
experiments can be run in a parallel or distributed fashion and 
evaluation reports containing high-level, human-readable con-
clusions can be produced.

Third, the TSP Suite has been used to obtain a baseline set 
of data generated from several local search methods as well as 
members of the main EC algorithm families (EAs, MAs, ACO, 
EDAs) in pure, seeded, and hybridized versions. This allows 
users of the TSP Suite to acquire data from algorithms that are 
related and suitable for comparison purposes. All of these 
implementations and collected data will be made available.

Fourth, with the experiments we have shown that the 
TSP Suite is an efficient tool for answering both general and 
specific research questions. This also validates the experimen-
tal procedure (which is not limited to TSPs). We confirmed 
that local search can outperform pure global search methods 
on the TSP, but that EC methods hybridized with local search 
can be even better. PACO and the new MNS have been 
found to be the best global and local optimization algorithms 
in the tests, respectively.

There are five major strands of future work, which will be 
followed by the authors.

First, we are working to set up a centralized website that 
provides the TSP Suite and its documentation as well as all the 
generated benchmarking results for download. This site will 
allow other researchers to upload their results and maintain an 
up-to-date list of the best TSP solvers.

Second, the collection of algorithms in our TSP Suite is far 
from complete. We are currently implementing Branch and 
Bound methods and Lin-Kernighan local search [48]. Compre-
hensive experiments with these two methods will be performed.

Third, the experimentation approach described in Section 
II-B will be extended to other well-known optimization tasks 
such as Knapsack or Set Covering problems. We plan to repeat 
our initial analysis for viable time measures (Section II-A3) and 
then re-use existing code from the TSP Suite.

Fourth, at present the TSP Suite can compare different 
experiments, but it cannot automatically analyze what influences 
their parameters may have. For example, in Section IV-C, we had 
to manually conclude that Edge Crossover is better than our 
new Savings Crossover. It would be more convenient if the 
TSP Suite could automatically derive such conclusions (instead 
of treating each algorithm setup as a different algorithm).

Fifth, there are several limitations with the current version 
of the experimental procedure that need to be addressed, some 
of which are 1) The global ranking of algorithms depends 
strongly on the mixture of statistics it is based on, so this mix-
ture needs to be further discussed and analyzed; 2) The com-
parison of the areas under performance curves is our first for-
mal idea to compare dynamic behaviors, but probably not 
statistically robust; 3) The best discovered solution must be pre-
served by the TSP Suite in the log files, which entails perform-
ing an ( )nO  copy operation whenever the running algorithm 
registers an improvement. This may potentially skew the mea-
sured CPU times. Since a running algorithm can query the 
system for the best solution it has found so far, it is relieved 
from making this copy itself, which may offset this expense; 4) 
Additionally, we are looking for better methods to mine the 
data gathered during the experimental runs.

The TSP Suite, including its source code, extensive 
documentation, example data, and example reports, 
can be downloaded from http://www.logisticPlanning.
org/tsp/.
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