Multimed Tools Appl
DOI 10.1007/s11042-014-2119-7

An implementation of enhanced public key infrastructure

Syh-Yuan Tan - Wei-Chuen Yau - Boon-Hock Lim

Received: 12 March 2014 / Revised: 18 May 2014 / Accepted: 20 May 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we present the implementation of an enhanced public key infras-
tructure (PKI) which supports not only conventional public key cryptography (PKC) but
also identity-based cryptography (IBC). In addition, we discuss the possible way of plac-
ing together IBC and PKI as well as solving the problems of user secret key revocation of
PKI and IBC. As a proof of concept, an IBC framework is incorporated into Enterprise Java
Bean Certified Authority (EJBCA) and the performance is reported.

Keywords PKI - Identity-based - Cryptography - EJIBCA

1 Introduction

It is very crucial to ensure the confidentiality and integrity of multimedia contents while
being stored on remote servers or during transmission between client systems and multi-
media content providers [7, 26]. Encryption and digital signatures are two commonly used
cryptographic primitives that could provide the security services, such as confidentiality,
integrity, and authenticity of messages. Public key infrastructure (PKI) is an infrastructure
that supports the operation of these cryptographic applications [2, 23]. It is used to generate,
store and distribute digital certificates which can substantiate that a particular public key
belongs to a certain entity. As shown in Fig. 1, Bob applies a digital certificate for his pub-
lic key through a registration authority (RA). The RA verifies his identification information
(e.g., driver’s license) and sends his certification request to a certificate authority (CA). The

S.-Y. Tan (P<) - B.-H. Lim
Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
e-mail: sytan@mmu.edu.my

B.-H. Lim
e-mail: boonhock0204 @gmail.com

W.-C. Yau
Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia
e-mail: weyau@mmu.edu.my

Published online: 13 June 2014 4\ Springer

mailto:sytan@mmu.edu.my
mailto:boonhock0204@gmail.com
mailto:wcyau@mmu.edu.my

Multimed Tools Appl

Store
Request Bob’s certificate
certificate ‘
Sl
v
/-\ D_ t 10010
ir L -
: \ ol eclory " Certificate
u & Authority (CA)
User
(Alice) Verify Bob’s Ot_)t_ain R t
certificate and certificate igfgest
encrypt using certificate
/ Bob’s public key
“& Registration
User Registration
(Bob) Authority (RA)

Fig. 1 Public key infrastructure

CA is a trusted third party who creates and signs a digital certificate that binds Bob’s iden-
tity and his public key. The certificate is then sent to Bob as well as uploaded to a directory
or repository. The CA also maintains a certification revocation list (CRL) containing infor-
mation of invalid or revoked certificates. Alice downloads the certificate from the directory
and verifies the validity of the certificate before extracting Bob’s public key. She can then
use the public key to encrypt messages for Bob. The PKI enables the use of public key in a
secure manner and prevents man-in-the-middle attack. However, one of the main limitations
of PKI is that the certificate management becomes inefficient when the directory contains
huge amount of public keys.

In 1984, Shamir proposed the concept of identity-based cryptography (IBC) [22] that
solves the certificate management issue. Any string that represents a user’s identity (e.g. ID
number, email address, phone number, etc.) can be used as a public key in IBC. This rules
out the requirement of certificate authority as there IBC does not issue and store certificates.
On the other hand, IBC requires a trusted third party, private key generator (PKG), which
uses a master secret key to generate private keys for each user in the system. Therefore,
an identity-based cryptosystem has the implicit key escrow issue. Figure 2 illustrates the
concept of IBC.

Many international enterprises such as Microsoft, TrendMicro, IBM, Canon etc. are not
stopped by the key escrow problem and adopted this technology instead. The main reason
behind this is the cost saving attraction of IBC which is approximately one third of PKI [24].
Nowadays, the research in new cryptographic primitives in IBC is very active but many of
the proposed primitives cannot be implemented due to the reason that IBC is not backward
compatible with PKI. This is caused by the fundamental difference between CA and PKG
where the latter cannot generate certificate, it generates user private key.

@ Springer

Multimed Tools Appl

Distribute PKG'’s public parameters

N

£\ vevnd]
¢ Private Key
& Generator (PKG)

User
i Obtain privat
(Alice) Use Bob’s ID and aIEeF;nva » Request
PKG'’s public private key
parameters to generation
4 encrypt

& Registration

User ‘ ID = bob@mmu.edu.my

Al

Registration
(Bob) Authority (RA)

Fig. 2 Identity-based cryptography

In general, IBC is suitable for closed organizations (i.e., within a company) due to the key
escrow property where the management level which controls the PKG can decrypt and mon-
itor the information flow through the organization’s gateway. Another important advantage
of using IBC in an enterprise which consists of a huge number of employees is to reduce the
cost and time of managing digital certificates. A company can setup their own PKG which
is managed by their own system administrator. The company can treat the employees’ email
address as their public keys. The employees’ private keys are then derived from the email
address and master secret key of the PKG. It would then be convenient for the user to ver-
ify digital signatures of emails or electronic documents by only using the sender’s email
address (i.e., the public key in IBC).

Apart from the traditional applications where enterprises adopting PKI and purchasing
digital certificates from CA or adopting IBC solution alone, there are various application
scenarios where we could combine the use of PKI and IBC to satisfy different applica-
tion requirements for enterprises. For example, two companies can adopt PKI and use a
CA to verify the master public keys of their PKGs respectively. While, the users private
keys that used within the company are derived by the respective company’s PKG. In this
case, each company needs to maintain only the digital certificate for the corresponding
company rather than the digital certificates of every employee. For such implementation,
it would require cryptographic packages that could support services provided by both con-
ventional PKI as well as IBC. However, the current cryptographic libraries [6, 15, 16, 18]
lack the support of IBC for practical applications. It is therefore crucial to come up with
an implementation that could integrate cryptographic services offered by both PKI and
IBC.

@ Springer

Multimed Tools Appl

1.1 Related works

The earliest discussion on deploying IBC in the real world is dated back to 2002 by
Chen et al. [3]. They proposed to replace PKI completely by using IBC and mechanism
of managing user private keys as well as authenticating user public keys were demon-
strated. However, their work does not catch the eye balls of the industries as PKI has been
running since 80s. Existing technologies such as operating systems, software, embedded
systems, mobile applications, to name a few, already have PKI embedded in them and none
of the industries are willing to change. However, if the world takes a revolutionary step
by replacing PKI with IBC, a lot of security problems can be solved efficiently. In view
of this, Dalton [5] discussed the conveniences that IBC can offer to the National Health
Service compared to PKI, and listed down the challenges to be solved if IBC is to be
adopted.

In 2005, Price and Mitchell [19] proposed to integrate IBC with PKI, instead of replacing
as suggested by Chen et al.. They found out that the root cause for backward compatibility
issues of IBC is the certification policy standard in X.509. [4, 20] later expanded the idea
in Price and Mitchell’s idea but no concrete example was given. Furthermore, the descrip-
tion of cross certification of CA and PKG (called Trusted Authority (TA) in their work) is
flawed. Although [4, 20] assumed the PKG of IBC already hold a certificate from a CA, the
initialization process of cross certification for PKG and CA is ambiguous. The authors pro-
posed to start the initialization process by encrypting to each other, a symmetric key plus a
signature which authenticates the recipient, using the respective public keys. However, it is
not possible to perform encryption and signing using the same set of public and private key
pair. The only way of doing this is using signcryption scheme or using two sets of public
and private key pair. If the latter is the case, the proposed cross certification model is having
the same idea as in [13]. In 2010, [13] proposed another direction, which is having IBC and
PKI working side by side instead of integrating them, namely, Unified PKI. Unified PKI
can offer the benefit of both IBC and PKI but it is not efficient. Besides, its mechanism is
very similar to that of Certificateless Cryptography [21] and defeated the purpose of IBC:
user’s public identity is the public key. Thus, in order to efficiently maintain the advan-
tage of IBC, solving the cross-certification as suggested in [19] is the most feasible way to
date.

1.2 Contribution

While the correctness of development direction for using IBC and PKI together is explored,
there is no PKI libraries which supports both PKI and IBC operations concurrently. In this
work, we implement IBC into the Enterprise Java Bean Certificate Authority (EJBCA) [6]
in order to provide flexible key management options. Besides acting as a research tool, the
enhanced PKI is useful in the cases where:

1. An organization wants to setup a new security system with IBC.
2. An organization wants to setup IBC on top of existing PKI system.
3. IBC is used for internal communication; CA is used for external communication.

The remaining of the paper is organized as follow. In Section 2 we compare some well-
known PKI libraries and justify the use of EJBCA followed by the integration of IBC and
EJBCA in Section 3. In Section 4 we show the performance of the enhanced PKI and finally,
Section 5 concludes this paper.

@ Springer

Multimed Tools Appl

2 PKI libraries

We briefly introduce the strengths of some popular PKI libraries in terms of their supported
cryptography algorithms, flexibility and potential of future modification.

2.1 Enterprise java bean certified authority

Enterprise Java Bean Certificate Authority (EJBCA) [6] is an enterprise class PKI Certifi-
cate Authority software, built using Java Enterprise Edition and this make EJBCA become a
cross platform CA which can be set up on any operating system that supports Java. Besides,
EJBCA can support unlimited number of root CAs and sub CAs as well as able to perform
cross certification for CAs and bridge CAs. In addition, EJBCA supports 8192-bit RSA
keys, 1024-bit DSA key and ECDSA key with named curves from NIST, SEC and X9.62
[6]. Besides, it supports multiple hash algorithms for signatures such as MDS5, SHA-1, and
SHA-2. Therefore, administrator may setup different CA with different algorithms.

In terms of performance and capacity, EJBCA can issue hundreds of certificate per sec-
ond and store millions of certificate by using RDBMS for storage. The supported databases
are Hypersoniq, MySQL, PostgreSQL, Oracle, DB2, MSSQL, Derby and so on. Fur-
thermore, EJBCA provides Certificate Management Protocol (CMP), Simple Certificate
Enrollment Protocol (SCEP) and Online Certificate Status Protocol (OCSP) to handle its
X.509 certificates.

2.2 Network security services

Network Security Services (NSS) [15] is a set of libraries designed to support cross-platform
development of security-enable client and server application. NSS is triple-licensed under
GNU General Public License, GNU Lesser General Public License and Mozilla Public
License. NSS is written in several languages such as Python, Java and C.

NSS supports common encryption and hashing algorithms such AES, DES, IDEA, Triple
DES, MD5, SHA-1, SHA-2, Diffie-Hellman Key exchange, Elliptic curve and so on. NSS
supports several databases such as PostgreSQL, MySQL, OpenLDAP and Virtuoso.

NSS also supports LDAP and OCSP for certificate status checking but the CRL have to
be updated manually [15].

2.3 X Certificate and key management

X Certificate and key management (XCA) [25] is an application to create and manage
X.509 certificate, certificate request, RSA, DSA and EC private keys, Smartcards and
CRLs. XCA is under BSD License and written in C language which makes XCA become a
cross-platform application.

XCA provides a very complete function in managing private keys and certificates. XCA
can export certificate into X.509v3, PKCS #7/#11/#12 format. Besides, XCA also supports
common cryptography algorithms such as RSA, DSA and ECDSA.

XCA can manage CRL as other libraries do but it needs manual update [25].

2.4 OpenCA

OpenCA [16] is under BSD License and written in Apache CGI plus Perl language.
OpenCA support cryptography algorithms such as RSA, DSA, ECDSA, Diffie-Hellman,

@ Springer

Multimed Tools Appl

EC Diffie-Hellman, DES, Triple DES, AES, RC2, RC4, MD2, MD5 , SHA-1, SHA-256,
SHA-384, SHA-512 and HMAC. Certificate can export to format such as SSLv2/v3, TLSv1,
and PKCS #5/#8/#12, SIMIME, X.509v3 and also support LDAP and OCSP for certificate
status checking.

OpenCA only supports MySQL, Oracle and PostgreSQL databases. However, similar to
NSS, manual administration is required to update CRL [16].

2.5 Candidate for IBC

The characteristics of the libraries are summarized in Table 1. We can see that the most
flexible library is EJBCA as it is cross-platform and supports multiple databases. The main
cryptography provider used in EJBCA is BouncyCastle [14] but it is always possible to add
any Java cryptography provider such as Oracle, OpenJDK [17] or FlexiProvider [9]. There-
fore, the cryptography algorithms suppported are not lesser than that of the other libraries.
Most importantly, EJBCA is the only library which supports auto update for CRL and is
also the only library which supports administration through command line interface (CLI).

Table 1 Libraries Summary

Element Libraries
EJBCA NSS XCA OpenCA

License GNU Lesser General GNU General Public, BSD BSD

Public GNU Lesser General
Public Mozilla Public

Certificates PKCS #11/12, SSLv2/v3, TLS, PKCS#7/4#11/412, SSLv2/v3, TLS,
X.509v3, TLS, PKCS #5/#8/#12, S/MIME, X.509v3 PKCS#5/#8/#12,
S/MIME, SSLv2 S/MIME, X.509v3 S/MIME, X.509v3

Smart card Yes Yes No No

Support

Language JavaEE C C,C++ Perl

Database Hypersoniq, MySQL, PostgreSQL, MySQL, XCA database PostgreSQL,
PostgreSQL, Oracle, OpenLDAP, Virtuoso MySQL, Oracle
DB2, MSSQL,
Derby etc.

Algorithms AES, DES, IDEA, AES, DES, IDEA, AES, DES, IDEA, AES, DES, IDEA,
3DES, RSA, DSA, 3DES, RSA, DSA, 3DES, RSA, DSA, 3DES, RSA, DSA,
ECDSA, SHA-1, ECDSA, SHA-1, ECDSA, SHA-1, ECDSA, SHA-1,
SHA-2, Key SHA-2 Key SHA-2, Key SHA-2, Key
Exchange Exchange Exchange Exchange

CRL update Automatic Manual Not supported Manual

LDAP support Yes Yes No Yes

OCSP support Yes Yes Yes Yes

CLI support Yes No Partial No

Browsers Multiple Multiple Multiple Multiple

support

@ Springer

Multimed Tools Appl

The CLI support is the main reason EJBCA was chosen in this work as new functions
can be easily added into the existing libraries. We will discuss in details the integration of
IBC libraries and EJBCA libraries.

3 Integration of IBC and EJBCA
3.1 Architecture of IBC framework

We have implemented another two extra modes except the original CA mode for EJBCA,
namely, CA-PKG and PKG. CA-PKG mode allows one to initialize both CA and PKG to
setup their corresponding public and private keys; PKG mode only allows one to initialize
the PKG to setup the master public key and secret key. After the CA or PKG is initial-
ized, administrator can start to generate certificates and private keys for users in CA and

Setup parameter
and algorithms

Receive
information from

Reject user -
L Yes
User
request

CA PKG CcA PKG

Receive public
key from user

Receive request

from user Housekeeping Housekeeping

Not expired Expired
Coperateuser) ((gperate e
expired
Certificate Certificate
revocation list expired list V Yes
Revoke
Store user public identity
key and \ 4 No
certificate
End of list Js End of list -
< No V no
Yes
Y Yes
(@) —_—

Fig. 3 Administrative activity diagram

@ Springer

Multimed Tools Appl

PKG respectively. The system also checks the status of each certificate. If the certificate is
expired, then it will put it into certificate expired list. If the certificate is not in good status,
system will put it into certificate revocation list. On the other hand, PKG will check each of
the identity. If the identity has been expired, it will revoke the identity. The administrative
activity diagram is shown in Fig. 3.

3.2 Identity-based signature schemes

We setup the IBC framework for EIBCA based on the Shamir’s IBS scheme [11], Schnorr’s
IBS scheme [10] and the EC Schnorr’s IBS. Before going into the details of each IBS, we
briefly describe the model of IBS as follows:

Setup(1¥). The PKG takes a security parameter (1¥) as input. It generates master secret
key msk and master public key mpk. Note that mpk is publicly known, but msk will be
known only to the PKG.

Extract(msk, I D). PKG run this algorithm to generate user secret key (usk). It takes msk
and user public identity (/ D) as input and returns usk to user.

Sign(usk, ID, M). User takes in usk, I D and message M as parameter to generate the
corresponding signature o.

Verify(mpk, ID, M, o). To verify the signature, verifier checks if mpk, signed message
M and the user I D are related to the corresponding signature o .

3.2.1 Shamir identity-based signature scheme

We adopt the Shamir IBS presented in [11] which is proven secure against existential forgery
under chosen message attack in the random oracle model assuming the RSA problem is
hard:

Setup(1%). The PKG takes a security parameter (1¥) as input and generates master public
key mpk = {N, e} where N is the product of two random prime numbers p and g, while
e € ¢(N) where ged(e, ¢(N)) = 1. PKG then calculates msk = {d} where d = ¢!
mod ¢ (N) and chooses two hash functions H : {0, 1}* — Z% and G : {0, 1}* — Z.

Extract(msk, ID). PKG computes x = {H(I D)}¥ mod N and returns to the user, the
user private key usk = {x}.

Sign(usk, ID, M). User randomly chooses ¢t € Z}, to compute T = ¢ mod N and
¢ = G(T||M). It then calculates s = x¢“ mod N and sets the signature as o = {T, s}.
Verify(mpk, ID, M, o). Verifier checks whether the equations s¢ = H(/ D)TETIM)

mod N holds and accepts the signature if it is true, rejects it otherwise.

3.2.2 Schnorr identity-based signature scheme

We adopt the Schnorr IBS from [10] which is proven secure against existential forgery
under chosen message attack in the random oracle model assuming the discrete logarithm
problem is hard:

Setup(1%). The PKG takes a security parameter (1¥) as input and generates g € Z; where
P, q are prime numbers and ¢g|p — 1. PKG then randomly chooses msk = {z} and
computes ¥ = g* mod p where z € Zj. PKG sets mpk = {p, q,g,Y}.

Extract(msk, ID). PKG randomly chooses r € ZZ tocompute y =r +z- H(g", ID)
mod ¢ and returns the private key usk = {y, g’} to the user.

@ Springer

Multimed Tools Appl

Sign(usk, ID, M). User randomly chooses a € Zj to computeb = a+y-G(ID, g*, M)
mod ¢ and outputs the signature o = {g%, b, g"}.

Verify(mpk, ID, M, o). Verifier checks whether the equation g? = g(g"g%)¢ mod p
holds where ¢ = H(g",ID),d = G(ID, g*, M) and accepts the signature if it is true,
rejects it otherwise.

3.2.3 EC Schnorr identity-based signature scheme
We convert the Schnorr IBS [10] into the elliptic curve version as follows:

Setup(1%). The PKG takes a security parameter (1¥) as input to initialize an elliptic curve
G with prime order g and generates g € G. PKG then randomly chooses msk = {z} and
computes ¥ = g* where z € Z3. PKG sets mpk = {G, g, Y}.

Extract(msk, I D). PKG randomly chooses r € Z to compute y = r +z - H(g", I D)
mod ¢ and returns the private key usk = {y, g"} to the user.

Sign(usk, ID, M). User randomly chooses a € Z(’; tocompute b =a+y-G(ID, g%, M)
mod ¢ and outputs the signature o = {g%, b, g"}.

Verify(mpk, ID, M, o). Verifier checks whether the equation g = g%(g"g**)? holds
where c = H(g",ID),d = G(ID, g, M) and accepts the signature if it is true, rejects
it otherwise.

3.3 Class diagrams

The main interface of CLI in EJBCA is the class EjbcaEjbCli which reads and
lists all the available main and sub commands. The main command of each entity in
EJBCA is specified in the classes Base<entity>Command: BaseCaAdminCommand,
BaseRaCommand and BaseAdminsCommand; while the sub commands of each
entity is specified in the calsses <action>Command such as CaInitCommand,
CaGetCrlInfo, RaAddUserCommand, AdminsAddAdminCommand, to name a few.
Figure 4 summarises the class architecture of CA.

[EMAINCOMMAND : String = “ca®
|sdefautSuperdminC? s
[EprivKeyAlas String
|sprivateKeyPass : cha
o Sting): Collection<Certficate>

in: String, saKeys : KeyPa, reqfik : Sting) : void
ing, deltaCRL : boolean) : void

(canamo : Sting): Sring
|#getCAlnfo{caname : String): CAInfo
[fintAuthorzationModule(cait : it supecAdminCN : String): void
[égetAvailaleCasStrng() Sting

[#aetAvaisbleEepsSting(): Sting
[égetavailabieEndUserCpsStang(): Sting

i

CalmporiCACerCommand CalmportCACommand [*getiainCommand) : Sring
Sviog string

CaChangeCATokonSignAlg

CaActivateCACommand

Swing Sung
Sting Sung String
woid s Sting
Sting
Suing () :void [fusage(): woid st U u,
Sting) : void Sting) :void | [Asae0): voi a0 e *
usage() : vod ol e [Hoadcer(Rename : Sing) : Certficate

Sting sting suing

oxecute(args : Stang) : void

ImporMSCAContificatos
[~gotManCommand() : Sting
«getSubCommand() : Sting
+getDescrption) : Sting
roxecute(args : Stang [): void

Fig. 4 Class diagrams for CA frameworks [6]

@ Springer

Multimed Tools Appl

legethvaisbiogapsSiangi): Sting
[soohvaiablogndUserCpsSting) Sty

|0 Bignisgor G - MossageDigest Figsen
08T Biineger [5a_pash - Biginogor foo-Biteger

PigRevote | Bgineger
[roveoka_mason : s [Bolnieger

FgentanCammand): Siog

JCommand

sgetsubCommandy): Sirng lov - Bamger

[HaNumenctér: Sting) :basea 1 igineger lgoDescrpond - Sty

Bencnmarkinground - e, b, g Srng): void H: MossageDigest [evocutetams Stng) vois

[PrgSeup(PKGame Sug)
[+eup(55 - Sing, curiame : S void
Seup(es - Svng, bt in) void

po- Sting
G Messagenest

Fig. 5 Class diagrams for proposed IBC frameworks

In order to make sure IBC works fine with the existing EJIBCA services, we follow the
same class architecture of CA in implementing the IBC framework as shown in Fig. 5.
BaseCAPkgCommand and BasePkgCommand specifies the main command for CA-
PKG and PKG modes respectively. Revoke class is used to revoke user identity which is
having invalid status while <ent ity>InitCommand class is used to initialize a CA-PKG
or PKG. After a PKG is setup successfully, administrator can generate user private key by
using the class PkgKeyDer where the algorithm will correspond to the algorithm chosen
during initialisation. Although Sign and Veify algorithms of an IBS scheme are not run by
the PKG but the users, in order to test the validity of the extracted user secret key, we prepare

tan@James:~/Desktop/ejbca_4_6_16/bin$ sudo ./ejbca.sh capkg init CAPKGO1 CN=AdminCAPKG,
0=EJBCA_Sample,C=SE soft null 1024 RSA 60 null SHA256WithRSA
Initializing CA

Generating rootCA keystore:

CA name: CAPKGO1

SuperAdmin CN: SuperAdmin

DN: CN=AdminCAPKG,0=EJBCA_Sample,C=SE

CA token type: soft

CA token password: hidden

Keytype: RSA

Keyspec: 1024

validity (days): 60

Policy ID: null

Signature alg: SHA256WithRSA

Certificate profile: ROOTCA

CA token properties: null

Signed by: self signed

Initalizing Temporary Authorization Module with caid=1728228641 and superadmin CN 'Supe
rAdmin'.

Creating CA...

CAId for created CA: 1728228641

-Created and published initial CRL.

CA initialized

RSA key type selected, PKG will be initialized with Shamir-IBS.
Creating PKG...

Time taken for Setup() is: 223108524ns

PKG name is : CAPKGO1

PKG security parameter is : 1024

Setup sucessfull

Fig. 6 CA-PKG Initialization

@ Springer

Multimed Tools Appl

tan@James:~/Desktop/ejbca_4_0_16/bin$ sudo ./ejbca.sh pkg

Available sub commands for 'pkg':

Revoke Revoke identity which is in bad status

benchmark Benchmark PKG's operations.

init Create a Pivate Key Generator (PKG).

key Key derivation of end user private key.

regen Regenerate PKG's master private key

sign Generate a signature using ID as Public Key. ID is email_addr||due_date
verify Verify a signature using ID as Public Key.

Fig. 7 Supported PKG operations

the PkgSign classes and PKGVerify classes as well. We do not show the class diagram
of CA-PKG as one can view it as the combination of class diagrams of CA and PKG.

4 Performance evaluation

We test the performance of the IBC framework in Ubuntu Server 13.10 64-bit installed on
server with Xeon E5-2407 2.20Ghz, 8GB RDIMM.

4.1 Screenshots

Figure 6 shows the command to initialize CA+PKG. To initialize a new CA, administrator
has to specify certain parameter such as CA name, key length, chosen signature. Subse-
quently, the PKG will be initialized according to the algorithm chosen for CA, i.e. Shamir
IBS for RSA, Schnorr IBS for DSA or EC Schnorr IBS for ECDSA. Since the focus of this
work is IBC, we will show only the PKG operations in the remaining of this section.

tan@James:~/Desktop/ejbca_4_0_16/binS sudo ./ejbca.sh pkg init PKGO1 prime256v1l ECDSA
ECDSA key type selected, PKG will be initialized with EC-Schnorr-IBS.

Creating PKG...

Time taken for Setup() is: 52682114ns

PKG name is : PKGO1

PKG security parameter is : prime256v1

Setup sucessfull

tan@James:~/Desktop/ejbca_4_0_16/bin$ sudo ./ejbca.sh pkg key tan@mail.com 365 PKGO1
Generating EC-Schnorr-IBS user private key...

Time taken for KeyDer is: 77022919ns

Your public key is: tan@mail.com201560311

Please renew before: 20150311

User secret key has been store: /home/tan/Desktop/ejbca_4_0_16/PKG/KeyDer/tan@mail.com2
0150311.txt

tan@James:~/Desktop/ejbca_4_0_16/bin$ sudo ./ejbca.sh pkg sign tan@mail.com20150311 "Th
is is message to be signed." PKGO1

Time taken for Signing is: 70098296ns

Signature stored in: /home/tan/Desktop/ejbca_4_0_16/PKG/Sign/tan@mail.com20150311.txt
tan@James:~/Desktop/ejbca_4_0_16/bin$ sudo ./ejbca.sh pkg verify tan@mail.com20150311 "
This is message to be signed." PKGO1

Time taken for Verify is: 111551887ns

verify

tan@James:~/Desktop/ejbca_4_0_16/bin$ sudo ./ejbca.sh pkg verify tan@mail.com201560311 "
This is XXX message to be signed." PKGO1

Time taken for Verify is: 115621677ns

rejected

Fig. 8 Demonstration of PKG operations

@ Springer

Multimed Tools Appl

tan@James:~/Desktop/ejbca_4_6_16/bin$ sudo ./ejbca.sh pkg Revoke
Description: Revoke identity which is in bad status

Usage: pkg Revoke <Public Key> <PKGname> <reason>

unspecified(0)

keyCompromise(1)

CACompromise(2)

affiliationChanged(3)

superseded(4)

cessationOfOperation(5)

certificateHold(6)

removeFromCRL(8)

privilegeWithdrawn(9)

AACompromise(10)

tan@James:~/Desktop/ejbca_4_0_16/bin$ sudo ./ejbca.sh pkg Revoke tan@mail20150311 PKGO1 9
tan@mail20150311 has been added to corresponding CRL.

Fig. 9 User private key revocation

Figure 7 shows the operations available for the proposed PKG. Figure 8 shows the major
operations of a PKG. It shows how to generate a user secret key for an end user. Admin-
istrator will have to key in the public identity of end user, the identity validity period and
under which PKG the user belongs to. When the identity is expired, i.e. the date shown in
email address is invalid, email sender will understand that this email address is no longer
secure and thus achieve the purpose of user revocation.

In implementation, a system can be configured such that as long as the date on the email
address is expired, then it is an invalid recipient. On the other hand, if a user noticed that his
email address is expired, he will need to contact the PKG to update a new one. PKG also
can revoke user private key as shown in Fig. 9.

4.2 Performance

To test the performance for the PKG framework, we run each service for 100 rounds to get
an average time for Shamir IBS, Schnorr IBS and EC Schnorr IBS. We noticed that the first
few rounds will require longer time due the the fact that the required codes have not been
placed in processor’s cache yet. In view of this, we run each service for 110 rounds but
only the 10th to 110th rounds are used in calculating the average timing. Table 2 shows the
required time for each service in second.

The Setup of each IBS scheme follows strictly the requirement stated in FIPS 186-3 [8]
and thus resulted in the rather lengthy time. For the EC-based IBS, the setup is signifi-
cantly faster than that of RSA-based and DSA-based schemes because we use the curves
prime192v1, prime224v1 and prime256v1 of X9.62! [1] from BouncyCastle which has
the curve parameters fixed, instead of generated randomly. However, we argue that Setup
needed to be done only once during the initialization of PKG and the Extract also needed to
be run only once for each user. Sign and Verify on the other hand will be run multiple times
but the experiments showed that their performance are very practical where by the total of
these two services in a single round of 3072 bits keys does not even exceed 0.05, 0.06 and
0.1 second for Shamir IBS, Schnorr IBS and EC Schnorr IBS respectively.

IThese three elliptic curves are having the similar security level corresponding to 1024, 2048 and 3072 in
RSA and DSA.

@ Springer

Multimed Tools Appl

Table 2 Performance of IBC Framework in EJBCA

Performance (s)

Scheme Service 1024 bits 2048 bits 3072 bits
Shamir IBS [11] Setup 0.152 0914 3.720
Extract 0.006 0.039 0.125
Sign 0.004 0.011 0.025
Verify 0.003 0.011 0.025
Schnorr IBS [10] Setup 19.024 138.176 379.533
Extract 0.001 0.006 0.014
Sign 0.002 0.006 0.013
Verify 0.003 0.016 0.038
EC Schnorr IBS Setup 0.009 0.012 0.016
Extract 0.020 0.023 0.032
Sign 0.020 0.024 0.033
Verify 0.036 0.046 0.063

5 Conclusion

We amended the architecture of EJBCA by incorporated an IBC framework into it. The
enhanced EJBCA can now be deployed as PKI and/or IBC according to the needs of an
organization. The IBC services were experimented and the performance showed that it is
practical for real world usage. The future plan is to enrich the IBC services with more
choices of IBS scheme and also other primitives such as identity-based encryption, key
exchange as well as identification schemes.

Acknowledgments This research is partially supported by FRGS Grant (FRGS/1/2012/TK06/MMU/03/9)
and TM R&D Grant (RDTC/130827).

References

—_

. ANSI X9.62-2005 (2005). Elliptic curve digital signature algorithm, ECDSA
. Carlisle Adams SL (1999) Understanding the Public-key infrastructure: concepts, standards, and

deployment considerations, 1st edn. Sams

. Chen L, Harrison K, Moss A, Soldera D, Smart NP (2002) Certification of public keys within an identity

based system. Information security, vol 2433. LNCS, pp 322-333

. Chen Q, Li Z, Yu S (2007) A cross-authentication model for heterogeneous domains in active networks.

IFIP Int Conf Netw Parallel Comput Workshops: 140-143

. Dalton CR (2003) The NHS as a proving ground for cryptosystems. Inf Sec Techn Report 8:73-88
. EJBCA. http://www.ejbca.org/index.html
. Eslami Z, Kazemnasabhaji M, Mirehi N (2013) Proxy signatures and buyer-seller watermark-

ing protocols for the protection of multimedia content. Multimedia tools and applications.
doi:10.1007/s11042-013-1555-0

. (2009). 186-3, FIPS PUB, Digital Signature Standard (DSS)
. FlexiProvider. http://www.flexiprovider.de/
. Galindo D, Garcia FD A schnorr-like lightweight identity-based signature scheme. In: Proceedings of

AfricaCrypt "09, LNCS, vol 5580. pp 135-148

. Kiltz E, Neven G Identity-based signatures. In: Proceedings of the CISS ’08, vol 2. pp 31-44

@ Springer

http://www.ejbca.org/index.html
http://dx.doi.org/10.1007/s11042-013-1555-0
http://www.flexiprovider.de/

20.

21.

22.

23.

24.

25.
26.

Multimed Tools Appl

. Krishnamurthy S (2008) Understanding the successes of identity-based encryption. NIST identity-based

encryption workshop

. Lee B (2010) Unified public key infrastructure supporting both certificate-based ID-based cryptography.

IEEE Int Conf Availability, Reliab Secur:54-61

. Legion of the Bouncy Castle. https://www.bouncycastle.org/

. Network Security Services (NSS). https://developer.mozilla.org/en/docs/NSS

. Open Source Certificate Authority (OpenCA) Labs. http://www.openca.org/

. Open Java Development Kit (OpenJDK). http://openjdk.java.net/

. Open Source Secure Socket Layer (OpenSSL) Project. https://www.openssl.org/

. Price G, Mitchell CJ (2005) Interoperation between a conventional PKI and an ID-based infrastructure.

Public key infrastructure, vol 3545. LNCS, pp 73-85

Rong R, Li Z, Jiang Y (2007) An authentication model for multi-type domains in active networks. IEEE
international workshop on anti-counterfeiting, security, identification

Al-Riyami SS, Paterson KG Certificateless public key cryptography. In: Proceedings of the Asiacrypt
’03, vol 2894. LNCS, pp 452473

Shamir A Identity-based cryptosystems and signature schemes. In: Proceedings of the CRYPTO ’84,
vol 196. LNCS, pp 47-53

Stoianov N, Uruefia M, Niemiec M, Machnik P, Maestro G (2013) Integrated security infrastructures for
law enforcement agencies. Multimedia tools and applications. doi:10.1007/s11042-013-1532-7

Voltage Security Press Release (2006). Total cost of ownership of Voltage IBE 3X lower than PKI in
Ferris research study. http://157.238.212.45/pressreleases/PR060530.htm

X Certificate and Key Management (XCA). http://xca.sourceforge.net/

Yi X, Zheng G, Li M, Ma H, Zheng C (2013) Efficient authentication of scalable media streams over
wireless networks. Multimedia tools and applications. http://dx.doi.org/10.1007/s11042-012-1324-5

Syh-Yuan Tan received his Bachelor degree in I.T. and M.Sc. from Multimedia University (MMU), Malaysia
in 2007 and 2010. He is currently attached to the Faculty of Information Science and Technology, MMU,
Malaysia as a lecturer. His research interests include Cryptography and Network Security.

@ Springer

https://www.bouncycastle.org/
https://developer.mozilla.org/en/docs/NSS
http://www.openca.org/
http://openjdk.java.net/
https://www.openssl.org/
http://dx.doi.org/10.1007/s11042-013-1532-7
http://157.238.212.45/pressreleases/PR060530.htm
http://xca.sourceforge.net/
http://dx.doi.org/10.1007/s11042-012-1324-5

Multimed Tools Appl

Wei-Chuen Yau is a Senior Lecturer in the Faculty of Engineering at Multimedia University, Malaysia. He
received his B.S. and M.S. degrees from National Cheng Kung University, Taiwan, and his Ph.D. degree from
Multimedia University. He also holds CISSP (Certified Information Systems Security Professional), GSEC
(GIAC Security Essentials), and HCDA (Huawei Certified Datacom Associate) certifications. His research
interests include cryptography, security protocols, intrusion detection, and network security.

Boon-Hock Lim is a Bachelor I.T. student of the Faculty of Information Science and Technology in
Multimedia University, Malaysia. His research interests include cryptography and network security.

@ Springer

	An implementation of enhanced public key infrastructure
	Abstract
	Introduction
	Related works
	Contribution

	PKI libraries
	Enterprise java bean certified authority
	Network security services
	X Certificate and key management
	OpenCA
	Candidate for IBC

	Integration of IBC and EJBCA
	Architecture of IBC framework
	Identity-based signature schemes
	Shamir identity-based signature scheme
	Schnorr identity-based signature scheme
	EC Schnorr identity-based signature scheme

	Class diagrams

	Performance evaluation
	Screenshots
	Performance

	Conclusion
	Acknowledgments
	References

