
DOCTOR: An Integratel! Software Fault InjeCTiQn EnviRonment -
- An Extended Abstract*

Seungjae Han. Harold A. Rosenberg, and Kang G. Shin

Red-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122.

email: { sjhan, rosen, kgshin)@eecs.umich.edu

The increasing complexitv of contemporarv com-
puter architectures and the high-degree integration of
functions into an ever-shrinking VLSI chip have made
it difficult to evaluate/validate computer systems with
hardware fault injections. Especially, the limitation
of fault-injection location to pin boundaries results in
lack of control over high-level fault manifestations or
errors. Since our early work on hardware fault injec-
tion in [l , 21, we have been building a dependability
evaluation environment based on software fault injec-
tion [3].

Our research into fault injection has taken a three-
pronged approach. First, we have enhanced the capa-
bility of representing diverse fault type, because most
software-implemented fault injectors are limited to
specific fault types. A more sophisticated fault model
t. han the commonly-used, basic memory tault model is
required to fully emulate the effects ot' various faults.
Considering the trend that system-level components
are becoming the basic units of fault confinement, di-
agnosis. and replacement, we have decided to support
three classes of faults: memory faults, communication
faults, and processor faults. Our fault model also sup-
ports three temporal types of faults: translent. inter-
mittent. and permanent. Various types of probability
distributions are also provided to specify fault inter-
arrival times. A memory fault can be injected as a
single bit. twc-bit compensating, whole byte, or burst

The work reported here is supported in part by the Office
t l f Naval Kesearch under Grants N00014-91-J-1115 and N00014-
!!2-1080. the National Aeronautlc and Space Adnunistratlon
under Grant NAG-1493. and the National Science k-oundation
mdsr Grants MIP-9012549 and iM1P-9203895. A n y opinions,
findrnqs, and conclusions or recommendations expressed in this
paper are those ol the authors and do not necessady reflect the
views of the funding agencies.

(of multiple bytes) error. The symbol-table informa-
tion can be used to decide injection locations, and the
contents of memory at the selected address are par-
tially or totally set, reset, or toggled. Communication
faults affect the delivery of messages. Messages can
be lost, altered, or delayed. If the node has multiple
incoming and outgoing links, as in a point-to-point
architecture, different fault types can be specified sep-
arately for each link. Several options are provided to
allow the injection of a variety of failure semantics,
including Byzantine failures. To emulate the effect of
faults in a processor, we make use of executable im-
age modification, in which instructions generated by
the compiler are modified or extra instructions are in-
serted for a fault-injection purpose. Currently, the
alteration of control flow. register errors, and ALU er-
rors are supported.

The second is to provide a complete set of tools
for automated fault-injection experiments. Generally,
a fault-injection experiment environment consists of
4 major components: the target system with fault-
tolerance mechanisms which are to be evaluated, a
fault injector, the workloads to be run on the tar-
get system. and a dependability monitoring tool. The
first target system of DOCTOR is HARTS, a real-
time distributed system (4, 51. The Software Fault
Injector (SFI), the core part of DOCTOR, supports
the fault models described above, and consists of three
modules: the Experiment Generation Module (EGM),
the Fault hjection Agent (FIA), and the Experiment
Control Module (ECM). EGM accepts an exper~ment
description file which contains the experiment plan
and the information about the fault type and injec-
tion timing. EGM is responsible for generating the
executable images of workloads which will be down-

mailto:kgshin)@eecs.umich.edu

Figure i: The organization of DOCTOR

loaded /from the host) to the target system. LVhen
the workloads are compiled. the symbol-table infor-
mation is extracted, and some library programs are
attached to workload executable code. Necessary exe-
cutable code modification for injecting processor faults
are also done here. FIA is a separate process which
runs on the same node as the workload. I t receives
control commands from ECM via a communication
network and executes them such as enabling faults or
making workloads wait/start/stop. ECM functions as
;i supervisor. It controls all other modules. and sets
lip an exDeriment environment. It uses the emeriment
parameter tiles generated by EGM for each noae in-
volved in an experiment in order to Generate proper
commands for FIR. ECM synchronizes the start/end
of each runs among several nodes. and periorms re-
quired re-initialization steps for user-transparent auto-
mated multi-run facility. In most of the fault-injection
work reported in the literature. only a couple of real
programs are used as workloads. A workload produces
riemands for t h e system resources. so the structure
and behavior of the workload mav affect the depend-
ability of fault-tolerance mechanisms under test siq-
nificantlv. \Ve provide a Synthetic Workload Gen-
riratoriSWCr1 [6], so that experiments can be con-
riucted under systematically-controlled worKioaa con-
ditions. The dependabilitv monitoring tool of DOC-
'TOR is composed of two modules: Data Collection
llodule I UCM). Data Analysis Module (D A M) . UChl
i:ollects event data which are produced by FIAs or
fault-tolerance mechanisms under test, such as fault

injection/detection events. Basicailv, it is a expansion
of HMON [7], which provides non-intrusive monitoring
of system performance. DAM anaiyzes the data col-
lected by DCM. For example, it calculates the fault de-
tection coverage and latencv. Since DAM has a modu-
lar structure, other analysis capabilities can be added
easily. DAM has a graphic display function to present
analysis results. In addition. a comprehensive graphic
user interface helps the user design and control exper-
iments in an X window environment. Figure 1 shows
the orqanization of DOCTOR.

The third focus is on the consideration of portabil-
ity. All previousiy-implemented SFI methods have a
(common restriction that thev were developed for spe-
cific target systems. That is. portability - an im-
portant merit of SFI - has not been figured into
their design. By minimizing its dependence on the
underlying hardware architecture and operating sys-
tem, a SFI tool which runs on one system can be
ported to another with minimal effort. Fault-injection
experiments can then be performed during early de-
sign phases without developing a new fault injector
for each target system. DOCTOR.does not rely on
any particular system. though our main interest lies
in distributed real-time svstems. [Iowever. complete
independence of a SFI tool from hardware and system
software is impossible to accomplish. since in many
i a e s the fault-tolerance features under test are im-
plemented at the hardware or system software level.
A realistic wav to reduce the porting effort is to uti-
lize .'standard'! features available in commonly-used

systems, and to separate the system-dependent Parts
from the rest.

We have demonstrated the capability of DOCTOR
through extensive experiments. such as evaluating the
effectiveness and the associated performance overhead
of error detection and diagnosis methods by inject-
ing various types of faults tens of thousands of times.
Detailed specifications and result data of experiments
can be found in [8]. To demonstrate the portability of
DOCTOR, we will port this tool set to additional dis-
tributed systems, and evaluate the required amount
of effort. We also plan to measure the fauit injection
and data collection overhead of our tools, and will ex-
plore new methods of reducing and controlling this
overhead. In addition, we are currently exploring the
issues involved in formalizing both the specification of
fault-injection experiments, and the systematic seiec-
tion of the faults to be injected.

[a] S. Han, H. A. Rosenberg, and K. G. Shin, (‘ D ~ ~ -
tor: An integrated software fault injection environ-
ment.” CSE Technical Report, CSETR-lg2-93,
EECS Department, University of Michigan, De-
cember 1993.

References

[I] K. G. Shin and Y. H. Lee, “Measurement and ap-
plication of fauit latency,“ IEEE Trans. Comput-
ers, vol. C-35. no. 4, pp. 370-375, April 1986.

[2] M. Woodbury and K. G. Shin, “Measurement and
analysis of workload effects on fault latency in real-
time systems,” IEEE Trans. Software Engineering,
vol. 16, no. 2, pp. 212-215, 1990.

[3] H. Rosenberg and K. G. Shin, “Software fault in-
jection and its application in distributed systems. ’
in Proc. Int ‘I Symp. on Fauit-Tolerant Computing.
pp. 208-217. IEEE, 1993.

[4] K . G. Shin. “IIARTS: A distributed real-time ar-
chitecture,” IEEE Computer , vol. 2 4 . no. 5 , pp.
25-35, May 1991.

[SI K. G . Shin, D. Kandlur. D. Kiskis. P. Dodd,
H. Rosenberg, and A . Indiresan, ‘‘‘1 distributed
real-time operating system,” IEEE Software. pp.
58-68, September 1992.

[6] D. L. Kiskis, Generation of Synthetic Workloads
f o r Distributed Real-Time Computing Systems.
PhD thesis. Universitv of iMichigan, August 1992.

[7] P. S. Dodd and C. V . Ravishankar, “Monitoring
and debugging distributed real-time programs, ’
Software-Practace and Experience, voi. 22. no. 10.
pp. 863-877. October 1992.

