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The increasing complexity of contemporary com-
puter architectures and the high-degree integration of
functions into an ever-shrinking VLSI chip have made
it difficult to evaluate/validate computer systems with
hardware fault injections. Especiaily, the limitation
of fault-injection location to pin boundaries results in
lack of control over high-ievel fault manifestations or
errors. Since our early work on hardware fault injec-
tion in [1, 2], we have been building a dependability
evaluation environment based on software fault injec-
tion (3].

Our research into fault injection has taken a three-
pronged approach. First, we have enhanced the capa-
bility of representing diverse fault type, because most
software-impiemented fault injectors are limited to
specific fault types. A more sophisticated fauit model
than the commoniy-used, basic memory fault model is
required to fully emulate the effects of various faults.
Considering the trend that system-level components
are becoming the basic units of fault confinement, di-
agnosis. and replacement, we have decided to support
three ciasses of faults: memory faults, communication
faults, and processor faults. Our fault model also sup-
ports three temporat types of faults: transient, inter-
mittent. and permanent. Various types of probability
distributions are also provided to specify fault inter-
arrival times. A memory fault can be injected as a
single bit, two-bit compensating, whole byte, or burst
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(of multiple bytes) error. The symbol-table informa-
tion can be used to decide injection locations. and the
contents of memory at the selected address are par-
tially or totally set, reset, or toggied. Communication
faults affect the delivery of messages. Messages can
be lost, altered, or delayed. If the node has muitiple
incoming and outgoing links, as in a point-to-point
architecture, different fauit types can be specified sep-
arately for each link. Several options are provided to
allow the injection of a variety of failure semantics,
including Byzantine failures. To emulate the effect of
faults in a processor, we make use of executable im-
age modification, in which instructions generated by
the compiler are modified or extra instructions are in-
serted for a fault-injection purpose. Currently, the
alteration of control flow, register errors, and ALU er-
rors are supported.

The second is to provide a complete set of tools
for automated fault-injection experiments. Generally,
a fault-injection experiment environment consists of
4 major components: the target system with fault-
tolerance mechanisms which are to be evaluated, a
fault injector. the workloads to be run on the tar-
get system. and a dependability monitoring tool. The
first target system of DOCTOR is HARTS, a real-
time distributed system [4, 5]. The Software Fauit
Injector (SFI), the core part of DOCTOR, supports
the fault models described above, and consists of three
modules: the Experiment Generation Module (EGM),
the Fault Injection Agent (FIA), and the Experiment
Control Module (ECM). EGM accepts an experiment
description file which contains the experiment plan
and the information about the fault type and injec-
tion timing. EGM is responsible for generating the
executable images of workloads which wiil be down-
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loaded (from the host) to the target system. When
the workloads are compiled, the symboi-table infor-
mation 1s extracted, and some library programs are
attached to workload executable code. Necessary exe-
cutable code modification for injecting processor faults
are also done here. FIA is a separate process which
runs on the same node as the workload. It receives
control commands from ECM via a communication
network and executes them such as enabling faults or
making workioads wait/start/stop. ECM functions as
a supervisor. It controls all other modules. and sets
iip an experiment environment. [t uses the experiment
parameter tiles generated by EGM for each noae in-
voived in an experiment in order to generate proper
commands for FIA. ECM synchronizes the start/end
of each runs among several nodes. and performs re-
quired re-initialization steps for user-transparent auto-
mated muiti-run facility. In most of the fault-injection
work reported in the literature. only a couple of reai
programs are used as workloads. A workioad produces
demands for the system resources. so the structure
and behavior of the workload may atfect the depend-
ability of fault-tolerance mechanisms under test sig-
nificantlyv. Ve provide a Synthetic Workload Gen-
erator{SWG) [6], so that experiments can be con-
ducted under systematically-controlled workioad con-
ditions. [he dependability monitoring tool of DOC-
TOR. is composed of two modules: Data Coilection
\lodule (DCM). Data Analysis Module (DAM). DCM
collects event data which are produced by FIAs or
fauit-tolerance mechanisms under test, such as fault

injection/detection events. Basicaily, it is a expansion
of HMON {7], which provides non-intrusive monitoring
of system performance. DAM anaiyzes the data col-
lected by DCM. For example, it calculates the fauit de-
tection coverage and latency. Since DAM has a modu-
lar structure, other analysis capabilities can be added
easily. DAM has a graphic display function to present
analysis results. In addition. a comprehensive graphic
user interface helps the user design and control exper-
iments in an X window environment. Figure } shows
the orgamzation of DOCTOR.

The third focus 1s on the consideration of portabil-
ity. All previousiy-implemented SFI methods have a
common restriction that thev were developed for spe-
cific target systems. That is. portability — an im-
portant merit of SFI — has not been figured into
their design. By minimizing its dependence on the
underlying hardware architecture and operating sys-
tem, a SFI tool which runs on one system can be
ported to another with minimal effort. Fault-injection
experiments can then be performed during early de-
sign phases without developing a new fault injector
for each target system. DOCTOR does not rely on
any particular system. though our main interest lies
in distributed real-time systems. [lowever, complete
independence of a SFI tool from hardware and system
software is impossible to accomplish. since in many
cases the fault-tolerance teatures under test are im-
plemented at the hardware or system software level.
A realistic way to reduce the porting effort is to uti-
lize “standard” features available in commoniy-used

42,



systems, and to separate the system-dependent parts
from the rest.

We have demonstrated the capability of DOCTOR
through extensive experiments, such as evaiuating the
effectiveness and the associated performance overhead
of error detection and diagnosis methods by inject-
ing various types of faults tens of thousands of times.
Detailed specifications and resuit data of experiments
can be found in [8]. To demonstrate the portability of
DOCTOR, we wiil port this tool set to additional dis-
tributed systems, and evaluate the required amount
of effort. We also plan to measure the fault injection
and data collection overhead of our tools, and will ex-
plore new methods of reducing and controlling this
overhead. In addition, we are currently exploring the
issues involved in formalizing both the specification of
fauit-injection experiments, and the systematic selec-
tion of the fauits to be injected.
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