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The increasing complexitv of contemporarv com- 
puter architectures and the high-degree integration of 
functions into an ever-shrinking VLSI chip have made 
it difficult to evaluate/validate computer systems with 
hardware fault injections. Especially, the limitation 
of fault-injection location to pin boundaries results in 
lack of control over high-level fault manifestations or 
errors. Since our early work on hardware fault injec- 
tion in [l ,  21, we have been building a dependability 
evaluation environment based on software fault injec- 
tion [3]. 

Our research into fault injection has taken a three- 
pronged approach. First, we have enhanced the capa- 
bility of representing diverse fault type, because most 
software-implemented fault injectors are limited to 
specific fault types. A more sophisticated fault model 
t. han the commonly-used, basic memory tault model is 
required to fully emulate the effects ot' various faults. 
Considering the trend that system-level components 
are becoming the basic units of fault confinement, di- 
agnosis. and replacement, we have decided to support 
three classes of faults: memory faults, communication 
faults, and processor faults. Our fault model also sup- 
ports three temporal types of faults: translent. inter- 
mittent. and permanent. Various types of probability 
distributions are also provided to specify fault inter- 
arrival times. A memory fault can be injected as a 
single bit. twc-bit compensating, whole byte, or burst 
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(of multiple bytes) error. The symbol-table informa- 
tion can be used to decide injection locations, and the 
contents of memory at the selected address are par- 
tially or totally set, reset, or toggled. Communication 
faults affect the delivery of messages. Messages can 
be lost, altered, or delayed. If the node has multiple 
incoming and outgoing links, as in a point-to-point 
architecture, different fault types can be specified sep- 
arately for each link. Several options are provided to  
allow the injection of a variety of failure semantics, 
including Byzantine failures. To emulate the effect of 
faults in a processor, we make use of executable im- 
age modification, in which instructions generated by 
the compiler are modified or extra instructions are in- 
serted for a fault-injection purpose. Currently, the 
alteration of control flow. register errors, and ALU er- 
rors are supported. 

The second is to provide a complete set of tools 
for automated fault-injection experiments. Generally, 
a fault-injection experiment environment consists of 
4 major components: the target system with fault- 
tolerance mechanisms which are to be evaluated, a 
fault injector, the workloads to be run on the tar- 
get system. and a dependability monitoring tool. The 
first target system of DOCTOR is HARTS, a real- 
time distributed system (4, 51. The Software Fault 
Injector (SFI), the core part of DOCTOR, supports 
the fault models described above, and consists of three 
modules: the Experiment Generation Module (EGM), 
the Fault hjection Agent (FIA),  and the Experiment 
Control Module (ECM). EGM accepts an exper~ment 
description file which contains the experiment plan 
and the information about the fault type and injec- 
tion timing. EGM is responsible for generating the 
executable images of workloads which will be down- 
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Figure i: The organization of DOCTOR 

loaded /from the host) to the target system. LVhen 
the workloads are compiled. the symbol-table infor- 
mation is extracted, and some library programs are 
attached to workload executable code. Necessary exe- 
cutable code modification for injecting processor faults 
are also done here. FIA is a separate process which 
runs on the same node as the workload. I t  receives 
control commands from ECM via a communication 
network and executes them such as enabling faults or 
making workloads wait/start/stop. ECM functions as 
;i supervisor. It controls all other modules. and sets 
lip an exDeriment environment. It uses the emeriment 
parameter tiles generated by EGM for each noae in- 
volved in an experiment in order to Generate proper 
commands for FIR. ECM synchronizes the start/end 
of each runs among several nodes. and periorms re- 
quired re-initialization steps for user-transparent auto- 
mated multi-run facility. In most of the fault-injection 
work reported in the literature. only a couple of real 
programs are used as workloads. A workload produces 
riemands for t h e  system resources. so the structure 
and behavior of the workload mav affect the depend- 
ability of fault-tolerance mechanisms under test siq- 
nificantlv. \Ve provide a Synthetic Workload Gen- 
riratoriSWCr1 [6],  so that experiments can be con- 
riucted under systematically-controlled worKioaa con- 
ditions. The dependabilitv monitoring tool of DOC- 
'TOR is composed of two modules: Data Collection 
llodule I UCM). Data Analysis Module ( D A M ) .  UChl  
i:ollects event data which are produced by FIAs or 
fault-tolerance mechanisms under test, such as fault 

injection/detection events. Basicailv, it is a expansion 
of HMON [7], which provides non-intrusive monitoring 
of system performance. DAM anaiyzes the data col- 
lected by DCM. For example, it calculates the fault de- 
tection coverage and latencv. Since DAM has a modu- 
lar structure, other analysis capabilities can be added 
easily. DAM has a graphic display function to present 
analysis results. In addition. a comprehensive graphic 
user interface helps the user design and control exper- 
iments in an X window environment. Figure 1 shows 
the orqanization of DOCTOR. 

The third focus is on the consideration of portabil- 
ity. All previousiy-implemented SFI methods have a 
(common restriction that thev were developed for spe- 
cific target systems. That  is. portability - an im- 
portant merit of SFI - has not been figured into 
their design. By minimizing its dependence on the 
underlying hardware architecture and operating sys- 
tem, a SFI tool which runs on one system can be 
ported to another with minimal effort. Fault-injection 
experiments can then be performed during early de- 
sign phases without developing a new fault injector 
for each target system. DOCTOR.does not rely on 
any particular system. though our main interest lies 
in distributed real-time svstems. [Iowever. complete 
independence of a SFI tool from hardware and system 
software is impossible to accomplish. since in many 
i a e s  the fault-tolerance features under test are im- 
plemented at the  hardware or system software level. 
A realistic wav to reduce the porting effort is to uti- 
lize .'standard'! features available in commonly-used 



systems, and to separate the system-dependent Parts 
from the rest. 

We have demonstrated the capability of DOCTOR 
through extensive experiments. such as evaluating the 
effectiveness and the associated performance overhead 
of error detection and diagnosis methods by inject- 
ing various types of faults tens of thousands of times. 
Detailed specifications and result data of experiments 
can be found in [8]. To demonstrate the portability of 
DOCTOR, we will port this tool set to additional dis- 
tributed systems, and evaluate the required amount 
of effort. We also plan to measure the fauit injection 
and data  collection overhead of our tools, and will ex- 
plore new methods of reducing and controlling this 
overhead. In addition, we are currently exploring the 
issues involved in formalizing both the specification of 
fault-injection experiments, and the systematic seiec- 
tion of the faults to be injected. 
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