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Copper mining activity is going through big changes due to increasing technological development in the area and the influence of
industry 4.0. These changes, produced by technological context and more controls (e.g., environmental controls), are also becoming
visible in Chilean mining. New regulations from the Chilean government and changes in the copper mining industry (such as a
trend to underground mining) are fostering the search for better results in typical processes such as leaching. This paper
describes an experience using artificial intelligence techniques, particularly random forest, to develop predictive models for
copper recovery by leaching, using data from an enterprise present in northern Chile for more than 20 years. Two models, one
of them with actual operational data and another one with data generated in a controlled environment (piling) are presented.
Well-classified values of 98.90% for operational data and 98.72% for pile/piling data were obtained. The methodology devised
for the study can be transferred to piling columns or piles with other characteristics, though the operation must focus on copper
leaching. It can even be transferred to other leaching processes using another type of mineral, with proper adjustments.

1. Introduction

The Chilean mining industry, as in the whole world, is
experimenting with big changes due to the rapid technologi-
cal advance in the so-called industry 4.0 [1]. According to
Pietrobelli et al. in [2], big mining companies typically tended
to control their operations from remote centers located in
multinational corporations, thus resulting in little local
innovation and development. This way of operating helps
the macroeconomy, but it makes difficult diversification,
knowledge transfer, and regional innovation in the value
chain [3]. Another factor producing changes in the above-
mentioned trend is the significant fall of copper price since
2015, fostering both technological advances enabling compa-
nies to face production costs [4] and also greater regional
innovation and development.

Chilean copper production represents 35% on a world
basis [5, 6]. On a local basis, the copper production industry
is the country’s most profitable, providing almost 15% of
Chilean GDP and representing 50% of exports [7, 8]. This
Chilean predominant position in the copper industry is also

complemented with leadership in other mineral products,
such as lithium. To keep this leadership in the world’s
mining activity, Chile must ensure mining profitability in
the short term. A valid strategy for this may be investing
in technology and innovation, together with mining indus-
try diversification.

Recent papers [5-7] report a trend to technological
diversification in the sector, even from mining suppliers. Fur-
thermore, as stated in [6], a recent report from the Chilean
government declares the objective of promoting the estab-
lishment of 250 local suppliers for the mining sector in
2035. This strategy is expected to create knowledge about
business and technology appropriate for current challenges,
both elements being directed to local mining development
and exports as well. This would result in an income of about
US$10 thousand million.

For the aforementioned technological development and
innovation, the Chilean mining industry is incorporating
technology to develop intelligence system-type applications
for supporting tasks such as copper recovery prediction.
These systems are frequently based on artificial intelligence
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computing models. Apart from representing a technological
contribution, these models are becoming a great help for pre-
dicting or reducing production costs [9, 10], a very conve-
nient fact for supporting modern technology characterized
by a greater extraction complexity and increasing restrictions
such as environmental ones [11].

In typical production processes such as leaching, predic-
tive models have been satisfactorily used in the last decade to
identify factors allowing production increase [9, 10]. There
are several cases illustrating predictive model generation
using artificial intelligence, specifically soft computing [12].
In particular, this paper fully describes the process for devel-
oping predictive models [13] to recover copper by leaching
and the results were obtained at SCM Franke Company, from
the KGHM International Group, present in Chilean mining
exploitation since 2009.

Recently, research into the applicability of artificial intel-
ligence techniques such as predictive model algorithms, for
copper recovery prediction, has been conducted. In this
context, comparative studies of which predictive model algo-
rithms are the most appropriate according to the characteris-
tics of the copper mining production process have been
published. Thus, advantages of using support vector machine
(SVM), random forest (RF), artificial neural networks
(ANN), gradient boosted trees (GBT), or wavelet neural
network (WNN) are frequently reported in the literature
(such as [14]). For example, in [15], a predictive modeling
using SVM for copper potential mapping in the Kerman cop-
per bearing belt in the south of Iran is reported. In [16], a
comparative analysis of ANN, WNN, and SVM models to
mineral potential mapping for copper mineralization is pre-
sented. As a particular result of this work, the authors high-
light that WNN exhibits excellent learning ability compared
to the conventional ANN.

Also, in [17], SVM, ANN, and RF were used to conduct
predictive modeling of mineral prospectively. For these algo-
rithms, input data was obtained from GIS-based mineral pro-
spectively mapping of the Tongling ore district (eastern
China). As a conclusion from this work, authors highlight
that the RF model outperformed the SVM and ANN models,
giving a greater consistency and better predictive accuracy.
Another example of comparative analysis of predictive
models using GBT, ANNs, and RF is the work described in
[16], where authors highlight that the RF models show the
highest coefficients of determination (R?) values and the low-
est root-mean-square error (RMSE), and the highest residual
prediction deviations (RPD) were obtained.

There are several papers that report that RF and
GBDT perform the best (see Table 1 for a comparison
among these methods); therefore, and based on the
described information in the previous paragraphs, the use
of RF can more appropriately lead to the achievement of
the stated objective.

This paper describes the tasks done to generate predictive
models for copper recovery in leaching piles with low-grade
material, using data from actual pile operation and those pro-
duced in a controlled environment (pilot), using the same
artificial intelligence technique (random forest technique)
in both cases to develop predictive models.
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TaBLE 1: Accuracy ranking of different classification algorithms
[32].

Accuracy ranking

Algorithm Top 1 Top 2 Top 3 Top 4 Top 5

GBDT 42.25%  63.38%  67.61% 77.46%  83.10%
RF 21.13%  56.34%  77.46%  84.51% = 92.96%
SVM 18.31%  30.99%  52.11% 64.79%  78.87%
ELM 1549%  2394%  30.99%  47.89%  56.34%
C4.5 12.68%  15.49%  28.17%  43.66%  56.34%
SRC 11.27%  22.54%  23.94%  33.80%  38.03%
LR 4.23% 11.27%  19.72%  26.76%  40.85%
AB 4.23% 7.04% 8.45% 19.72%  18.31%
KNN 2.82% 8.45% 12.68%  26.76%  36.62%
NB 2.82% 5.63% 7.04% 9.86% 19.72%
DL 1.41% 1.41% 2.82% 4.23% 4.23%

The remaining document is organized as follows: Section
2 describes the base concepts of the study and related work.
Section 3 describes the experiment, the discretizing of the
variables used in the model, data characteristics and how they
were collected, work methodology, and the techniques used
for analyzing results. Section 4 shows the results obtained
for the two models, that is, operational data and piling data
models. Section 5 deals with the discussion. Section 6 shows
the conclusions of the paper. Finally, acknowledgments and
bibliographical references are stated.

2. Concepts and Related Work

2.1. Leaching and Company Work. The copper leaching pro-
cess involves tasks thoroughly identified by the industry, that
is, irrigation beginning and maintenance, agglomerate
condition evaluation, drainage distribution, pool solution
inventory, PLS flow evaluation, and distribution and depo-
sition of the material leached at the plant (harvest). These
processes, due to the nature and variability of the input
material, usually produce high levels of entropy and uncer-
tainty (close to 20%) concerning copper recovery at the
end of the harvest [9].

SCM Franke uses three industrial processes widely
known in the industry of metallic copper production via
hydrometallurgy. These processes are dynamic pile leaching,
solvent extraction, and electrowinning [9]. The ultimate goal
of these processes is to obtain the greatest copper production
by saving resources and being the least possible aggressive to
the environment (a kind of environmental trade-off). The
leaching process has been shown to be one of the most con-
venient to achieve this environmental trade-off. The objective
of this paper is predicting estimated copper recovery as accu-
rately as possible at about 95% by dynamic pile leaching,
using the least possible amount of leaching material and the
best irrigation homogeneity.

2.2. Related Work and Predictive Models. The development of
applications using predictive modeling to improve mineral
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recovery estimation is prospectively becoming a central area
of study in the mining industry [18-20].

Recent studies such as [3, 9, 10] reveal that one of the
most critical tasks in prospective modeling is the selection
of appropriate criteria and the application of sound innovat-
ing techniques to get the evidential characteristics of these
criteria.

Traditionally, these criteria have been selected by differ-
ent numerical methods, but in the last few decades, alterna-
tive techniques such as those from the artificial intelligence
area have been applied for both criteria selection and the
development of predictive models for mineral recovery
[21]. In general, methods containing machine learning algo-
rithms are being applied for building these predictive models.

In the literature, the methods referred to here have been
grouped into two sets [21-23]: knowledge-driven models
and data-driven models. Data-driven models are probabilistic
models such as discriminant analysis or logistic regression
[19, 24]. The algorithms of data-driven models, whose
evidence of use is more often reported in the literature, are
artificial neural networks (generally with backpropagation
[25, 26]) (ANN) [19, 27, 28] and regression trees (RT's)
[13, 24, 29] in sectors such as copper mining. Methods
called support vector machines (SVM) and random forest
(RF) [29] are sometimes used in this domain [13, 30, 31].
The common way of using the algorithms of the data-
driven model group in concrete mining tasks such as
studying copper recovery is using data themselves, while
in knowledge-driven methods, an expert in mineral extrac-
tion via hydrometallurgy should be consulted for the job.
As a whole, ANN, RT, or SVM models require enough
amounts of records and parameters to achieve good qual-
ity in the models created as output.

The literature contains papers such as [32] that propose a
comparison among the performance of predictive models.
Table 1 shows that RF and GBDT perform the best, followed
by SVM and ELM. Moreover, we observe that the interquar-
tile ranges of RF, GBDT, and SVM are the smallest, showing
that these three algorithms generally perform well, in terms
of prediction accuracy, regardless of the datasets [32]. While
ensemble and boosting methods have been reported to
obtain good predictive performance in supervised learning,
GBDT is generally less popular than RF. GBDT and RF show
both best total average classification accuracy and best mean
rank followed by SVM and ELM [32].

This study uses RF as a predictive model; it is a kind of
predictive model based on decision trees. There are previous
works as [33] that defined this kind of predictive models as “a
type of predictive model that uses a decision tree to go from
observations of an object (represented as the branches of a
tree) to a certain conclusion about a target value of the object
(represented by the tree leaves).”

Thus, the interest of using RF is twofold. First, data-
driven model algorithms (like RF) are frequently used to pre-
dict values of the target variable influenced by other variables
(predictor variables) in datasets [33, 34]. In this context, the
RF model is adequate for generating a predictive model of
the copper recovery by leaching (the target variable for this
work), due to it providing a way to measure the influence

of each predictor variable on the target variable. And second,
one of the main benefits of RF is that it can be used to deter-
mine the importance of variables in a regression or classifica-
tion problem intuitively [35]. So, RF can be used to determine
the importance of each predictive variable over the target
variable.

Prediction is a highly interesting topic in machine
learning, which is, in turn, one of the branches of artificial
intelligence. As mentioned above, RF is based on decision
trees (DT). DT have been widely used in areas such as
medicine to yield a diagnosis since they are easy to inter-
pret. Basically, DT is a hierarchical set of nodes (starting
from a root node), where each node contains a decision
based on the comparison of an attribute with a threshold
value [36, 37]. DT-based learning goes from the observa-
tion of an object represented as branches of a tree to cer-
tain conclusions related to a target value of an object
(represented by tree values) [36, 37].

Previous studies use artificial intelligence techniques for
copper-related models. For example, in [8], a model based
on fuzzy logic is reported to predict ground vibration and
environmental impact due to blasts in the open-pit mine.
For this model, the toolbox fuzzy logic of MATLAB was used.
In [38], ANN was used to predict the copper ore flotation
indices of separation efficiency within different operational
conditions.

3. Materials and Methods

3.1. Experimental Description. Operational and piling data
are available for attaining the objective set by SCM Franke
company (environmental trade-off described in Section 2).
The company keeps records of planning and copper recovery
by heap leaching. These are called operational data (indus-
trial operation). Work has also been done with data collected
in a controlled environment. These data are known as piling
data, which are the result of tests in leaching columns using
strictly controlled measures on irrigation rates, acid concen-
tration in irrigation solutions, and operational cycles.

For the specific case of this study, both operational and
piling data were collected by two students in practice and
Professor C. Leiva (students under the supervision of Profes-
sor C. Leiva, coauthor in this paper) all from the Chemical
Department at the Universidad Catolica del Norte, Chile. In
a similar way to what worked in [9], the parameters of these
data groups are fully described below:

(i) Agglomerate is measured in mm, where 80% of the
solids are below this value

(ii) Irrigation rate (RL) (L hr/m?) is the surface flow of
sulfuric acid in the pile

(iii) H+fed (gpl) is the volumetric flow of ILS (interme-
diate liquid solution) recirculating in the pile

(iv) The height of a pile is defined by the production
goals expected to be accomplished; that is, the piled
fine copper tonnage with which the production to
be obtained will be determined



(v) Total Cu grade (%) is the total copper percentage
existing in the pile in the n day of operation

(vi) COj, grade (%) is the carbonate percentage existing
in the pile in the #n day of operation

(vii) Leaching ratio (m*/TMS) is defined by the amount
of sulfuric acid with respect to the total material to
be leached

(viii) Days of operation refer to the days elapsing from
the pile starting up to the end of leaching

(ix) Soluble Cu (%) is the percentage of copper soluble
in sulfuric acid present in the pile in the n day of
operation

(x) Class R (%) is the percentage of leached copper in
the #n day with respect to the soluble copper present
in the pile in day 1 of operation

3.2. Operational Data. Operational data were collected
during time periods called leaching cycles emerging after soil
piling and the beginning of the irrigation process since day 1
to the last day of harvest. The leaching cycles in the company
are planned to last 65-70 days. Operational data were
obtained with a frequency of 4 hours during one year. Due
to the conditions of the process and operational decisions,
the irrigation of some piles or modules in service was
stopped, a fact that could render incongruent results when
modeling the system. For this reason and with the purpose
of avoiding unnecessary “noise” in the system, along with
storing poor data for the statistic model, the records of the
nonirrigation periods were deleted from the database.

3.3. Piling Data. Piling (or pilot plant) was conducted in two
agglomerate tanks of the same dimensions with a material
whose granulometry was less than 13 mm in diameter. The
mineral was put in contact (irrigated) with a solution of sul-
furic acid and water and refined to form lumps of fine mate-
rial; this was made in order to give the mineral a proper
uniform size for the leaching stage and also help copper sul-
fidation via contact with acid solutions. The aforementioned
conditions vary according to leaching cycles to obtain piling
scenarios as close as possible to actual pile mineral exploita-
tion. Piling data were obtained in the same way as explained
for operational data.

3.4. Random Forest. As previously mentioned, random forest
(RF) is a predictive model based on decision tree (DT). The
RF supervised learning algorithm is based on the machine
learning theory which belongs to the ensemble methods
family [34]. These methods use supervised learning meth-
odology over a set of labelled data (training set) to make
predictions and produce a model which can be later used
to classify nonlabelled data [39]. It uses supervised learn-
ing methodology to collect data from parameter values
and threshold values, working on a set of training data
[40]. The method combines the idea of bagging with the
random selection of characteristics, so as to build decision
trees using controlled variance [37].
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The RF model is successfully used in classification and
regression tasks, operating via the construction of multiple
decision trees during training, with the purpose of discover-
ing patterns existing in data. The method generates several
trees as subsets by combining several automatic learning
algorithms appropriately selected [33]. This method is a gen-
eral technique of random decision trees that combines the
idea of bagging with a random selection of characteristics,
with the intention of building decision trees with controlled
variance [34, 35].

RF is an ensemble method for classification and regres-
sion tasks, which operates through the construction of multi-
ple decision trees during training [34]. Additionally, RF is
useful for calculating the influence of predictive variables
on the target and also for calculating the importance of each
of these influences over the target. The calculation of this
importance is made with a metric calculated according to
impurity decrease in each node used for partitioning data.
In case of a classification, the class determined corresponds
to the mode of the classes provided by each tree. In case of
a regression, it corresponds to the average prediction of indi-
vidual trees. Random decision trees correct the DT tendency
to overadjust to their training set [41].

3.5. Case Study. Using operational and piling data, a case
study was conducted with a database of about 30,000 records.
For each parameter above, discrete values of low, normal, and
high were devised according to threshold values previously
defined by SCM Franke, which are commonly used in copper
leaching. In particular, this discretization considered data
standard deviation (o) defining low (low value of the
variable), corresponding to values lower than a -o; normal
(normal value of the variable), corresponding to values at
the interval [-o, o]; and values considered high (high value
of the variable), that is, those greater than +o.

3.6. Methodology. The methodology consists of 4 steps. The
initial step to collect data of both operation and piling are
considered a stage previous to the methodology described
below since these data (mainly operational data) were col-
lected during several years of operation. Parameter values
were grouped in periods including days of operation while
class (recovery) is described for each day of operation per
each period. Figure 1 shows examples of what was described
above. Figure 1(a) shows daily recovery in two consecutive
periods of operation, while Figure 1(b) shows daily recovery
in two consecutive periods, but with pilot plant (piling) data.
In detail, the steps of our methodology are as follows:

(1) Data Preparation. This stage included filtration tasks
and data selection per leaching cycles. Plant data were
obtained with a frequency of four hours in one year.
Due to process conditions and operational decisions,
the irrigation of some piles or modules in service was
stopped during some periods, a fact that could render
incongruent results when modeling the system. To
ensure operational data congruence, records corre-
sponding to irrigation suppression periods were
deleted from the database; these records were being
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F1GURE 1: Examples of recovery periods. (a) shows daily recovery in two consecutive periods of operation, while (b) describes two consecutive

periods with pilot plant (piling) data.

substituted by the leaching ratio. Leaching cycles with
recovery values lower than 10% were also deleted
after day 15 of the operation because this indicates
an error in data acquisition

(2) Model Generation. In this stage, data were collected
and selected according to relevance in order to create
a predictive copper recovery model on the conditions
determined by the context of the study

(3) Model Visualization and Analysis. In this stage,
model results were visualized and analyzed to deter-
mine their validity. Evaluation consisted of checking
the performance of the models obtained with RF for
each dataset. To do this, values of certainty such as
accuracy, recall, and precision were calculated and
analyzed. The way these values of certainty were cal-
culated and their importance for model quality are
described below

(4) Result Analysis. In this stage, the analysis is aimed at
establishing if the results obtained are useful for the
industry. This was done by analyzing aspects such
as how optimal variable parametrization was or
how well classified training set instances were (confu-
sion matrix values)

To make the analysis in stage 3 above, a confusion matrix
was considered. The confusion matrix facilitates the analysis
necessary to determine an error in the classification, through
a sample of error distribution in the different categories.

In this matrix, performance indicators [42] frequently
used to evaluate classifier performance are described. They

are accuracy (Acc), recall (r), and precision (p). The way
these indicators are calculated is described in Equations
(1)=(3). The simplest indicator to evaluate a classifier per-
formance is accuracy (Acc), corresponding to sample
ratios correctly classified in the total number of examples
of the dataset [33]. This indicator can be calculated on
the basis of confusion matrix data according to Equation
(1) (the dataset is supposed not to be empty). The other
indicators, recall (r) and precision (p), are understood as
relevance measures.

The p value is the ratio of true positives (a) among the
elements predicted as positive (a + b). Conceptually, p value
refers to the dispersion of the value set obtained from
repeated measures of a quantity. Specifically, a high p value
indicates low dispersion in measures. The r value is the ratio
of true positives predicted among all the elements classified
as negative.

a+b
Acc= 277 1
e a+b+c+d M)
a
= 2
4 a+b’ 2)
a+d
— 3
T i G)

where a is the true positives, b is the false positives, ¢ is the
true negatives, and d is the false negatives.



4. Results

The problem described above was dealt with as a regression
instance, looking for obtaining a copper recovery prediction
numerically from data in each dataset (operational and pil-
ing). So, a model was obtained for both operational and pil-
ing data, the importance of associated variables being
studied in both cases. To obtain the models, the free Rapid
Miner Studio v 9.0 was used.

The strategy used in the model generation process was,
first, preparing data according to task 1 of the methodology
above. After the data preparation process (according to Sec-
tion 3), a file with 1638 records for piling and another with
2001 records for operation were obtained (both files in CSV
format). Previous studies such as [12, 34, 43] indicate that a
minimum value of 1000 input cases for RF minimizes error
in the classification and, at the same time, enables RF to make
more stable predictions. So, both datasets are considered
appropriate for generating the models.

In order to prepare the model evaluation and in a similar
way to what is done in [34], a parameter tuning phase was
performed. The models were evaluated using these parame-
ters (40-fold crossvalidation 10 times) and averaging final
results were taken. But the results of this validation were
not good, for roundness. So, a method based on hold-out val-
idation and similar to that performed in [34] was done as fol-
lows: for each dataset and using our defined optimal
parameterization, one part of each dataset was taken to adjust
the model and the rest of the sample for testing. In detail, to
adjust the models, 70% of the total data in each dataset was
used, leaving the remaining 30% for conducting the valida-
tion. The results and details of this are presented below.

4.1. Model Based on Random Forest Using Piling Data.
Table 2 summarizes the values obtained with RF in the
parameter optimization process during training with the pil-
ing dataset. The parameters of interest for the optimal
parametrization obtained in this model, that is, confidence
(Con), number of trees (NoT), max depth (MDp), and accu-
racy (Acc), were used for interpreting results; these values are
related to the confidence in a random tree model [43, 44].

Parameter Con is related to relative error, accord-
ing to studies such as [1, 44]. Therefore, the values
of Con = {25,40, 55,70, 85,100} were used for grouping
the values of NoT, MDp, and Acc.

Figure 2 shows the values of Acc for each value of Con.
Figure 2 also shows that all the graphs indicate a decreasing
trend for parameter Acc, except for Con = 40. In this figure,
the best mean value of Acc is for Con =100, the following
best values being for Con =40, 55, and 85. In all cases
highlighted as the best, the average value of tree depth
(MDp) is 8.5. This may be interpreted as follows: the best
combination of parameters is given when the mean tree
depth of 8.5 is achieved; that is, this value represents the opti-
mal depth in this classification.

On the basis of the piling data, the confusion matrix of
this model was also obtained. In this optimization, 80% data
were used for crossvalidation and 20% for validation [40]
(Table 3).
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TABLE 2: Mean values of NoT, MDp, and Acc (as a percentage) for
each value of Con; optimal parametrization for each operational set.

Con NoT MDp Acc (%)
25 62.5 8.5 83.4
40 62.5 8.5 83.5
55 62.5 8.5 83.6
70 62.5 12.7 83.5
85 62.5 8.5 83.6
100 62.5 8.5 83.8

Table 4 shows the importance of variables for this model.
The most important variable is “agglomerate H dose,”,
followed by variable “RL.” In contrast, the least important
variable is “soluble Cu.” Variables “operation day,” “H fed,”
and “COj, grade” are over 10% of the value of importance, a
fact that may be interpreted as their having a good predictive
capacity for this model. This is not so for variable “Soluble
Cu,” which does not exceed the threshold value of 10%.

4.2. RF-Based Model Using Operational Data. This section
describes the results obtained with the operational data.
Table 5 summarizes the statistical values obtained with RF
in the parameter optimization process during training with
the operational dataset. Like the model using piling data,
parameters NoT, MDp, and Acc of optimal parametrization
were used for interpreting results, grouped according to
parameter Con. Figure 3 shows that all the graphs indicate
a decreasing trend for parameter Acc. Also, all the mean
values of Acc are quite close to one another (Table 5).

As can be seen in Figure 3, the best is when Con = 25.
Other important aspects are, on the one hand, that the mean
depth of trees increased (meanvalue=12.7) as compared
with the previous model (mean depth =9.2). This indicates
that a greater number of depth cases per each tree were clas-
sified, which is good for the model. On the other hand, the
number of trees decreased (mean value = 23.4) as compared
with the number of trees of the piling data model
(mean value of the number of trees = 62.5). This may indi-
cate that, as a whole, data were easier to group for the model
algorithm.

Thus, on the basis of the abovementioned data and as
shown in Figure 3, it may be stated that optimal parametriza-
tion for the operational data model is better than its equiva-
lent with piling data.

Similar to the previous piling model, the confusion
matrix for this model was also obtained, optimization proce-
dure being the same as the previous model. Table 6 shows
that all the values of recall (r) exceed 93%, the lowest being
for the label high, thus coinciding with the previous model.
Given this coincidence, the conditions for classifying records
in this label should be improved to make future classifica-
tions better. The performance of the model is reliable, given
the value p = 98.90% and the value of accuracy.

Table 7 shows the importance of variables for this model.
The two most important variables here are the same as those
of the piling data model (agglomerate H dose = 22.76% rela-
tive importance and RL =18.86% relative importance). As



Journal of Sensors

0.85

0.84

0.84
0.83

0.83

0.82

N

Relative error

0.82

0.81

0.81

— T T
13579

0.85

———
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 4
Weeks of operation

Con =25

0.84

0.84

|

0.83
0.83

I

0.82

/’

Relative error

0.82

0.81

0.81

13579

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Weeks of operation

Con =55

0.85

0.84

0.84

|

0.83

|_—

0.83

,

0.82

Relative error

0.82

0.81
0.81

13579

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Weeks of operation
Con =80

0.84
0.84
0.84
0.84
0.84
0.83

0.83 /
0.83

0.83
0.83
0.82
0.82

Relative error

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 4
Weeks of operation

1 3579

Con =40

0.85

0.84

0.84

0.83 \

N

0.83
0.82

Relative error

0.82

0.81

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Weeks of operation

081 +———
13579

Con =70
0.86

0.85

0.85

0.84
0.84

0.83

Relative error

0.83

0.82

0.82

—— —
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Weeks of operation

— T T
13579

Con =100

FIGURE 2: Evolution of parameter Acc for each of the values of parameter Con in optimization using piling data. The x values correspond to
weeks of operations and y values correspond to accuracy values for each Con of relative error.

TaBLE 3: Confusion matrix for operation with piling data. Value of

accuracy = 98.72%.

can be seen in Table 7, the order or importance of variables is

True True True Class
low medium high precision
Pred. low 1039 12 0 99.86%
Pred. 6 531 2 98.52%
medium
Pred. high 0 1 47 97.92%
Class recall 99.43% 97.61% 95.92%

the same as shown in the previous model (Table 4), but the
importance values are different. The least important variable
in Table 7 is the same as in the previous model (Cu soluble).
For this model, the percentage value of soluble Cu decreased
in about 1%. This means that, although the order of impor-
tance of variables is maintained, the relative importance of
the variables changes with respect to the previous model.
Since this model was developed using operational data, it is
prudent to consider that this order of importance is the most
convenient. Figure 4 illustrates the contrast described above.



8
TaBLE 4: Importance of variables for the piling data model.

Attribute Importance Relative importance (%)
Agglomerate H dose 13.74 19.31

RL 13.42 18.86

Total Cu grade 11.11 15.61

Day of operation 8.92 12.54

H fed 8.82 12.40

CO; grade 8.39 11.79

Soluble Cu 6.75 9.49

TaBLE 5: Mean values of NoT, MDp, and Acc (as a percentage) for
each value of Con; optimal parametrization for each operational
dataset.

Con NoT MDp Acc (%)
25 23.0 13 91.9
40 23.6 12.7 91.6
55 23.6 12.7 91.6
70 23.6 12.7 91.6
85 22.9 12.7 91.6
100 24 12.7 91.6

Figure 5 summarizes the importance of variables accord-
ing to RF models for each experiment. Particularly, the figure
shows that variable H+fed (volumetric flow of ILS solution)
is the most important, followed by variables RL, total Cu
grade, and day of operation. The order of importance of the
variables remains in both classifications; that is, reproductiv-
ity of the conditions of the leaching pile in a controlled envi-
ronment (piling) is an accurate representation thoroughly
describing the pile, and therefore, piling can be used to pre-
dict pile copper recovery, with a much lower cost and reliabil-
ity in the predictive model resulting from piling.

5. Discussion

Artificial intelligence techniques, specifically soft computing,
are being used in productive industry to generate predictive
models that improve industrial activity [25]. Random forest
(RF) was used in this study to predict copper recovery by
leaching. Predictive models using RF have been recently pub-
lished by the mining industry, showing good results such as
those reported in [3, 12, 33], but these studies were directed
to objectives different from copper recovery prediction.

In recent papers such as [9], artificial intelligence com-
puting tools (particularly machine learning algorithms) have
been reported, but no evidence of the use of RF has been
found in the literature to predict copper recovery. However,
these works have helped to identify and relate information
that directly influences to improve the copper recovery pro-
cess by leaching.

The study published in [3] highlights that machine
learning algorithms, since they are artificial neural net-
works, regression trees, random forest, and support vector
machines, make up powerful tools currently scarcely used

Journal of Sensors

in the copper mining industry, though there should be a
tendency to increasingly use these machine learning tools
in the present mining industry.

In RF, each tree is developed on the basis of the bootstrap
algorithm philosophy. This may mean that the classification
obtained for each tree is precise, thus causing a positive
impact on the models presented here. In addition, this phi-
losophy of work has made it possible to use all datasets in
the classification and generate the models. The model preci-
sion obtained in this study is similar in both cases. The model
for both datasets shows that a wealth of information was used
to interpret the influence of predictive variables on class. For
example, the order of the variables of interest is similar in
both models and the performance shown by variables Acc,
p» and r enables concluding that both models have a good
quality and could be used to predict copper recovery in new
cases with a good reliability value.

The capacity to identify the importance of variables for
the model using training data (piling) is similar to the one
shown by the model using actual data (operation). This was
an expected result since the leaching material was the same
in both cases, but this result validates the applicability of
the machine learning algorithm selected for generating the
models.

On the basis of the above described information, the
objective of environmental trade-off was accomplished
because model performance is optimal, and in both cases,
the greatest number of records was classified as normal,
when the acid irrigation rate lies between 20 and 50 g/l
(normal value).

6. Conclusions

Copper recovery prediction by hydrometallurgical methods
and, particularly, leaching is usually made with the help of
mathematical models, but soft computing techniques can
help create complex computational models [45] that help in
this prediction. Recently, an increase in using soft computing
tools in the industry has been observed [9, 13, 39], but in this
particular case, the literature does not contain many studies
reporting the use of RF to generate a copper recovery predic-
tion model.

This study resulted in the generation of two copper
recovery prediction models using the leaching method.
Actual data (operation) were used in one of the models, while
the other model was generated with hive-simulated data
which had the same characteristics as the material to be lea-
ched and the lixiviant. In both cases, the models achieved
an excellent predictive quality, one of the cases reaching
100% prediction for the label high, the mean being higher
than 95% precision. In this way, it excelled in what was posed
in the objective of this study (described at the beginning of
this document).

As recently published in [9], a comparison between a lin-
ear model and an artificial neural network (ANN) for pre-
dicting copper recovery is made. One of the conclusions of
this study is that ANN exceeds the linear model in terms of
precision, but as conclusion at the present work, the interpre-
tation capacities of RF-generated models exceed those of
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F1GURE 3: Evolution of parameter Acc for each value of parameter Con in optimization using operational data. The x values correspond to
weeks of operations and y values correspond to accuracy values for each Con of relative error.

TaBLE 6: Confusion matrix for the operation with operational data.
Value of accuracy = 98.90%.

True True True Class
low medium high precision
Pred. low 1487 7 0 99.53%
Pred. 10 434 5 96.58%
medium
Pred. high 0 0 68 100.00%
Class recall 99.33% 98.38% 93.15%

ANN from the work previously mentioned, thus making it
easier to arrive at conclusions.

This study helped make a comparison between two cop-
per recovery prediction models in the same work context.

TaBLE 7: Importance of variables for the operational data model.

Attribute Importance Relative importance (%)
Agglomerate H dose 23.02 22.76
RL 18.32 18.86
Total Cu grade 16.28 16.10
Day of operation 12.63 12.49
H fed 11.07 10.95
CO, grade 11.01 10.89
Soluble Cu 8.79 8.69

Adjustment precision measure indicates that the RF algo-
rithm is highly useful for processes to predict future copper
production.
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In addition, experience was gained for defining and
implementing the predictive model in the leaching domain
on this specific work context. This experience may be used
for other simulations of processes relative to the improve-
ment of results to obtain copper at SCM Franke by means
of soft computing techniques or other companies of the same
industrial production sector.

What was said about model performance, the capacity to
identify the influence of variables on class, and the capacity to
interpret results, etc., is very important in the copper industry
because it allows generating supporting tools for material
exploitation planning, along with viewing, via indicators gen-
erated with this type of model, copper recovery results in the
presence of a certain material. It also allows properly select-
ing both the most influential variables and the values of those
variables to achieve the desired recovery. This may have a
considerable impact on the intelligent exploitation of this
mineral, considering the increasing demand and lack of this
industrial activity.

To conduct this study, a methodology was proposed;
results obtained by following the methodological steps
devised show excellent quality and are replicable for other
copper leaching piles to study the future performance of cop-
per recovery using the prediction method. Also, this method-
ology can be transferred to other copper leaching processes,
including the knowledge of this particular process to generate
a predictive model. In this way, this study may indicate a
future line of research.
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