
Combining Obfuscation and Optimizations in the
Real World

Serge Guelton
Quarkslab

13 rue Saint-Ambroise

75011 Paris

Email: sguelton@quarkslab.com

Adrien Guinet
Quarkslab

13 rue Saint-Ambroise

75011 Paris

Email: aguinet@quarkslab.com

Pierrick Brunet
Quarkslab

13 rue Saint-Ambroise

75011 Paris

Email: pbrunet@quarkslab.com

Juan Manuel Martinez
Quarkslab

13 rue Saint-Ambroise

75011 Paris

Email: jmmartinez@quarkslab.com

Fabien Dagnat, Nicolas Szlifierski
IMT Atlantique, IRISA, Université Bretagne Loire

Brest, France

Email: first.last@imt-atlantique.fr

Abstract—Code obfuscation is the de facto standard to protect
intellectual property when delivering code in an unmanaged envi-
ronment. It relies on additive layers of code tangling techniques,
white-box encryption calls and platform-specific or tool-specific
countermeasures to make it harder for a reverse engineer to
access critical pieces of data or to understand core algorithms.

The literature provides plenty of different obfuscation tech-
niques that can be used at compile time to transform data or
control flow in order to provide some kind of protection against
different reverse engineering scenarii.

Scheduling code transformations to optimize a given metric
is known as the pass scheduling problem, a problem known
to be NP-hard, but solved in a practical way using hard-
coded sequences that are generally satisfactory. Adding code
obfuscation to the problem introduces two new dimensions.
First, as a code obfuscator needs to find a balance between
obfuscation and performance, pass scheduling becomes a multi-
criteria optimization problem. Second, obfuscation passes trans-
form their inputs in unconventional ways, which means some
pass combinations may not be desirable or even valid.

This paper highlights several issues met when blindly chain-
ing different kind of obfuscation and optimization passes, em-
phasizing the need of a formal model to combine them. It
proposes a non-intrusive formalism to leverage on sequential
pass management techniques. The model is validated on real-
world scenarii gathered during the development of an industrial-
strength obfuscator on top of the LLVM compiler infrastructure.

I. INTRODUCTION

Code obfuscation is the process of transforming a program,

either in source, intermediate or binary form, in order to

make it difficult for a reverse engineer to access some kind

of secret hidden in the program. Secrets can include specific

data like cryptographic keys, copyrighted assets etc. They can

also consist in proprietary algorithms, encryption methods,

protocols etc.

Although perfect obfuscation has been proved impossi-

ble [1], and indistinguishable obfuscation [2] is far from prac-

tical efficiency [3], research and industry have continuously

produced a large number of obfuscation techniques to protect

against different threats. These threats range from automatic

tools such as static or dynamic analyzers to highly specialized

engineers called reversers. The main practical objective being

to make it difficult to understand an obfuscated program.

Difficult means costly in terms of time and engineering efforts.

Surveys of common obfuscation techniques has been proposed

in [4], [5]. Classical techniques include control flow graph

flattening [6], mixed boolean-arithmetic expressions [7] or

virtualization [8]. When trying to defeat static or dynamic

analysis, a valid approach is to rely on NP-hard problems that

a code analyzer is unlikely to solve efficiently [9]. Relying

on architectural specificities and tool limitations is also an

interesting, yet short-term, solution [10].

Each of the numerous proposed obfuscation techniques is

efficient only on a small number of threats. Furthermore,

they often require some preconditions on the input program

and have a large impact on the size of the program, its

performance, its memory and energy consumption... In order

to build a generic code obfuscator that defeats multiple threats,

one needs to be able to combine these obfuscations with

each other, and possibly with existing code optimizations. The

sequence of obfuscations must also keep the execution time

and the various resource consumption of the obfuscated binary

within reasonable bounds.

This paper makes the following contributions:

• Identify and illustrate pass management issues specific to

obfuscation.

• Formalize function property management in the context

of pass management.

It is divided in five parts: the first part examines the simple

scenario of trying to protect a reference sha256 computa-

tion with a combination of Tigress [11] and O-LLVM [12],

showcasing the need of a finer grain control than provided

by industrial compilers. The second part investigates the

possible interactions between typical obfuscations and op-

24

2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation

2470-6892/18/$31.00 ©2018 IEEE
DOI 10.1109/SCAM.2018.00010

1 static
2 void sha256(unsigned char* input, size_t len)
3 {
4 unsigned char hash[SHA256HashSize];
5 int i;
6

7 SHA256Context sha256;
8 SHA256Reset(&sha256);
9 SHA256Input(&sha256, input, len);

10 SHA256Result(&sha256, hash);
11 for(i = 0; i < SHA256HashSize; i++)
12 {
13 printf("%02x", hash[i]);
14 }
15 }

Listing 1. Sample sha256 API usage.

timizations, using the example of Tigress and O-LLVM to

illustrate the limitations of a naive chaining approach. The

third part proposes a formal model to enable correct, fine-grain

optimizations and obfuscations composition, while the fourth

part validates the approach through the industrial experience

of building an obfuscating compiler. The last part discusses

related work and concludes.

II. CASE STUDY: OBFUSCATE A CRYPTOGRAPHIC HASH

ALGORITHM

In this section, we analyse a simple scenario: a developer

wants to protect a simple algorithm that contains both magic
value (data) and a specific algorithm (code): the reference

sha256 computation, as specified in RFC 6234 [13]. The goal

consists in preventing static and dynamic analyses to retrieve

them. To achieve that goal, and illustrate the collaboration

between different obfuscation engines, two obfuscating com-

pilers are used: Tigress1 and O-LLVM2.

A. Code description

Our example program, SHA256, is a classical cryptographic

hash function whose reference implementation is partly given

in Listing 1 (the “SHA1FinalBits“ call is omitted). It consists

in three main steps, SHA256Reset, SHA256Input and

SHA256Result (in lines 8,9 and 10) that initialize the

context, perform the actual computation and dump the hash,

respectively.

The core of the algorithm is located in the auxiliary

function SHA224_256ProcessMessageBlock called by

SHA256Input. This function uses an auxiliary constant array

“K“ used to perform substitutions. The control flow is also

typical of iterated cryptographic hash algorithms processing

blocks of messages, with a fixed-size loop to process a

data block, and an outer loop making repetitive calls to

SHA224_256ProcessMessageBlock. Both the substitu-

tion and the block processing are typical of this family of

algorithms. A good obfuscation must be able to hide the data

and code structure to a reverser.

1http://tigress.cs.arizona.edu/
2https://github.com/obfuscator-llvm/obfuscator

B. Tools presentation
Industrial strength obfuscators are generally not freely avail-

able and thus cannot be studied by researchers. Fortunately,

a few tools are still available. O-LLVM provides an open

source code base with a limited set of obfuscations and enough

material to study the general approach. The binary code of

Tigress is also freely available and shipped with enough

documentation to understand its pass management options.
1) O-LLVM: It is an LLVM bitcode obfuscator that pro-

vides, in its open source version, three simple obfuscations:

• instruction substitution transforms explicit patterns of

instructions into other patterns of instructions generally

more complex;

• bogus control flow insertion adds bogus basic blocks and

uses opaque predicates to guard them and prevent their

execution;

• control flow graph flattening replaces the control flow of

a function by a lookup in a transition table.

The user can use compiler options to control various obfus-

cation parameters:

• the number of times a substitution is applied;

• the probability to apply bogus control flow insertion on

a basic block;

• whether basic blocks should be split before applying

control flow graph flattening;

The obfuscation is applied in the middle of the optimization

pipeline, only once (even if the flag is repeated). It is possible

to control which functions are obfuscated or not using function

attributes.
2) Tigress: It is a source-to-source C code obfuscator that

provides, among others, three main high-level transformations:

• code virtualization compiles a function into a custom

bytecode that is interpreted by a custom virtual machine;

• jitting generates the function machine code at runtime;

• dynamic jitting dynamically generates different versions

of the function machine code at runtime.

It also provides more common obfuscations like control

flow flattening or data encoding. Obfuscations are scheduled

using a list of obfuscation and function pairs, stating which

obfuscation to apply to which function.

C. Experimentation
A naive way to obfuscate the SHA256 computation would

be to apply a set of obfuscations to each SHA256* function.

Unfortunately, there is no equivalent to generic optimization

flags like -On for obfuscations. Without expert knowledge on

each obfuscation and the way they interact with each other,

one can only resort on chaining them on the targeted functions

with the hope that piling up obfuscations raises the security

level, as illustrated in Listing 2.

> tigress sha.c -O2
--Transform=Flatten \
--Functions=SHA224_256ProcessMessageBlock \
--Transform=Virtualize \
--Functions=SHA224_256ProcessMessageBlock

Listing 2. Example of tigress obfuscation CLI.

25

sha.c

Tigress

O-LLVM

Clang

a.out

Fig. 1. Obfuscation pipeline combining Tigress, O-LLVM and clang opti-
mizations.

Note that in this case, the optimizations triggered by the

-O2 option are applied after the obfuscations.

As Tigress is a source-to-source obfuscator, it is perfectly

possible to combine it with the obfuscation of O-LLVM. For

example, one can apply the CFG flattening of O-LLVM on the

source obfuscated by Tigress, named tigress_output.c
in Listing 3.

> clang tigress_output.c -O2 -mllvm -fla

Listing 3. Example of O-LLVM obfuscation CLI.

In that scenario, the sources are first obfuscated by Tigress,

then optimized by LLVM and finally obfuscated by O-LLVM,

as illustrated in Figure 1.

However, the obfuscator’s user must find a trade off be-

tween the obfuscation quality and the execution speed of the

obfuscated binary. In order to assess the performance regres-

sion, we studied three obfuscation schemes, namely virtualize,

virtualize followed by flattening, and flattening followed by

virtualize. The benchmark uses the clang compiler from O-

LLVM as a back-end compiler in all cases, measuring the hash

speed on a 10MB file using the SHA256 function. Figure 2

presents the execution time of the same SHA kernel compiled

with Tigress virtualize protection using ten different random

seeds (the x-value), measured by ten executions per seed (each

giving a point).

The first striking result is the non-reproducibility of per-

formances across different seeds. Indeed, obfuscators usually

rely on a random engine to choose different patterns or

obfuscation sub-strategies, in order to improve the diversity of

the generated code. However it appears this is done at the cost

of non-reproducible performance. This lack of reproducibility

is a real problem when trying to find a balance between

obfuscation and optimization, as the result is highly instable.

Once the seed is fixed to an arbitrary value (1 in that case),

we observe that:

• The version obfuscated by Tigress alone, without the

extra substitution, runs 80 times slower than the original

version in average.

• The version obfuscated by Tigress then O-LLVM runs 83

times slower than the original one.

Fig. 2. Distribution of execution time of an obfuscated SHA256 kernel after
virtualization by Tigress parametrized with different random seeds.

Obfuscation Setup Average execution time (s)

reference 0.08

virtualization 5.37

flattening 0.11

virt. + flat. 20.35

flat. + virt. > 600

TABLE I
AVERAGE TIME TAKEN TO HASH A 10MB FILE USING A SHA256 KERNEL

OBFUSCATED USING DIFFERENT TIGRESS OBFUSCATION COMBINATIONS.

Table I summarizes the average execution time of the same

kernel compiled with Tigress, with five different configura-

tions: no obfuscation, virtualization, CFG flattening, virtu-

alization then flattening, and flattening then virtualization.

The results illustrate the non-predictability of the performance

impact of the combination of obfuscations, even for only two

of them. In terms of performance impact, the combination

of two obfuscations is not commutative. Furthermore, some

obfuscations may generate many candidates for a further

obfuscation, implying a huge performance cost, as in the

flattening followed by virtualization setup.

Additionally, from a security perspective, only a single

function is obfuscated by the virtualize obfuscation, so the

generic algorithm scheme, including the block processing, is

still apparent. To hide that part, one could first inline the

various SHA* calls, e.g. using a source-to-source compiler

framework like PIPS [14].

D. Summary

This introductory experimentation raises several questions:

1) As a naive obfuscator user, choosing which obfuscation

to pick is difficult. Is it possible to describe a generic

obfuscation scheme for non expert users, in a similar

manner to -On switches?

26

2) Applying inlining before some obfuscations increases

security. Applying optimizations before virtualization

decreases the size of the obfuscated functions, thus

certainly improves its speed. What are the possible

interactions between different obfuscations and code

transformations?

3) What kind of considerations should be taken into ac-

count when designing an obfuscation that relies on a

random engine to perform its transformation to avoid

performance reproducibility issues?

These problem have been met in many situations during the

developpment of the EPONA compiler.

III. INSPECTING INTERACTIONS BETWEEN PASSES

In order to keep the execution time of the obfuscated binary

within reasonable bounds, it is still necessary to optimize it

using regular code optimizations. This raises the issue of the

interactions between obfuscation and optimization.

A. Optimization before obfuscation

Intuitively, one of the reasons for the important performance

penalty implied by the use of the virtualizer may be caused by

the fact that it handles unoptimized C code as input, and once

transformed into the virtualized bytecode, there is not much

optimization opportunity available as the optimizer cannot read

through the virtualized bytecode.

To assert this idea, we considered the rotation macros

SHA256_ROTL and SHA256i_ROTR. Once optimized by

clang, they turn into a single ror or rol. But once virtualized,

they are split into several operations which can no longer

be optimized. By optimizing them manually to call intrinsics

and then calling Tigress, we already get a ×1.16 acceleration

factor compared to the original Tigress run. Applying the same

strategy to the SHA256_SIGMA* functions leads to a ×1.40
acceleration factor.

Intuitively, well-crafted obfuscations prevent further code

transformations from understanding the code and optimize it

as well as they would on the original code. Some obfuscations

even rely on the inability of the compiler to solve complex

problems, e.g. alias analysis [9].

B. Optimization after obfuscation

This section compares the time taken to hash a given

random 10MB file with the SHA256 program, using different

obfuscation and optimization flags. The results are given in

table II. The average reference execution time without obfus-

cation for various optimization levels are given in the second

line. The third line illustrates the behavior from the virtualize

obfuscation of Tigress. It shows that obfuscating compilers

focus primarily on producing code difficult to reverse rather

than code that runs fast.

The effect of optimization on the output of Tigress is

significant. However, Tigress is a source-to-source obfuscator,

so it does not take optimized code as input, which leaves a lot

of room for further optimization.

Optimization level -O0 -O1 -O2

Execution time, no obfuscation (s) 0.96 0.44 0.45

Execution time, Tigress virtualization (s) 14.7 8.46 6.95

TABLE II
AVERAGE TIME TAKEN TO HASH A 10MB FILE USING A SHA256

KERNEL, FOR DIFFERENT POST-OBFUSCATION OPTIMIZATION LEVELS.

pre

post
-O0 -O1 -O2

-O0 4.44 1.70 1.32

-O1 2.46 1.05 1.08

-O2 2.92 0.99 1.02

TABLE III
AVERAGE TIME IN SECONDS TAKEN TO HASH A 50MB FILE USING A

SHA256 KERNEL OBFUSCATED USING O-LLVM CONTROL FLOW GRAPH

FLATTENING, FOR DIFFERENT PRE AND POST OPTIMIZATION LEVELS.

We led a similar experiment using the control flow graph

flattening feature of O-LLVM. In this case, two optimization

phases happen: one before and one after obfuscation. Table III

reports the results of hashing a 50MB file while varying the

levels of the pre-obfuscation and post-obfuscation optimiza-

tions.

The fastest obfuscated codes are generated when the pre and

post optimization levels are above zero. It seems always valid

to optimize after obfuscation, at least for that obfuscation.

Interestingly, optimizing at the -O2 level before obfuscation

and -O0 after yields slower code than optimizing at the

-O1 level before obfuscation and -O0 after. This is due

to a more complex control-flow graph generated by -O2 to

handle vectorization. This further illustrates the difficult task

of choosing a sequence of obfuscations and optimizations.

C. Optimizations and a de-obfuscation Tool

Let us now consider the substitution obfuscation as imple-

mented by O-LLVM. The effect of an example of such an

obfuscation is illustrated on Figure 3 where a+ b is replaced

by b− (−a).

define i32 @add(i32 %a, i32 %b) {
entry:

%add = add nsw i32 %b, %a
ret i32 %add

}

define i32 @add(i32 %a, i32 %b) {
entry:

%0 = sub i32 0, %a
%1 = sub i32 %b, %0
ret i32 %1

}

Fig. 3. Result of a substitution applied by O-LLVM on a simple LLVM
function.

27

@x = common local_unnamed_addr global i32 0

define i32 @foo(i32 %a) {
entry:

%0 = load i32, i32* @x
%1 = add i32 %0, -1
%2 = mul i32 %1, %0
%3 = and i32 %2, 1
%4 = icmp eq i32 %3, 0
br i1 %4, label %true_br, label %false_br

Listing 4. Example of an opaque predicate generated by O-LLVM.

define i32 @add(i32 %a, i32 %b) {
entry:

%0 = sub i32 %a, 1
%1 = mul i32 %0, %a
%2 = urem i32 %1, 2
%3 = sub i32 %2, %a
%4 = sub i32 %b, %3
ret i32 %4

}

Listing 5. Result of substitution combined with an opaque predicate applied
by O-LLVM on a simple LLVM function.

Unsurprisingly, applying the optimizations implied by -O2
on this output completely reverts the obfuscation. However, the

bogus control flow obfuscation introduces an opaque predicate

(x− 1)× x mod 2 = 0 which is always true but that LLVM

cannot simplify as the x variable is declared as a global

variable, as showcased in Listing 4.

Given that several reversing tools now use compiler op-

timization as a basic de-obfuscation engine [15], it seems

reasonable to ensure that every obfuscation should resist basic

optimizations, or be followed by an obfuscation that itself

resists optimizations and hardens the previous obfuscation.

For instance, the opaque predicate used by bogus control
flow could be combined with the substitution to turn the add
function into the one from Listing 5. Which is not simplified

back to the original code by the optimizations from -O2.

D. Optimization and randomness

The example studied in Section II shows that different seed

parameters may have an influence on the execution time of the

obfuscated program. Indeed, depending on the choice made

based on the random seed, obfuscated code can have different

performance behavior. Let us consider the two functions from

Listing 6. Both always return zero, but slow_zero involves a

division, so it is likely to be much slower than fast_zero.

Depending on the hotness of the code section where these

opaque predicates are used, randomly choosing one over the

other introduces great performance variability.

The interaction with further optimizations can also introduce

non-reproducible performance. Suppose one of the functions

above is used to hide the zero in Figure 4, i.e. the second

argument of the call to bar inside the loop on line 4.

Depending on the free variable from the context that is chosen

as an argument for the call to zero, the code of this line may

uint32_t slow_zero(uint32_t x) {
uint32_t y = x & 0xFFFFFFE;
return y / (y + 1);

}

uint32_t fast_zero(uint32_t x) {
return (x * 3) == (x | 1);

}

Listing 6. Two possible opaque predicates functions.

be transformed into one of the codes on the right part of the

figure. The first choice, x, does not depend on the loop so the

optimizer is going to move the call to zero outside the loop.

The second choice, i, depends on the loop and the call cannot

be moved outside the loop. The performance of the final code

is therefore strongly affected by the random choices (here, the

variable and the zero function).

E. Chaining obfuscations

An obfuscation is typically crafted to protect against one

or different threats. For instance, control flow graph flattening

is a good technique against static analysis, but it falls short

in front of dynamic analysis [16]. Mixed Boolean-Arithmetic

expressions provides a good protection against some dynamic

analysis tools [17]. Thus combining the two techniques leads

to a better protection. In a similar manner, an anti-debug

technique [18] would benefit from further obfuscation to

hide or diversify a pattern that would be too obvious to an

experienced reverser otherwise.

From a defender point-of-view, the concept can be sum-

marized as follows. As reverse engineers use a large variety

of tools: static analyzer, dynamic instrumentation, virtual

machines, debuggers, etc. A complete binary protection must

combine together means of defeating each approach.

From a software engineering point of view, decoupling ob-

fuscations to be able to chain them also holds good properties.

For instance the bogus control flow obfuscation used in O-

LLVM actually involves two obfuscations: the first inserts

random false branches in the code, and the second turns the

false predicates into opaque predicates. The latter could be

used in other obfuscations, e.g. in the substitution obfuscation

from O-LLVM.

IV. ENFORCING PRE AND POST CONDITIONS

Let us consider the case of two different obfuscation tech-

niques:

• random code injection is a code obfuscation that inserts

random assembly guarded by an opaque predicate into

existing control flow. It increases the amount of code to

handle during static disassembling and may break some

disassemblers.

• breakpoint detection scans loaded executable for par-

ticular opcodes used to implement software breakpoint

(typically int3 on x86 architecture). It protects against

debugging.

28

1 int foo(uint32_t x) {
2 uint32_t s = 1;
3 for(uint32_t i = 1; i < x; ++i)
4 s *= bar(i,0);
5 return s;
6 }

original code

int foo(uint32_t x) {
uint32_t s = 1;
for(uint32_t i = 1; i < x; ++i)

s *= bar(i,zero(x));
return s;

}

obfuscated code with optimizable obfuscation

int foo(uint32_t x) {
uint32_t s = 1;
for(uint32_t i = 1; i < x; ++i)

s *= bar(i,zero(i));
return s;

}

obfuscated code with non-optimizable obfuscation

choice of x

choice of i

Fig. 4. Obfuscation vs optimization

Combining the two obfuscations leads to a situation where a

breakpoint opcode may be generated by random code injection
and then detected by breakpoint detection, leading to the

incorrect runtime statement that the code is being debugged.

Similar situations appear when using signal handlers to

detect the presence of a debugger like gdb. Indeed there

could be a signal handler already installed by the original

application for its own use. There could also be a signal

handler installed by an obfuscation to perform signal based

control flow obfuscation. Both situations would conflict with

the addition of new signal handlers to detect debuggers. A

static analysis can detect the first situation (the legitimate

use of a signal handler). But the second situation of conflicts

should be prevented by the obfuscation tool. It should prevent

the simultaneous use of the signal handlers detection and

of an obfuscation relying on signal handlers. This section

explores the use of a simple formalism to enforce the following

properties:

1) The code is indeed obfuscated.

2) Invalid code is not generated.

3) Generated code meets performance expectations.

A. Property-based compilation of obfuscated programs

Let us model a source code as a set of functions F ∈ P(F)
and consider the set of properties P. A function f ∈ F can be

associated to a set of properties Pf ∈ P(P) to form a qualified

function f ′ = (f, Pf) ∈ F
′. In a similar manner, a qualified

code is a code where all functions are qualified.

A code transformation t ∈ T is a function from P(F) to

P(F), that produces a set of functions by transforming an

input set of functions.

An obfuscation is modeled as a code transformation parame-

terized by a random engine e ∈ E. It is a function transforming

a source code and random engine into another source code and

random engine.

Any code transformation (e.g. an optimization) that does not

use any random engine still fits in the model by returning the

random engine it received. Making the random engine explicit

is important to capture the randomness of an obfuscation, and

potentially modify the distribution of the random engine to

achieve reproducibility.

Finally, the set of code transformations is:

T = (P(F)× E)→ (P(F)× E) (1)

Any code transformation t from T is associated with a

qualified code transformation t′ from T
′ which takes into con-

sideration the properties associated to each function, where:

T
′ = (P(F′)× E)→ (P(F′)× E) (2)

To define a qualified code transformation, we are going

to use a helper function. Such a function builds a qualified

code transformation from a code transformation, a function to

update the properties and a predicate over the properties. The

helper function h(t, p, φ) applies the transformation t on every

function f whose properties Pf satisfy φ. When transforming

a function, its properties are updated using the function p:

h :(T× (P(P)→P(P))× (P(P)→{0, 1}))→ T
′

(t, p, φ) �→
⎛
⎝(f, e), Pf �→

⎧⎨
⎩

t(f, e), p(Pf) if φ(Pf)

(f, e), Pf , otherwise

⎞
⎠

We propose to split the obfuscation process into three

phases:

1) Initialization: turn the developer code into a qualified

code. This can be done by associating a set of properties

to each function, through manual annotations or based

on the result of some static analysis of the program.

2) Transformation: apply qualified transformations to the

qualified program

3) Postlude: verify an assertion over the qualified functions

of the transformed program to assert some properties of

the obfuscated program.

Note that this process only relies on qualified code trans-

formations, so it can also be used to enhance a regular

optimization process.

29

B. Obfuscation flow example

Some compilers already have a mechanism similar to prop-

erty management through function attributes. For instance both

GCC and Clang make it possible to annotate existing code to

control inlining through noinline and always_inline,

which respectively prevents and forces inlining of the consid-

ered functions. GCC does print a warning if both attributes are

used on the same function, but Clang does not, which shows

the limits of an ad hoc approach to property management and

motivates a formal approach.

The model proposed in Section IV-A can be used to for-

malize such behaviors, and makes it easy to propose solutions

to the problems envisioned in Sections II and III.

1) Reducing compilation time: Let’s consider the following

properties:

P = {to_obf,opt}
Where to_obf means that obfuscation is required, and opt
means that optimization has been applied.

Suppose that we have two code transformations oopt and

oobf that respectively optimize a function and obfuscate it. We

can define the corresponding qualified code transformations

by their helper functions:

o′opt = h

⎛
⎜⎜⎜⎝

oopt,

Pf �→ Pf ∪ {opt},
Pf �→ opt /∈ Pf

⎞
⎟⎟⎟⎠

o′obf = h

⎛
⎜⎜⎜⎝

oobf ,

Pf �→ Pf \ {to_obf,opt},
Pf �→ to_obf ∈ Pf

⎞
⎟⎟⎟⎠

Then we combine these two transformations in the following

order:

o′((f, e), Pf) = o′opt(o
′
obf(o

′
opt((f, e), Pf)))

The behavior of this code transformation can be described

by the table of Figure 5. Functions that are not optimized and

should not be obfuscated are optimized only once (first row).

Functions already optimized are left unmodified (second row).

All functions marked to be obfuscated are obfuscated and are

optimized after obfuscation (third and fourth row). This pattern

avoids unnecessary re-optimization of functions that have not

been touched by obfuscation while it allows to optimize before

and after obfuscation.

2) Making obfuscated hot functions performance more re-
producible: As seen in Section II-C, obfuscation can have

a large impact on performance, and this impact may vary

importantly when changing the obfuscation seed. Therefore,

to mitigate this problem, it is possible to use a fixed seed on

functions that have a large impact on performance. Let us call

these functions hot.
To that end, let us consider the property hot and the

following qualified obfuscation for the obfuscation o:

o′hot = h

⎛
⎜⎜⎜⎝

f, �→ o(f, 0),

Pf �→ Pf ,

Pf �→ hot∈Pf

⎞
⎟⎟⎟⎠

o′cold = h

⎛
⎜⎜⎜⎝

o,

Pf �→ Pf ,

Pf �→ hot /∈Pf

⎞
⎟⎟⎟⎠

o′((f, e), Pf) = o′hot(o
′
cold((f, e), Pf))

The combined qualified obfuscation o′ leads to the obfusca-

tion of every function (because either a function has the prop-

erty hot or not). Functions not marked hot are obfuscated

normally, possibly using the random generator state. However,

in functions marked as hot the random generator used is fixed

by a constant generator, in order to get reproducible results,

independent from the previous random state.

This annotation hot is an example of qualification that

could come from other sources than user annotation, typically

from metadata gathered during profiling.

3) Enforcing pre- and post-conditions: Let us consider

the following properties has_bp and forbid_bp, which

respectively state that the function code does contain a break-

point, and that the function must not contain a breakpoint. In

most cases, all functions start without these two properties.

Now consider the two obfuscations described in Section IV

and their qualified versions.

Random code injection, denoted orand code:

o′rand code = h

⎛
⎜⎜⎜⎝

orand code,

Pf → Pf ∪ {has_bp},
Pf → forbid_bp /∈ Pf

⎞
⎟⎟⎟⎠

Breakpoint detection, denoted odetect bp :

o′detect bp = h

⎛
⎜⎜⎜⎝

odetect bp,

Pf → Pf ∪ {forbid_bp},
Pf → has_bp /∈ Pf

⎞
⎟⎟⎟⎠

Using the qualified versions, it becomes impossible to

combine the original obfuscations and to build an incorrect

program due to an invalid interaction between the two passes:

30

initial after first o′opt after o′obf final

function properties function properties function properties function properties

f {} oopt(f) {opt} oopt(f) {opt} oopt(f) {opt}
f {opt} f {opt} f {opt} f {opt}
f {to_obf} oopt(f) {to_obf,opt} oobf(oopt(f)) {} oopt(oobf(oopt(f))) {opt}
f {opt,to_obf} f {opt,to_obf} oobf(f) {} oopt((oobf(f)) {opt}

Fig. 5. Representation of the intermediate and final stages of applying code transformation o′opt ◦ o′obf ◦ o′opt to a function f for different initial properties.

applying the first pass generates a property that triggers a

different behavior of the second pass.

Moreover, by changing the initial properties of the program,

it becomes possible to inform the compiler that a given func-

tion will be debugged (e.g. during the development process)

and the obfuscation adding the detection of breakpoints will

skip that particular function.

4) Formalization of existing practices, optnone: Since ver-

sion 3.4, LLVM adds the function attribute optnone to

all functions compiled with -O0, in order to prevent their

optimization at link time. This can be modeled using the

application:

o′optnone = h(o, Pf → Pf , Pf → optnone /∈ Pf)

The advantage of formalizing this behavior as part of an

external declaration is that it does not clutter the code of each

optimization with the management of property interactions.

V. APPLICATION TO AN INDUSTRIAL COMPILER: EPONA

A. Using properties to schedule passes within EPONA

During the development of the closed-source LLVM bitcode

obfuscator named EPONA by QuarksLab [19], we found out a

subtle change in the definition of what a “semantic preserving”

code transformation is, in the context of obfuscation.

By nature, some obfuscations rely on the structure of the

code. For instance the addition of integrity checks could verify

the depth of the call-stack at different points of the program.

This kind of introspection on the code content is not part

of the semantics of the program, so a compiler is free to

ignore it. In the case of the call stack, this does not prevent

transformations that modify it, like inlining and outlining,

but then these transformations would break the obfuscation

because they would make the call stack larger or smaller. The

property system described in this paper proved to be a simple

yet efficient solution to the problem.

Obfuscations from the EPONA compiler all interact with the

property system. It has been used in different situations:

• The to_obf and opt qualifiers presented in Sec-

tion IV-B1 have been introduced to reduce compilation

time in case of local obfuscation, making the second opti-

mization round a no-op in many cases. This optimization

has significantly reduced the test suite runtime in several

scenarii.

• Properties similar to forbid_bp and has_bp used in

the definition of o′rand code and o′detect bp have been used

to enforce the legality of obfuscation compositions.

• A dedicated property epona_generated has been

used to change the obfuscation behavior on code injected

by the compiler. The compiler can inject debugger de-

tection code and raise a warning if it ends up not being

obfuscated.

B. Integration within source code

Both Tigress and O-LLVM use command line arguments

to specify the obfuscation pipeline. Additionally, O-LLVM

can use function attributes. In addition to these approaches,

EPONA uses a directive mechanism to specify the required

obfuscations, the functions they apply to and their order, as

in a stack. Without loss of genericity, we also extended the

obfuscations to code blocks, where decorated blocks are first

outlined to single functions so that they fit in the model.

Considering the example in Listing 7, the order of execution

of the obfuscation is the following:

1) a[i] ˆ= 42 in function xoring1 is outlined to a

temporary function,

2) MBA is applied on a[i] ˆ= 42 in the temporary func-

tion,

3) the temporary function is inlined into xoring1,

4) the entire loop in function xoring1 is outlined to a

temporary function,

5) OpaquePredicates is applied on the entire loop in the

temporary function,

6) the temporary function is inlined into xoring1,

7) ControlFlowGraphFlattening is applied on

xoring1,

8) DuplicateBasicBlocks is applied on function

xoring1 with a ratio of 0.5,

A dual view of these directives can also be handled by

the obfuscator through a configuration file that describes the

location of each directive in terms of function name. That way

the original code is untouched and the obfuscation process is

separated from the original source code. This does not include

the possibility to mark blocks of instructions though.

Note that in order to integrate this dynamic pass scheduling

within LLVM, it is not possible to entirely rely on the static

pass pipeline used by LLVM. As the default optimization

31

#pragma obfuscate DuplicateBasicBlocks(ratio=.5)
#pragma obfuscate ControlFlowGraphFlattening
void xoring1(int a[8]) {

#pragma obfuscate OpaquePredicates
for(int i = 0; i < 8; ++i)

#pragma obfuscate MBA
a[i] ˆ= 42;

}

Listing 7. Composition of obfuscation directives.

Fig. 6. Number of generated lines after Mixed Boolean Arithmetic on a simple
add function int foo(int x, int y) { return x + y;},
for different obfuscation levels, using a different seed for each run.

scheme is static, a new pass has been inserted after the first

optimization round. This pass launches a new pass manager

that applies obfuscation passes based on command line argu-

ments, function directives and/or a dedicated file content. It

then adds a second optimization round and finally a symbol

stripping pass.

C. About randomness

The reproducibility of performance has also been a recurring

problem. One way to tackle this issue in the context of

MBA was to group obfuscations by category, each category

having the same performance impact. If the category is chosen

deterministically, and the random choice made within that

category, then randomness still provides diversity, while not

significantly affecting performance reproducibility. Figure 6

illustrates the dispersion obtained for different obfuscation

levels for a simple obfuscation: within each level, there is

a low variability in the number of generated lines, and each

level maps to a different group.

Note that this approach does not prevent performance diver-

gence if a later obfuscation can only be applied to a specific

pattern, and that it does not relieve the compiler developer

from the burden of building the categories.

VI. RELATED WORK

The concept of specific control language to manipulate the

compilation of a program has been studied for generating

programs with better performances and/or with more flexi-

bility and ease of development. To describe image processing

pipelines, which contains dozens of loop nests and are difficult

to optimize with traditional loop optimization algorithms,

Halide [20] splits the pipeline into an algorithm (what is

computed) and a schedule (how it is computed). An image

processing pipeline is described in Halide as a composition

of side-effect free functions. Each function computes the

color of a pixel given its coordinates. This way a Halide

program describes the computing algorithm for the value but

not when and where these values are computed and stored.

The scheduling for each function is described separately, and

the compiler generates the pipeline according to the schedule.

An architecture for software protection is described in [21].

It mentions the problem of conflicting protections, but the

underlying mechanism is not detailed.

To evaluate the best-performing composition of loop opti-

mizations, CHiLL [22] uses empirical optimization and trans-

formation scripts that contain sequences of loop transforma-

tions, each with a set of parameters. A decision algorithm

derives a set of transformation scripts with unbound parame-

ters. These scripts are then used as input of a search engine

that binds the parameters and are compiled and executed to

determine the best-performing sequences and parameters.

PyPS [23] is a pass manager API for the PIPS source-

to-source parallelizing compiler framework. It offers more

flexibility in the description of pass composition and to dy-

namically manipulate the pass manager. PyPS provides high-

level compilation abstractions such as passes, functions or

loops, which can be used in a Python script to describe

the compilation flow with a lower granularity. The use of a

programming language also offers high-level constructions to

drive the compilation process, such as conditional and loop

control structures. Theoretically, one could gain advantage of

a general purpose language to implement the model proposed

in this article, but nothing is formalized that way in PyPS,

which focuses on scripting pass management.

The concept of Obfuscation Executive is studied in detail

in [24]. The concept is close to a dynamic pass manager

associated to a terminating condition, generally a set of metrics

to fulfill. In the paper, each obfuscation is associated to a

cost, a potency and a set of pre/post requirements and pre/post

suggestions. The former share similarities with our property

system, the latter is used to help an automatic process to

build a finite state machine that should be able to fulfill the

terminating condition, based on the accumulated cost and po-

tency. To guide the search within the FSM, the paper assumes

determinism in the application of each obfuscation through a

fixed potency and cost, ignoring the intrinsic randomness of

the application of some obfuscation. It also does not try to

model interaction with regular optimizations in terms of costs

and properties.

32

The pass ordering problem applied to obfuscation has been

studied in [25]. In this paper, the authors focus on the impact

of obfuscation order, emphasizing the impact of the ordering

on the potency of the obfuscation. The authors also mention

the impact of optimization on the resulting binary, stating

that the tool used to attack the obfuscated binary, KLEE, first

performs a generic optimization round. Finally, they did get

some variability in the measurements, which could be linked to

the random nature of the obfuscations, as seen in Section II.

They conclude that an optimal order can be found for the

combination of a limited number of passes, and within the

limited scope of an attack based on KLEE.

VII. CONCLUSION AND FUTURE WORKS

Code obfuscation introduces a new aspect to the general

problem of pass scheduling, because of the pseudo-random

behavior of a large class of obfuscations, and because of

the subtle interactions between obfuscations, and between

obfuscation and generic optimization. This paper details these

issues through a series of case study and experiments, then

proposes a formalism based on code properties manipulated

by the obfuscations to enforce pre and post conditions and

explicit manipulation of the random state. The formalism is

validated in the implementation of the industrial compiler

EPONA, where it efficiently solves the problems introduced

by obfuscation, and also captures several existing behavior of

optimizing compilers.

This formalism helps to design correct obfuscation flows,

but it does not provide any mean to tackle the performance

versus security trade off: the task of building the pass order is

still delegated to an expert. This can be a problem as this re-

quires both knowledge from the application, to identify pieces

of code to obfuscate, and a reverse-engineering background to

identify the threats and produce an obfuscation executive that

counter balances them. Extending the formalism to capture

part of this knowledge is still a largely open field.

ACKNOWLEDGMENT

The initial research around an LLVM-based code obfus-

cator was funded by the French “Direction Générale de

l’Armement” through a RAPID project.

The authors would like to thank the reverse engineers from

QuarksLab for their valuable feedback during the development

process of the tool, and Béatrice Creusillet, Marion Videau and

Ninon Eyrolles for their careful reviews.

REFERENCES

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” J. ACM,
2012.

[2] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” in FOCS’13, 2013.

[3] B. Barak, “Hopes, fears, and software obfuscation,” Communications of
the ACM, 2016.

[4] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Tech. Rep., 1997.

[5] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in 2010 International Conference on Broadband, Wireless Computing,
Communication and Applications, Nov 2010, pp. 297–300.

[6] T. László and Á. Kiss, “Obfuscating C++ programs via control flow
flattening,” in Proceedings of the 10th Symposium on Programming
Languages and Software Tools (SPLST 2007), Dobogókő, Hungary,
2007, p. 15–29.

[7] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, Information Hiding in
Software with Mixed Boolean-Arithmetic Transforms, 2007.

[8] S. Banescu, C. S. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications,
ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, 2016, pp.
189–200. [Online]. Available: http://dl.acm.org/citation.cfm?id=2991114

[9] A. Majumdar, A. Monsifrot, and C. Thomborson, “On evaluating obfus-
catory strength of alias-based transforms using static analysis,” in 2006
International Conference on Advanced Computing and Communications,
Dec. 2006, pp. 605–610.

[10] B. Dang, A. Gazet, E. Bachaalany, and S. Josse, Practical Reverse
Engineering: X86, x64, ARM, Windows Kernel, Reversing Tools, and
Obfuscation, 1st ed. Wiley Publishing, 2014.

[11] C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed application
tamper detection via continuous software updates,” in Proceedings
of the 28th Annual Computer Security Applications Conference, ser.
ACSAC ’12. New York, NY, USA: ACM, 2012, pp. 319–328.
[Online]. Available: http://doi.acm.org/10.1145/2420950.2420997

[12] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM –
software protection for the masses,” in SPRO’15, B. Wyseur, Ed., 2015.

[13] T. Hansen and D. E. E. 3rd, “US Secure Hash Algorithms (SHA
and SHA-based HMAC and HKDF),” RFC 6234, May 2011. [Online].
Available: https://rfc-editor.org/rfc/rfc6234.txt

[14] M. Amini, C. Ancourt, F. Coelho, B. Creusillet, S. Guelton, F. Irigoin,
P. Jouvelot, R. Keryell, and P. Villalon, “PIPS Is not (only) Polyhedral
Software, adding gpu code generation in pips,” in First International
Workshop on Polyhedral Compilation Techniques, ser. First International
Workshop on Polyhedral Compilation Techniques (IMPACT 2011) in
conjonction with CGO 2011, Chamonix, France, Apr. 2011.

[15] F. Perriot, “Defeating polymorphism through code optimization,” ser.
Virus Bulletin Conference. The Pentagon, Abington, Oxfordshire,
England: Virus Bulletin Ltd., Sep. 2003, pp. 142–159.

[16] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: reverse
engineering obfuscated code,” in 12th Working Conference on Reverse
Engineering (WCRE’05), Nov 2005, pp. 10 pp.–.

[17] N. Eyrolles, “Obfuscation with Mixed Boolean-Arithmetic
Expressions : reconstruction, analysis and simplification tools,”
Theses, Université Paris-Saclay, Jun. 2017. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01623849

[18] M. Gagnon, S. Taylor, and A. K. Ghosh, “Software protection through
anti-debugging,” IEEE Security and Privacy, 2007.

[19] S. Guelton, A. Guinet, J. M. Martinez, and P. Brunet, “Challenges when
building an llvm bitcode obfuscator,” https://llvm.org/devmtg/2017-10/,
Oct. 2017.

[20] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
ACM SIGPLAN Notices, 2013.

[21] B. De Sutter, P. Falcarin, B. Wyseur, C. Basile, M. Ceccato,
J. d’Annoville, and M. Zunke, “A reference architecture for software
protection,” in Proceedings of the 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA), 4 2016, pp. 291–294.

[22] C. Chen, J. Chame, and M. Hall, “Chill: A framework for composing
high-level loop transformations,” Tech. Rep., 2008.

[23] S. Guelton, “Building source-to-source compilers for heterogenous tar-
gets,” Ph.D. dissertation, Télécom Bretagne, 2011.

[24] K. Heffner and C. Collberg, “The Obfuscation Executive,” in
Information Security, ser. Lecture Notes in Computer Science,
K. Zhang and Y. Zheng, Eds. Berlin, Heidelberg: Springer Berlin /
Heidelberg, 2004, vol. 3225, ch. 36, pp. 428–440. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30144-8\ 36

[25] W. Holder, J. T. McDonald, and T. R. Andel, “Evaluating optimal
phase ordering in obfuscation executives,” in Proceedings of the
7th Software Security, Protection, and Reverse Engineering /
Software Security and Protection Workshop, ser. SSPREW-7. New
York, NY, USA: ACM, 2017, pp. 6:1–6:12. [Online]. Available:

http://doi.acm.org/10.1145/3151137.3151140

33

