2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation

Combining Obfuscation and Optimizations in the
Real World

Serge Guelton
Quarkslab
13 rue Saint-Ambroise
75011 Paris
Email: sguelton@quarkslab.com

Juan Manuel Martinez

Adrien Guinet
Quarkslab

13 rue Saint-Ambroise

75011 Paris

Email: aguinet@quarkslab.com

Pierrick Brunet
Quarkslab
13 rue Saint-Ambroise
75011 Paris
Email: pbrunet@quarkslab.com

Fabien Dagnat, Nicolas Szlifierski

Quarkslab IMT Atlantique, IRISA, Université Bretagne Loire
13 rue Saint-Ambroise Brest, France
75011 Paris Email: first.last@imt-atlantique.fr

Email: jmmartinez@quarkslab.com

Abstract—Code obfuscation is the de facto standard to protect
intellectual property when delivering code in an unmanaged envi-
ronment. It relies on additive layers of code tangling techniques,
white-box encryption calls and platform-specific or tool-specific
countermeasures to make it harder for a reverse engineer to
access critical pieces of data or to understand core algorithms.

The literature provides plenty of different obfuscation tech-
niques that can be used at compile time to transform data or
control flow in order to provide some kind of protection against
different reverse engineering scenarii.

Scheduling code transformations to optimize a given metric
is known as the pass scheduling problem, a problem known
to be NP-hard, but solved in a practical way using hard-
coded sequences that are generally satisfactory. Adding code
obfuscation to the problem introduces two new dimensions.
First, as a code obfuscator needs to find a balance between
obfuscation and performance, pass scheduling becomes a multi-
criteria optimization problem. Second, obfuscation passes trans-
form their inputs in unconventional ways, which means some
pass combinations may not be desirable or even valid.

This paper highlights several issues met when blindly chain-
ing different kind of obfuscation and optimization passes, em-
phasizing the need of a formal model to combine them. It
proposes a non-intrusive formalism to leverage on sequential
pass management techniques. The model is validated on real-
world scenarii gathered during the development of an industrial-
strength obfuscator on top of the LLVM compiler infrastructure.

I. INTRODUCTION

Code obfuscation is the process of transforming a program,
either in source, intermediate or binary form, in order to
make it difficult for a reverse engineer to access some kind
of secret hidden in the program. Secrets can include specific
data like cryptographic keys, copyrighted assets etc. They can
also consist in proprietary algorithms, encryption methods,
protocols etc.

Although perfect obfuscation has been proved impossi-
ble [1], and indistinguishable obfuscation [2] is far from prac-
tical efficiency [3], research and industry have continuously
produced a large number of obfuscation techniques to protect

against different threats. These threats range from automatic
tools such as static or dynamic analyzers to highly specialized
engineers called reversers. The main practical objective being
to make it difficult to understand an obfuscated program.
Difficult means costly in terms of time and engineering efforts.
Surveys of common obfuscation techniques has been proposed
in [4], [5]. Classical techniques include control flow graph
flattening [6], mixed boolean-arithmetic expressions [7] or
virtualization [8]. When trying to defeat static or dynamic
analysis, a valid approach is to rely on NP-hard problems that
a code analyzer is unlikely to solve efficiently [9]. Relying
on architectural specificities and tool limitations is also an
interesting, yet short-term, solution [10].

Each of the numerous proposed obfuscation techniques is
efficient only on a small number of threats. Furthermore,
they often require some preconditions on the input program
and have a large impact on the size of the program, its
performance, its memory and energy consumption... In order
to build a generic code obfuscator that defeats multiple threats,
one needs to be able to combine these obfuscations with
each other, and possibly with existing code optimizations. The
sequence of obfuscations must also keep the execution time
and the various resource consumption of the obfuscated binary
within reasonable bounds.

This paper makes the following contributions:

« Identify and illustrate pass management issues specific to
obfuscation.

« Formalize function property management in the context
of pass management.

It is divided in five parts: the first part examines the simple
scenario of trying to protect a reference sha256 computa-
tion with a combination of Tigress [11] and O-LLVM [12],
showcasing the need of a finer grain control than provided
by industrial compilers. The second part investigates the
possible interactions between typical obfuscations and op-

2470-6892/18/$31.00 ©2018 IEEE
DOI 10.1109/SCAM.2018.00010

24 IEEE
computer
® psoaety

1 static
2> void sha256 (unsigned charx input,
3 |

size_t len)

unsigned char hash[SHA256HashSize];
int i;

SHA256Reset (&sha256) ;
SHA256Input (&sha256, input,
10 SHA256Result (&sha256, hash);
1 for(i = 0; i1 < SHA256HashSize;
12 {
13 printf ("%02x",
14 }

4

5

6

7 SHA256Context sha256;
8

9 len);
i++)

hash[i]);
Listing 1. Sample sha256 API usage.

timizations, using the example of Tigress and O-LLVM to
illustrate the limitations of a naive chaining approach. The
third part proposes a formal model to enable correct, fine-grain
optimizations and obfuscations composition, while the fourth
part validates the approach through the industrial experience
of building an obfuscating compiler. The last part discusses
related work and concludes.

II. CASE STUDY: OBFUSCATE A CRYPTOGRAPHIC HASH
ALGORITHM

In this section, we analyse a simple scenario: a developer
wants to protect a simple algorithm that contains both magic
value (data) and a specific algorithm (code): the reference
sha256 computation, as specified in RFC 6234 [13]. The goal
consists in preventing static and dynamic analyses to retrieve
them. To achieve that goal, and illustrate the collaboration
between different obfuscation engines, two obfuscating com-
pilers are used: Tigress' and O-LLVM?Z,

A. Code description

Our example program, SHA256, is a classical cryptographic
hash function whose reference implementation is partly given
in Listing 1 (the “SHA1FinalBits* call is omitted). It consists
in three main steps, SHA256Reset, SHA256Input and
SHA256Result (in lines 8,9 and 10) that initialize the
context, perform the actual computation and dump the hash,
respectively.

The core of the algorithm is located in the auxiliary
function SHA224_256ProcessMessageBlock called by
SHA256Input. This function uses an auxiliary constant array
“K* used to perform substitutions. The control flow is also
typical of iterated cryptographic hash algorithms processing
blocks of messages, with a fixed-size loop to process a
data block, and an outer loop making repetitive calls to
SHA224_256ProcessMessageBlock. Both the substitu-
tion and the block processing are typical of this family of
algorithms. A good obfuscation must be able to hide the data
and code structure to a reverser.

Uhttp://tigress.cs.arizona.edu/
2https://github.com/obfuscator-1lvm/obfuscator

25

B. Tools presentation

Industrial strength obfuscators are generally not freely avail-
able and thus cannot be studied by researchers. Fortunately,
a few tools are still available. O-LLVM provides an open
source code base with a limited set of obfuscations and enough
material to study the general approach. The binary code of
Tigress is also freely available and shipped with enough
documentation to understand its pass management options.

1) O-LLVM: 1t is an LLVM bitcode obfuscator that pro-
vides, in its open source version, three simple obfuscations:

e instruction substitution transforms explicit patterns of
instructions into other patterns of instructions generally
more complex;

o bogus control flow insertion adds bogus basic blocks and
uses opaque predicates to guard them and prevent their
execution;

o control flow graph flattening replaces the control flow of
a function by a lookup in a transition table.

The user can use compiler options to control various obfus-

cation parameters:

« the number of times a substitution is applied;

« the probability to apply bogus control flow insertion on
a basic block;

« whether basic blocks should be split before applying
control flow graph flattening;

The obfuscation is applied in the middle of the optimization
pipeline, only once (even if the flag is repeated). It is possible
to control which functions are obfuscated or not using function
attributes.

2) Tigress: It is a source-to-source C code obfuscator that
provides, among others, three main high-level transformations:

e code virtualization compiles a function into a custom
bytecode that is interpreted by a custom virtual machine;

o jitting generates the function machine code at runtime;

e dynamic jitting dynamically generates different versions
of the function machine code at runtime.

It also provides more common obfuscations like control
flow flattening or data encoding. Obfuscations are scheduled
using a list of obfuscation and function pairs, stating which
obfuscation to apply to which function.

C. Experimentation

A naive way to obfuscate the SHA256 computation would
be to apply a set of obfuscations to each SHA256+ function.
Unfortunately, there is no equivalent to generic optimization
flags like —On for obfuscations. Without expert knowledge on
each obfuscation and the way they interact with each other,
one can only resort on chaining them on the targeted functions
with the hope that piling up obfuscations raises the security
level, as illustrated in Listing 2.
> tigress sha.c -02

—--Transform=Flatten \

——-Functions=SHA224_256ProcessMessageBlock \

—-Transform=Virtualize \
——Functions=SHA224_256ProcessMessageBlock

Listing 2. Example of tigress obfuscation CLI.

sha.c

|

A

| Tigress |

l

| O-LLVM |

l

| Clang |

1

a.out

Fig. 1. Obfuscation pipeline combining Tigress, O-LLVM and clang opti-
mizations.

Note that in this case, the optimizations triggered by the
—-02 option are applied after the obfuscations.

As Tigress is a source-to-source obfuscator, it is perfectly
possible to combine it with the obfuscation of O-LLVM. For
example, one can apply the CFG flattening of O-LLVM on the
source obfuscated by Tigress, named tigress_output.c
in Listing 3.

> clang tigress_output.c -02 -mllvm -fla

Listing 3. Example of O-LLVM obfuscation CLI.

In that scenario, the sources are first obfuscated by Tigress,
then optimized by LLVM and finally obfuscated by O-LLVM,
as illustrated in Figure 1.

However, the obfuscator’s user must find a trade off be-
tween the obfuscation quality and the execution speed of the
obfuscated binary. In order to assess the performance regres-
sion, we studied three obfuscation schemes, namely virtualize,
virtualize followed by flattening, and flattening followed by
virtualize. The benchmark uses the clang compiler from O-
LLVM as a back-end compiler in all cases, measuring the hash
speed on a 10 MB file using the SHA256 function. Figure 2
presents the execution time of the same SHA kernel compiled
with Tigress virtualize protection using ten different random
seeds (the x-value), measured by ten executions per seed (each
giving a point).

The first striking result is the non-reproducibility of per-
formances across different seeds. Indeed, obfuscators usually
rely on a random engine to choose different patterns or
obfuscation sub-strategies, in order to improve the diversity of
the generated code. However it appears this is done at the cost
of non-reproducible performance. This lack of reproducibility
is a real problem when trying to find a balance between
obfuscation and optimization, as the result is highly instable.

Once the seed is fixed to an arbitrary value (1 in that case),
we observe that:

o The version obfuscated by Tigress alone, without the
extra substitution, runs 80 times slower than the original
version in average.

o The version obfuscated by Tigress then O-LLVM runs 83
times slower than the original one.

26

10.0

9.5

9.01

8.51

8.0

cww @ oo
eee
eoeo

7.5 i

Execution time in seconds

7.0

®e
voes
®eme oo
o

6.5

T T T T T

0 2 4 6 8
Obfuscation seed

Fig. 2. Distribution of execution time of an obfuscated SHA256 kernel after
virtualization by Tigress parametrized with different random seeds.

Obfuscation Setup | Average execution time (s)
reference 0.08
virtualization 5.37
flattening 0.11
virt. + flat. 20.35
flat. + virt. > 600

TABLE 1
AVERAGE TIME TAKEN TO HASH A 10 MB FILE USING A SHA256 KERNEL
OBFUSCATED USING DIFFERENT TIGRESS OBFUSCATION COMBINATIONS.

Table I summarizes the average execution time of the same
kernel compiled with Tigress, with five different configura-
tions: no obfuscation, virtualization, CFG flattening, virtu-
alization then flattening, and flattening then virtualization.
The results illustrate the non-predictability of the performance
impact of the combination of obfuscations, even for only two
of them. In terms of performance impact, the combination
of two obfuscations is not commutative. Furthermore, some
obfuscations may generate many candidates for a further
obfuscation, implying a huge performance cost, as in the
flattening followed by virtualization setup.

Additionally, from a security perspective, only a single
function is obfuscated by the virtualize obfuscation, so the
generic algorithm scheme, including the block processing, is
still apparent. To hide that part, one could first inline the
various SHA« calls, e.g. using a source-to-source compiler
framework like PIPS [14].

D. Summary

This introductory experimentation raises several questions:

1) As a naive obfuscator user, choosing which obfuscation
to pick is difficult. Is it possible to describe a generic
obfuscation scheme for non expert users, in a similar
manner to —On switches?

2) Applying inlining before some obfuscations increases
security. Applying optimizations before virtualization
decreases the size of the obfuscated functions, thus
certainly improves its speed. What are the possible
interactions between different obfuscations and code
transformations?

What kind of considerations should be taken into ac-
count when designing an obfuscation that relies on a
random engine to perform its transformation to avoid
performance reproducibility issues?

3)

These problem have been met in many situations during the
developpment of the EPONA compiler.

III. INSPECTING INTERACTIONS BETWEEN PASSES

In order to keep the execution time of the obfuscated binary
within reasonable bounds, it is still necessary to optimize it
using regular code optimizations. This raises the issue of the
interactions between obfuscation and optimization.

A. Optimization before obfuscation

Intuitively, one of the reasons for the important performance
penalty implied by the use of the virtualizer may be caused by
the fact that it handles unoptimized C code as input, and once
transformed into the virtualized bytecode, there is not much
optimization opportunity available as the optimizer cannot read
through the virtualized bytecode.

To assert this idea, we considered the rotation macros
SHA256_ROTL and SHA2561i_ROTR. Once optimized by
clang, they turn into a single ror or rol. But once virtualized,
they are split into several operations which can no longer
be optimized. By optimizing them manually to call intrinsics
and then calling Tigress, we already get a x1.16 acceleration
factor compared to the original Tigress run. Applying the same
strategy to the SHA256_SIGMAx functions leads to a x1.40
acceleration factor.

Intuitively, well-crafted obfuscations prevent further code
transformations from understanding the code and optimize it
as well as they would on the original code. Some obfuscations
even rely on the inability of the compiler to solve complex
problems, e.g. alias analysis [9].

B. Optimization after obfuscation

This section compares the time taken to hash a given
random 10 MB file with the SHA256 program, using different
obfuscation and optimization flags. The results are given in
table II. The average reference execution time without obfus-
cation for various optimization levels are given in the second
line. The third line illustrates the behavior from the virtualize
obfuscation of Tigress. It shows that obfuscating compilers
focus primarily on producing code difficult to reverse rather
than code that runs fast.

The effect of optimization on the output of Tigress is
significant. However, Tigress is a source-to-source obfuscator,
so it does not take optimized code as input, which leaves a lot
of room for further optimization.

27

Optimization level -00 -01 -02
Execution time, no obfuscation (s) 096 044 045
Execution time, Tigress virtualization (s) | 14.7 846 6.95

TABLE 11
AVERAGE TIME TAKEN TO HASH A 10 M B FILE USING A SHA256
KERNEL, FOR DIFFERENT POST-OBFUSCATION OPTIMIZATION LEVELS.

post -00 -01 -02
pre
-00 444 170 132
-01 246 1.05 1.08
-02 292 099 1.02
TABLE III

AVERAGE TIME IN SECONDS TAKEN TO HASH A 50 MB FILE USING A
SHA256 KERNEL OBFUSCATED USING O-LLVM CONTROL FLOW GRAPH
FLATTENING, FOR DIFFERENT PRE AND POST OPTIMIZATION LEVELS.

We led a similar experiment using the control flow graph
flattening feature of O-LLVM. In this case, two optimization
phases happen: one before and one after obfuscation. Table III
reports the results of hashing a 50 MB file while varying the
levels of the pre-obfuscation and post-obfuscation optimiza-
tions.

The fastest obfuscated codes are generated when the pre and
post optimization levels are above zero. It seems always valid
to optimize after obfuscation, at least for that obfuscation.
Interestingly, optimizing at the —02 level before obfuscation
and -00 after yields slower code than optimizing at the
—-01 level before obfuscation and -00 after. This is due
to a more complex control-flow graph generated by -02 to
handle vectorization. This further illustrates the difficult task
of choosing a sequence of obfuscations and optimizations.

C. Optimizations and a de-obfuscation Tool

Let us now consider the substitution obfuscation as imple-
mented by O-LLVM. The effect of an example of such an
obfuscation is illustrated on Figure 3 where a + b is replaced
by b — (—a).

define i32 @add(i32 %a, 132 %b) {
entry:
%$add = add nsw i32 %b, %a
ret 132 %add
}
define i32 @add(i32 %a, 132 %b) {

entry:
$0 = sub 132 0,
$1 = sub 132 %b,
ret 132 %1

%a
%0

Fig. 3. Result of a substitution applied by O-LLVM on a simple LLVM
function.

@x = common local_unnamed_addr global i32 0

define

entry:
%0 = load i32,
%1 = add 132 %0
%2 = mul i32 %1
%3 = and 132 %2
%4 = icmp eq i3
br il %4, label %true_br,

132 @foo(i32 %a) {

132x @x
, -1

label %false_br

Listing 4. Example of an opaque predicate generated by O-LLVM.

define 132 @add(i32 %a, 132 %b) {
entry:

%0 = sub i32 %a, 1

%1 = mul i32 %0, %a

%2 = urem i32 %1, 2

%3 = sub i32 %2, %a

%4 = sub i32 %b, %3

ret 132 %4

}

Listing 5. Result of substitution combined with an opaque predicate applied
by O-LLVM on a simple LLVM function.

Unsurprisingly, applying the optimizations implied by -02
on this output completely reverts the obfuscation. However, the
bogus control flow obfuscation introduces an opaque predicate
(r —1) x z mod 2 = 0 which is always true but that LLVM
cannot simplify as the z variable is declared as a global
variable, as showcased in Listing 4.

Given that several reversing tools now use compiler op-
timization as a basic de-obfuscation engine [15], it seems
reasonable to ensure that every obfuscation should resist basic
optimizations, or be followed by an obfuscation that itself
resists optimizations and hardens the previous obfuscation.
For instance, the opaque predicate used by bogus control
flow could be combined with the substitution to turn the add
function into the one from Listing 5. Which is not simplified
back to the original code by the optimizations from —02.

D. Optimization and randomness

The example studied in Section II shows that different seed
parameters may have an influence on the execution time of the
obfuscated program. Indeed, depending on the choice made
based on the random seed, obfuscated code can have different
performance behavior. Let us consider the two functions from
Listing 6. Both always return zero, but s1low_zero involves a
division, so it is likely to be much slower than fast_zero.
Depending on the hotness of the code section where these
opaque predicates are used, randomly choosing one over the
other introduces great performance variability.

The interaction with further optimizations can also introduce
non-reproducible performance. Suppose one of the functions
above is used to hide the zero in Figure 4, i.e. the second
argument of the call to bar inside the loop on line 4.
Depending on the free variable from the context that is chosen
as an argument for the call to zero, the code of this line may

28

uint32_t slow_zero(uint32_t x) {
uint32_t y = x & OxFFFFFFE;
return y / (y + 1);

}

uint32_t fast_zero(uint32_t x) {
return (x x 3) (x | 1);

}

Listing 6. Two possible opaque predicates functions.

be transformed into one of the codes on the right part of the
figure. The first choice, %, does not depend on the loop so the
optimizer is going to move the call to zero outside the loop.
The second choice, i, depends on the loop and the call cannot
be moved outside the loop. The performance of the final code
is therefore strongly affected by the random choices (here, the
variable and the zero function).

E. Chaining obfuscations

An obfuscation is typically crafted to protect against one
or different threats. For instance, control flow graph flattening
is a good technique against static analysis, but it falls short
in front of dynamic analysis [16]. Mixed Boolean-Arithmetic
expressions provides a good protection against some dynamic
analysis tools [17]. Thus combining the two techniques leads
to a better protection. In a similar manner, an anti-debug
technique [18] would benefit from further obfuscation to
hide or diversify a pattern that would be too obvious to an
experienced reverser otherwise.

From a defender point-of-view, the concept can be sum-
marized as follows. As reverse engineers use a large variety
of tools: static analyzer, dynamic instrumentation, virtual
machines, debuggers, etc. A complete binary protection must
combine together means of defeating each approach.

From a software engineering point of view, decoupling ob-
fuscations to be able to chain them also holds good properties.
For instance the bogus control flow obfuscation used in O-
LLVM actually involves two obfuscations: the first inserts
random false branches in the code, and the second turns the
false predicates into opaque predicates. The latter could be
used in other obfuscations, e.g. in the substitution obfuscation
from O-LLVM.

IV. ENFORCING PRE AND POST CONDITIONS

Let us consider the case of two different obfuscation tech-

niques:

o random code injection is a code obfuscation that inserts
random assembly guarded by an opaque predicate into
existing control flow. It increases the amount of code to
handle during static disassembling and may break some
disassemblers.

e breakpoint detection scans loaded executable for par-
ticular opcodes used to implement software breakpoint
(typically int3 on x86 architecture). It protects against
debugging.

original code

int foo(uint32_t x) {
uint32_t s = 1;
for (uint32_t i =

1

2

3 1;
4 s *= bar (i,

5

6

=

i < x;—++1)

return s;

}

obfuscated code with optimizable obfuscation

int foo(uint32_t
uint32_t s = 1;
for (uint32_t i =
s *x= bar (iy
return s;
}
obfuscated code with non-optimizable obfuscation

int foo(uint32_t x) {
uint32_t s = 1;

for(uint32_t|i]= 1; il< x;
s x= bar (iy .) ;

return s;

++1)

Fig. 4. Obfuscation vs optimization

Combining the two obfuscations leads to a situation where a
breakpoint opcode may be generated by random code injection
and then detected by breakpoint detection, leading to the
incorrect runtime statement that the code is being debugged.

Similar situations appear when using signal handlers to
detect the presence of a debugger like gdb. Indeed there
could be a signal handler already installed by the original
application for its own use. There could also be a signal
handler installed by an obfuscation to perform signal based
control flow obfuscation. Both situations would conflict with
the addition of new signal handlers to detect debuggers. A
static analysis can detect the first situation (the legitimate
use of a signal handler). But the second situation of conflicts
should be prevented by the obfuscation tool. It should prevent
the simultaneous use of the signal handlers detection and
of an obfuscation relying on signal handlers. This section
explores the use of a simple formalism to enforce the following
properties:

1) The code is indeed obfuscated.

2) Invalid code is not generated.

3) Generated code meets performance expectations.

A. Property-based compilation of obfuscated programs

Let us model a source code as a set of functions F' € P(F)
and consider the set of properties P. A function f € F can be
associated to a set of properties Py € P(IP) to form a qualified
function f’ = (f, Py) € F’. In a similar manner, a qualified
code is a code where all functions are qualified.

A code transformation ¢ € T is a function from P(FF) to
P(FF), that produces a set of functions by transforming an
input set of functions.

An obfuscation is modeled as a code transformation parame-
terized by a random engine e € E. It is a function transforming
a source code and random engine into another source code and
random engine.

Any code transformation (e.g. an optimization) that does not
use any random engine still fits in the model by returning the
random engine it received. Making the random engine explicit
is important to capture the randomness of an obfuscation, and

29

potentially modify the distribution of the random engine to
achieve reproducibility.
Finally, the set of code transformations is:

T=(PF)xE)— (P(F) xE) (€Y

Any code transformation ¢ from T is associated with a
qualified code transformation ¢ from T’ which takes into con-
sideration the properties associated to each function, where:

T = (P(F') x E) = (P(F') x E))

To define a qualified code transformation, we are going
to use a helper function. Such a function builds a qualified
code transformation from a code transformation, a function to
update the properties and a predicate over the properties. The
helper function h(t, p, ¢) applies the transformation ¢ on every
function f whose properties Py satisfy ¢. When transforming
a function, its properties are updated using the function p:

h (T x (P(P)—P(P)) x (P(P)—{0,1})) = T’

t(fv €),p(Pf)
(fv 6)7Pf7

if ¢(Py)

otherwise

(tapa¢)'_> (fae)a‘PJ“_>

We propose to split the obfuscation process into three
phases:

1) Initialization: turn the developer code into a qualified
code. This can be done by associating a set of properties
to each function, through manual annotations or based
on the result of some static analysis of the program.
Transformation: apply qualified transformations to the
qualified program
Postlude: verify an assertion over the qualified functions
of the transformed program to assert some properties of
the obfuscated program.

2)
3)
Note that this process only relies on qualified code trans-

formations, so it can also be used to enhance a regular
optimization process.

B. Obfuscation flow example

Some compilers already have a mechanism similar to prop-
erty management through function attributes. For instance both
GCC and Clang make it possible to annotate existing code to
control inlining through noinline and always_inline,
which respectively prevents and forces inlining of the consid-
ered functions. GCC does print a warning if both attributes are
used on the same function, but Clang does not, which shows
the limits of an ad hoc approach to property management and
motivates a formal approach.

The model proposed in Section IV-A can be used to for-
malize such behaviors, and makes it easy to propose solutions
to the problems envisioned in Sections II and III.

1) Reducing compilation time: Let’s consider the following
properties:

P ={to_obf,opt}

Where to_obf means that obfuscation is required, and opt
means that optimization has been applied.

Suppose that we have two code transformations 0qp: and
oobf that respectively optimize a function and obfuscate it. We
can define the corresponding qualified code transformations
by their helper functions:

Oopt;
Of,pt =h| P;— PrU{opt},
Pf — opt ¢ Pf
Oobf
Ogpf = h | Py Py \ {to_obf,opt},

Pf — to_obf &€ Pf

Then we combine these two transformations in the following
order:

o' ((£:€), Pr) = 0gpt(0ops (0opt (£), Pr)))

The behavior of this code transformation can be described
by the table of Figure 5. Functions that are not optimized and
should not be obfuscated are optimized only once (first row).
Functions already optimized are left unmodified (second row).
All functions marked to be obfuscated are obfuscated and are
optimized after obfuscation (third and fourth row). This pattern
avoids unnecessary re-optimization of functions that have not
been touched by obfuscation while it allows to optimize before
and after obfuscation.

2) Making obfuscated hot functions performance more re-
producible: As seen in Section II-C, obfuscation can have
a large impact on performance, and this impact may vary
importantly when changing the obfuscation seed. Therefore,
to mitigate this problem, it is possible to use a fixed seed on

30

functions that have a large impact on performance. Let us call
these functions hot.

To that end, let us consider the property hot and the
following qualified obfuscation for the obfuscation o:

fo_o(f,0),
O;mt:h‘ PfHPﬁ
Pf »—>hotePf
07
Ocold = I | Py v Py,

Pf'-)hOiZ%Pf

O/((f, 6), Pf) = O;wt(ofzold((f? 6)7 Pf))

The combined qualified obfuscation o’ leads to the obfusca-
tion of every function (because either a function has the prop-
erty hot or not). Functions not marked hot are obfuscated
normally, possibly using the random generator state. However,
in functions marked as hot the random generator used is fixed
by a constant generator, in order to get reproducible results,
independent from the previous random state.

This annotation hot is an example of qualification that
could come from other sources than user annotation, typically
from metadata gathered during profiling.

3) Enforcing pre- and post-conditions: Let us consider
the following properties has_bp and forbid_bp, which
respectively state that the function code does contain a break-
point, and that the function must not contain a breakpoint. In
most cases, all functions start without these two properties.

Now consider the two obfuscations described in Section IV
and their qualified versions.

Random code injection, denoted Orand_code:

Orand_code>

Oll‘and_code =h Pf — Pf U {has_bp},

Py — forbid_bp ¢ Pf

Breakpoint detection, denoted Odetect_bp :

Odetect_bp»
Oterectop = | P; — Py U{forbid_bp},

P; — has_bp ¢ Py

Using the qualified versions, it becomes impossible to
combine the original obfuscations and to build an incorrect
program due to an invalid interaction between the two passes:

initial after first o, after ol final
function properties function properties function properties | function properties
f {} oopt(f) {opt} 0opt (f) {opt} Oopt (f) {opt}
f {opt} f {opt} f {opt} f {opt}
f {to_obf} oopt(f) {to_obf,opt} | oobr(oopt(f)) {} Oopt (0obf (00pt (f))) {opt}
f {opt,to_obf} | f {opt, to_obf} | oobf(f) {} Oopt (0ot (f)) {opt}

Fig. 5. Representation of the intermediate and final stages of applying code transformation og, © o[, ¢ © 0g, to a function f for different initial properties.

applying the first pass generates a property that triggers a
different behavior of the second pass.

Moreover, by changing the initial properties of the program,
it becomes possible to inform the compiler that a given func-
tion will be debugged (e.g. during the development process)
and the obfuscation adding the detection of breakpoints will
skip that particular function.

4) Formalization of existing practices, optnone: Since ver-
sion 3.4, LLVM adds the function attribute optnone to
all functions compiled with —00, in order to prevent their
optimization at link time. This can be modeled using the
application:

0/

optnone

= h(o, Py — Py, P — optnone ¢ Py)

The advantage of formalizing this behavior as part of an
external declaration is that it does not clutter the code of each
optimization with the management of property interactions.

V. APPLICATION TO AN INDUSTRIAL COMPILER: EPONA
A. Using properties to schedule passes within EPONA

During the development of the closed-source LLVM bitcode
obfuscator named EPONA by QuarksLab [19], we found out a
subtle change in the definition of what a “semantic preserving”
code transformation is, in the context of obfuscation.

By nature, some obfuscations rely on the structure of the
code. For instance the addition of integrity checks could verify
the depth of the call-stack at different points of the program.
This kind of introspection on the code content is not part
of the semantics of the program, so a compiler is free to
ignore it. In the case of the call stack, this does not prevent
transformations that modify it, like inlining and outlining,
but then these transformations would break the obfuscation
because they would make the call stack larger or smaller. The
property system described in this paper proved to be a simple
yet efficient solution to the problem.

Obfuscations from the EPONA compiler all interact with the
property system. It has been used in different situations:

e The to_obf and opt qualifiers presented in Sec-
tion IV-B1 have been introduced to reduce compilation
time in case of local obfuscation, making the second opti-
mization round a no-op in many cases. This optimization
has significantly reduced the test suite runtime in several
scenarii.

o Properties similar to forbid_bp and has_bp used in
the definition of 0,4 coge aNd Oferect b, have been used
to enforce the legality of obfuscation compositions.

e A dedicated property epona_generated has been
used to change the obfuscation behavior on code injected
by the compiler. The compiler can inject debugger de-
tection code and raise a warning if it ends up not being
obfuscated.

B. Integration within source code

Both Tigress and O-LLVM use command line arguments
to specify the obfuscation pipeline. Additionally, O-LLVM
can use function attributes. In addition to these approaches,
EPONA uses a directive mechanism to specify the required
obfuscations, the functions they apply to and their order, as
in a stack. Without loss of genericity, we also extended the
obfuscations to code blocks, where decorated blocks are first
outlined to single functions so that they fit in the model.

Considering the example in Listing 7, the order of execution
of the obfuscation is the following:

1) a[i] "= 42 in function xoringl is outlined to a
temporary function,

2) MBA is applied on a[i] "=
tion,

3) the temporary function is inlined into xoringl,

4) the entire loop in function xoringl is outlined to a
temporary function,

5) OpaquePredicates is applied on the entire loop in the
temporary function,

6) the temporary function is inlined into xoringl,

7) ControlFlowGraphFlattening is applied on
xoringl,

8) DuplicateBasicBlocks is
xoringl with a ratio of 0.5,

42 in the temporary func-

applied on function

A dual view of these directives can also be handled by
the obfuscator through a configuration file that describes the
location of each directive in terms of function name. That way
the original code is untouched and the obfuscation process is
separated from the original source code. This does not include
the possibility to mark blocks of instructions though.

Note that in order to integrate this dynamic pass scheduling
within LLVM, it is not possible to entirely rely on the static
pass pipeline used by LLVM. As the default optimization

31

#pragma obfuscate DuplicateBasicBlocks (ratio=.5)
#pragma obfuscate ControlFlowGraphFlattening
void xoringl (int af[8]) {

#pragma obfuscate OpaquePredicates

for(int i = 0; 1 < 8; ++1)
#pragma obfuscate MBA
ali] "= 42;

Listing 7. Composition of obfuscation directives.

704

v o
] o
L L
)
° ece

N
o
L

Number of LLVM instructions
w
o

204

T T T

0.0 0.5 1.0

T T T

T
15 2.0 2.5 3.0

MBA Level

Fig. 6. Number of generated lines after Mixed Boolean Arithmetic on a simple
add function int foo(int x, int y) { return x + y;},
for different obfuscation levels, using a different seed for each run.

scheme is static, a new pass has been inserted after the first
optimization round. This pass launches a new pass manager
that applies obfuscation passes based on command line argu-
ments, function directives and/or a dedicated file content. It
then adds a second optimization round and finally a symbol
stripping pass.

C. About randomness

The reproducibility of performance has also been a recurring
problem. One way to tackle this issue in the context of
MBA was to group obfuscations by category, each category
having the same performance impact. If the category is chosen
deterministically, and the random choice made within that
category, then randomness still provides diversity, while not
significantly affecting performance reproducibility. Figure 6
illustrates the dispersion obtained for different obfuscation
levels for a simple obfuscation: within each level, there is
a low variability in the number of generated lines, and each
level maps to a different group.

Note that this approach does not prevent performance diver-
gence if a later obfuscation can only be applied to a specific
pattern, and that it does not relieve the compiler developer
from the burden of building the categories.

32

VI. RELATED WORK

The concept of specific control language to manipulate the
compilation of a program has been studied for generating
programs with better performances and/or with more flexi-
bility and ease of development. To describe image processing
pipelines, which contains dozens of loop nests and are difficult
to optimize with traditional loop optimization algorithms,
Halide [20] splits the pipeline into an algorithm (what is
computed) and a schedule (how it is computed). An image
processing pipeline is described in Halide as a composition
of side-effect free functions. Each function computes the
color of a pixel given its coordinates. This way a Halide
program describes the computing algorithm for the value but
not when and where these values are computed and stored.
The scheduling for each function is described separately, and
the compiler generates the pipeline according to the schedule.

An architecture for software protection is described in [21].
It mentions the problem of conflicting protections, but the
underlying mechanism is not detailed.

To evaluate the best-performing composition of loop opti-
mizations, CHIiLL [22] uses empirical optimization and trans-
formation scripts that contain sequences of loop transforma-
tions, each with a set of parameters. A decision algorithm
derives a set of transformation scripts with unbound parame-
ters. These scripts are then used as input of a search engine
that binds the parameters and are compiled and executed to
determine the best-performing sequences and parameters.

PyPS [23] is a pass manager API for the PIPS source-
to-source parallelizing compiler framework. It offers more
flexibility in the description of pass composition and to dy-
namically manipulate the pass manager. PyPS provides high-
level compilation abstractions such as passes, functions or
loops, which can be used in a Python script to describe
the compilation flow with a lower granularity. The use of a
programming language also offers high-level constructions to
drive the compilation process, such as conditional and loop
control structures. Theoretically, one could gain advantage of
a general purpose language to implement the model proposed
in this article, but nothing is formalized that way in PyPS,
which focuses on scripting pass management.

The concept of Obfuscation Executive is studied in detail
in [24]. The concept is close to a dynamic pass manager
associated to a terminating condition, generally a set of metrics
to fulfill. In the paper, each obfuscation is associated to a
cost, a potency and a set of pre/post requirements and pre/post
suggestions. The former share similarities with our property
system, the latter is used to help an automatic process to
build a finite state machine that should be able to fulfill the
terminating condition, based on the accumulated cost and po-
tency. To guide the search within the FSM, the paper assumes
determinism in the application of each obfuscation through a
fixed potency and cost, ignoring the intrinsic randomness of
the application of some obfuscation. It also does not try to
model interaction with regular optimizations in terms of costs
and properties.

The pass ordering problem applied to obfuscation has been
studied in [25]. In this paper, the authors focus on the impact
of obfuscation order, emphasizing the impact of the ordering
on the potency of the obfuscation. The authors also mention
the impact of optimization on the resulting binary, stating
that the tool used to attack the obfuscated binary, KLEE, first
performs a generic optimization round. Finally, they did get
some variability in the measurements, which could be linked to
the random nature of the obfuscations, as seen in Section II.
They conclude that an optimal order can be found for the
combination of a limited number of passes, and within the
limited scope of an attack based on KLEE.

VII. CONCLUSION AND FUTURE WORKS

Code obfuscation introduces a new aspect to the general
problem of pass scheduling, because of the pseudo-random
behavior of a large class of obfuscations, and because of
the subtle interactions between obfuscations, and between
obfuscation and generic optimization. This paper details these
issues through a series of case study and experiments, then
proposes a formalism based on code properties manipulated
by the obfuscations to enforce pre and post conditions and
explicit manipulation of the random state. The formalism is
validated in the implementation of the industrial compiler
EPONA, where it efficiently solves the problems introduced
by obfuscation, and also captures several existing behavior of
optimizing compilers.

This formalism helps to design correct obfuscation flows,
but it does not provide any mean to tackle the performance
versus security trade off: the task of building the pass order is
still delegated to an expert. This can be a problem as this re-
quires both knowledge from the application, to identify pieces
of code to obfuscate, and a reverse-engineering background to
identify the threats and produce an obfuscation executive that
counter balances them. Extending the formalism to capture
part of this knowledge is still a largely open field.

ACKNOWLEDGMENT

The initial research around an LLVM-based code obfus-
cator was funded by the French “Direction Générale de
I’ Armement” through a RAPID project.

The authors would like to thank the reverse engineers from
QuarksLab for their valuable feedback during the development
process of the tool, and Béatrice Creusillet, Marion Videau and
Ninon Eyrolles for their careful reviews.

REFERENCES

[1] B.Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” J. ACM,
2012.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” in FOCS’13, 2013.

B. Barak, “Hopes, fears, and software obfuscation,” Communications of
the ACM, 2016.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Tech. Rep., 1997.

I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in 2010 International Conference on Broadband, Wireless Computing,
Communication and Applications, Nov 2010, pp. 297-300.

33

[6]

[7]
[8]

[9]

[10]

(12

[13]

[14]

(15

[16]

[21]

[25]

T. Laszl6 and A. Kiss, “Obfuscating C++ programs via control flow
flattening,” in Proceedings of the 10th Symposium on Programming
Languages and Software Tools (SPLST 2007), Dobogdékd, Hungary,
2007, p. 15-29.

Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, Information Hiding in
Software with Mixed Boolean-Arithmetic Transforms, 2007.

S. Banescu, C. S. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications,
ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, 2016, pp.
189-200. [Online]. Available: http://dl.acm.org/citation.cfm?id=2991114
A. Majumdar, A. Monsifrot, and C. Thomborson, “On evaluating obfus-
catory strength of alias-based transforms using static analysis,” in 2006
International Conference on Advanced Computing and Communications,
Dec. 2006, pp. 605-610.

B. Dang, A. Gazet, E. Bachaalany, and S. Josse, Practical Reverse
Engineering: X86, x64, ARM, Windows Kernel, Reversing Tools, and
Obfuscation, 1st ed. Wiley Publishing, 2014.

C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed application
tamper detection via continuous software updates,” in Proceedings
of the 28th Annual Computer Security Applications Conference, ser.
ACSAC ’12. New York, NY, USA: ACM, 2012, pp. 319-328.
[Online]. Available: http://doi.acm.org/10.1145/2420950.2420997

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM —
software protection for the masses,” in SPRO’15, B. Wyseur, Ed., 2015.
T. Hansen and D. E. E. 3rd, “US Secure Hash Algorithms (SHA
and SHA-based HMAC and HKDF),” RFC 6234, May 2011. [Online].
Available: https://rfc-editor.org/rfc/rfc6234.txt

M. Amini, C. Ancourt, F. Coelho, B. Creusillet, S. Guelton, F. Irigoin,
P. Jouvelot, R. Keryell, and P. Villalon, “PIPS Is not (only) Polyhedral
Software, adding gpu code generation in pips,” in First International
Workshop on Polyhedral Compilation Techniques, ser. First International
Workshop on Polyhedral Compilation Techniques (IMPACT 2011) in
conjonction with CGO 2011, Chamonix, France, Apr. 2011.

F. Perriot, “Defeating polymorphism through code optimization,” ser.
Virus Bulletin Conference. The Pentagon, Abington, Oxfordshire,
England: Virus Bulletin Ltd., Sep. 2003, pp. 142-159.

S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: reverse
engineering obfuscated code,” in 12th Working Conference on Reverse
Engineering (WCRE’05), Nov 2005, pp. 10 pp.—.

N. Eyrolles, “Obfuscation with Mixed Boolean-Arithmetic
Expressions reconstruction, analysis and simplification tools,”
Theses, Université Paris-Saclay, Jun. 2017. [Online]. Available:

https://tel.archives-ouvertes.fr/tel-01623849

M. Gagnon, S. Taylor, and A. K. Ghosh, “Software protection through
anti-debugging,” IEEE Security and Privacy, 2007.

S. Guelton, A. Guinet, J. M. Martinez, and P. Brunet, “Challenges when
building an llvm bitcode obfuscator,” https://llvm.org/devmtg/2017-10/,
Oct. 2017.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
ACM SIGPLAN Notices, 2013.

B. De Sutter, P. Falcarin, B. Wyseur, C. Basile, M. Ceccato,
J. d’Annoville, and M. Zunke, “A reference architecture for software
protection,” in Proceedings of the 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA), 4 2016, pp. 291-294.

C. Chen, J. Chame, and M. Hall, “Chill: A framework for composing
high-level loop transformations,” Tech. Rep., 2008.

S. Guelton, “Building source-to-source compilers for heterogenous tar-
gets,” Ph.D. dissertation, Télécom Bretagne, 2011.

K. Heffner and C. Collberg, “The Obfuscation Executive,” in
Information Security, ser. Lecture Notes in Computer Science,
K. Zhang and Y. Zheng, Eds. Berlin, Heidelberg: Springer Berlin /
Heidelberg, 2004, vol. 3225, ch. 36, pp. 428-440. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30144-8_36

W. Holder, J. T. McDonald, and T. R. Andel, “Evaluating optimal
phase ordering in obfuscation executives,” in Proceedings of the
7th Software Security, Protection, and Reverse Engineering /
Software Security and Protection Workshop, ser. SSPREW-7. New
York, NY, USA: ACM, 2017, pp. 6:1-6:12. [Online]. Available:

http://doi.acm.org/10.1145/3151137.3151140

