

Degradation of pesticides in wastewater using heterogeneous photocatalysis

Simranjeet Singh^{a,b,c*}, Vijay Kumar^{d*}, Daljeet Singh Dhanjal^{a*}, Shivika Datta^e, Sukhmanpreet Kaur^f, Romina Romero^g, Joginder Singh^a

^aDepartment of Biotechnology, Lovely Professional University, Phagwara, Punjab, India. ^bPunjab Biotechnology Incubator (PBTI), SAS Nagar, Punjab, India.

^cRAWTL, Department of Water Supply and Sanitation, SAS Nagar, Punjab, India.

^dRegional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, India. ^eDepartment of Zoology, Doaba College, Jalandhar, Punjab, India. ^fDepartment of Chemistry, Rayat Bahra Institute of Engineering and Nano-Technology, Hoshiarpur, Punjab, India. ^gTechnological Development Unit (UDT), University of Concepcion, Coronel, Chile

1 Introduction

Water is the prerequisite to sustain life on Earth; however, the reality is that the level of groundwater and the number of water bodies are declining globally (Ola and Maroto-Valer, 2015; Hunter et al., 2010). In addition, the condition worsens as various human activities recklessly pollute the scarcely available water resources (Inyinbor et al., 2018). One of them is the use of pesticides, as pesticides have a tendency to leach out directly into the soil system and thus contaminate the surface and groundwater (Székács et al., 2015). The metabolites of pesticides are also highly persistent in the environment and have harmful effects on soil fertility as well as aquatic and terrestrial ecosystems (Lushchak et al., 2018).

Pesticides are widely distributed in shallow groundwater and streams, and their occurrence follows the patterns of seasonal and geographic use of pesticides (Zhang et al., 2018). Most of the pesticides or their byproducts are highly resistant to photochemical and/or chemical degradation under distinctive

*Equal contribution.

environmental conditions (Katagi, 2004). Pesticide poisoning emerges either from regular intake of pesticides in minute quantities, called “chronic,” or in a single dose, called “acute” (Dawson et al., 2010). Acute intake includes hypersensitivity, giddiness, allergies, dermal abrasions, double vision, headaches, etc. (Tomer et al., 2015), whereas chronic intake includes damage to the central and peripheral nervous system as well as sarcomas, lymphomas, soft tissue sarcomas, reproductive disorders, leukemia, death, disruption of the immune system, birth defects, and cancers of the brain, bone, and stomach (Mostafalou and Abdollahi, 2013). LD50 and LC50 are the most common toxicity terms for defining levels of toxicity (Erhiriie et al., 2018). Pesticide pollution of groundwater and surface water becomes an issue of concern due to their long half-life and highly persistent nature (Jablonowski et al., 2011). Some pesticides result in the hydrolysis of acetylcholine to choline and acetic acid and also have an adverse effect on the activity of inhibiting other esterases (Colovic et al., 2013). Regular contact with pesticides over a short period may produce headaches, weakness in muscles, and sweating while protracted exposure to pesticides damages the liver, kidney, central nervous system, thyroid stimulating hormone, and bladder (Kamel and Hoppin, 2004; Rastogi et al., 2010). Pesticides have an adverse effect on cellular respiration, especially when they come in contact with the human population (Nicolopoulou-Stamati et al., 2016). Long-term exposure causes damage to the immune system as well as skin sensitization and cancer (Gangemi et al., 2016). Some pesticides are axonic toxic substances and cause a loss of motion to a living being (Jayaraj et al., 2016). The sodium channel comprises a layer protein with a hydrophilic inside. This hydrophobic inside is a viable minor gap that is formed precisely to strip away the incompletely charged water atoms from a sodium particle and make a thermodynamically great route for sodium particles to go through the membrane, enter the axon, and proliferate an activity potentially. The organisms gets incapacitated when they come direct contact with the pollutant (Silver et al., 2014). The pyrethroids are intense inhibitors of mitochondrial complex I (Field et al., 2017). Scientists nowadays have shown great concern about the effects of pesticides and their residues in humans as well as soil and water ecosystems (Carvalho, 2017). Therefore, the removal of pesticides from aqueous streams has become an issue of immense environmental significance in recent years (Huang et al., 2018). To overcome this problematic scenario, advanced oxidation processes (AOPs), homogeneous and heterogeneous photochemical oxidation have proven their efficiency (Muruganandham et al., 2014).

2 Oxidation process to degrade pesticides in water

In general, pesticide removal from water can be achieved by oxidation. The traditionally used oxidation methods are wet oxidation, electrochemical oxidation, chemical oxidation, and biological oxidation (Rasalingam et al., 2014). This is followed by the AOPs, which use ultraviolet irradiation catalysts and a combinations of oxidants to generate hydroxyl radicals ($\text{OH}\cdot$) in solutions; they have attracted interest for pesticide degradation in water or wastewater (Brienza and Katsoyiannis, 2017).

2.1 Wet oxidation

In this process, both organic and inorganic compounds get oxidized in the aqueous phase, with the presence of oxygen or air, at high temperature and high pressure conditions (Leonhauser et al., 2014). The temperature oscillates between 150°C and 350°C for the degradation of compounds, and it also depends upon the nature of the compounds. The pressure during the process ranges from 20 to 200 bars, which results in a COD removal of 75%–90% (Li et al., 1991). The mechanism underlying its process is simply a free radical process. Nitro functional groups and halogenated compounds have been found difficult to degrade by the wet oxidation process (Scott and Ollis, 1997).

2.2 Electrochemical oxidation

The removal of organic compounds in water solutions via electrochemical oxidation has been reported in some pilot-scale studies. The mechanism underlying electrochemical processes involves three main stages: electrooxidation, electrocoagulation, and electroflotation (Selva et al., 2017). Few studies have been found in the literature regarding the electrochemical oxidation of pesticides. However, phenolic compounds can be easily disintegrated by this method. This method is proven to remove COD, turbidity, and color when integrated with coagulation processes (Lebik-Elhadi et al., 2018).

2.3 Biological oxidation

The use of activated sludge in biological oxidation has numerous advantages in the degradation of organic compounds (Butler et al., 2017). However, various pesticides cannot be effectively degraded by this process in the treatment of natural, residual,

or municipal wastewaters (Giannakis et al., 2017). The major drawback of this process is the generation of highly toxic sludge, which comes from treating phenolic, ether aliphatic, and nitroaromatic compounds (Bartolomeu et al., 2018). Biological treatment involves two kinds of processes: anaerobic and aerobic. Out of these, aerobic processes are used overall because of their high operational simplicity and high efficiency. These processes can efficiently decrease the COD value to an extent and result in the generation of useful byproducts (Puyol et al., 2017).

2.4 Chemical oxidation

The chemical oxidation process involves the transfer of electrons from one substance to another to obtain different oxidation potentials. Chemical oxidation processes are regarded as reliable techniques for the degradation of both organic and inorganic contaminants in wastewater (Chiron et al., 2000).

2.5 Advanced oxidation processes

AOP technologies were first designed and reported by Glaze et al. (1987). They are defined as a process that involves the generation of highly reactive oxidizing species capable of degrading organic contaminants (Glaze et al., 1987). AOPs have significant importance in the removal of pollutants and in the restoration of environmental applications. They are regarded as highly efficient physicochemical processes having good thermodynamic viability with the anticipation of free radicals that are able to degrade the chemical structure of compounds or contaminants (Wang and Xu, 2012). AOPs rely on hydroxyl radicals that have good oxidation capability. Besides hydroxyl radicals, AOPs are also reported to generate various oxidizing species (Deng and Zhao, 2015).

In photochemical reactions, hydroxyl radicals are generated during the photolysis of water molecules (Cervera and Esplugas, 1983).

Photolysis mostly involves the interface of molecules with light to dissociates them into fragments. This process generates a large number of reaction intermediates that lower the kinetics of the contaminants (Steinberg and Paul, 2008).

Photochemical treatment also has some drawbacks or negative aspects in its application, partly because the cost of UV

production is very high (Reza et al., 2017). In a photochemical reaction or degradation, only the absorbed and a fraction of light are used, which brings chemical changes. This makes photochemical treatment a slow kinetic and low yield process (Nome et al., 2017). Sometimes other oxidants such as ozone, hydrogen peroxide, or semiconductors or metallic salts such as titanium dioxide are used to catalyze the photochemical reactions, and this is an AOP (Gautam and Chattopadhyaya, 2016). Sometimes, solar lights are used instead of a UV lamp to degrade the contaminants, although no effect was observed during the degradation of contaminants (Gautam and Chattopadhyaya, 2016).

2.6 Photocatalytic oxidation

The photocatalyst producing surface oxidation is the main phenomenon of photocatalytic oxidation, which removes both the pathogen bacteria and the organic compounds when exposed to a fluorescent lamp or direct sunlight (Tsydenova et al., 2015). A photocatalyst can also be used in combination with NO_x to purify the contaminated environment. This process has been proven to be the best for the mineralization of organic and inorganic pollutants in wastewater (Ameta et al., 2013). They offer several advantages over other oxidation systems as they result in the complete oxidation of pesticides and other hydrocarbons within a few hours. The catalysts used in the photocatalytic oxidation system are cost effective and are adaptable to designed reactor systems, resulting in the oxidation of contaminants in ppb value (Bagheri et al., 2017). Photocatalytic oxidation doesn't form polycyclized compounds after mineralization. The various catalysts used as potent photocatalysts have been reported and studied, and include ZnS, CdS, ZnO, Cr₂O₃, WO₃, SnO₂, ZrO₂, lanthanide tantalate, niobium oxides, TiO₂/SiO₂, etc. (Bagheri et al., 2017). Among these, TiO₂ is one of the most promising and popular materials because of its environmental stability under various conditions. The other advantages of TiO₂ over other catalysts are that they are easily commercially available, have different allotropes, have enhanced photoactive properties, can be easily coated on solid support, and easily prepared in the laboratory (Regalado-Raya et al., 2018). The photocatalytic activity of TiO₂ can be well studied in the fixed bed studies as well in suspension form. Further TiO₂-based catalysts such as TiO₂/SiO₂, TiO₂/In₂O₃, TiO₂/ZrO₂, Ru/TiO₂, Rh/TiO₂, Pt/TiO₂, etc., have proven to be good photocatalysts (Dzinun et al., 2019).

2.6.1 Properties and characteristics of different photocatalysts

The degradation of organic wastewater with the help of TiO_2 has been reported by various authors. It also decomposes various organic compounds in water (Poulopoulos et al., 2019). Matthews et al. (1990) reported the action of TiO_2 suspensions to improve the detoxification of hazardous wastewater. The spectral absorption characteristics of TiO_2 allow its extinction in UV-A, B, and C regions, giving space for the use of medium-pressure mercury arcs (Matthews et al., 1990). The catalyst exhibits good selectivity, stable performance, and good accessibility of products and reactants (Dumesic et al., 2008). Different types of photocatalysts and their light sources used in pollutant degradation are depicted in Table 1.

2.6.1.1 Catalysts and reactor systems

Most of the photocatalytic reaction involved in the purification of water is carried out using a catalyst in the contaminated water generating a low solid mass (Chong et al., 2010). The configuration of the reactor system includes a fluidized bed, a field bed, an immobilized membrane, a wall reactor, and optic fibers. It is universally accepted that maximum efficiency is obtained using this approach (Deng et al., 2019). Later on, the cost of removing the catalyst from the water offsets this advantage. Although most of the reported work was carried out in slurry reactors with high catalytic efficiencies. Using such systems in pilot-scale studies poses various challenges, especially optimum radiation absorption. The presence of scattering and the absorption of radiation in these systems make the determination of light distribution systems difficult (Ola and Maroto-Valer, 2015).

Various studies have been reported that signify the enhancement of photoactive compounds by coupling various semiconductors. This is accelerated by the separation process, followed by higher disposability of the reactive electron-hole pair. This process is complex and the chemistry of the reaction intermediates and substrates plays a significant role in determining the photoactivity of a catalyst (Ayati et al., 2014).

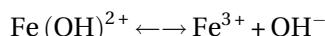
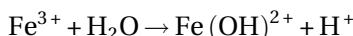
In the photocatalytic degradation of cellulose, bleaching effluent, and nitrobenzene, TiO_2 was reported as better than ZnO whereas ZnO exhibited higher efficiency in the mineralization of black liquor and reactive dyes (Cristina Yeber et al., 2000). Future studies are needed to determine the role of various catalysts and the process taking place during such a reaction system.

Table 1 Different types of photocatalysts and their light sources used in the degradation of pollutants.

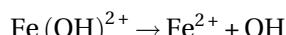
S. no.	Photocatalyst	Type of pollutant	Light source	Substrate concentration	Optimum substrate concentration	References
1	Titanium dioxide	Acephate	UV	0.7–1.0	1	Rahman et al. (2006)
2	Titanium dioxide	Bentazon	UV	0.02–0.062	0.02	Pourata et al. (2009)
3	Titanium dioxide	Carbofuran	UV	0.023–0.113	0.09	Mahalakshmi et al. (2007)
4	Titanium dioxide	Daminozid	UV	0.50–1.5	0.75	Qamar et al. (2006)
5	Zinc oxide	Diazinon	UV	0.003–0.005	0.003	Daneshvar et al. (2007)
6	Titanium dioxide	Diphenamid	UV	0.1–0.6	0.6	Rahman et al. (2016)
7	Titanium dioxide	Dimethoate	UV	0.0195–0.49	0.0195	Chen et al. (2007)
8	Titanium dioxide	Erioglaucine	UV	0.006–0.02	0.006	Daneshvar et al. (2006)
9	Titanium dioxide	Indole-3-acetic acid	UV	0.2–0.6	0.3	Qamar and Muneer (2005)
10	Titanium dioxide	Indole-3-buteric acid	UV	0.18–0.6	0.3	Qamar and Muneer (2005)
11	Titanium dioxide	Isoproturon	Solar	0.25–0.75	0.75	Haque and Muneer (2003)
12	N-TiO ₂	Lindane	Visible	3.45×10^{-5} – 2.07×10^{-4}	3.45×10^{-5}	Senthilnathan and Philip (2010)
13	Re-TiO ₂	Methamidophos	UV	0.1–0.5	0.1	Zhang et al. (2009)
14	Zinc oxide	Phenol	Solar	0.027–0.32	0.027	Pardeshi and Patil (2008)
15	Titanium dioxide	Phosphamidon	UV	0.1–0.6	0.45	Rahman and Muneer (2005)
16	Titanium dioxide	Propham	UV	0.25–1.3	0.75	Muneer et al. (2005)
17	Titanium dioxide	Prophachlor	UV	0.2–1.35	1.35	Muneer et al. (2005)
18	Zinc oxide	Resorcinol	Solar	0.05–0.272	0.05	Pardeshi and Patil (2009)
19	Titanium dioxide	Thiram	Solar	4.2×10^{-4} – 16.6×10^{-4}	4.2×10^{-4}	Kaneco et al. (2004)
20	Titanium dioxide	Triclopyr	UV	0.25–1.0	0.75	Qamar et al. (2006)
21	Titanium dioxide	Tebuthiuron	UV	0.25–1.5	1.0	Muneer et al. (2005)
22	Zinc oxide	2,4-Dinitrophenol	UV	0.05–0.09	0.09	Vora et al. (2009)
23	Co-TiO ₂	2-Chlorophenol	UV	0.097–0.583	0.097	Barakat et al. (2005)

2.6.2 Catalyst used in advanced oxidation processes

2.6.2.1 Hydrogen peroxide



Hydrogen peroxide, when added to ozone, initiates the degradation cycle of ozone by generating OH radicals (Gautam and Chattopadhyaya, 2016). Paillard (1988) reported the removal of atrazine in water using this process. Findings suggest that the combination of hydrogen peroxide with ozone shows better degradation compared to ozone-treated. The optimum conditions like mass ratio range from 0.35 to 0.45. Another study by Duguet et al. (1985) reported that the best results were achieved when hydrogen peroxide was added after oxidation with ozone of highly reactive compounds.

2.6.2.2 Ozone-UV radiation (O_3/UV)


The use of a UV/ O_3 introduction system brings the rapid and complete degradation of organic compounds. They attack with a short molecular chain (formic acid, oxalic acid, glyoxylic acid, glyoxal) on the complex structure of pesticides, resulting in the mineralization of pesticides (Machulek et al., 2013). Various studies have been reported to demonstrate the efficiency of the O_3/UV system in the treatment of various organic and inorganic compounds (Amor et al., 2019).

2.6.2.3 Photo-Fenton and Fenton-like systems

The addition of Fe^{3+} ions to the UV/H_2O_2 process to enhance the degradation of organic compounds is called the photo-Fenton oxidation process. This oxidation process solely depends upon the pH of the solution. At low pH ($pH=3$), the Fe^{3+} ions are reduced to $Fe(OH)^{2+}$ (Aramyan and Moussavi, 2017).

When Fe^{3+} comes in contact with UV irradiation, it undergoes decomposition and produces Fe^{2+} and OH ions:

These two processes have been widely used with a high degradation rate of several contaminants, including pesticides. The optimum pH used in these two processes ranges from 2.5 to 4.

According to the annual report of pesticides, a Fenton catalyst is possible in PSA reactors. A total of 500 mg TOC/L of pesticides are 80% destroyed in 3 h using a PSA-CPCs field. Sun and

Pignatello (1993) documented that various herbicides and pesticides, including parathion and malathion, can be fully degraded by the $\text{H}_2\text{O}_2/h\nu - \text{Fe}(\text{III})$ process. Various other studies with higher degradation rates were also reported using these processes (Sun and Pignatello, 1993).

3 Heterogeneous photocatalysis

In heterogeneous photocatalysis, the interaction of a photon with a catalyst produces the appearance of hole pairs/electrons. Bahena and Martínez (2006) reported that heterogeneous photocatalysis is a good and valid method for the mineralization of a number of pesticides such as alachlor, atrazine, and chlorbromuron in water systems under nonexpensive solar irradiation.

The concept and mechanism of heterogeneous photocatalytic degradation are quite simple. In this process, it is used under irradiation of a stable solid semiconductor for stimulating a reaction at the solution/solid interface (Ibhadon and Fitzpatrick, 2013). In the case of semiconductor particles, the excitation of a photon provides the circumstances for carrier separation, although there is no ohmic contact to generate out the majority carriers by transferring them to the second electrode by the external conductor. This means that the two charge carriers interact at the electrolyte/semiconductor interface with the species in solution (Beranek, 2011). During steady-state conditions, the quantity of charge transported to the electrolyte must be equivalent and opposite for the two types of carriers. Hence, the semiconductor-mediated redox processes are reported to involve an electron transfer diagonally at the interface (Tan et al., 2019). When hole pairs/electrons are generated, the electron moves away to the semiconductor as the hole pairs or electrons migrates toward the surface. These charge carriers are parted quickly as they can be used for the reduction or oxidation of the pollutants (Tan et al., 2019).

3.1 Principle of heterogeneous photocatalysis

Catalyst is the substance that has a tendency to convert the reactants into products without being consumed itself (Solel et al., 2019). The main advantage of using a heterogeneous catalyst is that solid material is used as a catalyst, which is easy to separate from the gas and liquid reactants and products (Védrine, 2017). The basic principle of heterogeneous catalysis is when a semiconductor photocatalyst is illuminated in the presence of

light with the intensity of photons is equal to or greater than its bandgap energy (Ibhadon and Fitzpatrick, 2013).

3.2 Kinetics of heterogeneous photocatalysis

The mechanism and kinetics of the heterogeneous photocatalytic process solely depend on experimental conditions such as the dose, type of catalyst, pH of the solution, temperature, presence of an oxidant, initial concentration, etc. Various experimental results concluded that the rate of photocatalytic oxidation of pesticides with TiO_2 fitted the Langmuir-Hinshelwood (L-H) kinetics model (AI-Ekabi et al., 1988).

$$r = \frac{dC}{dt} = kKC/(1 + KC)$$

where

r =oxidation rate of the reactant (mg/min)

C =reactant concentration (mg/L)

T =illumination time

K =reaction rate constant (mg/L)

K =adsorption coefficient of the reactant (L/mg)

4 Conclusion

This chapter focuses on the various methods and advancements in heterogeneous photocatalysis in the treatment of wastewater. The functions of another oxidation system on photocatalytic degradation of pesticides have also been explored. Out of various catalysts, TiO_2 has been recommended to be viable and efficient for the photocatalytic mineralization and degradation of multiple pesticides and other contaminants in wastewater. However, the efficiency of TiO_2 depends upon the operating parameters such as light intensity, catalyst amount, initial pH of the medium, pollutant type, etc. The optimization parameters play vital roles in the efficient design of future photocatalytic oxidation processes to ensure a safe, cost-effective, and sustainable operation. However, certain ionic components influence the photocatalytic degradation rate of phenols and pesticides. Recent advances in TiO_2 photocatalysis using doped metals and non-metals have reported as improving the degradation rate. Future work should address the optimization of these various oxidation systems and focus on the applicability in pilot-scale reactors to collaborate with industrial partners to deliver the benefits of this technology to society.

References

AI-Ekabi, H., Serpone, N., Al-Ekabi, H., Serpone, N., 1988. Kinetics studies in heterogeneous photocatalysis. I. Photocat[1] H. Al-Ekabi and N. Serpone, "kinetics studies in heterogeneous photocatalysis". I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. *J. Phys. Chem.* 92, 5726–5731. <https://doi.org/10.1021/j100331a036>.

Ameta, R., Benjamin, S., Ameta, A., Ameta, S.C., 2013. Photocatalytic degradation of organic pollutants: a review. *Mater. Sci. Forum* 734, 247–272. <https://doi.org/10.4028/www.scientific.net/MSF734.247>.

Amor, C., Marchão, L., Lucas, M.S., Peres, J.A., 2019. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: a review. *Water.* 11. <https://doi.org/10.3390/w11020205>.

Aramyan, S.M., Moussavi, M., 2017. Advances in fenton and fenton based oxidation processes for industrial effluent contaminants control—a review. *Int. J. Environ. Sci. Nat. Resour.* 2. <https://doi.org/10.19080/ijesnr.2017.02.555594>.

Ayati, A., Ahmadpour, A., Bamoharram, F.F., et al., 2014. A review on catalytic applications of Au/TiO₂ nanoparticles in the removal of water pollutant. *Chemosphere* 107, 163–174.

Bagheri, S., Termehyousefi, A., Do TO, 2017. Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. *Cat. Sci. Technol.* 7, 4548–4569.

Bahena, C.L., Martínez, S.S., 2006. Photodegradation of chlortetracycline, atrazine, and alachlor in aqueous systems under solar irradiation. *Int. J. Photogr.* 2006. <https://doi.org/10.1155/IJP/2006/81808>.

Barakat, M.A., Schaeffer, H., Hayes, G., Ismat-Shah, S., 2005. Photocatalytic degradation of 2-chlorophenol by Co-doped TiO₂ nanoparticles. *Appl. Catal. B Environ.* 57, 23–30. <https://doi.org/10.1016/j.apcatb.2004.10.001>.

Bartolomeu, M., Neves, M.G.P.M.S., Faustino, M.A.F., Almeida, A., 2018. Wastewater chemical contaminants: remediation by advanced oxidation processes. *Photochem. Photobiol. Sci.* 17, 1573–1598.

Beranek, R., 2011. (Photo)electrochemical methods for the determination of the band edge positions of TiO₂-based nanomaterials. *Adv. Phys. Chem.* 2011, 1–20.

Brienza, M., Katsoyiannis, I.A., 2017. Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater. *Sustain.* 9. <https://doi.org/10.3390/su9091604>.

Butler, E., Hung, Y.-T., Suleiman Al Ahmad, M., et al., 2017. Oxidation pond for municipal wastewater treatment. *Appl. Water. Sci.* 7, 31–51. <https://doi.org/10.1007/s13201-015-0285-z>.

Carvalho, F.P., 2017. Pesticides, environment, and food safety. *Food Energy Secur.* 6, 48–60.

Cervera, S., Esplugas, S., 1983. Obtención de hidrógeno mediante fotólisis del agua. *Energía* 9, 103–107.

Chen, J.Q., Wang, D., Zhu, M.X., Gao, C.J., 2007. Photocatalytic degradation of dimethoate using nanosized TiO₂ powder. *Desalination* 207, 87–94. <https://doi.org/10.1016/j.desal.2006.06.012>.

Chiron, S., Fernandez-Alba, A., Rodriguez, A., Garcia-Calvo, E., 2000. Pesticide chemical oxidation: state-of-the-art. *Water Res.* 34, 366–377.

Chong, M.N., Jin, B., Chow, C.W.K., Saint, C., 2010. Recent developments in photocatalytic water treatment technology: a review. *Water Res.* 44, 2997–3027.

Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. *Curr. Neuropharmacol.* 11, 315–335. <https://doi.org/10.2174/1570159x11311030006>.

Cristina Yeber, M., Rodríguez, J., Freer, J., et al., 2000. Photocatalytic degradation of cellulose bleaching effluent by supported TiO₂ and ZnO. *Chemosphere* 41, 1193–1197. [https://doi.org/10.1016/S0045-6535\(99\)00551-2](https://doi.org/10.1016/S0045-6535(99)00551-2).

Daneshvar, N., Salari, D., Niaezi, A., Khataee, A.R., 2006. Photocatalytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide: comparison and modeling of reaction kinetics. *J. Environ. Sci. Health B* 41, 1273–1290. <https://doi.org/10.1080/03601230600962302>.

Daneshvar, N., Aber, S., Seyed Dorraji, M.S., et al., 2007. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. *Sep. Purif. Technol.* 58, 91–98. <https://doi.org/10.1016/j.seppur.2007.07.016>.

Dawson, A.H., Eddleston, M., Senarathna, L., et al., 2010. Acute human lethal toxicity of agricultural pesticides: a prospective cohort study. *PLoS Med.* 7. <https://doi.org/10.1371/journal.pmed.1000357>.

Deng, Y., Zhao, R., 2015. Advanced oxidation processes (AOPs) in wastewater treatment. *Curr. Pollut. Rep.* 1, 167–176.

Deng, F., Zou, J.-P., Zhao, L.-N., et al., 2019. Nanomaterial-based photocatalytic hydrogen production. In: *Nanomaterials for the Removal of Pollutants and Resource Reutilization*. Elsevier, pp. 59–82.

Duguet, J.P., Brodard, E., Dussert, B., Mallevialle, J., 1985. Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide. *J. Int. Ozone Assoc.* 7 (3), 241–258.

Dumesic, J.A., Huber, G.W., Boudart, M., 2008. Principles of heterogeneous catalysis. In: *Handbook of Heterogeneous Catalysis*. Wiley, <https://doi.org/10.1002/9783527610044.hetcat0001>.

Dzinun, H., Othman, M.H.D., Ismail, A.F., 2019. Photocatalytic performance of TiO₂/clinoptilolite: comparison study in suspension and hybrid photocatalytic membrane reactor. *Chemosphere* 228, 241–248. <https://doi.org/10.1016/j.chemosphere.2019.04.118>.

Erhiahie, E.O., Ihekwereme, C.P., Ilodigwe, E.E., 2018. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. *Interdiscip. Toxicol.* 11, 5–12. <https://doi.org/10.2478/intox-2018-0001>.

Field, L.M., Emry Davies, T.G., O'Reilly, A.O., et al., 2017. Voltage-gated sodium channels as targets for pyrethroid insecticides. *Eur. Biophys. J.* 46, 675–679. <https://doi.org/10.1007/s00249-016-1195-1>.

Gangemi, S., Gofita, E., Costa, C., et al., 2016. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (review). *Int. J. Mol. Med.* 38, 1012–1020.

Gautam, R.K., Chattopadhyaya, M.C., 2016. Advanced oxidation process-based nanomaterials for the remediation of recalcitrant pollutants. In: *Nanomaterials for Wastewater Remediation*. Elsevier, pp. 33–48. <https://doi.org/10.1016/B978-0-12-804609-8.00003-0>.

Giannakis, S., Rtimi, S., Pulgarin, C., 2017. Light-assisted advanced oxidation processes for the elimination of chemical and microbiological pollution of wastewaters in developed and developing countries. *Molecules*. 22. <https://doi.org/10.3390/molecules22071070>.

Glaze, W.H., Kang, J.W., Chapin, D.H., 1987. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. *Ozone Sci. Eng.* 9, 335–352. <https://doi.org/10.1080/01919518708552148>.

Haque, M.M., Muneer, M., 2003. Heterogeneous photocatalysed degradation of a herbicide derivative, isoproturon in aqueous suspension of titanium dioxide. *J. Environ. Manag.* 69, 169–176. [https://doi.org/10.1016/S0301-4797\(03\)00143-9](https://doi.org/10.1016/S0301-4797(03)00143-9).

Huang, Y., Xiao, L., Li, F., et al., 2018. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. *Molecules*. 23 (9), E2313.

Hunter, P.R., MacDonald, A.M., Carter, R.C., 2010. Water supply and health. *PLoS Med.* 7, 1–9. <https://doi.org/10.1371/journal.pmed.1000361>.

Ibhadon, A.O., Fitzpatrick, P., 2013. Heterogeneous photocatalysis: recent advances and applications. *Catalysts* 3, 189–218.

Inyinbor, A.A., Adebessin, B.O., Oluyori, A.P., et al., 2018. Water pollution: effects, prevention, and climatic impact. In: *Water Challenges of an Urbanizing World*. InTech, <https://doi.org/10.5772/intechopen.72018>.

Jablonowski, N.D., Schäffer, A., Burauel, P., 2011. Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. *Environ. Sci. Pollut. Res.* 18, 328–331. <https://doi.org/10.1007/s11356-010-0431-y>.

Jayaraj, R., Megha, P., Sreedev, P., 2016. Review article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. *Interdiscip. Toxicol.* 9, 90–100.

Kamel, F., Hoppin, J.A., 2004. Association of pesticide exposure with neurologic dysfunction and disease. *Environ. Health Perspect.* 112, 950–958.

Kaneco, S., Rahman, M.A., Suzuki, T., et al., 2004. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. *J. Photochem. Photobiol. A Chem.* 163, 419–424. <https://doi.org/10.1016/j.jphotochem.2004.01.012>.

Katagi, T., 2004. Photodegradation of pesticides on plant and soil surfaces. In: *Reviews of Environmental Contamination and Toxicology*. Springer, New York, NY, pp. 1–78.

Lebik-Elhadi, H., Frontistis, Z., Ait-Amar, H., et al., 2018. Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode: role of operating parameters and matrix effect. *Process. Saf. Environ. Prot.* 116, 535–541. <https://doi.org/10.1016/j.psep.2018.03.021>.

Leonhauser, J., Pawar, J., Birkenbeul, U., 2014. Novel technologies for the elimination of pollutants and hazardous substances in the chemical and pharmaceutical industries. In: *Industrial Wastewater Treatment, Recycling and Reuse*. Butterworth-Heinemann, pp. 215–234. <https://doi.org/10.1016/C2012-0-06975-X>.

Li, L., Chen, P., Gloyna, E.E., 1991. Generalized kinetic model for wet oxidation of organic compounds. *AICHE J.* 37, 1687–1697. <https://doi.org/10.1002/aic.69037112>.

Lushchak, V.I., Matviishyn, T.M., Husak, V.V., et al., 2018. Pesticide toxicity: a mechanistic approach. *EXCLI J.* 17, 1101–1136.

Machulek, A., Oliveira, S.C., Osugi, M.E., et al., 2013. Application of different advanced oxidation processes for the degradation of organic pollutants. In: *Organic Pollutants—Monitoring, Risk and Treatment*. IntechOpen, <https://doi.org/10.5772/53188>.

Mahalakshmi, M., Arabindoo, B., Palanichamy, M., Murugesan, V., 2007. Photocatalytic degradation of carbofuran using semiconductor oxides. *J. Hazard. Mater.* 143, 240–245. <https://doi.org/10.1016/j.jhazmat.2006.09.008>.

Matthews, R.W., Abdullah, M., Low, G.K.C., 1990. Photocatalytic oxidation for total organic carbon analysis. *Anal. Chim. Acta* 233, 171–179. [https://doi.org/10.1016/S0003-2670\(00\)83476-5](https://doi.org/10.1016/S0003-2670(00)83476-5).

Mostafalou, S., Abdollahi, M., 2013. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. *Toxicol. Appl. Pharmacol.* 268, 157–177.

Muneer, M., Qamar, M., Saquib, M., Bahneemann, D.W., 2005. Heterogeneous photocatalysed reaction of three selected pesticide derivatives, propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide. *Chemosphere* 61, 457–468. <https://doi.org/10.1016/j.chemosphere.2005.03.006>.

Muruganandham, M., Suri, R.P.S., Jafari, S., et al., 2014. Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. *Int. J. Photoenergy* 2014, 1–21.

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., et al., 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. *Front. Public Health.* 4⁴<https://doi.org/10.3389/fpubh.2016.00148>.

Nome, R.A., Costa, A.F., Lepkoski, J., et al., 2017. Characterizing slow photochemical reaction kinetics by enhanced sampling of rare events with capillary optical fibers and Kramers' theory. *ACS Omega* 2, 2719–2727. <https://doi.org/10.1021/acsomega.7b00004>.

Ola, O., Maroto-Valer, M.M., 2015. Review of material design and reactor engineering on TiO₂ photocatalysis for CO₂ reduction. *J. Photochem. Photobiol. C: Photochem. Rev.* 24, 16–42.

Paillard, H., 1988. Optimal conditions for applying an ozone-hydrogen peroxide oxidizing system. *Water Res.* 22, 91–103.

Pardeshi, S.K., Patil, A.B., 2008. A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. *Sol. Energy* 82, 700–705. <https://doi.org/10.1016/j.solener.2008.02.007>.

Pardeshi, S.K., Patil, A.B., 2009. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechano-chemical method. *J. Mol. Catal. A Chem.* 308, 32–40. <https://doi.org/10.1016/j.molcata.2009.03.023>.

Poulopoulos, S.G., Yerkinova, A., Ulykbanova, G., Inglezakis, V.J., 2019. Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO₂, H₂O₂ and Fe(III). *PLoS One.* 14. <https://doi.org/10.1371/journal.pone.0216745>.

Pourata, R., Khataee, A.R., Aber, S., Daneshvar, N., 2009. Removal of the herbicide Bentazon from contaminated water in the presence of synthesized nanocrystalline TiO₂ powders under irradiation of UV-C light. *Desalination* 249, 301–307. <https://doi.org/10.1016/j.desal.2008.10.033>.

Puyol, D., Batstone, D.J., Hülsen, T., et al., 2017. Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. *Front. Microbiol.* 7, 1–23.

Qamar, M., Muneer, M., 2005. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide. *J. Hazard. Mater.* 120, 219–227. <https://doi.org/10.1016/j.jhazmat.2005.01.005>.

Qamar, M., Muneer, M., Bahnemann, D., 2006. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. *J. Environ. Manag.* 80, 99–106. <https://doi.org/10.1016/j.jenvman.2005.09.002>.

Rahman, M.A., Muneer, M., 2005. Heterogeneous photocatalytic degradation of picloram, dicamba, and floumeturon in aqueous suspensions of titanium dioxide. *J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes* 40, 247–267. <https://doi.org/10.1081/PFC-200045546>.

Rahman, M.A., Qamar, M., Muneer, M., Bahnemann, D., 2006. Semiconductor mediated photocatalysed degradation of a pesticide derivative, acephate in aqueous suspensions of titanium dioxide. *J. Adv. Oxid. Technol.* 9. <https://doi.org/10.1515/jaots-2006-0114>.

Rahman, M.A., Muneer, M., Hahnemann, D., 2016. Photocatalysed degradation of a herbicide derivative, diphenamid in aqueous suspension of titanium dioxide. *J. Adv. Oxid. Technol.* 6. <https://doi.org/10.1515/jaots-2003-0116>.

Rasalingam, S., Peng, R., Koodali, R.T., 2014. Removal of hazardous pollutants from wastewaters: applications of TiO₂-SiO₂ mixed oxide materials. *J. Nanomater.* 2014, 1–42.

Rastogi, S.K., Tripathi, S., Ravishanker, D., 2010. A study of neurologic symptoms on exposure to organophosphate pesticides in the children of agricultural workers. *Indian J. Occup. Environ. Med.* 14, 54–57. <https://doi.org/10.4103/0019-5278.72242>.

Regalado-Raya, R., Romero-Romero, R., Avilés-García, O., Espino-Valencia, J., 2018. Synthesis and characterization of TiOSynthesis and characterization of TiO₂/SiO₂ monoliths as photocatalysts on methanol oxidation. *Int. J. Photoenergy*. 2018. <https://doi.org/10.1155/2018/8478240>.

Reza, K.M., Kurny, A., Gulshan, F., 2017. Parameters affecting the photocatalytic degradation of dyes using TiO₂: a review. *Appl Water Sci* 7, 1569–1578. <https://doi.org/10.1007/s13201-015-0367-y>.

Scott, J.P., Ollis, D.F., 1997. Integration of chemical and biological oxidation processes for water treatment: II. Recent illustrations and experiences. *J. Adv. Oxid. Technol.* 2 (3), 374–381.

Selva, T.M.G., de Araujo, W.R., Bacil, R.P., Paixão, T.R.L.C., 2017. Study of electrochemical oxidation and quantification of the pesticide pirimicarb using a boron-doped diamond electrode. *Electrochim. Acta* 246, 588–596. <https://doi.org/10.1016/j.electacta.2017.06.051>.

Senthilnathan, J., Philip, L., 2010. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO₂. *Chem. Eng. J.* 161, 83–92. <https://doi.org/10.1016/j.cej.2010.04.034>.

Silver, K.S., Du, Y., Nomura, Y., et al., 2014. Voltage-gated sodium channels as insecticide targets. *Adv. Insect. Phys.* 46, 389–433.

Solei, E., Tarannam, N., Kozuch, S., 2019. Catalysis: energy is the measure of all things. *Chem. Commun.* 55, 5306–5322. <https://doi.org/10.1039/c9cc00754g>.

Steinberg, C.E.W., Paul, A., 2008. Photolysis. In: *Encyclopedia of Ecology*. Elsevier, pp. 2724–2732, ISBN: 9780444637680.

Sun, Y., Pignatello, J.J., 1993. Photochemical reactions involved in the total mineralization of 2,4-D by Fe³⁺/H₂O₂/UV. *Environ. Sci. Technol.* 27, 304–310. <https://doi.org/10.1021/es00039a010>.

Székács, A., Mörtl, M., Darvas, B., 2015. Monitoring pesticide residues in surface and ground water in Hungary: surveys in 1990–2015. *J. Chem.* 2015, 1–15, <https://doi.org/10.1155/2015/717948>.

Tan, H.L., Abdi, F.F., Ng, Y.H., 2019. Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. *Chem. Soc. Rev.* 48, 1255–1271.

Tomer, V., Sangha, J.K., Ramya, H.G., 2015. Pesticide: an appraisal on human health implications. *Proc. Natl. Acad. Sci. India Sect. B Biol. Sci.* 85, 451–463. <https://doi.org/10.1007/s40011-014-0388-6>.

Tsydenova, O., Batoev, V., Batoeva, A., 2015. Solar-enhanced advanced oxidation processes for water treatment: simultaneous removal of pathogens and chemical pollutants. *Int. J. Environ. Res Public Health* 12, 9542–9561.

Védrine, J.C., 2017. Heterogeneous catalysis on metal oxides. *Catalysts* 7.

Vora, J.J., Chauhan, S.K., Parmar, K.C., et al., 2009. Kinetic study of application of ZnO as a photocatalyst in heterogeneous medium. *E-J. Chem.* 6, 531–536. <https://doi.org/10.1155/2009/139753>.

Wang, J.L., Xu, L.J., 2012. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. *Crit. Rev. Environ. Sci. Technol.* 42, 251–325. <https://doi.org/10.1080/10643389.2010.507698>.

Zhang, L., Yan, F., Su, M., et al., 2009. A study on the degradation of methamidophos in the presence of nano-TiO₂ catalyst doped with Re. *Russ. J. Inorg. Chem.* 54, 1210–1216. <https://doi.org/10.1134/S0036023609080075>.

Zhang, L., Yan, C., Guo, Q., et al., 2018. The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. *Int. J. Low Carbon Technol.* 13, 338–352. <https://doi.org/10.1093/ijlct/cty039>.