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1 Introduction
Water is the prerequisite to sustain life on Earth; however, the

reality is that the level of groundwater and the number of water bod-
ies are declining globally (Ola andMaroto-Valer, 2015; Hunter et al.,
2010). In addition, the condition worsens as various human activi-
ties recklessly pollute the scarcely available water resources
(Inyinbor et al., 2018). One of them is the use of pesticides, as pes-
ticides have a tendency to leach out directly into the soil system and
thus contaminate the surface and groundwater (Sz�ekács et al., 2015).
The metabolites of pesticides are also highly persistent in the envi-
ronment and have harmful effects on soil fertility as well as aquatic
and terrestrial ecosystems (Lushchak et al., 2018).

Pesticides are widely distributed in shallow groundwater and
streams, and their occurrence follows the patterns of seasonal
and geographic use of pesticides (Zhang et al., 2018). Most of
the pesticides or their byproducts are highly resistant to photo-
chemical and/or chemical degradation under distinctive
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environmental conditions (Katagi, 2004). Pesticide poisoning
emerges either from regular intake of pesticides in minute quan-
tities, called “chronic,” or in a single dose, called “acute” (Dawson
et al., 2010). Acute intake includes hypersensitivity, giddiness,
allergies, dermal abrasions, double vision, headaches, etc.
(Tomer et al., 2015), whereas chronic intake includes damage to
the central and peripheral nervous system as well as sarcomas,
lymphomas, soft tissue sarcomas, reproductive disorders, leuke-
mia, death, disruption of the immune system, birth defects, and
cancers of the brain, bone, and stomach (Mostafalou and
Abdollahi, 2013). LD50 and LC50 are the most common toxicity
terms for defining levels of toxicity (Erhirhie et al., 2018). Pesticide
pollution of groundwater and surface water becomes an issue of
concern due to their long half-life and highly persistent nature
( Jablonowski et al., 2011). Some pesticides result in the hydrolysis
of acetylcholine to choline and acetic acid and also have an
adverse effect on the activity of inhibiting other esterases
(Colovic et al., 2013). Regular contact with pesticides over a short
period may produce headaches, weakness in muscles, and sweat-
ing while protracted exposure to pesticides damages the liver, kid-
ney, central nervous system, thyroid stimulating hormone, and
bladder (Kamel and Hoppin, 2004; Rastogi et al., 2010). Pesticides
have an adverse effect on cellular respiration, especially when
they come in contact with the human population
(Nicolopoulou-Stamati et al., 2016). Long-term exposure causes
damage to the immune system as well as skin sensitization and
cancer (Gangemi et al., 2016). Some pesticides are axonic toxic
substances and cause a loss of motion to a living being ( Jayaraj
et al., 2016). The sodium channel comprises a layer protein with
a hydrophilic inside. This hydrophobic inside is a viable minor
gap that is formed precisely to strip away the incompletely
charged water atoms from a sodium particle and make a thermo-
dynamically great route for sodium particles to go through the
membrane, enter the axon, and proliferate an activity potentially.
The organisms gets incapacitated when they come direct contact
with the pollutant (Silver et al., 2014). The pyrethroids are intense
inhibitors of mitochondrial complex I (Field et al., 2017). Scien-
tists nowadays have shown great concern about the effects of pes-
ticides and their residues in humans as well as soil and water
ecosystems (Carvalho, 2017). Therefore, the removal of pesticides
from aqueous streams has become an issue of immense environ-
mental significance in recent years (Huang et al., 2018). To over-
come this problematic scenario, advanced oxidation processes
(AOPs), homogeneous and heterogeneous photochemical oxida-
tion have proven their efficiency (Muruganandham et al., 2014).
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2 Oxidation process to degrade pesticides
in water

In general, pesticide removal from water can be achieved by
oxidation. The traditionally used oxidation methods are wet oxi-
dation, electrochemical oxidation, chemical oxidation, and bio-
logical oxidation (Rasalingam et al., 2014). This is followed by
the AOPs, which use ultraviolet irradiation catalysts and a combi-
nations of oxidants to generate hydroxyl radicals (OH•) in solu-
tions; they have attracted interest for pesticide degradation in
water or wastewater (Brienza and Katsoyiannis, 2017).

2.1 Wet oxidation
In this process, both organic and inorganic compounds get

oxidized in the aqueous phase, with the presence of oxygen or
air, at high temperature and high pressure conditions
(Leonhauser et al., 2014). The temperature oscillates between
150°C and 350°C for the degradation of compounds, and it also
depends upon the nature of the compounds. The pressure during
the process ranges from 20 to 200bars, which results in a COD
removal of 75%–90% (Li et al., 1991). The mechanism underlying
its process is simply a free radical process. Nitro functional groups
and halogenated compounds have been found difficult to degrade
by the wet oxidation process (Scott and Ollis, 1997).

2.2 Electrochemical oxidation
The removal of organic compounds in water solutions via elec-

trochemical oxidation has been reported in some pilot-scale stud-
ies. The mechanism underlying electrochemical processes
involves three main stages: electrooxidation, electrocoagulation,
and electroflotation (Selva et al., 2017). Few studies have been
found in the literature regarding the electrochemical oxidation
of pesticides. However, phenolic compounds can be easily disin-
tegrated by this method. This method is proven to remove COD,
turbidity, and color when integrated with coagulation processes
(Lebik-Elhadi et al., 2018).

2.3 Biological oxidation
The use of activated sludge in biological oxidation has numer-

ous advantages in the degradation of organic compounds (Butler
et al., 2017). However, various pesticides cannot be effectively
degraded by this process in the treatment of natural, residual,



164 Chapter 9 Pesticides in wastewater
or municipal wastewaters (Giannakis et al., 2017). The major
drawback of this process is the generation of highly toxic sludge,
which comes from treating phenolic, ether aliphatic, and
nitroaromatic compounds (Bartolomeu et al., 2018). Biological
treatment involves two kinds of processes: anaerobic and aerobic.
Out of these, aerobic processes are used overall because of their
high operational simplicity and high efficiency. These processes
can efficiently decrease the COD value to an extent and result
in the generation of useful byproducts (Puyol et al., 2017).
2.4 Chemical oxidation
The chemical oxidation process involves the transfer of elec-

trons from one substance to another to obtain different oxidation
potentials. Chemical oxidation processes are regarded as reliable
techniques for the degradation of both organic and inorganic con-
taminants in wastewater (Chiron et al., 2000).
2.5 Advanced oxidation processes
AOP technologies were first designed and reported by Glaze

et al. (1987). They are defined as a process that involves the gen-
eration of highly reactive oxidizing species capable of degrading
organic contaminants (Glaze et al., 1987). AOPs have significant
importance in the removal of pollutants and in the restoration
of environmental applications. They are regarded as highly effi-
cient physicochemical processes having good thermodynamic
viability with the anticipation of free radicals that are able to
degrade the chemical structure of compounds or contaminants
(Wang and Xu, 2012). AOPs rely on hydroxyl radicals that have
good oxidation capability. Besides hydroxyl radicals, AOPs are also
reported to generate various oxidizing species (Deng and
Zhao, 2015).

In photochemical reactions, hydroxyl radicals are generated
during the photolysis of water molecules (Cervera and Esplugas,
1983).

H2O hυ H� +OH�

Photolysis mostly involves the interface of molecules with light to
dissociates them into fragments. This process generates a large
number of reaction intermediates that lower the kinetics of the
contaminants (Steinberg and Paul, 2008).

Photochemical treatment also has some drawbacks or negative
aspects in its application, partly because the cost of UV
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production is very high (Reza et al., 2017). In a photochemical
reaction or degradation, only the absorbed and a fraction of light
are used, which brings chemical changes. This makes photo-
chemical treatment a slow kinetic and low yield process (Nome
et al., 2017). Sometimes other oxidants such as ozone, hydrogen
peroxide, or semiconductors or metallic salts such as titanium
dioxide are used to catalyze the photochemical reactions, and this
is an AOP (Gautam and Chattopadhyaya, 2016). Sometimes, solar
lights are used instead of a UV lamp to degrade the contaminants,
although no effect was observed during the degradation of con-
taminants (Gautam and Chattopadhyaya, 2016).
2.6 Photocatalytic oxidation
The photocatalyst producing surface oxidation is the main

phenomenon of photocatalytic oxidation, which removes both
the pathogen bacteria and the organic compounds when exposed
to a fluorescent lamp or direct sunlight (Tsydenova et al., 2015).
A photocatalyst can also be used in combination with NOx to
purify the contaminated environment. This process has been
proven to be the best for the mineralization of organic and inor-
ganic pollutants in wastewater (Ameta et al., 2013). They offer sev-
eral advantages over other oxidation systems as they result in the
complete oxidation of pesticides and other hydrocarbons within a
few hours. The catalysts used in the photocatalytic oxidation sys-
tem are cost effective and are adaptable to designed reactor sys-
tems, resulting in the oxidation of contaminants in ppb value
(Bagheri et al., 2017). Photocatalytic oxidation doesn’t form poly-
cyclized compounds after mineralization. The various catalysts
used as potent photocatalysts have been reported and studied,
and include ZnS, CdS, ZnO, Cr2O2, WO3, SnO2, ZrO2, lanthanide
tantalate, niobium oxides, TiO2/SiO2, etc. (Bagheri et al., 2017).
Among these, TiO2 is one of the most promising and popular
materials because of its environmental stability under various
conditions. The other advantages of TiO2 over other catalysts
are that they are easily commercially available, have different allo-
tropes, have enhanced photoactive properties, can be easily
coated on solid support, and easily prepared in the laboratory
(Regalado-Raya et al., 2018). The photocatalytic activity of TiO2

can be well studied in the fixed bed studies as well in suspension
form. Further TiO2-based catalysts such as TiO2/SiO2, TiO2/In2O3,
TiO2/ZrO2, Ru/TiO2, Rh/TiO2, Pt/TiO2, etc., have proven to be
good photocatalysts (Dzinun et al., 2019).
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2.6.1 Properties and characteristics of different photocatalysts

The degradation of organic wastewater with the help of TiO2

has been reported by various authors. It also decomposes various
organic compounds in water (Poulopoulos et al., 2019). Matthews
et al. (1990) reported the action of TiO2 suspensions to improve
the detoxification of hazardous wastewater. The spectral absorp-
tion characteristics of TiO2 allow its extinction in UV-A, B, and
C regions, giving space for the use of medium-pressure mercury
arcs (Matthews et al., 1990). The catalyst exhibits good selectivity,
stable performance, and good accessibility of products and reac-
tants (Dumesic et al., 2008). Different types of photocatalysts and
their light sources used in pollutant degradation are depicted in
Table 1.
2.6.1.1 Catalysts and reactor systems

Most of the photocatalytic reaction involved in the purification
of water is carried out using a catalyst in the contaminated water
generating a low solidmass (Chong et al., 2010). The configuration
of the reactor system includes a fluidized bed, a field bed, an
immobilized membrane, a wall reactor, and optic fibers. It is uni-
versally accepted that maximum efficiency is obtained using this
approach (Deng et al., 2019). Later on, the cost of removing the
catalyst from the water offsets this advantage. Although most of
the reported work was carried out in slurry reactors with high cat-
alytic efficiencies. Using such systems in pilot-scale studies poses
various challenges, especially optimum radiation absorption. The
presence of scattering and the absorption of radiation in these
systems make the determination of light distribution systems dif-
ficult (Ola and Maroto-Valer, 2015).

Various studies have been reported that signify the enhance-
ment of photoactive compounds by coupling various semicon-
ductors. This is accelerated by the separation process, followed
by higher disposability of the reactive electron-hole pair. This pro-
cess is complex and the chemistry of the reaction intermediates
and substrates plays a significant role in determining the photo-
activity of a catalyst (Ayati et al., 2014).

In the photocatalytic degradation of cellulose, bleaching
effluent, and nitrobenzene, TiO2 was reported as better than
ZnO whereas ZnO exhibited higher efficiency in the mineraliza-
tion of black liquor and reactive dyes (Cristina Yeber et al.,
2000). Future studies are needed to determine the role of various
catalysts and the process taking place during such a reaction
system.



Table 1 Different types of photocatalysts and their light sources used in the degradation of pollutants.

S. no. Photocatalyst Type of pollutant
Light
source

Substrate
concentration

Optimum substrate
concentration References

1 Titanium dioxide Acephate UV 0.7–1.0 1 Rahman et al. (2006)

2 Titanium dioxide Bentazon UV 0.02–0.062 0.02 Pourata et al. (2009)

3 Titanium dioxide Carbofuran UV 0.023–0.113 0.09 Mahalakshmi et al. (2007)

4 Titanium dioxide Daminozid UV 0.50–1.5 0.75 Qamar et al. (2006)

5 Zinc oxide Diazinon UV 0.003–0.005 0.003 Daneshvar et al. (2007)

6 Titanium dioxide Diphenamid UV 0.1–0.6 0.6 Rahman et al. (2016)

7 Titanium dioxide Dimethoate UV 0.0195–0.49 0.0195 Chen et al. (2007)

8 Titanium dioxide Erioglaucine UV 0.006–0.02 0.006 Daneshvar et al. (2006)

9 Titanium dioxide Indole-3-acetic acid UV 0.2–0.6 0.3 Qamar and Muneer (2005)

10 Titanium dioxide Indole-3-buteric acid UV 0.18–0.6 0.3 Qamar and Muneer (2005)

11 Titanium dioxide Isoproturon Solar 0.25–0.75 0.75 Haque and Muneer (2003)

12 N-TiO2 Lindane Visible 3.45�10�5–
2.07�10�4

3.45�10�5 Senthilnathan and Philip

(2010)

13 Re-TiO2 Methamidophos UV 0.1–0.5 0.1 Zhang et al. (2009)

14 Zinc oxide Phenol Solar 0.027–0.32 0.027 Pardeshi and Patil (2008)

15 Titanium dioxide Phosphamidon UV 0.1–0.6 0.45 Rahman and Muneer (2005)

16 Titanium dioxide Propham UV 0.25–1.3 0.75 Muneer et al. (2005)

17 Titanium dioxide Prophachlor UV 0.2–1.35 1.35 Muneer et al. (2005)

18 Zinc oxide Resorcinol Solar 0.05–0.272 0.05 Pardeshi and Patil (2009)

19 Titanium dioxide Thiram Solar 4.2�10�4–
16.6�10�4

4.2�10�4 Kaneco et al. (2004)

20 Titanium dioxide Triclopyr UV 0.25–1.0 0.75 Qamar et al. (2006)

21 Titanium dioxide Tebuthiuron UV 0.25–1.5 1.0 Muneer et al. (2005)

22 Zinc oxide 2,4-Dinitrophenol UV 0.05–0.09 0.09 Vora et al. (2009)

23 Co-TiO2 2-Chlorophenol UV 0.097–0.583 0.097 Barakat et al. (2005)
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2.6.2 Catalyst used in advanced oxidation processes

2.6.2.1 Hydrogen peroxide

Hydrogen peroxide, when added to ozone, initiates the degra-
dation cycle of ozone by generating OH radicals (Gautam and
Chattopadhyaya, 2016). Paillard (1988) reported the removal of
atrazine in water using this process. Findings suggest that the
combination of hydrogen peroxide with ozone shows better deg-
radation compared to ozone-treated. The optimum conditions
like mass ratio range from 0.35 to 0.45. Another study by
Duguet et al. (1985) reported that the best results were achieved
when hydrogen peroxide was added after oxidation with ozone
of highly reactive compounds.
2.6.2.2 Ozone-UV radiation (O3/UV)

The use of a UV/O3 introduction system brings the rapid and
complete degradation of organic compounds. They attack with a
short molecular chain (formic acid, oxalic acid, glyoxylic acid,
glyoxal) on the complex structure of pesticides, resulting in the
mineralization of pesticides (Machulek et al., 2013). Various stud-
ies have been reported to demonstrate the efficiency of the O3/UV
system in the treatment of various organic and inorganic com-
pounds (Amor et al., 2019).
2.6.2.3 Photo-Fenton and Fenton-like systems

The addition of Fe3+ions to the UV/H2O2 process to enhance
the degradation of organic compounds is called the photo-Fenton
oxidation process. This oxidation process solely depends upon the
pHof the solution. At low pH (pH¼3), the Fe3+ ions are reduced to
Fe (OH)2+ (Aramyan and Moussavi, 2017).

Fe3+ +H2O!Fe OHð Þ2 + +H+

Fe OHð Þ2+ !Fe3+ +OH�

When Fe3+ comes in contact with UV irradiation, it undergoes
decomposition and produces Fe2+ and OH ions:

Fe OHð Þ2 +!Fe2+ +OH

These two processes have been widely used with a high degrada-
tion rate of several contaminants, including pesticides. The opti-
mum pH used in these two processes ranges from 2.5 to 4.

According to the annual report of pesticides, a Fenton catalyst
is possible in PSA reactors. A total of 500mg TOC/L of pesticides
are 80% destroyed in 3h using a PSA-CPCs field. Sun and
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Pignatello (1993) documented that various herbicides and pesti-
cides, including parathion and malathion, can be fully degraded
by the H2O2/hν�Fe (III) process. Various other studies with
higher degradation rates were also reported using these processes
(Sun and Pignatello, 1993).
3 Heterogeneous photocatalysis
In heterogeneous photocatalysis, the interaction of a photon

with a catalyst produces the appearance of hole pairs/electrons.
Bahena and Martı́nez (2006) reported that heterogeneous photo-
catalysis is a good and valid method for the mineralization of a
number of pesticides such as alachlor, atrazine, and chlorbro-
muron in water systems under nonexpensive solar irradiation.

The concept and mechanism of heterogeneous photocataly-
tic degradation are quite simple. In this process, it is used under
irradiation of a stable solid semiconductor for stimulating a reac-
tion at the solution/solid interface (Ibhadon and Fitzpatrick,
2013). In the case of semiconductor particles, the excitation of
a photon provides the circumstances for carrier separation,
although there is no ohmic contact to generate out the majority
carriers by transferring them to the second electrode by the
external conductor. This means that the two charge carriers
interact at the electrolyte/semiconductor interface with the
species in solution (Beranek, 2011). During steady-state condi-
tions, the quantity of charge transported to the electrolyte must
be equivalent and opposite for the two types of carriers. Hence,
the semiconductor-mediated redox processes are reported to
involve an electron transfer diagonally at the interface (Tan
et al., 2019). When hole pairs/electrons are generated, the elec-
tron moves away to the semiconductor as the hole pairs or elec-
trons migrates toward the surface. These charge carriers are
parted quickly as they can be used for the reduction or oxidation
of the pollutants (Tan et al., 2019).
3.1 Principle of heterogeneous photocatalysis
Catalyst is the substance that has a tendency to convert the

reactants into products without being consumed itself (Solel
et al., 2019). The main advantage of using a heterogeneous cata-
lyst is that solid material is used as a catalyst, which is easy to sep-
arate from the gas and liquid reactants and products (V�edrine,
2017). The basic principle of heterogeneous catalysis is when a
semiconductor photocatalyst is illuminated in the presence of
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light with the intensity of photons is equal to or greater than its
bandgap energy (Ibhadon and Fitzpatrick, 2013).
3.2 Kinetics of heterogeneous photocatalysis
The mechanism and kinetics of the heterogeneous photocata-

lytic process solely depend on experimental conditions such as
the dose, type of catalyst, pH of the solution, temperature, pres-
ence of an oxidant, initial concentration, etc. Various experimen-
tal results concluded that the rate of photocatalytic oxidation of
pesticides with TiO2 fitted the Langmuir-Hinshelwood (L-H)
kinetics model (AI-Ekabi et al., 1988).

r¼dC=dt ¼ kKC= 1 +KCð Þ
where

r¼oxidation rate of the reactant (mg/min)
C¼ reactant concentration (mg/L)
T¼ illumination time
K¼ reaction rate constant (mg/L)
K¼adsorption coefficient of the reactant (L/mg)
4 Conclusion
This chapter focuses on the various methods and advance-

ments in heterogeneous photocatalysis in the treatment of
wastewater. The functions of another oxidation system on photo-
catalytic degradation of pesticides have also been explored. Out of
various catalysts, TiO2 has been recommended to be viable and
efficient for the photocatalytic mineralization and degradation
of multiple pesticides and other contaminants in wastewater.
However, the efficiency of TiO2 depends upon the operating
parameters such as light intensity, catalyst amount, initial pH of
the medium, pollutant type, etc. The optimization parameters
play vital roles in the efficient design of future photocatalytic oxi-
dation processes to ensure a safe, cost-effective, and sustainable
operation. However, certain ionic components influence the
photocatalytic degradation rate of phenols and pesticides. Recent
advances in TiO2 photocatalysis using doped metals and non-
metals have reported as improving the degradation rate. Future
work should address the optimization of these various oxidation
systems and focus on the applicability in pilot-scale reactors to
collaborate with industrial partners to deliver the benefits of this
technology to society.
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