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Spatial modeling of economic phenomena requires the adoption of complex econometric
tools, which allow us to deal with important methodological issues, such as spatial
dependence, spatial unobserved heterogeneity and nonlinearities. In this paper we
describe some recently developed econometric approaches (i.e. Spatial Autoregressive
Semiparametric Geoadditive Models), which address the three issues simultaneously. We
also illustrate the relative performance of these methods with an application to the case of
house prices in the Lucas County.
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1. Introduction

Spatial modeling of economic phenomena (growth, unemployment, wages, location, house prices, crime rates and so on)
requires the adoption of complex econometric tools which permit us to control for spatial dependence, unknown functional
form and unobserved heterogeneity. The dominant paradigm in spatial econometrics is not well equipped to deal
simultaneously with the three topics, which instead have been approached separately.

Spatial dependence reflects a situation where values observed at one location depend on the values of neighboring
observations. That is, there are externalities known as global and local spatial spillovers (Anselin, 2003).1 Contrary to what
one would expect, in only a few cases spatial externalities have been formally predicted by well-defined theoretical models.
Ertur and Koch (2007), for example, propose an extension of the multi-region neoclassical growth model that includes
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izar.es (J. Mur).
opic (LeSage and Pace, 2009): the Spatial Lag or Spatial Autoregressive Model (SAR), the Spatial Error
Spatial in X-variables Model (SLX) and a mix of the SAR and SEM (SARSAR) are the most popular.
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technological interdependence across regions. The reduced form of the growth equation predicted in this case is a linear
SDM. Brueckner (2006) also presents several theoretical models of spatial interaction among local governments that lead
directly to the SAR model for empirical implementation.

In most of the cases, instead, economic theory suggests the existence of network dependence and spatial spillovers, but it
does not predict a well structured model. An example is the literature on the regional knowledge production function and
on the diffusion of innovation, where spatial (knowledge) spillovers may occur through collaborative networks or other
forms of spatial interactions (Autant-Bernard, 2012). These cases are characterized by uncertainty about the functional form
of the model. The premise in applied literature is that a linear structure, coupled with some previous transformation of the
data, offers enough flexibility to account for the problem.

However, there is growing evidence showing that this is a quite optimistic view. Strong nonlinearities have been detected
in studies on regional growth (Arbia and Paelinck, 2003; Azomahou et al., 2011; Basile and Gress, 2005; Basile, 2008, 2009;
Basile et al., 2012; Ertur and Gallo, 2009; Fotopoulos, 2012), urban agglomeration economies (Basile et al., 2013), urban
environment (Chasco and Le Gallo, 2011), land prices (McMillen, 1996), urban sprawl (Brueckner, 2000; Brueckner et al.,
2001; Irwin and Bockstael, 2007), social interaction (Lee et al., 2010) or house prices (Bourassa et al., 2010; Kim and
Bhattacharya, 2009; Goodman and Thibodeau, 2003). Thus, in a typical empirical application, the functional form is unknown
and the linear form, imposed sometimes rather arbitrarily, represents another source of mis-specification bias.

Controlling for unobserved heterogeneity is another fundamental challenge in empirical research, as failing to do so can
introduce omitted-variable biases and preclude causal inference. To complicate the analysis, spatial dependence may simply
be the consequence of (spatially correlated) omitted variables rather than being the result of spillovers. If this is the case,
there are no compelling reasons for using traditional parametric models, like the SAR or SEM. As McMillen (2012) shows, a
simple semiparametric model, with a smooth interaction between latitude and longitude (the so-called Geoadditive Model),
can remove unobserved heterogeneity.

However, as mentioned above, in many cases the aim of the empirical study is to assess the impact of spillover effects (for
example the global effect of a localized shock in R&D investment) rather than simply compensate for unobserved
heterogeneity. In these cases we need to capture the effect of spatial spillover through the inclusion of spatial interaction
terms, besides controlling for unobserved heterogeneity and functional form mis-specifications. This is a complex objective
that the parametric paradigm, dominant nowadays, can hardly attain. It must be recognized that there have been attempts
to develop a more general framework. This is the case of the parametric model proposed by Lambert et al. (2014), which
combines spatial dependence and nonlinearity, or the case of Lotka–Volterra prey-predator model proposed by Griffith and
Paelinck (2011). The literature on spatial regimes introduces heterogeneity in models with spatial dependence (Fischer and
Stumpner, 2010), from which the SALE (Spatial Association Local Estimation) (Pace and LeSage, 2004) and Zoom algorithms
(Mur et al., 2010) can be considered as limiting cases. According to our knowledge, few more references can be added.
In fact, the history is very short.

Our impression is that there is a genuine need for more general and powerful approaches to model spatial data, and we
are not alone in this position. In fact, several prominent scholars have recently called for a review of the methodological
basis of the traditional spatial econometrics. McMillen (2010, 2012) points that there is a fundamental contradiction
between the severity of the unknowns in the specification (functional form and spatially correlated omitted variables) and
the overwhelming use of maximum likelihood methods (which heavily depend on the assumption of a correct
specification). Pinkse and Slade (2010) recognize the intrinsic complexity of spatial data which suffer from so many
problems (irregular spatial arrangement, varying density, aggregation, and so on) that precludes the use of naively
parsimonious specifications, like the family of SAR models. The comparison with time series literature is deceiving because
stationarity is a strange concept over space. Their advice can be summarized in avoiding overparameterized specifications
and letting the application guide the theory; this has a clear parallel with the position of McMillen.

According to Gibbons and Overman (2012), the dominant approach in spatial econometrics is not convincing because of
the many, sometimes unjustified, hypotheses made about the functional form, the presence of omitted factors, the spatial
weights, and so on. These authors confer special relevance to the notions of identification and causality. Spatial models that
include spatial lags of the endogenous variable, together with a set of contextual variables in the right hand side of the
equation, are not identified because of the essential collinearity between the contextual variables and the output variable.
This is the ‘reflection problem’ posed by Manski (1993) in relation to ‘peer effects’ models. However, this problem was solved
by Pinkse and Slade (2010) with the distinction between ‘expected reaction of the individual’, a relevant concept in the peer
effects literature, and spillover effects, which is the adequate notion in spatial analysis (that is, the spatial lag is no longer a
mere sample analogue of the expected reactions of the neighbors). Causality is a ‘gold standard’ in economics except in the
field of spatial econometrics where, surprisingly, the concept of causality is mixed with that of correlation. However, fit well
the data may mean nothing but spurious correlation or common factors. Gibbons and Overman (2012) confer some merit to
the description of spatial data, but this cannot be the ultimate goal of the analysis. A further critical issue raised by Gibbons
and Overman (2012) concerns the use of lagged values of the regressors as instrument variables (IV) for the spatial lag of the
endogenous variable in the SAR-type models. The arguments are somewhat familiar with Pinkse and Slade (2010): the first
is the unconvincing exclusion of these terms (spatial lagged regressors) from the structural equation; the second is the
unjustified claim of exogeneity for the X's variables in a typical spatial model (contrary, they are expected to be endogenous
and correlated with the unobserved determinants to the endogenous variable). The last deficiency can be treated more
efficiently by using, once again, less structured models.
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Given these limitations, it is important to pay attention to other, more flexible, approaches, which help us to overcome
part of the deficiencies encountered in the parametric framework. In particular, in this paper we focus on Spatial
Autoregressive Semiparametric Geoadditive Models developed, among others, by Basile and Gress (2005), Su and Jin (2010),
Su (2012), Basile et al. (2012) and Montero et al. (2012). With respect to standard parametric spatial econometric models,
these semiparametric approaches offer a more convenient way of addressing simultaneously the three problems mentioned
above (substantive spatial dependence, unobserved heterogeneity and unknown functional form). The objective of this
paper is to describe the main methodological contributions recently produced in this field and to discuss their potentials
and limitations.

Section 2 introduces different specifications of the semiparametric model: (i) the Penalized Spline (PS) Geoadditive
Model, (ii) the (PS-SAR), (iii) the (PS-SEM), (iv) the (PS-SDM), (v) the (PS-SLX) and (vi) the (PS-SARSAR). Section 3 discusses
various technical aspects related to the identification and estimation of these models. Section 4 includes an application of
these models to house price data. The application compares parametric and semiparametric regression estimates. The
differences are clearly in favor of the more flexible semiparametric specification. Section fifth recaps and offers some
practical suggestions for the application of these models.

2. Semiparametric models

In this section, we present a semiparametric framework which allows us to relax the linearity assumption and,
simultaneously, model spatial dependence and unobserved heterogeneity. We start by introducing a basic semiparametric
geoadditive model (Section 2.1). In Sections 2.2 and 2.3 we extend this model by introducing the spatial lag of the
dependent variable on the right hand side (r.h.s.), the spatial lag of other covariates and a spatial autoregressive error term,
thus obtaining the PS-SAR, the PS-SDM, the PS-SLX, the PS-SEM and the PS-SARSAR specifications.

2.1. Penalized spline (PS) geoadditive models

The starting point is a general form of the semiparametric geoadditive model suitable for large cross-sections of either
spatial polygonal or spatial point data2:

yi ¼ xn0
i β

nþ f 1ðx1iÞþ f 2ðx1iÞþ f 3ðx3i; x4iÞþ f 4ðx1iÞliþ⋯þhðnoi; eiÞþεi; εi � iidN ð0;σ2
εÞ; i¼ 1;…;n ð1Þ

where yi is a continuous univariate output variable in location i. xn0
i β

n is the linear predictor for any strictly parametric
component (including the intercept, all categorical covariates and eventually a set of continuous covariates), with βn being a
vector of fixed parameters. f kð�Þ are unknown smooth functions of univariate continuous covariates or bivariate interaction
surfaces of continuous covariates, capturing nonlinear effects of exogenous variables. Which of the explanatory variables
enter the model parametrically or non-parametrically may depend on theoretical priors or can be suggested by the results of
model specification tests (Kneib et al., 2009).

f 4ðx1iÞli is a varying coefficient term, where li is either a continuous or a binary covariate. For example, we may wish to
assess whether the smooth effect of x1 (e.g., population density) is higher in metropolitan areas. In this case li is a binary
variable taking value one if region i belongs to a metropolitan area and zero otherwise.

The term hðnoi; eiÞ in Eq. (1) is a smooth spatial trend surface, i.e. a smooth interaction between latitude (northing) and
longitude (easting). It allows us to control for unobserved spatial heterogeneity, which is a primary task when dealing with
spatial data.3 When the term hðnoi; eiÞ is interacted with one of the explanatory variables (e.g., hðnoi; eiÞx1i), it allows us to
estimate spatially varying coefficients (like in the GWR model). Finally, εi are iid normally distributed random shocks.4

In the case of the semiparametric geoadditive model (1), if all regressors are manipulated independently of the errors,bf kðxkÞ can be interpreted as the conditional expectation of y given xk (net of the effect of the other regressors). Blundell and
Powell (2003) use the term Average Structural Function (ASF) with reference to this function.

Omitting the subscript i, each k-th univariate smooth term in Eq. (1) can be approximated by a linear combination of qk
known basis functions5 bqk ðxkÞ:

f kðxkÞ ¼∑
qk
βqk

bqk ðxkÞ

with βqk
unknown parameters to be estimated. To reduce mis-specification bias, q0ks should be large enough, which results in

a danger of over-fitting. As we shall clarify further on, the smoothness of the functions can be controlled by penalizing
‘wiggly’ functions when fitting the model. A measure of ‘wiggliness’, Jk � β0

kSkβk, is associated with each k smooth function,
with Sk a positive semidefinite matrix. Typically, the quadratic penalty term is equivalent to an integral of squared second
2 Although this model is widely used in environmental studies and in epidemiology (Augustin et al., 2009), it has been rarely considered in economics.
A similar model, called ‘structured additive regression ((STAR) model’), is proposed in Fahrmer et al. (2013).

3 Especially when the researcher considers spatial unobservables as potential sources of endogeneity, that is, when there is a suspected correlation
between unobserved and observed variables.

4 This assumption can be relaxed by a more general specification, such as ε�N ð0;σ2
εΛÞ being Λ a covariance matrix reflecting cross-sectional

dependence in the errors as, for example, in Pinheiro and Bates (2000).
5 Each basis function is usually represented through splines (see De Boor, (2001), for details).
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derivatives of the function, for example
R
f ″ðxÞ2 dx, but there are other possibilities such as the discrete penalties suggested

by Eilers and Marx (1996) (see Section 3).
The penalized spline base-learners can be extended to two or more dimensions to handle interactions by using thin-plate

regression splines (Wood, 2006, Section 4.1.5) or tensor products (Currie et al., 2006). In the last case, which is the approach
followed in our implementation, smooth bases are built up from products of ‘marginal’ bases functions. For example,

f 3ðx3; x4Þ ¼∑
q3
∑
q4
βq3 ;q4

bq3 ðx3Þbq4 ðx4Þ:

A similar representation can be given for the smooth spatial trend surface, hðno; eÞ. Corresponding wiggliness measures
are derived from marginal penalties (Wood, 2006). Moreover, it is worth mentioning that, when f ðx3; x4Þ – or hðno; eÞ – is
represented using a tensor product, the basis for f ðx3Þþ f ðx4Þ is strictly nested within the basis for f ðx3; x4Þ. This means that
we do not need to include the two marginal terms f ðx3Þ and f ðx4Þ into the equation, in order to test for smooth interaction
effects.

In the case of a varying coefficient term like f 4ðx1Þl, the basis functions bq4 ðx1Þ are pre-multiplied by a diagonal matrix
containing the values of the interaction variable (l). Similarly, in the case of a spatially varying coefficient term like hðno; eÞx1,
the basis functions bqno ðnoÞbqe ðeÞ are pre-multiplied by a diagonal matrix containing the values of the interaction variable x1.

Given the bases for each smooth term, Eq. (1) can be rewritten in matrix form as

y¼XnβnþΣq1β1q1
b1q1 ðx1ÞþΣq2β2q2

b2q2 ðx2Þþ⋯þε

¼Xβþε ð2Þ

where matrix X includes Xn and all the basis functions evaluated at the x0s covariate values, while β contains βn and all the
coefficient vectors, βq, corresponding to the basis functions.

2.2. PS-SAR, PS-SLX and PS-SDM

The Geoadditive model (1) represents a quite general framework to model spatial data taking into account nonlinearities
and spatial heterogeneity. However, this model rules out spatial interaction effects. One step in this direction is by
introducing spatial lags of the exogenous (X) variables on the r.h.s. of model (1), to capture the so-called local spatial
spillovers. This model can be termed Penalized-Spline Spatial in X-variable model (or simply PS-SLX).6 It is also possible to
capture global spatial spillovers by augmenting the Geoadditive model with the spatial lag of the dependent variable. The
structural form of the semiparametric model becomes a Penalized-Spline Spatial Autoregressive Geoadditive Model (PSSAR
as called in Mínguez et al., 2012):

yi ¼ xn0
i β

nþr ∑
n

j ¼ 1
wijyjþ f 1ðx1iÞþ f 2ðx2iÞ þ f 3ðx3i; x4iÞþ f 4ðx1iÞliþ⋯þhðnoi; eiÞþεi

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n ð3Þ

wherewij is the element of a spatial weights matrixWn,∑n
j ¼ 1wijyj is the spatial lag of the dependent variable (which always

enters the model linearly), and r is the spatial spillover parameter. This model was first proposed by Gress (2004) and Basile
and Gress (2005) and then reformulated by Basile (2008, 2009), Basile et al. (2012), Montero et al. (2012), Mínguez et al.
(2012), Su and Jin (2010) and Su (2012). It reflects the notion of spatial dependence made of two parts: (i) a spatial trend due
to unobserved regional characteristics, which is modeled by the smooth function of the coordinates, and (ii) global spatial
spillover effects, which are modeled by including the spatial lag of the dependent variable. Su (2012) extends model (3) by
allowing for heteroskedasticity and spatial dependence in the error term. The introduction of the spatial lags of the
exogenous (X) variables results in what may be called the Penalized-Spline Geoadditive Spatial Durbin Model (PS-SDM).

As in the parametric SAR, also in the PS-SAR the estimated coefficients for the parametric terms (bβn

) cannot be
interpreted as marginal effects of the corresponding variables on the dependent variable, due to the autoregressive term (r).
Direct, indirect (spillover) and total effects must be computed instead using the algorithm described in LeSage and Pace

(2009). Similarly, the estimated smooth functions – bf kðxkÞ – cannot be interpreted as ASF. Taking advantage of the results
obtained for parametric SAR, we can compute the total smooth effect (total-ASF) of xk as

bf Tk ðxkÞ ¼Σq½In� brWn��1
ij bkqðxkÞbβkq ð4Þ
6 It is customary to distinguish between local and global spatial spillovers (Anselin, 2003). The key is the existence of a spatial multiplier matrix in the
reduced form of the model. The reduced form of the Spatial Lag Model (SAR) (y¼AXβþAε), for example, contains the spatial multiplier matrix
A¼ ðIn�ρWnÞ�1, which implies that a change in a regressor xk in region i – as well as a change in the error ε in region i – impacts on the outcome of this
region, on the outcome of its neighbors, on that of the neighbors of its neighbors and so on. The impact therefore is global. In the case of the SEM, the global
spillover effect concerns only un-modeled random shocks: y¼XβþBu, with B¼ ðIn�λWnÞ�1. On the contrary, local spatial spillovers in the explanatory
variables characterize the spatial cross-regressive model (SLX): y¼XβþWnXδþε. In fact, there is not an inverse involved in the reduced form of this
model, and the impact of the change dies just after its effect on the neighbors (the structural form of the SLX is in fact the reduced form).
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We can also compute direct and indirect (or spillover) effects of smooth terms in the PS-SAR case as

bf Dk ðxkÞ ¼Σq½In� brWn��1
ii bkqðxkÞbβkq ð5Þ

bf IkðxkÞ ¼ bf Tk ðxkÞ�bf Dk ðxkÞ ð6Þ
Similar expressions can be provided for the direct, indirect and total effects of the PS-SDM.

2.3. Penalized spline spatial error models (PS-SEM) and PS-SARSAR

The Spatial Error Geoadditive Model (PS-SEM) proposed by Mínguez et al. (2012) augments the Penalized Spline
Geoadditive Model by including a spatial autoregressive error term, while leaving the systematic part of the model
unchanged:

yi ¼ xn0
i β

nþ f 1ðx1iÞþ f 2ðx2iÞ þ f 3ðx3i; x4iÞþ f 4ðx1iÞliþ⋯þhðnoi; eiÞþui

ui ¼ λ ∑
n

j ¼ 1
wijujþεi; εi � iidN ð0;σ2

εÞ; i¼ 1;…;n ð7Þ

where λ is a spatial autoregressive parameter. As in the case of the pure PS model (1), if all regressors are exogenous,bf kðxkÞ ¼ΣqbkqðxkÞbβkq can be directly interpreted as the conditional expectation of y given xk (ASF).
The PS-SEM allows us to capture spatial externalities in the un-modeled idiosyncratic random shocks. The reduced form

of the model is:

y¼Xn0βnþ f 1ðx1Þþ f 2ðx2Þþ f 3ðx3; x4Þþ f 4ðx1Þlþ⋯þhðno; eÞþðIn�λWnÞ�1ε

Finally, we may consider a Penalized Spline Geoadditive Model which includes both a spatial lag of the dependent variable
and a spatial autorregresive error term (PS-SARSAR):

yi ¼ xn0
i β

nþr ∑
n

j ¼ 1
wijyjþ f 1ðx1iÞþ f 2ðx2iÞþ f 3ðx3i; x4iÞþ f 4ðx1iÞliþ⋯þhðnoi; eiÞþui

ui ¼ λ ∑
n

j ¼ 1
wijujþεi; εi � iidN ð0;σ2

εÞ; i¼ 1;…;n ð8Þ

This model captures global spatial spillovers in the same way as the PS-SAR model.

3. Estimation methods

Let us now discuss the issues concerning estimation and inference in the semiparametric models described above. We
begin with model (1). As it is well known, there are two alternative estimators for this case. The first one is the penalized
least squares (PLS) method, coupled with a generalized cross validation (GCV) score minimization process to select the
smoothing parameters. Alternatively, the semiparametric model (1) can be expressed as a mixed model and, thus, it is
possible to estimate all the parameters (including the smoothing parameters) using restricted maximum likelihood methods
(REML). Here, we focus on the second method which, in spite of being less popular among practitioners, it appears to be
clearly superior (Wood, 2011). Thus, in the next section we present different procedures to deal with general semiparametric
models using mixed models. Section 3.2 shows how this methodology can be extended to estimate the parameters of
PS-SAR and PS-SEM models in a single step. Finally, in Section 3.3 we present an alternative two-step control function
approach to estimate the PS-SAR model.

3.1. Penalized regression splines as mixed models and the REML estimator

The estimation of model (2) can be based on its reparameterization as a mixed model:

y¼XβþZUþε; U� i:i:d: Nð0;GÞ; ε� i:i:d: Nð0;σ2
εIÞ ð9Þ

where, again, matrix X may include parametric components such as the intercept, continuous covariates and categorical
covariates, while matrix Z includes all the nonlinear components of the smooth effects. This is a mixed model where β
represents the parameters of the fixed part of the equation and U are the random effects. G is the covariance matrix of these
effects; in our case it is a block-diagonal matrix, which depends on both σ2

uk
and σ2

ε variances. The smoothing parameters,
that control the fit versus smoothness trade-off, are defined by the ratios θk ¼ σ2

ε=σ
2
uk
.

The reparameterization consists in post-multiplying X and pre-multiplying β in model (2) by an orthogonal matrix
resulting from the singular value decomposition of the penalty matrices Sk (Wand, 2003; Lee and Durbán, 2011; Wood et al.,
2012). Therefore, the type of penalizations determines the transformation matrix and, thus, the resulting fixed and random
effects. The coefficients associated with the fixed effects (β) are not penalized, while those associated with the random
effects (U) are penalized. The penalization of random effects is given by the variance–covariance matrix of these coefficients.
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It is worth pointing out that when the model is a pure additive model y¼∑K
k ¼ 1f ðxkÞþε (i.e. there are no interaction

terms), G is block-diagonal, each block matrix Gk depending only on θk, the smoothing coefficient associated to each variable
xk. Thus, model (9) becomes a variance components model that can be estimated by using standard software. When the
model contains interaction terms, it is no longer a pure additive model. In this case, each block Gk depends on more than one
smoothing coefficient θk, except in the isotropic case,7 where coefficients θk are the same for all variables (Wood et al., 2012;
Lee and Durbán, 2011). As a consequence, the resulting mixed model is not an orthogonal variance component model.

A reparameterization exposed in Lee and Durbán (2011), from a P-Spline approach with a B-Spline basis and penalization
matrices for the basis coefficients based on discrete differences, allows us to express a semiparametric model, including
additive and interaction effects, as a mixed model with orthogonal variance components. In this way, different degrees of
smoothing for interacting variables can be allowed. A recent alternative reparameterization, using only one smoothing
coefficient for each term, is proposed by Wood et al. (2012). Two other interesting reparameterizations are based on (i) a
truncated polynomial basis and ridge penalizations (Ruppert et al., 2003), and (ii) on a thin-plate regression splines basis
and penalizations based on the integral of the second derivatives of the spline functions (Wood, 2003).

Once the mixed model is defined, the parameters associated to fixed (β) and random effects (θk and σ2
ε) can be estimated

by using a ML algorithm. If the random term follows a Gaussian distribution, the log-likelihood function is given by

log L β;θ1;…;θK ;σ2
ε

� �¼ constant�1
2

logjVj�1
2 ðy�XβÞ0V�1 y�Xβ

� �
where V¼ ZGZ0 þσ2

εI; the smoothing parameters θk are included in V.
The ML estimates are biased since this method does not take into account the reduction in the degrees of freedom due to

the estimation of the fixed effects. The restricted maximum likelihood (REML) method can be used to solve the problem. The
REML method looks for the linear combinations of the dependent variable that eliminates the fixed effects from the
equation (McCulloch et al., 2008). In this case the objective function to maximize is given by

log LR θ1;…;θK ;σ2
ε

� �¼ constant�1
2
logjVj�1

2
logjX0V�1Xj�1

2
y0ðV�1�V�1XðX0V�1XÞ�1X0V�1Þy

An estimation of the variance components can be obtained after maximizing log LRð�Þ. In the second step, the estimates of
β and U are given by (McCulloch et al., 2008):

β̂ ¼ ðX0V̂
�1

XÞX0V̂
�1

y

Û ¼ ĜX0V̂
�1ðy�Xβ̂Þ

Finally, the estimated values of the observed variable are obtained as

ŷ ¼Xβ̂þZÛ

To build confidence intervals for the estimated values, an approximation of the variance–covariance matrix of the
estimation error is given by Vðy� ŷÞ ¼ σ2

εH where H is the hat matrix of the model (Ruppert et al., 2003). For the mixed
model, it can be shown that

H¼ X0X X0Z
Z0X Z0ZþG�1

 !�1
X0X X0Z
Z0X Z0Z

 !

Recently, Wood (2011) has proposed a Laplace procedure to obtain an approximated REML or ML for any generalized
linear model, which is suitable for efficient direct optimization. Simulation results indicate that these novel REML and ML
procedures offer, in most cases, significant gains (in terms of mean-square error) with respect to GCV or AIC methods.

3.2. Estimation of the PS-SAR and PS-SEM: extending the REML approach

In a mixed-model form, the PS-SAR can be expressed as

y¼ rWnyþXβþZUþε U� i:i:d: Nð0;GÞ ε� i:i:d: Nð0;σ2
εIÞ

Its reduced form is:

y¼ AXβþAZUþAε ð10Þ
where A¼ ðI�rWnÞ�1.
7 Isotropy in this context means that the degree of smoothness is the same for all the covariates. Anisotropy is the most common situation since the
covariates are usually expressed in different units or, in the case of equal measurement units (e.g. spatial location variables), the variability of such
covariates differs greatly.
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As pointed out in Montero et al. (2012) and Mínguez et al. (2012), the log-REML function for model (10) is

log LR ρ;θ1;…;θK ;σ2
ε

� �¼ constant�1
2
logjVj�1

2
logjX0V�1Xjþ logjAj

�1
2
y0A0ðV�1�V�1XðX0V�1XÞ�1X0V�1ÞAy ð11Þ

As usual, log LRð�Þ is maximized with respect to the parameter vector ðr;θ1;…;θK ;σ2
εÞ0. Note that the maximization process

requires the computation of the log-determinant of matrix A, a dense n� n inverse matrix, which depends on r; this is a
challenging task that can be alleviated, when n is large, by using the Monte Carlo procedures described in LeSage and Pace
(2009).

The estimation of the PS-SEM model can be solved also in the context of expression (11), with A¼ I and a complicated
covariance matrix:

V¼ ZGZ0 þσ2
εðBB0Þ

being B¼ ðI�λWn). In this case, we need to invert the matrix V.
Finally, fixed and random effects can be estimated as

β̂ ¼ ðX0V̂
�1

XÞX0V̂
�1

Ây

Û ¼ ĜX0V̂
�1ðÂy�Xβ̂Þ

Unlike model (9), the PS-SAR and PS-SEM models cannot be estimated by using standard software. Nevertheless,
Montero et al. (2012) and Mínguez et al. (2012) have developed some R codes which are available upon request.

The same methodology can be used to estimate the PS-SARSAR model. Nevertheless, as for the linear econometric
SARSAR, there are some difficulties in the identification of both spatial parameters (r and λ) and, thus, there are often
problems of numerical instability.

3.3. Estimation of the PS-SAR: a control function approach

In the PS-SAR model, the spatial lag term Wny and the error term ε are correlated. In Section 3.2 we have described a
possible solution to this endogeneity bias based on a 1-step REML approach. As suggested by Basile (2009), an alternative
way of dealing with the simultaneity bias in PS-SAR is the 2-step “control function” (CF) approach (Blundell and Powell,
2003).8

The CF approach is an alternative to standard instrumental variable (IV) methods (either two-stage-least squares – 2SLS
or GMM). It is a two-step procedure: in the first step the endogenous explanatory variables (X) are regressed on a set of
instrumental variables (Q); the residuals from the first step are then included in the original equation to ”control” for the
endogeneity bias. In linear models (y¼Xβþu), the CF approach relies on the same identification (orthogonality) condit-
ions – i.e. unconditional moment restriction EðQ 0uÞ ¼ 0 – as the IV methods and leads to the usual 2SLS estimator. The CF
approach treats endogeneity as an omitted variable problem, where the inclusion of the first-stage residuals v (the part of
the regressors X that is correlated with Q) as a covariate corrects the inconsistency of least-squares regression of y on X.

In the case of nonparametric and semiparametric additive models, the CF approach imposes extra identification
assumptions – i.e. conditional mean restrictions EðujQ Þ ¼ 0 and EðujX;Q Þ ¼ EðujX; vÞ ¼ EðujvÞ – not imposed in a standard IV
approach. However, in the case of nonparametric additive models, the CF approach offers a critical advantage over the IV
method (Wooldridge, 2010). In particular, the application of the standard 2-SLS method to nonparametric additive models
(i.e. the substitution of the fitted values from the first-stage nonparametric regression of X on Q into nonlinear structural
functions) generally yields inconsistent estimates of the structural parameters. Instead, alternative procedure involving the
use of the residuals v from the first-stage regression to control for the endogeneity of the regressors X do yield identification
of the ASF (Blundell and Powell, 2003).

Using the CF approach to estimate the PS-SAR model implies to run the following first-step semiparametric regression

Wny¼ β0þ∑
m
gmðQ Þþν

where ν is a random vector satisfying conditional mean restrictions EðνjQ Þ ¼ 0 and Q is a set of m conformable instruments.
In line with Kelejian and Prucha (1997), Q may contain all exogenous terms included in the model and some of their spatial
lags. The functions gm define generic representations of different types of covariate effects, including both linear and
nonparametric smooth components.
8 A semiparametric spatial lag model has also been proposed within a partial linear framework. Su and Jin (2010) develop a profile quasi-maximum
likelihood estimator for the partially linear spatial autoregressive model which combines the spatial autoregressive model and the nonparametric (local
polynomial) regression model. Furthermore, Su (2012) proposes a semiparametric GMM estimator of the SAR model under weak moment conditions which
allows for both heteroskedasticity and spatial dependence in the error terms.
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The residuals from the first step are then included in the original PS-SAR equation to control for the endogeneity of
Wny9:

y¼Xn0βnþρWnyþ f 1ðx1Þþ f 2ðx2Þþ f 3ðx3; x4Þþ f 4ðx1Þlþ⋯þhðno; eÞþcðbνÞþε ð12Þ
Obviously, the endogeneity of any other continuously distributed regressor in the PS-SAR model can also be addressed via
the CF approach if valid instruments are available.10 Since the second-step regression contains generated regressors (i.e. the
first-step residuals), a bootstrap procedure is recommended to compute the p-values. Following Fiaschi et al. (2013), this
procedure may consist of the following steps:
1.
in t

(us
exp
Obtain a bootstrap sample (yn

b, X
n

b, Q
n

b) drawn with replacement from (y, X, Q).

2.
 Run a semiparametric regression of the bootstrapped endogenous variable on the bootstrapped exogenous variables and

the instruments.

3.
 Insert the first-step bootstrapped residuals in the original semiparametric regression.

4.
 Repeat B¼1000 times points 1–3.

5.
 For each estimated parametric coefficient, compute the corresponding equal-tail bootstrap p-value:

Pnðβ̂Þ ¼ 2�min
1
B

∑
B

b ¼ 1
#fβ̂n

br0g;1
B

∑
B

b ¼ 1
#fβ̂n

b40g
 !

where #ð�Þ is the indicator function with a value of 1 if the argument is true.

6.
 For each estimated nonparametric function, compute the average partial effect at the 95% confidence bands.

4. An application to lucas county house pricing data

We investigate the performance of the semiparametric spatial autoregressive models (PS-SAR, PS-SEM, PS-SDM and
PS-SLX) described above using the Lucas County (Ohio) database on house prices. In Section 4.1 we describe the dataset and
briefly discuss some issues related to modeling housing prices. In Section 4.2 we report the results of the analysis.

4.1. Data and model specification issues

Lucas County (Ohio) database on housing prices contains 18,378 observations of single family houses sold during 1995–
1998, and is fully described in the Spatial Econometrics toolbox for MatlabTM (data/house.txt). It has been widely used for
different purposes. LeSage and Pace (2009) adopted it to illustrate the Bayesian version of the Matrix Exponential Spatial
model (MESS). Bivand (2010, 2012) used it to compare functions for fitting spatial econometric models in the R spdep

package with those in the Spatial Econometrics toolbox for MatlabTM, in OpenGeoDa and in the STATATM ado file sppack. Zhu
et al. (2011) used the dataset to illustrate a new methodology developed to capture anisotropic spatial autocorrelation in the
context of the simultaneous autoregressive model. Finally, Dubé and Legros (2013) used Lucas County data to propose a
simple way to take into account the unidirectional temporal effect and the multi-directional spatial effect in the estimation
process.

In all these applications, hedonic equations for single-family houses are estimated using parametric regression models
relating the logarithm of the transaction price (the dependent variable) to the property's characteristics, such as the
dwelling age, its squared term (and sometimes its cubic term), the logarithms of the lot size and of the total living area in
square feet, and the number of rooms, bathrooms and bedrooms. Unfortunately, the data set does not contain information
on various neighborhood amenities and proximity variables. The list of neighbors provided with the data set in spdep is a
sphere-of-influence (soi) graph constructed from a triangulation of the point coordinates of the houses after projection to
the Ohio North NAD83 (HARN) Lambert Conformal Conical specification (EPSG:2834). The resulting spatial weights matrix is
relatively sparse, with less than three neighbors per observation on average.11

Let us note that the housing market is an adequate case for our purposes because of the simultaneous occurrence of
spatial spillovers, unobserved (spatially autocorrelated) heterogeneity and nonlinearities. Empirical evidence regarding
spatial externalities – or adjacency effects, as called by Can (1992) – in housing price formation is quite strong. One reason is
that, due to uncertainty, real estate agents (buyers and/or sellers) use prices in the neighborhood as reference prices. Thus,
the price of one house influences the prices of other houses located nearby and vice-versa. Spatial dependence may also
arise because of the so-called “maintenance/repair” effect (Can and Megbolugbe, 1997), according to which the decision of
one agent in relation to a variable (i.e., maintenance) affects the utility of this agent as well as the utility of neighboring
9 Both first and second step equations can be estimated by using the REML estimator.
10 The requirement that the endogenous regressor be continuously distributed is the most important limitation for the applicability of the CF approach
his context.
11 We have also computed other spatial weights matrices, namely a binary k-nearest-neighbor matrix (with k¼10), a binary distance-based matrix
ing as threshold the minimum distance needed to make sure that all houses are linked to at least one neighbor), an inverse-distance matrix and an
onential inverse-distance matrix. The results obtained (available upon request) are very robust to the choice of the weights matrix.



Table 1
Model comparison.

Model AIC BIC

1995 1996 1997 1998 1995 1996 1997 1998

Parametric models

A-spatial 5.170 5.455 5.595 5.329 5.181 5.465 5.604 5.339
SLX 5.033 5.345 5.482 5.212 5.052 5.362 5.498 5.230
SDM 4.784 5.116 5.233 5.019 4.803 5.132 5.250 5.038
SEM 4.916 5.206 5.326 5.126 4.926 5.215 5.335 5.136
SAR 4.831 5.168 5.295 5.067 4.841 5.177 5.304 5.077

Semiparametric models

A-spatial PS 5.054 5.341 5.462 5.205 5.083 5.368 5.485 5.233
PS-Geoadditive 4.941 5.235 5.322 5.105 5.014 5.301 5.393 5.178
PS-SLX 4.842 5.160 5.250 5.016 4.928 5.240 5.334 5.104
PS-SDM 4.692 5.010 5.010 4.896 4.793 5.108 5.108 4.997
PS-SEM 4.771 5.064 5.064 4.975 4.868 5.154 5.154 5.070
PS-SAR (1-step) 4.708 5.030 5.030 4.919 4.799 5.114 5.114 5.001
PS-SAR (2-step) 4.708 5.025 5.108 4.927 4.784 5.094 5.179 5.000

No. of obs. 3510 4112 4276 3721 3510 4112 4276 3721

Notes: the parametric a-spatial and SLX models are estimated by Ordinary Least Squares (OLS). Parametric spatial regression models (SAR, SEM, SDM) are
estimated through Maximum Likelihood (ML). All semiparametric and geoadditive models are estimated by Restricted Maximum Likelihood (REML).
A Control Function (CF) approach is applied for the 2-step SAR, using the REML estimator for the estimation of the smoothing parameters in each step. The
number of knots used for the smooth terms f 1ðageÞ, f 2ðlogðlotsizeÞÞ, f 3ðlogðlivingareaÞÞ and hðno; eÞ are always 8, 10, 10 and 8, respectively.
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agents. Furthermore, information flows and expectations are likely to reinforce horizontal transmissions between agents
which, in addition to commuting and migration, favor the appearance of strong dependence (Brady, 2011; Holly et al., 2011;
Kuethe and Pede, 2011). Following Can and Megbolugbe (1997), these kinds of spatial spillover effects can be captured only
by the spatial lag of the dependent variable (Wny).

A second type of mis-specification in house price models comes from the unobserved effect of local amenities. These
neighborhood effects (Can, 1992) are the array of location characteristics (neighbors, accessibility, public service provision)
that lead to different household housing demand for certain locations. These unobserved effects also generate spatial
dependence between the house prices. In our approach, these effects are mostly captured by the spatial trend hðno; eÞ. Both
adjacency effects and neighborhood effects are capitalized into housing prices directly as a “premium”.

Finally, it must be recognized that the nature of the relationship between house prices and its attributes is complex and
nonlinear, so it would be better represented by semiparametric models (Ekeland et al., 2004). For example, Goodman and
Thibodeau (1995) suggest that housing depreciation (the relationship between dwelling age and the market value of owner-
occupied housing) is nonlinear and possibly non-monotonic. The three issues (spatial dependence, unobserved hetero-
geneity and nonlinearities) clearly raise the need to modeling housing prices by using flexible PS specifications.
4.2. Model selection and econometric results

We use the Lucas County housing price data divided by year (starting from 1995) to compare the performance of
different competing parametric and semiparametric models.12 The most restricted specification is the simple parametric
model without spatial effects (we call it the a-spatial model), relating the logarithm of the house price to the age of the
house, its squared term, the log of the lot size and of the total living area in square feet, and the number of bathrooms. This
model does not contain a spatial trend and is based on the assumption of spatial independence of the residuals. The other
parametric models are the SAR, the SEM, the SDM and the SLX.13 The first three models are estimated through ML, while the
SLX is estimated by OLS (see the Appendix for a complete list of the different equations used in this study). The introduction
of the spatial lag of the dependent variable or of the spatial error term leads to a dramatic reduction of Akaike information
criterion (AIC) and Bayesian information criterion (BIC) statistics. For example comparing the performance of OLS and SAR
parametric models, we obtain a reduction of the BIC value between 4 and 5% (Table 1).
12 After a first inspection of the residuals of the simple a-spatial parametric model, we have trimmed 10% from the left-hand tail and 5% from the right-
hand tail of the distribution of house prices, in order to reduce the effect of extreme values.

13 We have also estimated the SARSAR model both in a parametric and a semiparametric framework, using two different spatial weights matrices
(namely the sphere-of-influence, soi, matrix and the 10-nearest-neighbor, 10-nn, matrix) for theWny term and the error term. However, the results of these
models turned out to be very sensitive to the selection of the Wn matrix. For example, using the soi matrix for computing the Wny term and the 10-nn
matrix for the error term, we obtained a ρ parameter of about 0.2 and a λ parameter of about 0.5. Changing the order of the two matrices, we obtained a ρ
parameter of about 0.5 and a λ parameter of about 0.2.



Table 2
Likelihood ratio tests for the smooth terms of the a-spatial PS model.

Smooth terms Restricted form Deviance p-value

1995
f 1ðageÞ ageþage2 11.453 0.000
f 2ðlogðlotsizeÞÞ logðlotsizeÞ 6.515 0.000
f 3ðlogðlivingareaÞÞ logðlivingareaÞ 1.621 0.000

1996
f 1ðageÞ ageþage2 17.881 0.000
f 2ðlogðlotsizeÞÞ logðlotsizeÞ 9.285 0.000
f 3ðlogðlivingareaÞÞ logðlivingareaÞ 1.547 0.000

1997
f 1ðageÞ ageþage2 24.889 0.000
f 2ðlogðlotsizeÞÞ logðlotsizeÞ 11.030 0.000
f 3ðlogðlivingareaÞÞ logðlivingareaÞ 0.721 0.001

1998
f 1ðageÞ ageþage2 17.497 0.000
f 2ðlogðlotsizeÞÞ logðlotsizeÞ 6.875 0.000
f 3ðlogðlivingareaÞÞ logðlivingareaÞ 1.641 0.000

Table 3
Estimates of ρ and λ parameters.

Model ρ λ

1995 1996 1997 1998 1995 1996 1997 1998

Parametric models

SDM 0.396 0.387 0.398 0.358
SEM 0.444 0.437 0.448 0.403
SAR 0.334 0.307 0.320 0.294

Semiparametric models

PS-SDM 0.287 0.288 0.288 0.263
PS-SEM 0.319 0.316 0.316 0.275
PS-SAR (1-step) 0.260 0.242 0.242 0.239
PS-SAR (2-step) 0.260 0.261 0.258 0.269
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These parametric models are compared to their semiparametric counterparts: the semiparametric P-spline a-spatial model
(PS), the Geoadditive model, the PS-SAR, the PS-SEM, the PS-SDM, and the PS-SLX. The last five specifications include a
nonparametric smooth spatial trend. All semiparametric models are estimated by REML; the PS-SAR is estimated using both
a one-step REML approach and a two-stage control function approach (using the REML method to estimate the parameters
in both steps).

Comparing parametric and semiparametric models, we firstly observe that the a-spatial PS model outperforms its
parametric counterpart, indicating that the functional form imposed in the parametric model does not capture all the
nonlinearities in the relationship between house prices and the characteristics of the houses. This evidence is reinforced by
the Likelihood Ratio tests reported in Table 2, where we compare the a-spatial PS model with models imposing a restricted
functional form for each term (a quadratic form for age and a log-linear term in the other covariates). The LR tests reject the
restricted specifications in all the cases.

Significant gains in model performance are obtained once the geoadditive component is included in the model, thus
highlighting the importance of controlling for unobserved spatial heterogeneity. Like in the parametric framework, the
inclusion of a spatial interaction term (Wny) produces significant improvements in the goodness of fit. Using the
Geoadditive model as benchmark and comparing it with the PS-SAR (2-step), we observe a decrease of the BIC value
between 3.4 and 4.6%. It is also worth noticing that the estimate of the ρ parameter drops from 0.294–0.334, obtained with
the parametric SAR, to 0.258–0.269 estimated with the PS-SAR specification (2-step) (Table 3). This is an expected result,
since part of the spatial dependence is now captured by the spatial trend surface. All in all, our results clearly display the
superiority of semiparametric spatial geoadditive models at least for this case study. Referring to the AIC values, the model
that best fit the data seems to be the PS-SDM. Nevertheless, using the BIC criterion, in three out of the four years the best



Fig. 1. Semi-variograms of the residuals (1995).
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specification is the PS-SAR (2-step). Since the BIC penalizes more the degrees of freedom, we conclude that the PS-SDM is
over-specified.

Following Augustin et al. (2009), we check for the gross violation of distributional assumptions of the residuals of the
different models by using the empirical semi-variogram of the residuals. For the estimation of the semivariogram, we use
the variogram function of the geoR package in R. We calculate the empirical semivariogram of the observed residuals.
Then, these residuals are permuted 99 times and envelopes are computed by taking, at each spatial lag, the maximum and
minimum values of the semi-variograms for the permuted residuals. Fig. 1 shows the semivariograms of the residuals
resulting from the a-spatial model (OLS), traditional SAR, SEM and SDM, and new PS-SAR, PS-SEM and PS-SDM for 1995
(results for the other years are very similar). It emerges that the spatial dependence, underlying the a-spatial (OLS) model, is
not captured by the traditional specifications. In fact, the semivariograms for the residuals of these specifications are
Gaussian-type and does not stabilize even for large distances. According to Journel and Huijbrets (1978), this behavior is



Table 4
Control function estimates of the semiparametric PS–SAR Model. Year: 1995.

Parametric terms First stage Second stage

Estimate (Bootstrap p-value)

(Intercept) 10.955 8.159
(0.000) (0.000)

Wny 0.260
(0.000)

baths 0.011 0.064
(0.000) (0.000)

Wnbaths 0.127
(0.000)

Smooth terms edf edf

f 1ðageÞ 5.273 5.135
f 2ðlogðlotsizeÞÞ 2.407 4.739
f 3ðlogðlivingareaÞÞ 1.002 3.356
hðno; eÞ 35.416 23.886
f 4ðresÞ 3.188
f 5ðWn logðlotsizeÞÞ 5.718
f 6ðWn logðlivingareaÞÞ 3.043

Notes: bootstrap p-values for the significance of the parametric coefficients
are reported in parenthesis. Smooth terms are specified using P-spline basis
functions. Smoothing parameters are estimated using the REML. The number
of knots used for the smooth terms f 1ðageÞ, f 2ðlogðlotsizeÞÞ, f 3ðlogðliving:areaÞÞ,
hðno; eÞ, f 4ðWnageÞ, f 5ðWnlogðlotsizeÞÞ, f 6ðWnlogðliving:areaÞÞ, are 8, 10, 10, 8, 8,
10, and 10 respectively. edf means Effective Degrees of Freedom.

R. Basile et al. / Journal of Economic Dynamics & Control 48 (2014) 229–245240
typical of spatial datasets with a (quadratic) trend and cannot be confused with the parabolic behavior at the origin
exhibited by the Gaussian semivariogram model. That is, the parametric traditional specifications cannot account for the
global drift of the data. However, when the PS-SAR, PS-SEM and PS-SDM are used, the experimental semivariograms turn in
pure nugget semivariogram (the theoretical semivariogram representing the situation of absence of spatial correlation),
which means that all these PS specifications are able to account for the spatial correlation. The estimation method does not
seem to have any significant influence when it comes to capturing spatial dependence, although in our particular case study,
the PS-SAR 2-step appears to be superior.

In sum, the PS-SAR model estimated using the 2-stage control function approach performs better than the other models.
The results corresponding to the estimation of this model for the year 1995 appear in Table 4. First, we run a semiparametric
regression of the endogenous term Wny on the exogenous variables and their spatial lags used as external instruments.14

Then, we insert the first-stage residuals in the original semiparametric regression to correct the inconsistency due to the
endogeneity problem. All terms, but Wny, baths and Wn baths are introduced as smooth terms. The model also includes a
spatial trend surface, hðno; eÞ, constructed by using the spatial coordinates in re-scaled form. All smooth terms are specified
using P-spline basis functions. Both stages are estimated using the REML method. Second-stage results show that all smooth
terms have an edf higher than 1, confirming that not only age, but also log(lotsize) and logðlivingareaÞ enter nonlinearly
the model.

Fig. 2 reports the plots of total, direct and indirect effects in the PS-SAR (2-step) computed using equations (4)–(6).15 The
point-wise 95% confidence bands (obtained using the bootstrap procedure described in Section 3.3) show that all effects are
also significant in most part of the variable domain. As expected, indirect effects are always lower than the direct effects.

Finally, a picture of the spatial trend surface – hðno; eÞ – estimated with the PS-SAR (2-step) is reported in Fig. 3.
It emerges quite clearly that, even after having controlled for the effect of the characteristics of the houses (in terms of age,
number of bathrooms, lot size and living area) and for the spillover effects (through the spatial lag term), there are
14 Unfortunately there is not a well-known and widely accepted test for the validity of the conditional mean restrictions imposed by the CF approach.
A practically feasible way of testing such restrictions consists of including some of the excluded instruments in the control function (CF) estimate and check
for the significance of their coefficients (we thank Jeffrey Wooldridge for having suggested us this method). These coefficients should not be significant
because the CF should pick up all of the correlation between the structural error term and ðWny;ZÞ, where (Z¼ ðX;WnXÞ). In particular, if
y¼ ρWnyþ f ðXÞþu1 and Wny¼Xδþv2, then WnX can be added to the CF estimation. This means that we can regress y on Wny, X, v̂2 and WnX, using
whatever model/estimation method, and test coefficients on WnX. In our case, the only spatial lag variable (WnX) which turned out to be not strictly
exogenous was WnðageÞ; this variable was removed from the set of excluded instruments.

15 Actually, total, direct and indirect effects are not smooth over the domain of variable xk due to the presence of the spatial multiplier matrix in the
algorithms. A wiggly profile of direct, indirect and total effects would appear even if the model were linear. Therefore, in the spirit of this paper, we have
applied a spline smoother to obtain smooth curves.



Fig. 2. Total effects (left panels) and direct and indirect (right panels) – PS–SAR. Bootstrapped confidence bands in dotted lines.
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significant house-price differences over space. In particular, the house prices are significantly higher in the southern part of
the selected area. This confirms the role of local (unobserved) characteristics in house prices formation.
5. Conclusions and some practical advice for users

The standard spatial econometrics approach relies on a classical statistical model in which the true model is known a-
priori. Recently, McMillen (2012) has criticized this approach. He argues that traditional spatial autoregressive models serve
basically to compensate for the effects of omitted variables that are correlated over space and for the effects of functional
form misspecification. He points out that there are alternative approaches (namely semiparametric regression approaches)
which can be used instead of standard parametric spatial regression models. These approaches admit at the start that the
true model structure is unknown.

Our contribution is very much in line with this view. However, we also consider the cases where the theory (more or less
formally) suggests the existence of spatial spillovers, but it does not predict a highly structured model, so that the functional



Fig. 3. Spatial trend surface.
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form of the empirical equation remains unknown. In these cases, it becomes important to identify spatial interaction effects
(introducing spatial lag terms in the model) rather than simply smooth the data over space to remove spatial
autocorrelation. Thus, flexible semiparametric spatial autocorrelation models (such as PS-SAR and PS-SDM) remain a very
important tool to identify the functional form of the relationship between the response variable and its predictors and to
identify spatial interaction effects.

Moreover, even if the theory predicts a highly structured model, its empirical implementation always requires to control
for the effect of omitted factors. Thus, the inclusion of a spatial trend surface turns out to be a useful tool to disentangle
substantive spatial autocorrelation (spatial spillovers), captured by the parameter of the spatial lag term, and spatial
autocorrelation generated by (spatially autocorrelated) omitted variables.

We are not proposing the use of Spatial Autoregressive Semiparametric Geoadditive Models only for description
purposes. In fact, we suggest that these models may help to draw substantive inferences on the backdrop of the underlying
theoretical models and, eventually, to explore opportunities to improve the theoretical models.

Obviously, we also recognize the existence of some major practical problems associated with the implementation of
Spatial Autoregressive Semiparametric Geoadditive Models. First of all, it is well known that nonparametric estimates may
be spurious due to outliers, although in the case of penalized splines the effect of the extreme values is often mitigated.
In practice, as in our application, it is often necessary to trim the data (either symmetrically or asymmetrically) in order to
reduce the effect of extreme values.

Second, as in the case of traditional parametric spatial econometric models, the spatial interaction network underlying the
Wn matrix is not known beforehand, which introduces uncertainty in the building of spatial autoregressive models. Usual
practice in the applied literature is to simply impose the spatial weight matrix as a maintained hypothesis; this solution
implies a certain degree of arbitrariness. However, recently some procedures have been suggested in order to approach the
problem in a more formalized way (see,for example, Harris et al., 2011; LeSage and Pace, 2009; Kostov, 2010). These
methods can also be easily applied to the semiparametric approach proposed in the present paper. Nevertheless, in our
application, the results of PS-SAR, PS-SDM and PS-SEM turned out to be very robust to the choice of the Wn matrix. Only the
results of the PS-SARSAR appears to be sensitive to the Wn matrix used, as indicated in Section 4.2.

Third, regarding the problem of model selection, it seems preferable to simply compare the performance of the different
models in terms of Schwarz' Bayesian Information Criterion and to check for the gross violation of distributional
assumptions of the residuals of the different models by using the empirical semi-variogram of the residuals. We do not
provide a battery of diagnostic tests for Spatial Autoregressive Semiparametric Geoadditive Models like the Lagrange
Multiplier tests widely used in the traditional parametric spatial econometric literature (LM-SEM, LM-SAR, LM-SARSAR).
Indeed, the use and abuse of LM tests for the spatial autocorrelation of the residuals has been largely criticized, as it may
yield to a mechanical selection process.

Fourth, concerning the specification of the smooth terms in the semiparametric models, it seems preferable to use the
B-spline bases, given their desirable numerical properties, with a discrete penalty on the basis coefficients as proposed by
Eilers and Marx (1996). Moreover, with a reparameterization of the penalized additive model as a mixed model, the
smoothing parameters (that control the trade-off between fidelity to the data and smoothness of the fitted spline) are
treated as variance parameters and can be estimated by REML together with the other parameters, avoiding any
arbitrariness in the choice of the degree of smoothing of each term. Another advantage of the reparametrization proposed
in this paper is that it allows for anisotropy.
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Fifth, an obvious advantage of the 2-step control function approach with respect to the 1-step REML approach in relation
to the estimation of the PS-SAR is that it allows to eventually control for the endogeneity of r.h.s. terms different from Wny, if
valid instruments are available.

Sixth, the PS-SAR, PS-SEM, PS-SDM and PS-SLX models can be easily extended to a static longitudinal data framework
when panel data are available. Eventually, a random spatial effect can be included in the semiparametric model when it is
reparameterized as a mixed model.

Finally, a major practical problem associated with the implementation of Spatial Autoregressive Semiparametric
Geoadditive Models is the lack of a standard software to estimate the entire set of semiparametric models. However, we
have developed specific functions in R software that allow the estimation of the large range of semiparametric models
included in the paper (1-step PS-SAR, PS-SEM, PS-SDM, PS-SLX, PS-SARSAR). It is also relatively easy to adapt the R library
mgcv developed by Simon Wood to implement the 2-step control function approach for the SAR model.
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Appendix A. Models specification
1.
 Parametric a-spatial Model:

yi ¼ β0þβ1ageiþβ2age
2
i þβ3 logðlotsizeÞiþβ4 logðlivingareaÞiþβ5bathsiþεi;

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n:
2.
 Parametric Spatial in X Model (SLX):

yi ¼ β0þβ1ageiþβ2age
2
i þβ3 logðlotsizeÞiþβ4 logðlivingareaÞiþβ5bathsi

þδ1 ∑
n

j ¼ 1
wijagejþδ2 ∑

n

j ¼ 1
wijage

2
j þδ3 ∑

n

j ¼ 1
wij logðlotsizeÞj

þδ4 ∑
n

j ¼ 1
wij logðlivingareaÞjþδ5 ∑

n

j ¼ 1
wijbathsjþεi;

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n:
3.
 Parametric Spatial Durbin Model (SDM):

yi ¼ β0þβ1ageiþβ2age
2
i þβ3 logðlotsizeÞiþβ4 logðlivingareaÞiþβ5bathsi

þδ1 ∑
n

j ¼ 1
wijagejþδ2 ∑

n

j ¼ 1
wijage2j þδ3 ∑

n

j ¼ 1
wij logðlotsizeÞj

þδ4 ∑
n

j ¼ 1
wij logðlivingareaÞjþδ5 ∑

n

j ¼ 1
wijbathsjþρ ∑

n

j ¼ 1
wijyjþεi;

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n:
4.
 Parametric Spatial Error Model (SEM):

yi ¼ β0þβ1ageiþβ2age
2
i þβ3 logðlotsizeÞiþβ4 logðlivingareaÞiþβ5bathsiþui;

ui ¼ λ ∑
n

j ¼ 1
wijujþεi; i¼ 1;…;n:
5.
 Parametric Spatial Lag Model (SAR):

yi ¼ β0þβ1ageiþβ2age
2
i þβ3 logðlotsizeÞiþβ4 logðlivingareaÞiþβ5bathsiþρ ∑

n

j ¼ 1
wijyjþεi;

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n:
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6.
 Semiparametric Additive Model (a-spatial PS):

yi ¼ β0þ f 1ðageiÞþ f 2ðlogðlotsizeÞiÞþ f 3ðlogðlivingareaÞiÞþβ1bathsiþεi;
εi � iidN ð0;σ2

εÞ; i¼ 1;…;n:
7.
 Semiparametric Geoadditive Model (PS-Geo):

yi ¼ β0þ f 1ðageiÞþ f 2ðlogðlotsizeÞiÞþ f 3ðlogðlivingareaÞiÞþβ1bathsiþhðnoi; eiÞþεi;
εi � iidN ð0;σ2

εÞ; i¼ 1;…;n:
8.
 Semiparametric Geoadditive SLX (PS-Geo-SLX):

yi ¼ β0þ f 1ðageiÞþ f 2ðlogðlotsizeÞiÞþ f 3ðlogðlivingareaÞiÞþβ1bathsi

þg1 ∑
n

j ¼ 1
wijagej

 !
þg2 ∑

n

j ¼ 1
wij logðlotsizeÞj

 !
þg3 ∑

n

j ¼ 1
wij logðlivingareaÞj

 !

þδ1 ∑
n

j ¼ 1
wijbathsjþhðnoi; eiÞþεi;

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n:
9.
 Semiparametric Geoadditive SDM (PS-Geo-SDM):

yi ¼ β0þ f 1ðageiÞþ f 2ðlogðlotsizeÞiÞþ f 3ðlogðlivingareaÞiÞþβ1bathsi

þg1 ∑
n

j ¼ 1
wijagej

 !
þg2 ∑

n

j ¼ 1
wijlogðlotsizeÞj

 !
þg3 ∑

n

j ¼ 1
wijlogðlivingareaÞj

 !

þδ1 ∑
n

j ¼ 1
wijbathsjþρ ∑

n

j ¼ 1
wijyjþhðnoi; eiÞþεi;

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n:
10.
 Semiparametric Geoadditive SEM (PS-Geo-SEM):

yi ¼ β0þ f 1ðageiÞþ f 2ðlogðlotsizeÞiÞþ f 3ðlogðlivingareaÞiÞþβ1bathsiþhðnoi; eiÞþui;

ui ¼ λ ∑
n

j ¼ 1
wijujþεi; i¼ 1;…;n:
11.
 Semiparametric Geoadditive SAR (PS-Geo-SAR):

yi ¼ β0þ f 1ðageiÞþ f 2ðlogðlotsizeÞiÞþ f 3ðlogðlivingareaÞiÞþβ1bathsiþρ ∑
n

j ¼ 1
wijyjþhðnoi; eiÞþεi;

εi � iidN ð0;σ2
εÞ; i¼ 1;…;n:
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