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Review
Arabinogalactan proteins (AGPs) are among the most
intriguing sets of macromolecules, specific to plants,
structurally complex, and found abundantly in all plant
organs including roots, as well as in root exudates.
AGPs have been implicated in several fundamental
plant processes such as development and reproduction.
Recently, they have emerged as interesting actors of
root–microbe interactions in the rhizosphere. Indeed,
recent findings indicate that AGPs play key roles at
various levels of interaction between roots and soil-
borne microbes, either beneficial or pathogenic. There-
fore, the focus of this review is the role of AGPs in the
interactions between root cells and microbes. Under-
standing this facet of AGP function will undoubtedly
improve plant health and crop protection.

Arabinogalactan proteins
Arabinogalactan proteins (AGPs) are highly glycosy-
lated members of the hydroxyproline-rich glycoprotein
(HRGP) superfamily of plant cell wall proteins. The
members of this family share common features, includ-
ing their typical, but variable arabinogalactosylated
glycomodules, and many other features associated with
their protein and nucleic sequences such as the presence
of numerous hydroxyproline (HyP)-based sites of O-gly-
cosylation, the existence of many functional domains
(often putative), or the possibility to be anchored to
the plasma membrane via a glycosylphosphatidylinosi-
tol (GPI) anchor (Figure 1) [1–3]. Occurrence of AGPs in
almost all root cell types including root hairs, epidermal
and cortical cells has been reported in most (if not all)
species studied so far (Table 1). In addition, root tips
release large amounts of AGP-rich rhizodeposits in the
soil, including living root border cells/border-like cells
(BCs/BLCs) and mucilage-rich exudates [4–8]. The use of
various anti-AGP antibodies [9,10] and immunomicro-
scopy has established that AGPs are differentially dis-
tributed and developmentally regulated in root tissues
(Table 1 and references therein). For example, JIM13-
recognized epitopes have only been found in xylem
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and root cap cells/BLCs in developing Arabidopsis (Ara-
bidopsis thaliana) roots [6,11], whereas JIM4 epitopes
have been found associated with developing pericycle
cells in carrot (Daucus carota) [10]. Examinations of
AGP-associated glycans using analytical chemistry tech-
niques have also highlighted the strong heterogeneity in
the composition and structure of AGPs in roots (Table 1).
The use of Yariv reagent,  known to bind and selectively
precipitate AGPs [12,13], has also facilitated many of
these studies (Table 1). Finally, bioinformatics and mo-
lecular tools have confirmed heterogeneity of AGP ex-
pression in roots (Figure 2). Hence, the diversity of AGP
structure and localization is likely to prelude the diver-
sity of biological functions that AGPs play in root devel-
opment and survival.

Indeed, the biological roles of AGPs in a wide range of
physiological plant processes have attracted the attention
of plant biologists for decades (see recent reviews in [14–
17]) and are still the object of many exciting studies.
Different possible modes of action of AGPs in general were
proposed: AGPs were proposed to operate as soluble (and
diffusible) signals which bind to a receptor. This mode of
action is likely to occur during tracheary elements differ-
entiation or during female gametogenesis [17–19]. The
precise structural motif involved in such signaling is un-
known but multiple studies suggest that whole AGPs or
AGP-derived glycans are good candidates. Although not
yet experimentally proven, receptor-like kinases (RLKs)
and wall-associated kinases (WAKs) [17,20–22] were pro-
posed to act as AGP receptors. Cleavage of GPI-anchored
AGPs by phospholipases (C or D) also results in the release
of the GPI anchor, which was also proposed to play a role in
downstream signaling [23].

Comparatively, little, or discrete, attention has been
given to the role of AGPs in plant–microbe interaction
(PMI), particularly in roots, and between root cells and
microbes. Root cell AGPs have recently emerged as inter-
esting players of PMI. Indeed, many recent studies suggest
that AGPs play a crucial role at several stages of PMI,
including root colonization, repelling or attraction of soil
microbes, and development of infection structures. Here,
we review the role and some properties AGPs display in
root cells and in root exudates which, directly or indirectly,
may favor or inhibit root colonization by soil microbes and
enhance the ability of plants to protect themselves against
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Figure 1. Structure of arabinogalactan proteins (AGPs). (A) AGPs are heavily glycosylated cell wall proteins and their glycans predominantly consist of arabinose and

galactose. Minor sugars, such as glucuronic acid or rhamnose, are also present. The backbone of the protein is enriched in hydroxyproline residues. AGPs can be anchored

to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. AGP glycan structures were adapted from [95–97]. Note the high heterogeneity in the structure of

the glycan chains. (B) AGP backbones are synthesized by members of a large multigene family and are classified into classical AGPs, hybrid AGPs, chimeric AGPs, and AG

peptides (short classical AGPs) [2,3]. Classical AGPs are characterized by a signal peptide domain, a P/Hyp-rich domain, and a C-ter domain. Hybrid AGPs often consist of

classical AGPs which may contain FLA, Lys-rich, nonspecific lipid transfer protein (ns-LTP), ENOD domains, or domains of unknown functions (DUFs) within their sequence.

These domains can be interspersed within the sequence. Chimeric AGPs often lack the C-ter domain responsible for GPI anchorage. For recent reviews describing the

chemistry of AGPs in general, see [14,16].
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their enemies. Together, these findings suggest that AGPs
can be a target of strategies aimed at improving plant
health and controlling interaction of plants with the soil
microbial community, particularly soil-borne pathogens.
2

AGPs at the interface of root cells and microbes
Many studies have shown that AGPs play an important
role at the root surface during different steps leading to the
colonization of roots by pathogenic and symbiotic microbes



Table 1. Distribution of arabinogalactan proteins in roots of a range of plant speciesa

Species Root cell type Use of antibodies/lectins Use of Analytical chemistry Molecular

genetic

(mutant)

Refs

Immunohistochemistry/

blotting

Yariv reagent

Arabidopsis thaliana Root cap and BLCs JIM13, JIM14, MAC207 Root treatment [6]

A. thaliana Root cap and BLCs JIM13 [7]

A. thaliana Epidermal cells JIM13, JIM14 Root treatment [98]

A. thaliana Epidermal cells LM2, JIM14 [99]

A. thaliana Epidermal cells Root treatment AtAGP17 [24]

A. thaliana Epidermal cells Root treatment and

electrophoresis

techniques

[100]

A. thaliana Differentiating cells Eel anti-H agglutinin Electrophoresis

techniques

Sugar composition [101]

A. thaliana Elongating cells JIM8, MAC207, JIM16 Sugar composition AtAGP30 [21]

A. thaliana Epidermal, cortical

and endodermal cells

AtFLA4/SOS5 [102]

A. thaliana Young xylem cells JIM13, JIM14 [11]

Pisum sativum Root cap and BCs JIM13, JIM14, JIM8 Electrophoresis

techniques

Sugar composition

and glycosidic

linkage analyses

[8]

P. sativum Root mucilage JIM13 Sugar composition [25]

P. sativum Root cellsb and root

infection structure

JIM8, MAC207, MAC265 [31]

P. sativum Root mucilage Sugar composition

and glycosidic l

inkage analyses

[68]

Zea mays Root mucilage Sugar composition

and glycosidic

linkage analyses

[66]

Z. mays Root mucilage Proteomic analysis [49]

Z. mays Root epidermal cells

and mucilage

LM2 [103]

Daucus carota Root pericycle cells MAC207, JIM4 [10]

D. carota Root pericycle cells JIM4 [104]

D. carota Root apical meristem MAC207, JIM4, JIM15,

JIM8, JIM14, JIM16

[105]

Raphanus sativus Root tip/cap cells and BLCs Gal4-BSA [106]

R. sativus Primary/mature rootsb Sugar composition

and glycosidic

linkage analyses

[107]

Brassica napus Root cap and BLCs JIM13, JIM14, JIM8 Electrophoresis

techniques

Sugar composition

and glycosidic

linkage analyses

[8]

Benincasa hispida Epidermal cells LM2, JIM14, JIM16,

JIM15, JIM17, JIM101,

MAC265, MAC266

[108]

Triticum spp. Root mucilage Sugar composition

and glycosidic l

inkage analyses

[67]

Vigna unguiculata Root mucilage Sugar composition

and glycosidic

linkage analyses

[67]

Alnus spp. Cortical cells and root

infection structure

JIM13, JIM4 [26]

Oryza sativa Root apexb JIM8 [109]

aDifferent approaches have been used to study AGP distribution, including analytical chemistry, immuno-based methods, electrophoretic techniques, bioinformatics, and

molecular tools.

bIndicates that the root cell type investigated in the study is not explicitly mentioned.
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[6,24–35]. These steps include the recognition between root
cells and the microbe, the colonization, and later on the
formation of infectious structures [36,37].

First, at the initiation of the dialog, or recognition, be-
tween root cells and microbes, and subsequent colonization,
the presence of AGPs was found to be essential. An Arabi-
dopsis mutant with a mutation in the AGP17 gene was
shown to be resistant to transformation by Agrobacterium
tumefaciens (the rat1 mutant) [24]. A pretreatment of wild
type roots with Yariv reagent reduced the frequency of root
3
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Figure 2. Relative level of expression of arabinogalactan protein (AGP) genes in different root tissues of Arabidopsis thaliana (modified from [14]). The figure was generated

using Genevestigator [110]. Reproduced, with permission, from Annals of Botany � Oxford Press.
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transformation events, thus suggesting that AGPs are in-
volved in the recognition and initial attachment of rhizobia
to the root [24]. The complementation of rat1 mutants with
the wild type AtAGP17 gene restored the wild type pheno-
type [24]. The role of AGPs in recognition and attachment of
rhizobia to root surface was also proven with Rhizobium
species: it has been shown that AGPs secreted by Arabi-
dopsis root cap cells and BLCs influence attraction and/or
attachment of Rhizobium sp. [6]. Pretreatment of Arabidop-
sis roots with Yariv reagent significantly reduced the ability
of Rhizobium sp. to colonize root tip cells [6]. Taking this
finding further, the authors showed that inhibiting AGP O-
glycosylation with a chemical analog of proline (3,4-dehy-
droprolin), also altered the ability of Rhizobium sp. to attach
to the root cap cells and BLCs [6]. More recently, it has been
elegantly demonstrated that a novel molecular mechanism
involving AGPs of pea (Pisum sativum) root mucilage and an
unknown Rhizobium leguminosarum factor were responsi-
ble for the polar attachment of R. leguminosarum to the root
surface [25]. Interestingly, R. leguminosarum mutants lack-
ing plasmidic nodulation genes or extracellular glucoman-
nan were still able to show this polar attachment [25,38,39],
supporting the idea of a novel molecular mechanism. To-
gether, these studies show that an AGP-based recognition
system is required and complementary to other modes of
recognition of host roots by beneficial microbes and contrib-
ute to the success of root colonization by symbiotic bacteria.
By contrast, it is not known if secreted AGPs play a role
during early phases (recognition, attraction) of root coloni-
zation by symbiotic fungi forming mycorrhizae. It has been
shown that an agglutinin isolated from stinging nettle
(Urtica dioica agglutinin, UDA [40,41]), and shown to dis-
play antifungal properties, inhibits the development of a
symbiotic fungi forming vesicular arbuscular mycorrhizae,
Glomus mosseae. However, whether UDA interacts with
plant AGPs is not known.

Finally, AGPs have also been frequently found at the
interface of microbe infectious structures and root cells.
4

Microbial infection is often mediated by the formation of
infectious structures where microbes and root cells meet.
Examples of such structures are infection threads [36],
actinorhizal nodules [26], arbuscular mycorrhizae [27,28],
and cyanobacterial stem gland symbioses [29]. A chimeric
population of AGPs (called arabinogalactan protein exten-
sins, AGPEs), shown to be enriched in arabinose and
galactose [30], and recognized by the monoclonal antibody
(mAb) MAC265 [42,43], has been identified as the major
component of infection thread lumen of the rhizobium–pea
symbiosis [31–33]. It has been hypothesized that physical
and biochemical properties of AGPEs may have an impor-
tant influence on the progress of tissue and cell coloniza-
tion by Rhizobium, probably by surrounding the bacteria in
the infection thread or by regulating the growth of the
infection thread itself [31]. Interestingly, AGPE epitopes
recognized by the mAb MAC265 have also been detected in
a pathogenesis context. Indeed, these epitopes were shown
to be more abundantly present in the cell wall of a pearl
millet (Pennisetum glaucum) cultivar resistant to infection
by the pathogenic oomycete Sclerospora graminicola, when
compared to a susceptible cultivar [34]. The authors pro-
posed that these AGPEs may crosslink to each other and
form a network which might provide anchorage for lignifi-
cation and create a barrier impermeable to fungal hyphae.
Interestingly, they also observed an increase in peroxidase
and H2O2 contents required for crosslinking (see also [35]
for oxidative crosslinking of AGPs).

AGPs were also found to play an active role during the
formation of root actinorhizal nodules in alder (Alnus
glutinosa)–Frankia symbiosis [26]. Using immunocyto-
chemistry coupled to electron microscopy, Berry et al.
[26] showed that AGP-associated epitopes were abundant-
ly present in nodule-infected tissues. AGP epitopes recog-
nized by the mAb JIM4 were found associated with pectic
polysaccharides in the cell walls, whereas those recognized
by JIM13 were abundantly found at the membrane–cell
wall border along the symbiotic interface at the early
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infection stage [26]. The authors proposed that the JIM13
antigen may function in directing Frankia growth during
early infection, or that the antigen could participate in the
formation of new plant cell walls at the interface that
accompany the colonization of the host cells by Frankia.
Interestingly, in mature-infected cells, JIM13-associated
epitopes were found in the host cytoplasm and vacuole [26].
Here, it was suggested that this location may indicate a
turnover of this epitope after cell wall synthesis has ceased.

In symbiotic fungi–root associations between Medicago
truncatula roots and symbiotic fungi of the genera Glomus,
two independent studies have shown that the transcript of
an AGP was particularly abundant in cells containing
arbuscular mycorrhizae [27,28]. The authors speculated
that this AGP may be a structural component of the
interface compartment or, alternatively, it might be in-
volved in mediating the interaction between the plant
cortical cells and fungal hypha during arbuscule develop-
ment [27]. It is also noteworthy that AGP-like proteins
from Glomus intraradices were shown to be expressed
during root colonization where they are believed to facili-
tate the formation of arbuscular mycorrhizae [28]. Inter-
estingly, Nostoc spp., cyanobacteria species which also
develop symbioses with plants, have been shown to contain
several consensus domains defining AGP genes and to
exhibit glycan epitopes associated with higher plant AGPs
[29]. The role of these AGP-like proteins in symbiosis
remains to be clearly established.

Apart from microbe–plant infection, it was also shown
that AGPs were required for a successful infection of plant
tissues, by plant parasites. For example, the holoparasite
plant Cuscuta reflexa was shown to induce a localized
(restricted to the infection sites) synthesis of an AGP,
termed ‘attachment AGP: attAGP’ by the host, required
for parasite attachment [44]. Using the RNA interference
approach, a correlation between the level of expression of
the attAGP and the force of attachment of the parasite to
its host was observed: the lower the level of attAGP, the
lower was the force of attachment of the parasite to its host
[44].

Together, these studies link AGPs to the formation of
infectious structures of either beneficial or pathogenic
microbes, and of plant parasites. They also suggest that
AGPs could be possible targets for strategies aiming at
controlling root infections.

In addition to the above-mentioned roles at the interface
of plants and microbes, it was proposed that AGPs may
contribute to a signaling cascade responsible for the mod-
ulation of plant immune response [24]. Such a modulation
of the plant immune system upon infection by soil microbes
is well documented and contributes to the success or the
failure of root infection and disease establishment [45]. In a
study on the rat1 Arabidopsis mutant, it was shown that,
prior and after root infection by A. tumefaciens, the content
of salicylic acid (SA) and pathogenesis-related proteins1
(PR-1) remains unchanged in the mutant roots [24]. By
contrast, SA and PR-1 contents are reduced in the wild
type roots upon infection and this reduction is likely to
favor successful infections by A. tumefaciens. The authors
proposed that AGPs were required for the modulation of
the content of SA and PR1, thus allowing colonization
of roots by A. tumefaciens. They have also suggested that
certain structural features (likely to be glycans) of
AtAGP17 may be responsible for such modulation [24].
The presence of a GPI anchor would allow AtAGP17 to
interact with wall kinases such as WAKs located in the
plasma membrane [20], or to be cleaved by specific phos-
pholipases and released as a soluble-signaling molecule
[23]. The role of AGPs as soluble-signaling molecules has
previously been demonstrated in several studies: xylogen,
for example, is a diffusible, high molecular weight AGP,
able to induce differentiation of Zinnia (Zinnia elegans L.)
mesophyll cells into tracheary elements [18].

AGPs secreted by root cap cells and BCs/BLCs: a role in
plant protection
AGPs are also synthesized by root cap cells and root cap-
derived BCs and BLCs. BCs and BLCs are released within
the rhizosphere and are required for the survival and
protection of the root in the soil [4–6,46–48]. AGPs are
highly expressed at the cell surface of BCs and BLCs [6–8],
but are also abundantly secreted into the rhizosphere by
the same cells, as components of the polysaccharide-rich
mucilage [6,7,25,49]. An interesting study has shown that
an Arabidopsis mutant unable to form root BLCs released
BCs [7]. Surprisingly, this unexpected release of BCs,
instead of BLCs, was accompanied by a secretion of a thick
layer of mucilage termed ‘BC biofilm’ [50], mostly consist-
ing of AGPs and pectic xylogalacturonan (XGA). Secreted
XGA and AGPs were both proposed to contribute to root
cap protection: XGA is described as highly resistant to
degradation by microbial pectin-hydrolyzing enzymes
[51], whereas AGPs would help hold the cells together like
a ‘glue’, thus allowing them to remain close to the root tip to
ensure its protection [7,46,50].

The importance of root cap cells and BCs/BLCs in
recognition and attraction of beneficial soil microbes has
been described previously [6,24,25]. These studies suggest
that AGPs secreted by root cap cells and BCs/BLCs are
required for successful infection of roots by beneficial
microbes. By contrast, attraction of pathogenic microbes
by AGPs seems to be a strategy of entrapment of the
pathogen, followed by their subsequent neutralization
[8]. Using an in vitro assay, it has been shown that AGPs
synthesized by pea root cap cells and BCs were able to
inhibit the development of the pathogenic oomycete Apha-
nomyces euteiches, thus providing, to the best of our knowl-
edge, the first report of antimicrobial properties of AGPs
[8]. Infection by oomycetes involves zoospore attraction by
chemotaxis, followed by encystment, and subsequent cyst
germination [52]. A purified AGP fraction extracted from
pea root cap cells and BCs has been found effective in
attracting, by chemotaxis, A. euteiches zoospores [8]. Inter-
estingly, the purified AGP fraction also provoked zoospore
encystment (immobilization of deflagellated zoospores or
cysts). Therefore, it is probable that AGPs may contribute
to protection against root infection by immobilizing zoos-
pores at the periphery of the tip or in the surrounding
environment. It has been reported that many antimicrobi-
al compounds and extracellular DNA are secreted by root
cap cells and BCs into the so-called ‘extracellular traps’
that neutralize the immobilized pathogen much like the
5
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ones formed by human neutrophil cells [5,47]. AGPs have
been proposed to be part of the trap complex [46]. Finally,
the purified AGP fraction was shown to significantly re-
duce cyst germination and hyphal proliferation [8]. The
precise mode of action of AGPs on A. euteiches development
is unknown. However, it is noteworthy that certain AGPs
harbor a nonspecific lipid transfer protein domain (ns-LTP-
like AGPs) [53], which may physically target microbe
membranes and inhibit microbe development. It has been
shown that ns-LTP proteins, which are classified as path-
ogenesis-related proteins 13 [54], were able to exhibit
cytotoxic and membrane permeabilization properties to-
wards bacterial and fungal plant pathogens [55–57]. That
ns-LTP-like AGPs have the same effects on A. euteiches as
pea root AGPs remains to be proven. Similarly, it is not
known whether the Yariv-precipitated AGPs in the pea
root cap study [8] contain LTP-like proteins.

AGPs secreted into the rhizosphere: role in
communication with soil microbes?
Along with organic acids, secondary metabolites, and pro-
teins, AGP-containing mucilages are abundantly secreted
into the rhizosphere by root tips. Organic acids [58], sec-
ondary metabolites [59], and proteins [60,61] are known to
play a role in microbial cooperation in the rhizosphere [62–
65], but how AGPs affect the rhizosphere microbiome has
been neglected. Evidence for AGP occurrence in root exu-
dates was initially provided by two studies [66,67], when
chemical structures typical of AGPs were found in maize
(Zea mays), wheat (Triticum aestivum), and cowpea (Vigna
unguiculata) mucilage. AGP occurrence in root exudates
was later reported in several other species including pea
[25,68], soybean (Glycine max L.) [69], Arabidopsis [6,7],
and maize [49]. AGP-containing root exudates were fre-
quently proposed to serve as lubricants protecting the root
tip as it pushes through the soil [70–72], to stabilize soil
aggregates [72,73], and protect root tips against toxicity of
aluminum and other heavy metals [72,74]. AGP-rich mu-
cilage also facilitates water retention in the rhizosphere
[75] and may indirectly contribute to the attraction of
living soil microbes towards a water-rich and carbon-rich
microenvironment. Chemotaxis, for example, is a phenom-
enon that is impacted by AGPs [8].

In the rhizosphere, the microbiome consists of com-
mensal, pathogenic, and beneficial microbes [62,65]. To
colonize a given rhizosphere, microbes have to, among
other things, be able to use available nutrients. Interest-
ingly, it was shown that many soil microbes including the
biocontrol agents Trichoderma viride [76] and Strepto-
myces avermitilis [77–79], the soil-borne pathogenic fun-
gus Fusarium oxysporum [80], as well as many other
microbes (Aspergillus niger [81] and Neurospora crassa
[82]) all produce AGP glycan-degrading enzymes (e.g., b-
1,3-galactanases, b-1,6-galactanases, arabinofuranosi-
dases, b-glucuronidases). Furthermore, a set of experi-
ments showed that rhizobacteria were able to grow on an
AGP-rich mucilage, suggesting their ability to hydrolyze
and metabolize AGP-derived sugars for their growth in
the rhizosphere [68]. In support of this is a study [83] that
showed that maize root mucilage (particularly enriched
in AGPs) [49,66] was able to influence the composition of
6

bacterial communities in soil. Consequently, root AGPs
seem to significantly contribute to the shaping of the
rhizosphere  microbiome. It is possible that AGPs would
select for specific antagonist microbes to help the root
prosper within the rhizosphere. Microbial interactions
occurring in such a microenvironment have been exten-
sively reviewed [62,64,65,84]. Different types of antago-
nism behavior including mycoparasitism, antibiosis, and
competition can develop between inhabitants and lead to
soil suppressiveness towards a disease caused by a spe-
cific soil-borne plant pathogen [85]. How root-secreted
AGPs of a given plant species would affect the establish-
ment of beneficial microbes (e.g., plant growth promoting
bacteria/fungi)  within a rhizosphere is an interesting
issue to unravel.

Also the susceptibility of AGPs to degradation by micro-
bial depolymerases may result in the production of AGP-
derived oligosaccharides. Given the diversity of AGP gly-
cans in plants, a high diversity of AGP-derived oligosac-
charide structures can be generated from secreted AGPs,
and may have interesting biological functions. The ability
of cell wall-derived oligosaccharides to modulate or acti-
vate plant defense mechanisms has been studied for dec-
ades and was demonstrated for plant-derived as well as for
fungal-derived cell wall degradation products (the oligo-
saccharin theory) [86,87]. It was shown, for example, that
upon plant infection by pathogenic microbes, endopolyga-
lacturonase-mediated degradation of pectin homogalactur-
onans yielded oligogalacturonans, which were found to
activate plant defense mechanisms [88,89]. Recently, a
hybrid kinase consisting of the extracellular domain of
WALL-ASSOCIATED KINASE1 and the intracellular do-
main of the Elongation Factor Tu-receptor kinase was
shown to bind oligogalacturonans and activate defense
responses [90]. It is therefore tempting to speculate on
the ability of AGP-derived oligosaccharides to act as elici-
tors [17]. Plant cell wall-degrading enzymes of unknown
functions, including b-galactosidases, were found to be
released into the rhizosphere by BCs/BLCs [91,92]. That
such AGP-derived fragments would act as damage-associ-
ated molecular patterns (DAMPs) [93] with the ability to
modulate the plant immune system is plausible but
remains to be demonstrated.

Concluding remarks and future outlook
It is clear that AGPs are abundantly synthesized by root
cells and secreted into the rhizosphere. However, current
understanding of AGP function in PMI is limited. Studies
discussed in this review have clearly shown that AGPs
play important roles in mediating many root cell–microbe
interactions. First, AGPs are involved in attracting and
initiating root tip colonization  by beneficial microbes.
They were also found expressed at the interface of infec-
tious structures that are formed between various benefi-
cial microbes and root cells, and which allow the exchange
of nutrients between the root and its symbiont. At these
physical interfaces, they are likely to be important as
structural components and/or signaling molecules. Inter-
estingly, in a pathogenesis context, they are also likely to
set the scene for mounting an efficient and localized
defense response. Based on recent finding of their
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antimicrobial properties, AGPs are directly involved in
controlling some pathogenic microbes. Purified AGPs
from pea root cap cells and BCs were shown to effectively
inhibit the development of a devastative pea pathogenic
microbe [8]. However, many questions remain to be an-
swered: what are the mechanisms involved? Can root
AGPs perform in a similar manner with other soil-borne
pathogens? Are AGPs from a given species (e.g., pea root
AGPs) only effective on their, or some of their, natural
microbial enemies (A. euteiches for pea)? A more general
point to unravel is the promising role AGPs may play in
the dialog between roots and soil microbes. Evidence points
towards their involvement in this dialog as supporting
players, or facilitators, of colonization of the rhizosphere
by specific groups of microbes [6,8,68,83]. Additional re-
search is needed to further understand how AGPs precisely
inhibit or stimulate members of the microbial community. A
recent review has proposed a model summarizing the many
interactions occurring between roots and microbes in the
rhizosphere [62], and it is tempting to include AGPs, or AGP-
derived oligosaccharides and/or glycopeptides, in such a
model. Here, we highlight in Figure 3 the possible roles
played by AGPs in such processes. However, the precise
modes of action of AGPs in some of these possible scenarios
remain to be investigated, as these glycoproteins harbor
complex chemical structures, and for most of the possible
scenarios mentioned above it is unknown whether all AGP
populations, specific families, or specific sequences (oligo-
saccharides or glycopeptides) are responsible for biological
activity. An interesting study [94] showed that a given AGP
can contain in its structure (the chitinase-sensitive motif)
the ability to inhibit carrot somatic embryogenesis, whereas
other motifs (i.e., glycopeptides remaining after endochiti-
nase treatment and repurified using Yariv reagent) yielded
the opposite result (reviewed in [17]). This supports that
AGPs are able to play dual roles in different processes
including interactions of roots with microbes.

Clearly, interactions between roots and microbes are
crucial for plant health and AGPs play a significant role in
such interactions. Basic and strategic studies, as well as
the development of novel tools, should help not only to
further understand the function of AGPs within the rhi-
zosphere but also to facilitate their use, or the use of
molecules derived from them (or modeled on them), as
natural compounds for crop protection in a sustainable
manner.
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