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Abstract—1In this paper, we propose a new anomaly detection
method for hyperspectral images based on two well-designed
dictionaries: background dictionary and potential anomaly dic-
tionary. In order to effectively detect an anomaly and eliminate
the influence of noise, the original image is decomposed into
three components: background, anomalies, and noise. In this way,
the anomaly detection task is regarded as a problem of matrix
decomposition. Considering the homogeneity of background and
the sparsity of anomalies, the low-rank and sparse constraints
are imposed in our model. Then, the background and potential
anomaly dictionaries are constructed using the background
and anomaly priors. For the background dictionary, a joint
sparse representation (JSR)-based dictionary selection strategy
is proposed, assuming that the frequently used atoms in the
overcomplete dictionary tend to be the background. In order
to make full use of the prior information of anomalies hidden
in the scene, the potential anomaly dictionary is constructed.
We define a criterion, i.e., the anomalous level of a pixel, by using
the residual calculated in the JSR model within its local region.
Then, it is combined with a weighted term to alleviate the
influence of noise and background. Experiments show that our
proposed anomaly detection method based on potential anomaly
and background dictionaries construction can achieve superior
results compared with other state-of-the-art methods.

Index Terms— Anomaly detection, background dictionary,
hyperspectral images (HSIs), joint sparse representation (JSR),
low rank, potential anomaly dictionary.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) are of wide spectral

range and high spectral resolution [1], [2], so it contains
rich spectral information to discriminate physical properties of
different materials [3]. Therefore, HSI finds many applications
in different areas, such as land cover classification [4]-[7],
urban change detection [8], and crop monitoring [9].
Especially, it is more appealing to detect interesting materials,
e.g., targets [10] or anomalies which are very different form
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background pixels in an image scene [11]. Anomaly detec-
tion [12] based on the HSI has been widely studied in the
fields of agriculture [13], mineral exploration [14], maritime
rescue [15], and military defense [16], [17]. Different from
the supervised target detection, anomaly detection is achieved
without knowing the prior information of targets [18]. The
difference of statistical distributions between background [19]
and anomalies can be utilized for detection [20]. However, due
to the absence of spectral information of anomalies, anomaly
detection brings more challenges to traditional detection
methods.

In recent years, many anomaly detection methods based
on the HSI have emerged. As the pioneering work in this
area, Chen and Reed [21] justified the assumption that most
optical clutters can be modeled as a whitened Gaussian random
process with a rapid space-varying mean and a slow-varying
covariance. Based on this assumption, they proposed a new
constant false alarm rate detector based on generalized likeli-
hood ration test for multidimensional image data. After that,
Reed and Yu [22] developed a method to deal with the signal
patterns with nonnegligible and unknown intensities in several
optical bands, that is, the well-known Reed—Xiaoli (RX)
detector. However, the assumption that the background of an
HSI follows a zero mean and unknown covariance multivariate
normal distribution is too strong to satisfy in reality. Thus,
some modified RX methods were proposed, such as linear-RX
and iterative linear-RX [23], weighted-RX [24], segmented-
RX [25], subspace-RX [26], kernel-RX [27], and regularized-
RX [28]. Recently, a new cluster kernel RX [29] has also
been proposed, which groups the background of HSI into
clusters and applies a fast eigenvalue decomposition algorithm
to achieve anomaly detection. Unfortunately, it is difficult to
perfectly model the background utilizing a manually designed
distribution form.

To avoid using an inappropriate data distribution, many
other methods were also attempted, in which sparse repre-
sentation [30] has shown great advantages in computer vision,
such as face recognition [31], image super-resolution [32], and
image denoising [33]. It has also been used in hyperspectral
target detection. Chen ef al. [11] proposed a target detection
method based on sparse representation by utilizing a local
dual window to construct an adaptive background dictionary
and a global target dictionary. In [34], a target detection
method based on joint sparse representation (JSR) and multi-
task learning has also been proposed. For anomaly detection,
due to the fact that there is no prior information about
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Fig. 1. Schematic of our dictionary construction method for hyperspectral anomaly detection. First, the PCA is used to get a low-dimensional 3-D cube.

Then, the original image is separated into many 3-D regions by a fixed-size window. After that, the IPD-based K-means is used to group the regions into
several classes. The original spectral pixels corresponding to each region are reconstructed using the JSR model with class-based overcomplete dictionary.
The coefficient of JSR is used to construct the background, and the residual in JSR is used to construct the potential anomaly dictionary.

a target, existing methods try to make full use of background
information. Most of them assumed that background pixels
in the center of a local region can be represented by the
combination of other pixels in the region, while anomalous
pixels cannot. With this assumption, in [35], an anomaly
detection method was presented based on JSR of background,
which utilized the characteristics of JSR, that all the similar
pixels within a local region can be jointly represented in the
same low-dimensional subspaces. In [36], a novel sparsity
score estimation framework based on sparse representation
was proposed for anomaly detection.

Since HSI usually has large homogeneous regions [10]
whose majority of pixels have similar spectral characteristics,
the structure can be represented by an underlying subspace
using a subspace learning method. The commonly used meth-
ods include principal component analysis (PCA) [37] and
robust PCA (RPCA) [38]. For better multisubspace learning,
low-rank representation (LRR) [39] was proposed. It attempts
to minimize the rank of a dictionary with the corresponding
coefficients while decomposing the original data into low
rank and noise components. For HSI data, an LRR technique
has been used in classification [40], [41] and denoising [42].
Recently, this method was also utilized to model the problem
of anomaly detection [43], [44] based on the assumption that
the background has low-rank properties, while the anomalies
demonstrate sparse properties. In [43], the observed data
were decomposed into background and anomaly parts. The
coefficients of the model were constrained to be both low
rank and sparse in order to obtain the global and local
structures of the background. Because of the effectiveness of
low-rank and sparsity constraints for background modeling,
this method is achieved a promising performance. However,
anomaly and noise distributions are aliasing owing to similar
sparse characteristics. Therefore, it is a challenge to distinguish

noise from anomaly component. In [44], both background
and anomaly priors were considered and each part of the
original data was modeled separately. It was assumed that the
background has the low-rank property, while an anomaly owns
the sparsity property, so the observed data were decomposed
into background, anomaly, and noise parts by extending the
RPCA model. An anomaly was then detected based on the
Mahalanobis distance.

To accurately model background and anomaly information,
we propose a new HSI anomaly detection method based on the
well-designed background and potential anomaly dictionaries
utilizing low-rank and sparse representation (LRSR) strat-
egy. We decompose the original data into three components,
i.e., background, anomaly, and noise. The background com-
ponent is constrained to have a low-rank property due to the
homogeneity of HSIs. The anomaly component is constrained
to have the sparsity property. More importantly, two well-
designed dictionaries are constructed to constitute our model.
The JSR model is used to depict the pure background without
the influence of clutters and anomalies. In order to make full
use of the anomaly information hidden in the HSI, a potential
anomaly dictionary is constructed. The atoms of the dictionary
are selected according to the anomalous level (AL) utilizing
the residual calculated in the JSR model combined with a
weighted term. With the carefully constructed background and
potential anomaly dictionaries, the HSI can be separated into
background, anomaly, and noise components using a sparse
and low-rank decomposition model. The schematic of the
proposed algorithm is shown in Fig. 1. The main contribution
in our proposed anomaly detection method based on potential
anomaly and background dictionary construction (PAB-DC)
can be summarized as follows.

1) A new low-rank and sparsity-based anomaly detection

model is proposed with two well-designed dictionaries,
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i.e., background and potential anomaly dictionaries,
so that the original data can be properly decomposed
into background, anomaly, and noise components.

2) For the background dictionary construction, local and
nonlocal similarities of each region in the scene are
considered, and we propose to use the coefficients of
the JSR to select the atoms.

3) Making full use of the anomaly prior information
hidden in the scene, we propose to construct a potential
anomaly dictionary utilizing the residual of each local
region by the JSR model.

The remainder of this paper is organized as follows. The
detailed introduction of our method is given in Section II.
The experimental results and discussions are reported in
Section III. Finally, we conclude this paper in Section IV.

II. PROPOSED METHOD

A. Background, Anomaly, and Noise Decomposition Model

Let an HSI data be denoted as X € R"*w>d where d is the
number of the spectral bands, and & and w are the spatial size
of the data. For convenience, we transform the 3-D cube X
into a 2-D matrix X = {x;}'_ | € R?*"where each column of
X is a spectral pixel vector in the HSI and n = h x w is the
number of the pixels. In this paper, we formulate the anomaly
detection task as a matrix decomposition problem. The HSI
data matrix is decomposed into three components: background,
anomaly, and noise. Considering that there usually exists a
strong correlation between background pixels, which can be
represented by the combination of other background pixels,
and we want to distinguish the anomalies and noise simulta-
neously, our decomposition model is formulated as

X=BZ+A+E (1)

where BZ is the background component, B = [b1, bo, ...,
bn,] is the background dictionary, np is the number of the
atoms in the dictionary, Z = [z1,22,...,2,] are the corre-
sponding representation coefficients, and A = [ay, az, ..., a,]
and E = [e], e2, ..., e,] are the anomaly and noise compo-
nents, respectively. Intuitively, the whole spectral space can
be divided into several underlying subspaces. For an HSI,
pixels in a local region are most likely homogeneous, so we
assume that the background holds a low-rank property. For
the noise component, it has been investigated that there are
mainly two kinds of noise existing in HSIs, including sparse
noise (strip and deadline) and Gaussian random noise [45].
Compared with / and /i norms, />;; norm is more robust
to describe both sparse noise and Gaussian random noise.
Therefore, in this paper, />, norm is utilized to model the
noise. Thus, the objective function can be further formulated as

i k(Z A A|E
Jnin, ran (Z) + PlIAIl; + ZIE]2,1

stX=BZ+A+E 2)

where f > 0 and A > 0 are the coefficients used to balance
all the components. rank(Z) represents the rank of matrix Z
which is the coefficient matrix of the low-rank representation.

The [>,1 norm is defined as the sum of the /[ norm of the
columns in a matrix, i.e.,

n d
Il =Y | (ei))?
i=1 \ j=1

which attempts to enforce each element of the matrix to
approach zero except for some outliers.

It is difficult to estimate anomalies using a particular distri-
bution, because anomalies may be different in the same HSIs.
Thus, pixels with significant differences from the background
are extracted and used as potential prior of the other anomalous
pixels. Intuitively, anomalies chosen as the atoms of the
potential anomaly dictionary are related to the other ones
hidden in the data set. Therefore, a hidden anomaly can be
represented by the linear combination of the predetected strong
anomaly atoms in the dictionary, namely, A = TS, where
T =[#, 12, ..., t;] is the potential anomaly dictionary, nr is
the number of atoms in potential anomaly dictionary, and
S = [s1,52,...,5,] is the corresponding coefficient matrix.
However, when generating the potential anomaly dictionary,
we may mistakenly include some pixels that are not anomalies.
To avoid this situation, we assume that only the potential
anomaly atoms are active when reconstructing an anomaly
pixel. The atoms in the potential anomaly dictionary are
expected to be the supportive bases for the reconstruction of
an anomaly. Since these pixels are randomly distributed in the
scene, anomalous pixels retain sparse characteristics. In this
way, we constrain the coefficients matrix to be sparse. As a
result, anomalous pixels are reconstructed using the atoms
as few as possible from the potential anomaly dictionary.
The above-mentioned formulation is nonconvex and NP-hard.
Fortunately, under certain conditions [38], the problem of
finding a low-rank approximation for a given matrix can be
solved by minimizing its nuclear norm. Now, the model for
our proposed anomaly detection becomes as

3)

in ||Z S A|E
i, IZl« + BIISI1 + AlIE[2,1

55

stX=BZ+TS+E )

where |||+ denotes the matrix’s nuclear norm. The response
value of each pixel belonging to anomalies can be calculated
by the /> norm of each column of the anomaly component
A =TS, ie, r, = |lajll2 i = 1,2,...,n. Finally, anomalies
can be determined by a predefined threshold.

B. Background Dictionary Construction

For the pixels within a local region of an HSI, they may
share common structures. Therefore, these regions can be
jointly approximated by a sparse linear combination of a few
common atoms. The objective of the JSR [46] is

min || W”row,O

st U=Vy +R (5)

where U = [uy, uy,...,ur] is a 2-D matrix with L spectral
pixels flattened from the 3-D local region cube and y is the
corresponding representation coefficients where only a few
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rows are nonzero, R = [ry,r2, ..., rp] are the residuals after
construction based on V and y, and [*|lrows,0 denotes the
nonzero rows of .

The JSR model represents each spectral pixel within a local
region using common atoms chosen from an overcomplete
dictionary. Thus, it captures the common part from the original
region by the linear combination of a few atoms, which reflects
the consistent spectral information in this region. Obviously,
for the anomaly detection task, the common part within a
region tends to be regarded as the background, so we choose
the atoms that are frequently used as the bases to reconstruct
background. All the chosen atoms from different classes of
background materials form the background dictionary. Now,
the challenge is how to construct an overcomplete dictionary
for the JSR model and how to design the metric to measure
the frequently used atoms chosen from the dictionary.

For the first problem, a simple method to construct the
dictionary in the JSR model is to utilize all the original spectral
pixels in HSI. However, it is time-consuming to calculate each
small region over such a large dictionary. Although a wide
range of spectral information from different materials may
boost the representation ability of the JSR model, it actually
degrades the ability of describing a particular material. This
is because too many pixels from different classes are involved
when reconstructing a local region. Consequently, the global
dictionary may be confused when intending to extract a
common structure.

Considering the nonlocal similarity between the local
regions, we use an extended k-means clustering algorithm to
group all the pixels into several clusters so that each group con-
tains a similar underlying structure for reducing complexity.
Let the small region under investigation be denoted as a 3-D
cube U e RWinxwinxd f ¢jze win x win x d, where win is the
window size. Its 2-D form is U € R%*L where L = win x win.
The image patch distance (IPD) [47] is used to measure the
distance between two regions, which is defined as

orrp(Up, Uq) = o(P(u;), Q(u;))

L
= E max
h=1

min o(ap, b
sapi (an, b) ©

min by,
aeP(u;) 0( h a)

where o(a, b) is a nonlocal spectral similarity function, and
(here it is the Euclidean distance), and Up and Ugq are two
2-D matrices representing two regions selected from the
regions. The calculation procedure is shown in Fig. 2.

With the increase in the number of classes, the number
of the regions in each class usually decreases. As a result,
the number of the regions in the smaller clusters is insufficient
to construct an overcomplete dictionary by the JSR model.
To solve this problem, those nonovercomplete classes will be
merged into the nearest class based on the IPD distance.

In this way, we group all the regions into several clusters.
For each cluster, the overcomplete dictionary is made up of
the overall spectral items in the class which are used to
reconstruct each local region. The frequently used atoms in the
dictionary are treated as the final background dictionary atoms.
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Fig. 2. Procedure of IPD-based K-means.

The ultimate formulation of the JSR model for each class is as

: c
min H Vi ||row,0

s.t. U = G yf + R (7
where Uf is the ith region of the cth class, i =[1,2,...,n],
¢ = [nl,nz,...,nK] andc =[1,2,..., K], n¢ is the number

of the regions in the cth class and K is the number of classes,

¢ = (g7, 85 ..., 8l is the overcomplete dictionary of the
cth class with n“ atoms, and y; and R{ are the corresponding
coefficients and residual, respectively.

The second problem is to measure the representation fre-
quency of each atom in each class. In this paper, the frequency
is defined as the sum of the JSR coefficients after normaliza-
tion. It can be expressed as

PCZ—ZZ\%J

i=1 j=1

n® L
o (33" ®

i=1 j=1

<
Il

where t//lf j is the jth column of the ith region in the cth
class, y is a normalization term, P¢ is a vector, in which the
value of each element reflects the weighted frequency chosen
as the background dictionary atom, and sum(-) denotes the
elementwise sum of a vector. We sort it in descending order
and the top atoms are chosen as background dictionary atoms
for the cth class. Finally, all the chosen atoms from each class
construct the background dictionary B.

C. Potential Anomaly Dictionary Construction

We believe that some anomalous pixels with strong
responses to the background can be detected by the JSR
model and they can be considered as the prior in order to
detect the other anomalies. If a region is not completely
homogenous, that is, there are outliers or different pixels,
these pixels are more likely anomalies. Such heterogeneity
in a local region is reflected by the residual computed by
the JSR model. Therefore, the pixels in a region leading to
a large reconstruction residual are claimed to be anomalous
pixels. Meanwhile, in order to reduce the influence of isolated
noise in the scene, we use the region-based residual to select
the potential anomaly atoms. For the central pixel in a region,
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a larger average residual of its neighboring pixels means that
the central pixel is most likely an anomaly. Here, the mean
residual of the regions is regarded as the anomaly response of
the central pixel.

For the ith region of the cth class, the response of the
anomaly is calculated by

i} 1 <&
Re= L3, ®
i=1

where rf ; is the jth column of the ith region in cth class.
Therefore, the error in the cth class is

R = [RLRS, ... Ryc]. (10)

The average residual of each region in K classes is concate-
nated, and then, we define the response value of a pixel being
anomaly, namely, AL as

1 2
AL = [Rmean’ Rmean’ .-

S RE ]

mean

<=

n¢

~ 1 K n° L
r=2.2 Ri=7> 2> lIill, an

c=1 i=1 c=1i=1 j=I1

where y is the normalization part and AL is a vector in which
each element is the anomaly response value of a region.

However, it is not enough to extract obvious anomalous
pixels. On the one hand, noise is always involved. On the
other hand, for a complicated scene, a region may contain
different types of background materials that may be mistakenly
regarded as potential anomaly pixels. In other words, not all
the pixels with large reconstruction residuals are anomalies.
For this concern, we take into account the importance of atoms
participating in reconstructing other pixels. Compared with
other atoms, the selected background and anomaly atoms are
more significant. Therefore, we can eliminate the atoms that
do not take part in reconstruction in order to alleviate the
interference.

In addition, anomalies are selected as atoms only when
the current regions contain an obvious anomaly structure.
In order to identify these truly anomalous pixels, we utilize the
difference between the JSR coefficients when reconstructing
the background and anomaly. The way to estimating the atoms
of the background dictionary actually includes two levels of
information. The first level is the times of an atom being
selected. It describes the participation quantity of each atom in
a certain class. The second level is the absolute value of the
corresponding coefficients as shown in (8), which describes
the importance degree of an atom in region reconstruction.
For the first level, the selection times of the background
atoms are always high, while the selection times of anomaly
atoms are low when reconstructing each of the local regions.
For the second level, the chosen anomaly atoms have strong
coefficients only when reconstructing a local region including
many anomalies. So the frequently used atoms for each class
tends to be background, while those atoms that only participate
in reconstructing a region containing anomalies tends to be
anomalies. The anomaly atoms in each class show the property
of low selection frequency and large coefficient. We define

the anomalous weight (AW) as follows to depict the above-
mentioned issue:

PC

AW = —
Fc

(12)

where F€ is a vector in which each element reflects the select
times of each atom, which can be written as

n® L
Fe=3 > sen(lof])

i=1 j=1

where sgn is the sign function. The weighted AL can be
expressed as

1 2 K
AL = [R Rmean’ e Rmean

mean?

| © AW

<=

n¢

~ 1 K n° L
p=2 > Ri=2>> > Inl, a3

c=1 i=1 c=1i=1 j=I1

where © denotes the elementwise multiplication and
AW = {AW1 JAW? AWX}. We sort them in a descending
order and choose the top pixels as the atoms of the potential
anomaly dictionary T.

D. Optimization and Computational Complexity

To solve the problem shown in (4), for convenience, two
auxiliary variables J and L are introduced to make the objec-
tive function separable. Thus, the problem can be converted
to the following form:

min

L L|E
J.E,Z,S,L Il + ALl + AIEll2,1

st X=BZ+TS+E, Z=J,S=L. (14

We solve (14) by utilizing the augmented Lagrange multiplier
method reported in [48], which is implemented by updating
one variable with others being fixed

£ = 131+ 2Bl + BILIs
+ (Y1, X ~BZ ~E~T8) + (Y2,Z - )
+(Ys,S— L)+ 5 (IX — BZ — E— TS|}

FIZ =315 +IS—LJ%) (15)

where Y1, Y2, and Y3 are the Lagrange multipliers and x > 0
is a penalty parameter. The problem can be resolved using the
following steps.

1) Fix E,L,S,Z and update J. The objective can be

derived as
. u Y2\ |
min Jl«+=|J-(Z+— (16)
7 2 Ivalra
2) Fix J,L,S,Z and update E. The objective can be
derived as
Y 2
min AJEll,  + & HE - (X —BZ TS+ —1>
E o2 “J e
(17)
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3) Fix J,E,S,Z and update L. The objective can be
derived as

2

Y
min AL, +%HL— (s+—3> (18)

u

F

The nuclear norm, /i and />; norms, can be solved by
singular value thresholding [49], soft thresholding [50], and
[>,1 norm minimization operator [39]. The complete procedure
is summarized in Algorithm 1.

Algorithm 1 Algorithm for Solving Background, Anomaly,
and Noise Decomposition

Input: Data matrix X, parameters 4 > 0 and f > 0
Initialize: Z=J=S=L=0,E=0, Y1=Y2=Y3=0,
w=107% pmx =10, p =12, 6 =10"°

Output: Z,E, S

. While not converged do
. Fix others and update J by Eq. (16)
. Fix others and update L. by Eq. (17)
. Fix others and update E by Eq. (18)
. Fix others and update Z by
Z:=B"B+D) ' [B'X-B’TS - B'E
+J+ B Y1 - Y2)/u]
6. Fix others and update S by
S =TT+ YT'X-T'BZ -T'E
+L+(TTY1 = Y3)/)

[ N N R S R

7. Update the three Lagrange multipliers
Y1 =Yi1+u(X—BZ—-E—-DS)
Y2 =Y+ u(Z-1J)
Y3 :=Y3+uS-L)
8. Update the parameter u,
w = min(pu, fmax)
9. Check the convergence conditions
IX—-BZ—-DS||p <e¢
I1Z—JllF <e
IS—Llr <e¢
10. End While

The computation of our method includes those of
Algorithm 1 and dictionary construction. For the first aspects,
the major computation is Step 2, which requires computing the
singular value decomposition of an n x n matrix. Therefore,
it is time-consuming if # is large. However, the computational
cost of this step can be easily reduced using the method
reported in [39]. The optimal solution Z* (with respect to the
variable Z) to (4) always lies within the subspace spanned
by the rows of A. This means that Z* can be factorized
into Z* = P*Z*, where P* can be computed in advance
by orthogonalizing the columns of BT. Therefore, our model

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

shown in (4) can be rewritten as

min [|Z]l« + AlISI; + AIEll,
Z.S.E

stX=B*Z+TS+E (19)

where B* = BP*. Since the number of rows of Z is at most 75
(the rank of matrix B r;, <« n), therefore the computation com-
plexity of Step 2 is O(r%). Noted that, X = {x;}}_, € R4,
so the computation complexity of Steps 3 and 4 is O(dnrp).
For the dictionary B and potential anomaly dictionary T, their
column numbers are np and nr, respectively. In Steps 5 and 6,
the term (BB +I)~! and (T T +I)~! can be calculated in
advance, so the computation complexity of these two steps are
O(nrlzg) and O(nn%), respectively. Therefore, the complexity
of Algorithm 1 is O(ns(rg + dnrp + nr% + nn%)), where
ng is the number of iterations. The major computation of the
dictionary construction addresses on solving the JSR model.
In this paper, the Orthogonal Matching Pursuit-Cholesky-
based method [51] is used to solve (14). However, the dic-
tionaries in the JSR model vary across different classes. For
convenience, we consider that there is only one dominant class
so that we can reconstruct the regions using one dictionary.
In this way, the upper bound of the computational complexity
can be calculated as O (nk(2nd L+nL?+2n+k?)), where k is
the sparsity level. The computational complexity of the IPD &
means is O (nr(d-LKn)), where d, is the number of the bands
after dimensionality reduction, K is the number of clusters,
and nj is the number of the iterations. Therefore, the com-
putation complexity of the entire algorithm is (ng(d-LKn) +
nk(ndL + nL? 4 2n + k%) + n; (r?g +dnrp + nrlzg + nn%)).

Finally, our proposed PAB-DC is summarized in
Algorithm 2. The construction of the background and
potential anomaly dictionaries is shown in Fig. 1.

IIT1. EXPERIMENTS RESULTS

In this section, we first compare our proposed PAB-DC
method with the widely used anomaly detection algorithms,
such as Global-RX, Local-RX [22], the detector based on
collaborative representation (CRD) [52], and the LRSR-based
detector [43] on five real HSI data sets. The CRD method was
proposed based on the assumption that the background can
be approximately represented by its spatial neighborhoods,
while anomalies cannot. The LRSR is a detector which tries
to model the global and local structure of background using
low rank and sparse constraints. In addition, the effectiveness
of the potential anomaly dictionary is investigated and
the parameters analysis is given. All the experiments are
conducted on a workstation with Intel Xeon Processor
E5-2630 v3 2.40 GHz x 32 and 64 GB RAM.

A color detection map is provided to illustrate the results.
The colors range from dark blue to bright yellow which
reflect the responses of pixels in the current component,
that is, the brighter the pixels, the stronger responses to the
corresponding component. In addition, for qualitative compar-
isons, the receiver operating characteristic (ROC) curves with
pointwise confidence intervals are used in our experiments.
The bias-corrected and accelerated percentile method that is a
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Fig. 3.
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)

Image descriptions. (a) False color image of AVIRIS-I. (b) False color image of AVIRIS-II. (c) False color image of the HYDICE data set. (d) False

color image of the Urban data set. (e) False color image of the Cri data set. (f) Ground truth of AVIRIS-I. (g) Ground truth of AVIRIS-II. (h) Ground truth
of the HYDICE data set. (i) Ground truth of the Urban data set. (j) Ground truth of the Cri data set.

Algorithm 2 Algorithm for PAB-DC

Input: 2D data matrix X, 3D data cube R, parameters A > 0
and f >0, K, M, n, W, p

Output: Z.E,S

1. Generate a local region U; (i = 1,2,3,...,n) from the
dataset with a window of size win X win;
U = [U17U25~-~»Un]

2. Obtain the class label of each U; using a K-means method
based on the IPD on the regions after dimensionality
reduction by PCA;

3) Group the regions into K classes;

U=[U,U%... UK = (U, ul,...U ]
U[U3, 03, ... U% U, u[Uuk Uk, .

, U

4. Calculate the representation coefficient y; and residual
R¢ for each region in each class based on the JSR model
by Eq. (7);

5. Generate the background dictionary by Eq. (8);

. Generate the potential anomaly dictionary by Eq. (13);

7. Apply the low rank and spare decomposition model using
the background and potential anomaly dictionaries from
Algorithm I

@)}

kind of bootstrap-based confidence bound estimation method
is used to estimate the confidence intervals on the level of
confidence being 95% [53], [54]. The area under curve (AUC)
is summarized with upper bound and lower bound based on
the confidence intervals.

A. Data Set Description

The first data set was provided in [43]. It was collected by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

over San Diego, CA, USA. The spatial resolution is 3.5 m per
pixel. It has 224 spectral bands in the wavelengths ranging
from 370 to 2510 nm. After removing the bands that corre-
spond to the water absorption regions, low SNR, and poor
quality (1-6, 33-35, 97, 107-113, 153-166, and 221-224),
189 bands are utilized in our experiment. The whole data
set has an image size of 400 x 400. There are two kinds of
airplanes in the scene that are treated as an anomaly. From top-
left of this hyperspectral data set, a region of 100 x 100 pixels
is selected as AVIRIS-I for testing. The three airplanes are
regarded as an anomaly in the scene. The anomalous pixels
refer to the main body and edges of the airplanes with a total
of 57 pixels. Fig. 3(a) and (f) shows the false color image and
the ground-truth map of AVIRIS-I data set, respectively.

The second data set AVIRIS-II is a 200 x 200 area selected
from the AVIRIS image, which is located at the center of the
San Diego region. Compared with AVIRIS-I, this data set has
more different types of background materials, including roofs,
grasses, shadow, roads, and so on. The three airplanes with
134 pixels are regarded as anomalous pixels. The false color
image and the ground-truth map are shown in Fig. 3(b) and (g),
respectively.

The third data set used in the experiment is obtained from an
aircraft platform with a Hyperspectral Digital Imagery Collec-
tion Experiment (HYDICE) sensor. The image has a spectral
resolution 10 nm and a spatial resolution of 1 m. It covers
an urban area that comprises a vegetation area, a construction
area, and several roads, including some vehicles. The whole
data set has a size of 307 x 307 pixels. In this experiment,
a subscene 80 x 100 on the upper right of the whole scene
is used. The 21 anomalous pixels are about vehicles with
different sizes [52]. The false color image and the ground-
truth map are shown in Fig. 3(c) and (h), respectively.

The fourth data set is from an open Airport-Beach-Urban
data set [54]. The sample images in this data set were
manually extracted from large images downloaded from the
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TABLE I
AUC COMPARISON OF THE METHODS WITH CONFIDENCE INTERVAL

Global-RX Local-RX CRD LRSR PAB-DC
AVIRIS-T 0.0091 H00268 () 6014 0068 ) gs3H00LIE () gung H00072 g ggsn +0.0032
-0.0369 -0.0908 -0.0206 -0.0109 -0.0105
AVIRIS-TT  0.8870*°%°1  0.8159*°35 (1876500165 7710*0023 () 91860007
-0.0268 -0.0419 -0.0285 -0.0452 -0.0080
HYDICE 00867 07+ (8983 0088 ) gags HMT ) 0303400312 g +0.0043
-0.0209 -0.1560 -0.0146 -0.0671 -0.0077
Urban 0.9946 012 () 9157 00148 9300 +00095 () ooy 0047 ) g0 +0.0020
-0.0017 -0.0256 -0.0135 -0.0053 -0.0026
Cri 0.9134 100060 () 754300084 ) coan #0028 () 50 S 400135 g ool +0.0032
-0.0078 -0.0141 -0.0117 0.0111 -0.0041

AVIRIS website. We use the data set with the size of 100x 100,
as shown in Fig. 3(d) and (i). It was collected over Texas
Coast on August 29, 2010. The spatial resolution is 17.2 m
per pixel. The noisy bands in the original images had been
removed, and the ground truth is manually labeled with the
help of the Environment for Visualizing Images software [55].

The fifth data set was acquired by the Nuance Cri hyper-
spectral sensor. The spectral resolution of this data set
is 10 nm. The image scene covers an area of 400 x 400 pixels,
with 46 spectral bands in the wavelengths ranging from
650 to 1100 nm. The 10 rocks in this scene can be regarded
as anomaly to be detected which is different from the grassy
background, as shown in Fig. 3(e) and (j) [44].

B. Detection Performance

The detection performance of our proposed PAB-DC is eval-
uated and compared with four other state-of-the-art detectors:
Global-RX, Local-RX, CRD, and LRSR. The dual windows
(Winj,, wingy) in the Local-RX and CRD are set as (3, 5) for
the HYDICE data set and (7, 13) for the others. The number
of clusters of LRSR and the number of the pixels chosen for
constructing the background dictionary are set to be 15 and 20,
respectively, as in [43] for all data sets. The parameters f and 4
in our model are 0.01 and 0.1, which is quite stable across
different data sets except for Cri data set, where 4 is 10 to get
the best performance. The window size in PAB-DC is 1 x 1
for the HYDICE data set, because the anomalies presented in
it are isolated pixels, while it is set to be 3 x 3 for the other
data sets empirically. The number of classes K is determined
by the number of background materials in different data sets.
Therefore, for the Urban data set, K is 5; for the AVIRIS-I and
HYDICE data sets, K are 10; and for the AVIRIS-II and Cri
data sets, K are 15. The number of atoms chosen to construct
the background dictionary varies for different classes. Thus,
we define the parameter # to present the percentage of the
chosen atoms who have the top frequencies in each class.
For AVIRIS-I, AVIRIS-II, HYDICE, Urban and Cri data sets,
it is set to be 5%, 5%, 3%, 1%, and 1%, respectively, to get
the best performance. In order to construct the overcomplete
potential anomaly dictionary, the number of atoms should be
larger than the number of bands. Therefore, the number of
potential anomaly dictionary atoms p for the experiment data
sets is 200, 200, 100, 200, and 100.

The color detection maps are shown in Fig. 4. It can be seen
that the Global-RX, CRD, and LRSR can correctly detect the

anomalous pixels in different data sets, but their responses
are not strong. Due to the sensitivity to the window size,
the Local-RX cannot detect the anomaly in the AVIRIS-I and
AVIRIS-II data sets. In addition, the response of anomalies in
the other three data sets is not very strong compared with other
methods. The PAB-DC method can get the strongest responses
of anomalies for all data sets, especially for the AVIRIS-II and
Cri data sets. The LRSR method also gets a good performance
in these five data sets, but on the AVIRIS-II and Cri data
sets, it cannot get strong responses because no anomaly
information is used. In contrast, PAB-DC obviously obtains
strong responses in these two data sets, and it is benefited
from the construction of a potential anomaly dictionary.

In addition, to quantitatively compare the performance of
the proposed method with the other four methods, the ROC
curves with pointwise confidence intervals are shown in Fig. 5
and the AUC values with upper and lower bounds are given
in Table I. The best results for each data set in Table I are
highlighted in bold. In Fig. 5, we can see that the Global-
RX can obtain stable results for different data sets because
of its global characteristic. The CRD method shows a good
performance except for Cri data set. It shows advantage
compared with the Local-RX method, this is because the
CRD method can model the background more exactly, while
the multivariate normal distribution-based Local-RX cannot
always hold different kinds of background. However, the CRD
method also suffers from the sensitivity to the window size,
and the local window cannot obtain the global background
information, so it cannot get good performance on the Cri
data set which has a cluttered background. Since the low-
rank model tries to catch the global information of the whole
scene, it is very benefit for the simple background. Thus,
the LRSR method shows a good performance on the AVIRIS-I,
HYDICE, and Urban data sets shown in Fig. 5(a), (¢), and (d),
respectively. However, it cannot get good performance in the
AVIRIS-II and Cri data sets due to their complex background.
Our proposed PAB-DC method gets the best performance
in the AVIRIS-I, AVIRIS-II, HYDICE, and Cri data sets,
as shown in Table I and Fig. 5. It also gets a comparable
performance on the Urban data set following the Global-RX
method as shown in the fourth line of Table L.

To further reveal the procedure of our PAB-DC method,
we illustrate the segmentation map, the background dictionary
atoms, the potential anomaly dictionary atoms, the background
part, the anomaly part, and the noise part in Fig. 6(a)—(f),
respectively. The JSR model can obtain the informative
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Fig. 4.

(I-0)

(1I-c)

(IlI-c)

(IV-c)

(V-¢)

I-d)

(1I-d)

(I11-d) (II-e)

(IV-d)

(V-d) (V-e)

I is the results using the AVIRIS-I data set. II is the results using the AVIRIS-II data set. III is the results using the HYDICE data set. IV is the

results using the Urban data set. V is the results using the Cri data set. (a) Globa-RX. (b) Local CRX. (¢) CRD. (d) LRSR. (e) PAB-DC.

background support to construct purer and more reliable
background dictionary. Combining with the strong robustness
of low-rank constraint, our method can capture the background
across different data sets shown in Fig. 6(b) and (d). As shown
in Fig. 6(c), in most cases, the potential anomaly dictionary
can extract some obviously anomalies in advance, which
enhances the performance of subsequent detection tasks.
In addition, the procedure of clustering in our PAB-DC method
is quite different, which can be seen as a blockwise clustering
strategy, resulting in smoother segmentation as shown
in Fig. 6(a). It is beneficial to areawise anomaly detection just
as in the AVIRS-I, AVIRS-II and Cri data sets. Meanwhile, for
pixelwise anomaly detection, we can simply set the window

size being 1 as in the HYDICE data sets, and the PAB-DC
achieves better results as well. In Fig. 6(d)—(f), the background,
anomaly, and noise parts are visualized. The PAB-DC can
effectively decompose the original data into these three parts,
and we can obviously see that the noise part can capture the
strong interference around the edges and cluttered background,
which makes the anomaly detection map more smooth.

C. Parameter Analysis

1) Effectiveness Evaluation of Potential Anomaly Dictio-
nary: To evaluate the effectiveness of the potential anomaly
dictionary, we compare the PAB-DC with the one without it,
which is implemented by setting the potential anomaly
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Fig. 5. Experimental results. (a) ROC curves comparison on the AVIRIS-I data set. (b) ROC curves comparison on the AVIRIS-II data set. (c) Curves ROC
comparison on the HYDICE data set. (d) ROC curves comparison on the Urban data set. (¢) ROC curves comparison on the Cri data set. (f) ROC curves of

the PAB-DC method with and without potential anomaly dictionary.

dictionary as a zero vector. For convenience, we conduct the
experiments on the AVIRIS-I data set. We set the window
size as 3 x 3 in this experiment. The number of clusters
is set as 10 empirically. The number of atoms to construct
the background dictionary varies for different classes. The
parameter 7 is 5%. The number of the potential dictionary
atoms p is slightly greater than that of bands or O in the
comparison experiment. In addition, we reveal the coefficients
obtained in our model to show if the anomaly atoms in the
potential anomaly dictionary represent anomalies in the scene.

Fig. 7 shows the coefficients of the chosen anomalies pixels
in the potential dictionary, where the red bar is the position
of the anomalies detected by the potential anomaly dictionary.
The blue bar reflects the coefficients of each atom. We can
see that there are five anomalous pixels chosen in the potential
anomaly dictionary, two of which have very large coefficients
when they are used to reconstruct other anomalies. It is
noticed that the coefficients of other pixels in the potential
anomaly dictionary are relatively small. It is illustrated that
the anomaly part can be well reconstructed using the atoms in
the potential anomaly dictionary, and thus, the anomaly part
has the ability to identify the anomalous pixels in the scene.
Fig. 5(f) shows the ROC curve of these two methods. The
AUC value produced by the PAB-DC is 0.9950, while the
AUC value of the PAB-DC without the potential anomaly
dictionary is 0.9409. From the results, we can see that the

potential anomaly dictionary indeed enhances the detection
performance.

2) Analysis of the Window Size and Cluster Number: The
first parameter that we discuss is the window size used in our
experiments. It influences the number of pixels within each
region and also affects the construction of two dictionaries by
the JSR model. The number of classes is another important
parameter, which determines the size of the dictionary. As the
increase of the class number, the number of pixels in each
class may decrease, which results in the reduction of regions
in each class. We evaluate the performance of the PAB-DC
considering these two parameters together on the AVIRIS-I
data set. The numbers of classes that we choose are 5, 10, 15,
20, and 25 and the window size is 3, 5, 7, and 9, respectively.
The parameters f and A of the objective function is fixed to
S =0.001 and 4 = 0.1. The results are shown in Fig. 8.

It can be seen that the PAB-DC is robust with the change
of the window size, which is different from the other local
detectors. Because we group the data on the region level into
several classes, it is beneficial to utilizing the relatively global
information without affecting the spectral information of the
other materials. In addition, for AVIRIS-I, the anomaly is not
too large nor too small. However, with the increase of the
window size, the computational cost in the procedure of JSR
increases. Therefore, in the experiment, a 3 x 3 window is
used.
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3) Analysis of Parameters  and A: [ and 1 in the objec-
tive function are the parameters to balance the background,
anomaly, and noise parts. We analyze their effects on the
performance together. Both f and A are chosen from 0.0001,
0.001, 0.01, 0.1, 1, 2, and 3. In this experiment, the number of
the classes is fixed to 10 and the window size is set to 3 x 3.
The experiment is conducted on the AVIRIS-I data set. The
result is shown in Fig. 9, where the x-axis and the y-axis
represent A and £, respectively. We can see that the parameter
has slight effects on the AUC ranging from 0.0001 to 3. When
A < 0.01, the result of the PAB-DC is poor. When it is
larger than 0.01, the AUC tends to be stable. Therefore, in our
experiment, we choose = 0.01 and 4 = 0.1.

4) Analysis of Parameters of p and n: The parameter 5
is the percentage of the selected atoms for each class to

11

((59)

(1)

(V-e)
I is the results using the AVIRIS-I data set. II is the results using the AVIRIS-II data set. III is the results using the HYDICE data set. IV is the
results using the Urban data set. V is the results using the Cri data set. (a) Visualization of segmentation map. (b) Visualization of the chosen atoms in the

background dictionary. (c) Visualization of the chosen atoms in the potential anomaly dictionary. (d) Visualization of background component. (e) Visualization
of anomaly component. (f) Visualization of noise component.

(V-d) (V-f)

construct the background dictionary, and p is the number of
atoms selected to construct the background dictionary. In our
experiment, # is chosen from 0.001, 0.01, 0.05, 0.1, 0.3, and
0.5 and p is chosen from 10, 50, 100, 200, 250, 300, and 500.
The number of the classes is fixed to 10 and the window size
is set to 3 x 3. The parameters f and A are as those suggested
earlier. The result is shown in Fig. 10. It can be seen that
the PAB-DC is not sensitive to the number of background
atoms. Even when 0.1% pixels are chosen, they are sufficient
to represent the background due to the low-rank property of the
background. When the number of potential anomaly dictionary
atoms is too small, the dictionary is not overcomplete, which
leads to the fluctuations of the AUC value. With the increase
of the number of atoms, the results tend to be stable. However,
too many nonanomaly pixels involved in will degrade the
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Fig. 10. Analysis of parameters of p and » on the AVIRIS-I data set.

effectiveness of the anomaly part in the process. Therefore,
we set the number of potential dictionary atoms to be 200,
which is slightly greater than the number of bands.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

IV. CONCLUSION

In this paper, we have presented a new HSI anomaly
detection method based on background and potential anomaly
dictionaries utilizing an LRSR strategy, denoted as PAB-DC,
where the original data are decomposed into background,
anomaly, and noise parts. For the background part, the low-
rank representation is used to capture the underlying subspaces
of different background materials. For the anomaly part,
the sparse representation is utilized to simulate the property
of anomalies. In addition, different from other commonly
used methods that only consider the background information,
we proposed to use both the background and the estimated
anomaly spectral information to enhance the performance.
The background dictionary is constructed by introducing the
JSR model with the grouped overcomplete dictionary for
each class. The potential anomaly dictionary is built to catch
strong anomalous pixels using the residual computed in the
JSR model. The superiority of our proposed PAB-DC method
was demonstrated in five real data experiments through the
comparison with four standard methods.
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