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1 Introduction

Food diagnostics is an emerging field that applies “modern”
methods of detection of microbes, bacteria, chemicals, biotoxins,
heavy metals, and prions in all steps of the food chain from raw
materials to end products. Nanobiosensor technology has been a
major driver used for the analysis of foods. Throughout the world,
food production, preparation, and distribution have become
increasingly complex, and raw materials are often sourced glob-
ally. Changes in food processing techniques, food distribution,
and the emergence of new food pathogens have changed the epi-
demiology of foodborne diseases. Foodborne microorganisms are
continuously changing due to their inherent ability to evolve and
their amazing capacity to adapt to different forms of stress (Bisen
etal., 2012, 2014b). New primary production technologies and food
manufacturing practices are introduced all the time; food consump-
tion patterns and the demographic structure of many countries
continue to change. Approximately one-third of all food manufac-
tured in the world is lost due to spoilage (Gustavsson et al., 2011).

1.1 Why Contaminant Sensing is Required
in the Food Industry

Food diagnostics is a relatively new and emerging area fuelled
in large part by the ever-increasing demand for food safety.
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In addition, nanosensor-based approaches are also essential in
the areas of food authentication, detection of foodborne patho-
genic microorganisms, and screening for food allergens and
adulteration (Debnath et al., 2010). The contaminant can spread
rapidly with the quick and efficient distribution systems at mul-
tiple locations limiting the reaction time (Hall, 2002). New, flex-
ible tools are required for evaluating and managing new food
safety challenges with the use of food safety management tools,
most important HACCP (hazard analysis critical control point),
and the consequent application of hygienic measures, based on
good manufacturing/hygienic practice (GMP/GHP) (Debnath
etal., 2010; Bisen et al., 2012, 2014b). However, the lack of reliable
data is often limiting the usefulness of this approach and there-
fore data collection is one of the priorities for future food safety
strategies. The safety and quality of food can be tested in source
laboratories but the cost and time involved limits the utility (Bisen
et al., 2012, 2014b). Also, this type of analysis cannot account for
mishandling during transportation or storage, after the product
has left the source. Therefore, there is increasing demand for real-
time sensors that can sense the quality and safety of the foods on
site (Warriner et al., 2014). An outline of the types of contaminants
that can enter food at different stages is given in Fig. 14.1.

1.1.1  Ensuring Safe Storage and Transportation
within the Sell-By Period

Packaged food products are usually marked with expiry dates
that indicate the preferred use by period. However, these periods
are determined in standardized conditions assuming that the rec-
ommended conditions of storage and transportation have been
maintained. In some cases, these conditions might be compro-
mised in the absence of direct physical examination, which will
lead to false indications about the suitability of food for consump-
tion. The packing material in some cases may get damaged and
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Figure 14.1. Types of food contaminants at various stages from source to consumer.
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spoil the food, leading to inadvertent leakage of oxygen or mois-
ture, restricting the use of batch analysis at the source (Luechinger
et al., 2007). The majority of foodborne disease outbreaks result
from such unintentional contamination of a product as a result
of inappropriate processing, handling, and/or packaging. Inten-
tional contamination of our food supply with biological or
chemical agents also is a significant threat to national security.
Bioterrorist attacks on our food supply could be accomplished
with selected bacterial pathogens or toxins. A convenient method
would be to use noninvasive sensing mechanism on each and
every packet, which would directly inform the consumer about
the compromised quality. The contaminants that can be sensed
include gaseous indicators of leakage (oxygen, moisture) or spoil-
age (amines, volatile organic compounds, etc.) and the biological
agents. A key step in establishing an effective food-safety program
in a forward-deployed theater is to have adequate laboratory diag-
nostics that can identify and characterize rapidly any agent that
could cause the quality of food.

1.1.2  Reducing Potential Health Risks

Food is a rich source of nutrients that attracts microbiological
growth. The natural micro flora of food or beverage can consist of
three main components: those associated with the raw material,
those acquired during processing, and those surviving preserva-
tion and storage. They can be further subdivided into harmless
organisms, producing either desirable or undesirable flavor
changes in the food, and pathogens, forming dangerous entero-
toxins (Bisen, 2014b). During processing, foods are subjected to
highly complex and rapidly changing environments in which the
microorganism may evade inactivation and detection in spite of
hygienic manufacturing practices (Hall, 2002). Further, microbial
sensing technologies are continuously subject to challenges in
the form of novel combinations of types of food and pathogenic
microorganisms. In recent times, there has been an increase in the
demand for minimally processed food, which further raises expec-
tations of pathogen detection methods as the pathogen elimination
points are greatly reduced. Traditional method of pathogen detec-
tion requires an enrichment step to bring the target in the detect-
able range of biosensor. This step increases the time required for
analysis and sophisticated containment facilities are required to
carry out such analysis. Moreover, not all pathogens are cultivable
in similar laboratory conditions. Further detection methods based
on traditional culture based batch analysis do not ensure complete
food safety (Swaminathan and Feng, 1994). Traditional methods
also suffer from the drawbacks of being time consuming and labor
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intensive (Baeumner, 2003). The costs incurred on production
companies upon potential product recalls due to microbial con-
tamination have increased the interest in on-site pathogen test-
ing (Nugen and Baeumner, 2008). In addition, there has been an
increased awareness among people about the possible inadvertent
or deliberate contamination of food products, therefore decen-
tralized sensing has become very crucial (Ravichandran, 2010;
Vaseashta, 2006). Unique problems encountered during contami-
nant sensing in food matrices include light scattering, sample
opacity, and numerous other interferences (Singh et al., 2009).

1.1.3 Detection of Banned Dyes and Adulterants

In addition to the pathogenic contamination, which might
inadvertently enter food, certain dyes, and adulterants are deliber-
ately added in order to gain economic benefits. Food adulteration
has caused serious illnesses among infants, adults, and animals
(Kumar et al., 2015; Xin and Stone, 2008; Trivedi et al., 2009;
Kobayashi et al., 2010). To counteract such incidences of “eco-
nomically motivated adulteration” (EMA), there is a requirement
of rigorous monitoring of food products. Owing to the health
issues related to their consumption, many countries have banned
the use of these dyes in foods. However, cases have been reported
in which Sudan I dye in concentrations as high as 4000 mg/kg has
been found in hot chilli products (ASTA, 2005; Botek et al., 2007).
This incident led to prohibition of the import of hot chilli and
its products by member states of European Commission in the
absence of an accompanying analytical report validating absence
of Sudan I and IV Sudan, Red 7B and Rhodamine B, curcuma,
curry, sumac, and palm oil (RASFE 2004, 2005; EFSA, 2005).

1.1.4  Detection of Pharmacological Residues
Such as Antibiotics and Hormones

Antibiotics and hormones are routinely used in livestock
for economic benefits by increasing meat supply and milk pro-
duction. There is a growing concern regarding the presence of
antibiotic/antibiotic residues in food products due to the evolu-
tion of MDR pathogenic strains in humans (Craig et al., 2013).
Similarly, unmonitored use of hormones may lead to their residual
levels in finished products, which might have unfavorable effects
on consumers.

1.1.5 Detection of Pesticides

Pesticides are routinely used in agriculture to reduce crop
losses due to microbiological or insect pests. However, lack of
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awareness among farmers leads to indiscriminate use of pesti-
cides, which might or might not be required for a particular crop.
Also, if pesticides are used above a prescribed limit, they may
enter the crop plant and cause health concern. Therefore, pes-
ticide levels in the food products needs to be monitored. There
are three potential sources of pesticide residues in food grains,
arising from (1) application of pesticides to protect the growing
crop, (2) contamination of the environment by highly stable pes-
ticides previously applied for other purposes, and (3) application
of insecticides to protect the harvested crop during storage and
handling.

1.1.6 Detection of Contamination Caused by Packaging Material

Plastic packaging, containers, and cling films often have instruc-
tions on how to use them safely to keep chemical migration to a
minimum. More than 30 types of plastics have been used as pack-
aging materials including polyethylene, polypropylene, polycar-
bonates, and polyvinyl chlorides. In certain cases, the material such
as melamine used in packaging might enter the food and adversely
affect the quality of food.

1.1.7 Detection of Allergens

Certain people are allergic to some specific food items and
need to avoid them in order to prevent allergies. For common
allergens, such as gluten, gliadin, and so forth, foods free of these
allergens are specially processed for the allergenic population. As
these components can trigger allergic reactions even in minute
quantities, extensive testing of food is required to ensure that the
processed food is free of allergen.

2 Biosensors

A biosensor is a device that can report the presence or activ-
ity of analytes using a biomolecular component providing spec-
ificity to the sensor by binding or interacting with the analyte
and is able to cause a detectable change in mass, fluorescence,
electric charge, or refractive index, and a transducer element,
able to transform this interaction into a suitable electronic sig-
nal (Fritz, 2008; Bisen, 2014a). They are coupled together in
one of the four possible ways, such as membrane entrapment,
physical adsorption, and covalent bonding. The ideal character-
istics of an efficient sensing system include speed, sensitivity,
accuracy, real-time detection with feasible cost among others
(Fig. 14.2).
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Figure 14.2. Utility and specific properties of biosensors.

Most of the biosensor formats, which were initially devel-
oped for health sector, are now beginning to be exploited in
the food industry to assess safety and quality of food products
(Warriner et al., 2014; Bisen, 2014a). However, only a few of them
have been commercialized for food industry due to difference
in sample sizes, types of matrices, and so forth. The “bio” and
“sensor” elements can be coupled together in one of four pos-
sible ways:membrane entrapment, physical adsorption, covalent
bonding, and cross-linking. Thus, a typical biosensor consists of
mainly three parts: (1) biological material, (2) transducer, and
(3) signal processors (Fig. 14.2).
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Figure 14.3. Types of transducers and bhioactive components.

2.1 Classification of Biosensors

Biosensors may be classified according to components or
immobilization techniques used such as transducers and the bio-
active compounds. The bioelement is very specific to the analyte
to which it is sensitive. Depending on the transducing mechanism
used, the biosensors can be of many types such as: (1) resonant
biosensors, (2) optical detection biosensors, (3) thermal detection
biosensors, (4) ion-sensitive FET (ISFET) biosensors, and (5) elec-
trochemical biosensors (Bisen, 2014a). The electrochemical bio-
sensors based on the parameter measured can be further classified
as (1) conductometric, (2) amperometric, and (3) potentiometric.
Therefore, biosensors can be divided into different types based on
the type of detection (Fig. 14.3).

2.2 Properties of Biosensors

Some of the notable properties of a good biosensor are speci-
ficity, linearity, response time, simplicity, continuous monitor-
ing ability, reproducibility, portability, and cost effectiveness
(Table 14.1).

2.3 Biosensor Components
2.3.1 Bioactive Components

The biological part of the biosensor specifically reacts with
the analyte of interest, sparking a signal that is detectable by the
attached transducer. The bioactive components may be a purified
enzyme, antibodies, cells, nucleic acids, and/or lipids.
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Table 14.1 Various Biosensor Transducers, Principles,
and Applications

Transducer System Principle Applications

Enzyme electrode Amperometric Enzyme substrate and immunological system
Conductometer Conductance Enzyme substrate

Piezoelectric crystal Mass change Volatile gases and vapors

Thermistor Calorimetric Enzyme, prganelle, whole cell, or tissue sensors for

substrate, products, gases, pollutants, antibiotics,
vitamins, and so forth

Optoelectronic/wave guide and fiber ~ Optical pH Enzyme substrates and immunological systems

optic device

lon-sensitive electrode (ISE) Potentiometric lons in biological media, enzyme electrodes,
enzyme immunosensors

Field effect transistor (FET) Potentiometric lons, gases, enzyme substrates, and immunological
analytes.

2.3.1.1 Sensing DevicesOptical

The biosensor is based on optical diffraction or electrochemo
luminescence properties and the output transduced signal mea-
sured is light. Optical diffraction-based devices use a silicon wafer
coated with a protein via covalent bonds. The resulting signal can
be measured or can be further amplified before measuring for
improved sensitivity and allowing multiple analytes to be detected
by using different monitoring wavelengths. Use of immobilized
luciferase greatly reduces the cost of analyses.

23111 Calorimetric Biosensors Many enzyme catalyzed reac-
tions are exothermic, generatingheat and the temperature changes.
In these cases, one can carry out measurements in temperature-
controlled small packed bed columns with immobilized enzymes
and determine the temperature at the entry and exit of these
columns by incorporating suitable thermistors (Fig. 14.4).

Calorimetric transducing devices measure the heat released
upon a biochemical reaction occurring at the sensor surface. On
the basis of the type of heat transfer, they can be categorized as
follows:

1. Isothermal calorimeters: maintain isothermal conditions
and the amount of energy required for cooling or heating is
measured.
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Figure 14.4. Coupling of many heat-increasing enzymes in exothermic reaction and schematic diagram of a
calorimetric biosensor.

2. Heat conduction calorimeters: measure the difference in tem-
perature between the highly conducting reaction vessel and
the surrounding heat sink.

3. Isoperibol calorimeter: measures the temperature difference
between the thermally insulated (adiabatic) reaction vessel
and the surrounding isothermal jacket.

In spite of the progress in the field of biosensors, the demand
for development of improved biosensors that are more sensi-
tive in terms of concentration and volume of analyte and which
can simultaneously sense broader range of analytes continues to
increase (Fritz, 2008). These sensors are characterized by a reac-
tion between analyte and biosensor component to produce a
color change (Su et al., 2013). Nanoparticles can also be modified
by an ionic ally to couple desired protein. Another approach is
aggregation of colloidal nanoparticles with subsequent colorimet-
ric changes, which can be perceived even by an untrained person
(Lim et al., 2012).

231.1.2 Fluorescence Fluorescence analysis using organic
dyes has been used traditionally to detect pathogens. They are
based on excitation of analyte using suitable laser light followed
by detection of emitted fluorescence where fluorescent nanopar-
ticles are used to enhance the signal while providing photostabili-
ty. Quantum dots labeled with binding molecules can also be used
as a fluorescent tracer (Penn et al., 2003).

2.3.1.1.3 Surface Plasmon Resonance Surface Plasmon res-
onance transducers measure minute changes in the angle of
reflectance of plasmon waves on dielectric interface. When a
plane polarized light passes through a prism whose one side is
coated with a metal, at an appropriate angle, total internal reflec-
tion is observed, which induces formation of a charge wave at the
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interface (called Plasmon waves) moving up to a few microns. The
incident angle of the total internal reflection is measured using a
photodetector. The angle of reflectance changes when the refrac-
tive index of the surface changes, for example, in response to bind-
ing of analyte (Warriner et al., 2014). SPR offers advantages such
as being label free and rapid (Cho et al., 2014). The disadvantages
include slow diffusion driven mass transfer, low sensitivity due to
small refractive index, and insufficient depth of layer influenced
by SPR (Wang et al., 2010). To this end antibody nanoparticle con-
jugates have been used to enhance the signal in sandwich assays
(Wang et al., 2010).

23114 Antigen antibody The binding between an antigen
and its corresponding antibody is very specific. This property of
antibody is exploited while designing biosensors based on anti-
bodies. Antibodies are usually covalently bonded on the surface
of the transducer by conjugation of amino, aldehyde, carboxyl, or
sulfhydryl groups (Shaikh and Patil, 2012). The binding reaction
between the antibody and antigen can be monitored as a time-
dependent change of fluorescence signal, which is proportional
to the reaction ratio of antibody to analyte (Bisen, 2014a). Though
antibodies have similar limitations with enzymes, immunosen-
sors offer advantages of rapid and on site measurements over tra-
ditional immunoassays (Shaikh and Patil, 2012). Immunosensors
usually make use of optical or acoustic transducers (Fig. 14.5).
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Figure 14.5. Immunosensor design.
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2.3.1.2 Acoustic/Piezoelectric

In this mode, sensing molecules are attached to a piezoelec-
tric surface (a mass to frequency transducer) in which interactions
between the analyte and the sensing molecules set up mechanical
vibrations that can be translated into an electrical signal propor-
tional to the analyte, such as quartz crystal.

Acoustic transducers detect a change in mass density, visco-
elastic, electric, or dielectric properties of chemically interac-
tive membrane placed in contact with a piezoelectric material.
Following are two commonly used acoustic transducers:

231.21 Bulk acoustic wave sensor (BAW) BAW measures the
change in resonance frequency of a resonator (eg, quartz crystal
resonator in quartz crystal microbalance), which may be due to
mass or viscoelastic changes at the sensor surface. Nonspecific
binding effects might interfere with the detection.

231.2.2 Surface acoustic wave sensor (SAW) SAW measures the
change in surface acoustic waves (not the bulk), which may be
due to surface effects such as mass, viscosity, pressure, magnetic
fields, strain, temperature, and irradiation with UV rays (Arugula
and Simonian, 2014).

2.3.1.3 Resonant

An acoustic wave transducer is coupled with an antibody (bio-
element) in this mode. The mass of the membrane changes when
the analyte molecule (or antigen) gets attached to the membrane.
The resulting change in the mass subsequently changes the reso-
nant frequency of the transducer, which is then measured.

2.3.1.4 Thermal-detection

They are constructed by combining immobilized enzyme mol-
ecules with temperature sensors, which are based on biological
reactions, namely absorption or production of heat, which in turn
changes the temperature of the medium in which the reaction
takes place. The use of sophisticated and expensive instrumenta-
tion is the major drawback of this technique.

2.3.1.5 lon-Sensitive

The ISFET can be constructed by covering the sensor elec-
trode with a polymer layer. This type of biosensor is also called an
enzyme field effect transistor (ENFET) and is primarily used for
pH detection (Fig. 14.6). The technology is based on semiconduc-
tor device with ion-sensitive surface, which interacts with the ions
and the potential change is subsequently measured.
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Figure 14.6. Schematic diagram of the section across the width of an ENFET.

2.3.1.6 Electrochemical

The chemical reactions produce or consume ions or electrons
that can be sensed and used as measuring parameter in this class
of biosensors. The sensing molecule reacts specifically with com-
pounds to be detected, sparking an electrical signal proportional
to the concentration of the analyte (Fig. 14.7).

High sensitivity, selectivity, and ability to operate in turbid solu-
tions are advantages of electrochemical biosensors. Electrochem-
ical biosensors are mainly used for the detection of hybridized
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DNA, DNA-binding drugs, glucose concentration, and so forth.
Electrochemical biosensors can be classified based on measuring
electrical parameters as: (1) conductometric, (2) amperometric,
and (3) potentiometric.

231.6.1 Conductometric The measured parameter is the electri-
cal conductance/resistance of the solution. This change is measured
and calibrated to a proper scale but having relatively low sensitivity.

23.1.6.2 Amperometric (measurement of the current resulting from
a redox reaction) Amperometric detection is based on measur-
ing the oxidation or reduction of an electroactive compound at a
working electrode (sensor) (Fig. 14.8). Enzyme-electropolymer-
based amperometric biosensors has also been developed as an
innovative platform for time-temperature integrators (Reyes-De-
Corcuera et al., 2005)

In vivo sensing: Amperometric biosensors have been also
applied for in vivo sensing since their size may be reduced. By the
appropriate casting of membranes onto the biosensors tip, high
selectivity and biocompatibility may be achieved (Fig. 14.8).

23163 Potentiometric The measured parameter in this type of
sensor is oxidation or reduction potential of an electrochemical
reaction. The voltage at which these reactions occur indicates a
particular reaction and particular species (Fig. 14.9).
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Figure 14.8. Amperometric biosensors for flavor-oxidase enzymes illustrating the three generations in the
development of biosensors.
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Figure 14.9. Structure of enzyme “wiring” polymers. Variation of X, Y, and Z allow the properties of the polymer to be
customized and the redox cycles occurring at a three-dimensional redox epoxy-wired enzyme electrode. The wired
enzyme is a flavin (FAD)-containing oxidase enzyme.

Ion selective electrodes utilized in biosensing devices can be

classified as follows:

1. Normal pH electrodes: These are normal hydrated glass mem-
brane electrodes, which sense cations in a concentration de-
pendent manner by producing a transverse electric potential
arising due to competition for binding sites.

. Glass pH electrode for gases: These electrodes are composed of
gas permeable membrane selective for specific gases like carbon
dioxide, hydrogen sulfide, or ammonia. The measurement is
based on pH differences between electrode and the membrane
arising due to diffusion of these gases through the membrane.

. Solid-state electrode: In these electrodes, the glass membrane is
replaced by conductive membrane made of silver compounds.
These electrodes have been used in the determination of cya-
nide and iodide ions.
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Recently ion selective electrodes have been used in the pro-
duction of ISFETSs, which have been conjugated with enzymes to
develop biosensors.

3 Nanosensors

Nanosensor can be defined as any sensing device which incor-
porates a nanoscale component, that is, a component having
dimensions within 1-100 nm at least in one dimension (Jianrong
etal., 2004). Nanomaterials can be used in sensors both to enhance
sensing as well as transduction.

3.1 Nanomaterials: Ideal Properties for Use in
Sensors

The physical, chemical, and biological properties of nanoma-
terials are remarkably different from their macroscopic coun-
terparts (Ravichandran, 2010). These properties impart unique
characteristics to the nanomaterials which can be exploited for
biosensor design to improve the specificity, accurary, linearity,
response time, simplicity, continuous monitoring ability, repro-
ducibility, portability, and cost (Li et al., 2011)

3.1.1 Size

The size of nanomaterials is comparable to biological macromol-
ecules. Therefore, these materials are well suited to detect analytes
present in the microenvironments which are not accessible to the
macro sensors (Weietal., 2009). Due to their nanoscale size, nanopar-
ticles are ideal candidates for direct localized detection. A number
of biosensors are now available which do not require preprocessing
of the sample, and therefore can be used for a direct estimation of
analyte. Small size of the sensor element also enables miniaturiza-
tion of the sensor increasing the portability for onsite testing. The
detection is, therefore, possible not only at the source, but also at the
distribution/consumer level. With the help of microfluidic systems,
detections are possible utilizing small sample volumes in addition
to also effectively reducing the cost and time required for analysis.
The fabrication cost of the electrode is also reduced due to reduc-
tion in volume of expensive materials (Wei et al., 2009). Owing to
the small size, the multiple nanosensors may be equipped in single
instrument to provide multianalyte detection or to obtain spatial
distribution of a single analyte (Wei et al., 2009). The favorable size
and optical properties allow nanosensors to be incorporated into
food packaging for noninvasive, visual analysis of food quality dur-
ing storage, transportation, and consumption (Duncan, 2011).
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3.1.2 Electrical Properties

There is enhanced electron transfer due to high electrical con-
ductivity; therefore, the sensitivity of the sensor is greatly increased
for example, gold nanoparticles (Majdalawieh et al., 2014). Electro-
chemical measurements are considerably quick in nanoelectrodes
due to radial (nonplanar) diffusion compared to macroelectrodes
operating via planar diffusion (Wei et al., 2009).

3.1.3 Optical Properties

The optical properties of nanoparticles are considerably dif-
ferent from the respective bulk materials owing to the quantum
effect. There is higher energy difference between the conduction
and the highest valence band due to the compact packing den-
sity of electrons in nanoparticles resulting release of higher energy
upon return of electron from excited state to ground state for the
spectral shift. The semiconductor properties are also affected
leading to changes in electrochemical phenomena like surface
Plasmon resonance (Warriner et al., 2014). Quantum dots, a type
of nanoparticles have found a new application as a substitute for
enzyme labeling. Quantum dots are able to absorb more photons
compared to organic fluorescent dyes, provide more brightness,
and release the energy in the form of photo luminescence omitting
the requirement of an additional assay step (Pisanic Ii et al., 2014).
In addition, they are photostable and provide high signal to noise
ratio (Syed, 2014). As the emission peak is dependent upon the
size of nanocrystal, different sizes of quantum dots can be used to
obtain different color labels for multiplexing.

3.1.4 Chemical Properties

The chemical reactivity is also enhanced compared to macro-
materials, due to small size enabling fast detection in both liquid
and gaseous phases (Vaseashta, 2006).

3.1.5 Magnetic Properties

Magnetic nanoparticles labeled with a suitable capture
reagent, for example, antibodies can be used to concentrate the
analyte, a technique called IMS (immunomagnetic separation).
Some nanoparticles behave as ferromagnetic particles when
an external magnetic field is applied because of having a lower
number of unpaired electrons than the bulk material. These
properties are useful in generating magneto-resistive nanosen-
sors. A large number of analytical approaches are being used in
food industry requiring a sample preconcentration to achieve
detectable signal.
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3.1.6 Semiconductor Property

A large number of enzymes used in biosensors are oxidoreduc-
tases producing an electroactive product detected amperometri-
cally. These enzymes require mediators to prevent interference
from other electroactive constituents in the sample. Use of semi-
conductor nanoparticles allow direct wiring of enzyme redox
centers to the electrode by passing the requirement of exogenous
mediator and reducing response time of the sensor (Palanisamy
etal., 2012; Hu et al., 2012).

3.1.7 Enhanced Sensing Surface Area

Nanoparticles have a high surface area volume ratio; large sur-
face areas work more efficiently for immobilization of bioaffinity
agent. The higher surface area increases the number of bioaffin-
ity agents that can be incorporated per unit volume and therefore
increase the sensitivity of the device. Due to large surface area of
nanoelectrodes, nanosensors can be used to detect analytes in
poorly conducting media even in the absence of suitable electro-
lyte (Wei et al., 2009) particularly useful for detecting analytes in
complex and variable food matrices (Singh et al., 2009).

3.1.8 High Accuracy

Any minute changes in the sensor environment are transduced
accurately for reliable detection of the analyte due to enhanced
sensing surface.

3.1.9 Quick Response

Use of nanoparticles allows direct wiring of enzyme redox cen-
ters to the electrode by passing the requirement of exogenous
mediator and reduce response time of the sensor (Palanisamy
et al., 2012; Hu et al,, 2012). These properties of nanomaterials
have improved the design and efficiency of biosensors to meet the
expectations of growing market demands (Fig. 14.10).

3.2 Types of Nanosensors

Nanomaterials can improve sensor design at various levels.
They can improve sensing abilities as well as transduction proper-
ties. Likewise, nanosensors can be classified into following types:

3.2.1 Colorimetric Metal Nanoparticle Detectors

Colorimeteric sensors offer simplicity and ease of operation and
detection. Certain nanoparticles can undergo easily visible color
changes in response to presence of analyte and this property can
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Figure 14.10. Design and efficiency of biosensors with nano sensors and nanomaterials.

be utilized to develop nanoparticle-based colorimetric assay (Ai
etal., 2009; Kuang et al., 2011). The formation of nanoparticles can
also be controlled by presence of analyte to produce a visible effect
proportional to the concentration of analyte (Cao et al., 2010).

322 Carbon Nanotube Biosensor

CNT-based nanomaterials have the unique capability to alter
their properties in presence of some chemical species but are oth-
erwise chemically inert. They are morphologically flexible, biocom-
patible, and their size is comparable to biomolecules, making them
an ideal candidate for biosensor design and applications having
high surface area: weight ratio; conducting properties; quick, accu-
rate, and reversible measurements; easy derivatization; and abil-
ity to generate electro-chemiluminiscence in aqueous solutions
(Vaseashta, 2006). Carbon nanotubes can be used as a substitute
owing to their superior mechanical properties for silicon-based
chips in nanoelectromechanical systems (Sapmaz et al., 2003).
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3.2.3 Electronic Nose

The quality of certain food items is ascertained primarily
by their aroma. Traditionally the aroma quality is analyzed by a
trained panel who decodes the complexity and heterogeinity of
the aroma and rates them on the basis of experience. This type of
analysis might not be reproducible and may vary from person to
person (Peris and Escuder-Gilabert, 2009). The other alternative
is analytical analysis of the headspace using gas chromatography.
This method has higher reliability but has high operating cost and
suffers from the disadvantage of long analysis time per analysis
(Garcia et al., 2006). Electronic noses, which mimic the human
nose in sensing the aroma and rate it according to the pattern of
different volatile components, bypass the problem of reliability in
expert panel-based methods and cost of analytical methods. An
electronic nose (Persaud and Dodd, 1982; Gan et al., 2005) com-
prises three components: a sensory component, which is usually
an array sensor enabled to sense different types of aroma impart-
ingvolatile compounds; a unit to collect the signals generated from
the sensory unit; and, finally, a software to recognize the pattern of
VOC'’s to ascertain food quality (Garcia et al., 2006) (Fig. 14.11).

The sensory component of electronic noses can be surface
acoustic wave sensor, metal oxide semiconductor sensor, or
quartz resonator. They can be used for the analysis of VOC aris-
ing from both liquid and solid food samples (Schaller et al., 1998;
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Friasetal., 2002). Electronic noses offer several advantages includ-
ing portability, low detection time, low cost per analysis, and high
reliability, but the presence of high concentration of interfering
substances, for example, ethanol and water in wines may reduce
their sensitivity (Francis and Cynkar, 2000). Electronic noses
have been incorporated directly in packaging material to quickly
sense the presence of pathogens by their metabolic products
(Ravichandran, 2010). Some notable examples of utility of e-nose
in ascertaining food quality are listed in Table 14.2.

324 Electronic Tongue

An electronic tongue is similar to an electronic nose and works for
nonvolatile analytes. E-tongues can be used to analyze the quality of
foodstuffs like wine, beer, and tea. The quality of these foodstuffs is
determined by detecting their bitterness, sourness, or astringency,
which is mainly attributed to the presence of polyphenols. These
can be incorporated directly in packaging material to quickly sense
the “taste,” mimicking the physico-chemical interaction of food
molecules with taste buds present on tongue (Ravichandran, 2010).

Table 14.2 Selected Applications of e-nose in the Food

Food Item
Wines

Cheese
Milk

Meat products
Vegetable oils

RBD palm olein

Wheat
Sesame oil
Virgin olive oils

Porcine meat loaf

Industry

Type of Analysis References
Quality Penza and Cassano (2004); Buratti
et al. (2004)

Detection of mould Ampuero and Bosset (2003)

Quantification of off flavors; Ampuero and Bosset (2003)
identification of single strains of
disinfectant—resistant bacteria in

mixed cultures

Quality changes Vestergaard et al. (2007)

Flavor analysis

Storage stability

Lard adulteration

Age and insect damage
Maize oil adulteration
Adulteration

Sensory quality

Gan et al. (2005)

Gan et al. (2005)

Man et al. (2005)
Zhang and Wang (2007)
Hai and Wang (2006)
Oliveros et al. (2002)
Hansen et al. (2002)
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As in the case of electronic nose, multiple analytes are tested in a
single run to get a blueprint pattern of sample composition, thereby
reducing the detection time to a large extent, which is very crucial
in food industry (Ravichandran, 2010). E-tongue sensors based on
amperometric transducer are of four types metal, conducting poly-
mer, phtalocyanine film, and biosensors. Similarly the detection
mode can be fixed potential or pulse sweeping potential.

Metal microchip based e-tongue is composed of capillary elec-
trophoresis coupled with screen-printed electrode. E-tongues based
biosensor are composed of an enzyme, solid electrode, and biochem-
ical transducer. The conductivity of conducting polymer sensors
might vary with the analyte (Scampicchio et al., 2008), and they are
sensitive to humidity but they offer advantages such as rapid adsorp-
tion desorption and partial selectivity. Electrodes are composed of
coordination compounds containing a transition metal with phtha-
locyanine film (Baldwin et al., 2011) and used to sense bitterness
in olive oils (Apetrei et al., 2004). The performance of metal sensor,
biosensor, or conductive polymer based e-tongue can be enhanced
by utilizing nanodimensions to increase surface-to-volume ratio
to reduce the detection limits. Miniaturized sensor arrays are now
being developed. Often, a lipid membrane is used for recognition,
which translates the relevant substances into electric potential
across membrane. The amount of lipids present in the membrane
can be varied to optimize detection limit (liyama et al., 2009).

325 Nanocantilevers

Nanocantilever biosensors can respond to mechanical bend-
ing caused by a slight change in temperature, pH, DNA hybrid-
ization, interaction between antigen and antibody, adsorption of
pathogen, or formation of self-assembled monolayers at the sen-
sor surface (Fritz, 2008). The detection is based on physical and
chemical signaling stimulated by biological interactions such as
those between antigen—antibody, enzyme-substrate, and ligand-
receptor. They are made up of silicon-based materials such as
silicon nitride or silicon dioxide forming the bottom layer and
a gold-made reflective top layer (Fritz, 2008). They are used for
detection of chemical contaminants, toxins, and antibiotic resi-
dues in food (Ravichandran, 2010). Vibrational frequency can also
be customized as per biomass of pathogenic microorganism to
simultaneously detect multiple pathogens (Ravichandran, 2010).

Cantilever sensors consist of a cantilever beam sensitive to
their environment having bending in order of nanometer and the
sensors are called as nanomechanical sensor (Fritz, 2008). A posi-
tion sensitive detector (PSD) is used to transform the mechani-
cal bending into positional change of laser spot. Alternatively, a
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Surface stress mode

Bimetallic mode

Dynamic mode

Figure 14.12. Different modes of nanocantelevers.

peizoresistive readout may be used for measuring change in resis-
tance upon mechanical bending (Fritz, 2008). Nanocantilevers
can be operated in different modes: surface stress mode, bimetal-
lic mode or dynamic mode (Fig. 14.12).

Surface stress mode is the most commonly used in which mol-
ecules bind to the top and bottom surface of the cantilever asym-
metrically, causing cantilever bending. The two surface layers may
be functionalized for enhanced asymmetric binding using silane
chemistry by layering amino or mercapto silane, which can be fur-
ther cross-linked to desired receptor molecule via their end groups.
Alternatively, electrostatic binding of positively charged mole-
cules to the negatively charged silicon dioxide may be achieved
(Fritz, 2008). The gold surface may be functionalized utilizing
thiol chemistry by exploiting the affinity of gold to sulfur groups.
Thus thiol-labeled DNA or cysteine-rich proteins may be bound
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to this surface acting as receptor for the complementary DNA or
specific antibody (Fritz, 2008). The layers can also be covered with
inert coating like thiolated polyethylene glycol to prevent adsorp-
tion (Fritz, 2008). The bending of beam due to differential thermal
expansion of the two surfaces is sensed in bimetallic mode. Tem-
perature changes as little as 10° K can be sensed using this mode
by careful optimization (Ziegler, 2004). Dynamic mode is based
on the property of cantilevers to behave as harmonic oscillators,
which can be excited at their resonant frequency, depending on
the effective mass of the oscillator. When the analyte is bound to
the surface of the cantilever, its effective mass increases, decreas-
ing the resonant frequency and the mass change can be measured
even up to single molecule (Yang et al., 2000).

There are several advantages of cantilever biosensors including
their amenability to microfabrication. These sensors are label free,
allowing them to detect unmodified molecules and, therefore, can
be used for real-time monitoring. They can be applied to a wide
variety of molecules by appropriate functionalization with small
sample volumes. However, the requirement of sophisticated func-
tionalization and limited theoretical description and low repeat-
ability in liquid samples limit their use (Craig et al., 2013).

326 Optical

Fiber optic nanoprobe: Nanoprobes consist of an optical fiber
of nanometer radius whose outer wall is coated with silver/
aluminum or gold and the tip is functionalized by silanization to
enable it to covalently bind with antibody. Fluorescent analyte is
detected by the probe, which is mounted on an inverted micro-
scope coupled to a photomultiplier tube (PMT) detector (Vo-Dinh
et al., 2001). Cells are maintained in a viable state by heating
microscope stage to 37°C. The optical nanoprobe sensor can be
used to manipulate subcellular locations owing to their small size.

327 Nanoelectromechanical System (NEMS)

Nanoelectromechanical systems (NEMS) are the successors
of microelectromechanical systems (MEMS). They work by con-
verting electrical signal into nanoscale mechanical motion and
mechanical motion into electrical signal. The devices offer advan-
tages like rapid response, portability, and low cost because of
nanoscale moving parts. They can be used as active cells by devices
and can be used to control the environment during storage. They
are able to detect chemical or biochemical signals using advanced
transducers (Ravichandran, 2010). The MEMS technology for
detection of trans food content has been commercialized by
Polychromix, Wilmington, MA, USA (Ritter, 2005).
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328 Aptamer Sensor

Aptamers are single-stranded oligonucleotide sequences or
peptide molecules with the capability to recognize various specific
target molecules ranging from small ions to large proteins with
high affinity and specificity. They are the novel biomolecular rec-
ognition elements, which can be utilized as receptors in biosen-
sors (among other applications) due to small size, cost efficiency,
and design flexibility. Aptamer-based biosensors are able to detect
analytes which were, up to now (using antibody technology) very
difficult to measure or even detect, like toxic or nonimmuno-
genic substances (Figs. 14.13 and 14.14). Immunobiosensor with
EC, optical (SPR fluorescence) or mass-sensitive (piezoelectric
microbalance) transducers are gaining extensive research interest.
Aptamer has a wide range of molecular and therapeutic targets,
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Figure 14.13. The approach can be used to isolate high-affinity aptamers for a wide variety of protein and small

molecules.
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including amino acids, any class of proteins (enzymes, membrane
proteins, viral proteins, cytokines, growth factors, and immuno-
globulins), drugs, metal ions, other small bio/organic/inorganic
small molecules, and even whole cells. Moreover, combinatorial
chemical synthesis offers a wide variety of methods for aptamer
sequence modifications such as the terminal tagging chemi-
cal groups (Selvakumar and Thakur, 2012). A major limitation of
aptamer sensors, is the potential of biodegradation or bio-fouling
when used in complex biological matrices containing high levels
of nucleases which can be overcome by encapsulating the aptamer
sensor in suitable polymer (Li et al., 2015).

Aptamers resemble antibodies but they undergo structural
modification after binding with their target. Aptamers are devel-
oped by systematic evolution of ligands by exponential enrich-
ment (SELEX) (Tuerk and Gold, 1990).

3.2.9 Surface-Enhanced Raman Scattering—Based Sensor

SERS nanosensors are based on the principle of Raman
spectroscopy where the Raman scattering signal of analytes
adsorbed on metal surfaces is amplified 100-1000-folds. In Raman
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spectroscopy, the molecules are identified on the basis of their
characteristic spectral fingerprint arising due to the unique pat-
tern of molecular vibrations (Duncan, 2011). In order to over-
come the major limitation of Raman scattering, the roughened
metal surfaces can be used in the proximity of analyte molecules
to enhance the signal called the surface-enhanced Raman scat-
tering. The effect arises out of interaction of localized electric
fields generated due to photoexitation of surface plasmon of the
metal and the molecular electronic states of the analyte. Rough
surfaces having lots of curvatures works well for SERS. Thus
metallic nanostructures are particularly useful for SERS-based
sensing as the interaction is dependent on orientation of the ana-
lyte with respect to the surface. Nanomaterials like fractal-like or
patterned gold nanostructures (Lin et al., 2008), AuNPs, AgNPs,
and Au-Ag core-shell nanoparticles (Ravindranath et al., 2011)
have been utilized for the detection. SERS-based nanosensors
have been reported for detection of chemicals like melamine
(Liu et al., 2010), malachite green, crystal violet (He et al., 2008a),
perchlorate (Gu et al., 2009), bacteria (He et al., 2008b; Liu
et al., 2008; Wang et al., 2010; Ravindranath et al., 2011, Wang
etal., 2011, Craig et al., 2013) and viruses (Fan et al., 2010; Zheng
and He, 2014). SERS can be used for rapid screening of samples
in conjuction with HPLC analysis to eliminate false-positive
samples (Duncan, 2011). The advantages include high sensitiv-
ity, minimal sample preparation requirements, high throughput
screening, label-free detection, short analyses time, and real-
time analysis, but sophisticated instrumentation is required for
analysis (Craig et al., 2013).

3.2.10 Liposome Nanovesicles

Liposomes are spherical molecules with an aquesous interior
surrounded by a phospholipid bilayer (Fig. 14.15). Nanoliposomes
offer advantages of being biocompatible and biodegradable
in addition to being small in size. They can be used to improve
solubility and bioavailability of bioactive agent and prevent their
undesirable interactions with other molecules (Mozafari, 2010).
Nanovesicles have been used frequently for encapsulation and
delivery in food industry. Regarding biosensing applications,
these vesicles can be conveniently used in immunoassays to store
a large number of fluorescent molecules, amplifying the signal
greatly, thus increasing the sensitivity of the assay (Monroe, 1990).
For immunoassay, these polar headgroups of constituting phos-
pholipids can be conjugated to the antibody of interest. This con-
jugation can be covalent, biotin-streptavidin-based or Fc-binding
protein (protein G/protein A) based (Chen et al., 2005). Initially
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used in solid phase analysis, liposomes have now been used in
continuous immunuassays called flow-injection immunoassays
(Locascio-Brown et al., 1990).

3211 Fluorescence Enzyme—Linked Immuno Sorbent Assay

A variant of the conventional ELISA method is the fluores-
cence enzyme-linked immuno sorbent assay (F-ELISA) tech-
nique, which has been utilized to detect very low concentrations
of proteins in blood. It is called Fluorescence ELISA or F-ELISA
as it involves use of an enzymatic reporter, which generates a
fluorescent product. The method involves production of micro-
scopic beads with protein-specific antibodies coated on their
surface. The beads are placed isolated from each other in fem-
tolitre volume reaction chambers. As the immunocomplex is
captured, it is labeled with the fluorogenic enzymatic reporter to
generate a fluorescent signal that can be detected using fluoresc-
nence imaging. Quantitative data can be obtained by counting
the number of fluorescent wells relative to the total number of
wells (Rissin et al., 2010).
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3.2.12 Nanowire Biosensor

Nanowires can be defined as unidimensional nanostructures
with large aspectratios useful for manipulating electrons, photons,
plasmons, phonons, and atoms (Guo et al., 2013). Nanowires have
high surface-to-volume ratio, minimum power consumption,
and the potential to be packed in high-density nanoscale devices.
They can be used for efficient transport of electrons for optical
excitation. Owing to their high surface-to-volume ratio and quan-
tum confinement effect, minor perturbations are sufficient to
strongly affect their electrical properties enabling single molecule
detection. 1-D structure can be used direct due to limited loss
of signal intensities, label free readout, and are particularly suit-
able for rapid and real-time monitoring (Wanekaya et al., 2006).
Optical detection is aided with nanowires because of their high
mechanical flexibility, sidewall smoothness, and diameter unifor-
mity (Guo et al., 2013).

3.2.13 lon Channel Switch

Ion channel switch biosensors utilize electrical transduction
due to flux of ions through the channel. The interactions can be
measured at the membrane surface to which the ion channel is
tethered. Anlaytes such as bacteria, protein, DNA, and drugs
can be quantitatively analyzed using this sensor (Woodhouse
et al., 1999). Ion channel switch biosensor has been used for rapid
screening of influenza A virus in clinical samples (Oh et al., 2008).

3.2.14 Viral

Pathogen detection using biosensor involves specific surface
functionalization using molecular probes specific for the target.
Antibodies and nucleic acid probes have been routinely utilized
for this purpose. However, these probes are susceptible to envi-
ronmental conditions and are sometimes cross-reactive, costly,
and technical expertise is required for the operation. Bacterio-
phages have been exploited as alternative probes for pathogen
detection due to their specificity, selectivity to the host, and ease
of amplification. Additionally, as phages can propagate only in
live bacteria, they reduce the chances of false positives (Brovko
etal., 2012). Once the phage is bound to the host, the host cell can
be detected by labeling the phage using fluorescent dyes which
can be visualized using fluorescent microscopy or detected using
flow cytometery. Phages can be utilized for the replacement of
antibodies in detection involving SPR. Genetically engineered
phages with modified surface properties to display specific mol-
ecules (phage display) or to emit detectable signal (reporter
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phages) have been utilized for probing. Phage amplification and
phage-induced lysis-based methods have also been developed
(Cho et al., 2014). However, drawbacks such as induction of lysis
of host, drying effect resulting in loss of capturing ability, limit
their use (Singh et al., 2013).

32.15 PEBBLE: Probes Encapsulated by Biologically
Localized Embedding

Spherical optical nanosensors or PEBBLEs range in size from
20 to 600 nm in diameter and consist of fluorescent indicators
entrapped in a matrix consisting of polyacrylamide/polydecylmeth-
acrylate or sol-gel (silica, ormosil) nanoparticle (Clark et al., 1999).
They encapsulate the sensing element within an inert matrix,
thereby protecting it. Owing to their small size, specificity, and sen-
sitivity comparable to macroscopic ion selective electrodes, they can
be used for sensing ions in cellular environment with much better
response time and detection limit (Buck et al., 2004). PEBBLEs have
been developed for intracellular detection of small analytes like pro-
tons, calcium, magnesium, zinc, potassium, sodium, chloride, and
hydroxyl ions as well as oxygen and glucose.

3.2.16 Nanoshell Biosensor

Metal nanoshells are composed of a core of dielectric nanopar-
ticle like silica encapsulated by an ultrathin metal shell usually
made up of gold. These nanoshells have unique optical proper-
ties that are amenable to fine-tuning. By manipulating the size
and composition of each layer of nanoshell, they can be made
to absorb or scatter light in different regions of electromagnetic
spectrum. These particles can be easily conjugated with antibod-
ies and other probes and are also effective substrates for SERS,
making them an ideal candidate for biosensor design (Hirsch
etal., 2006). The restriction of “free-electron-like” metal substrates
such as Au, Ag, and Cu nanostructures in SERS can be overcome
by using a shell-isolated nanoparticle-enhanced Raman spec-
troscopy (SHINERS) technique. This technique has a potential to
make SERS applicable to surface with any composition and mor-
phology by utilizing Au-core silica-shell nanoparticles (Au@SiO(2)
NPs) (Li et al., 2013).

3.2.17 Array Biosensors

Array biosensors are composed of a solid substrate harbor-
ing a two-dimensional array of recognition sites (biochips).
Biochips can have a separate detection system as in array plate
biochips or an integrated detection system such as integrated
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circuit microsensor chip as in the case of detector array biochips
(Vo-Dinh et al., 2001). Biochips offer advantages of multiplexed
detection and can be conveniently used for medical diagnosis.

3218 Microfluidic Devices/Lab on a Chip

Microfluidic devices are nanosensors in miniature format. The
main advantage includes high sensitivity, greatly reduced working
volumes, and scope of miniaturization to increase portability for
on-site monitoring (Ravichandran, 2010). Silicon-based microflu-
idic devices are called laboratory on chip technology and has been
used to test food additives like benzoate, sorbate, beta hydroxyl
benzoic acid esters, glutamate by carrying out electrophoresis in
chip set up (Bodor et al., 2001).

4 Detection Using Nanosensors

The nanosensors have shown great promise for the fabrica-
tion of novel biosensors with faster response and higher sensitiv-
ity than that of planar sensor configurations, due to their small
dimensions combined with a dramatically increased contact sur-
face and strong binding with biological and chemical reagents.
Such nanosensors have important applications in food industry.

4.1 Detection of Leakage or Spoilage

Production, processing, and shipment of food products could
be made more secure through the use of nanosensors for patho-
gen and contaminant detection. Nanomaterials are being devel-
oped with enhanced mechanical and thermal properties to ensure
better protection of foods from exterior mechanical, thermal,
chemical, or microbiological effects.

4.1.1 Oxygen

To increase the shelf life, a variety of food items are packaged
under vacuum or under modified gaseous atmosphere (Valdés
et al., 2009). Leakage of oxygen inside food packaging causes its
deterioration owing to lipid oxidation and microbial growth. It
may also cause discoloration, change in texture, odor, and flavor
(Bowles and Lu, 2014). The traditional method of measurement
of oxygen in package is destructive in nature where package is
punctured to extract atmosphere of the package and loaded into
electrochemical fuel cell for analysis (Biiltzingslowen et al., 2002).

A photoactivated indicator ink developed by Mills (2005) pro-
vides users with a method to directly detect modified atmosphere
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packages (MAPs) which might be damaged during transport or
storage. The ink contains a redox active dye—methylene blue—
and TiO, or SnO, nanoparticles, which change color in response
to oxygen and allow users to visually analyze the package quali-
tatively before buying. An oxygen-sensing device has been devel-
oped with methylene blue TiO, nanocomposite deposited on glass
slide, followed by spin-coating of triethanolamine embedded in
hydroxy ethyl cellulose under UV irradiation, resulting in bleach-
ing of blue color due to reduction of methylene blue to leuco form.
In the presence of molecular oxygen, the dye is reoxidized and
blue color reappears (Lee et al. 2005; Gutiérrez-Tauste et al., 2007;
Mills and Hazafy, 2008, 2009).

Luminescent nanostructures such as polystyrene-block-vinyl
pyrrolidone nanobeads have also been utilized to sense oxygen.
The detection is based on quenching of luminescence of the lumi-
nescent nanobeads (stained with metal ligand complex). Although
not directly applied in food industry but being used in monitoring
bioreactors (Borisov and Klimant, 2009).

4.1.2 Moisture

A noninvasive method for detecting moisture level in package
was devised by employing a matrix of copper nanoparticles cov-
ered by silicon tenside film and a wetting agent. The strip color is
based on the change of color of internanoparticle separation due
to swelling of polymer matrix in humid environment (Luechinger
etal., 2007).

4.1.3 Carbon Dioxide

Carbon dioxide is usually added in packaging to reduce bacte-
rial growth (Biiltzingsléwen et al., 2002). To monitor the MAPs, CO,
is traditionally analyzed using infrared absorption spectrometry.
But the analysis leads to destruction of packaging and also does
not guarantee complete quality control (Biiltzingslowen et al.,
2002). A nondestructive method based on immobilized fluores-
cent pH indicator using modified silica matrix has been described
(Biltzingslowen et al., 2002). Analysis of the lifetime of lumines-
cent dye was carried out using polymer nanobeads, which encap-
sulate a fluorophore. This CO, sensor has a wide detection range of
0.8-100% having low (0.6%) cross-sensitivity with oxygen.

4.1.4 Gaseous Amine

Gaseous amines such as trimethylamine and others are widely
used as indicators of fish and meat spoilage. A nanosensor com-
posed of nanofibrils of perylene-based fluorophores has been used
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to detect gaseous amines even at very lowlevel (Che et al., 2008; Che
and Zhang, 2009). The same could also be determined with SnO,
composites and TiO, microrods whose conductance was depen-
dent on changes in gaseous amine levels (Zhang and Zhang, 2008).
The detection limit is found to be low 1 ug mL! and the sensor is
selective and stable with prompt response and recovery.

A quartz crystal microbalance (QCM)-based sensor was devel-
oped to detect Trimethylamine (TMA) by depositing a polyaniline
TiO, nanocomposite on electrode (Zheng et al., 2008). Surfactant-
modified ZnO/polyvinyl pyrrolidone composite films are spin-
coated on Al electrodes and utilize for sensing TMA by Tang et al.
(2006) with a detection limit as little as 0.4 ug mL.

4.1.5 Hypoxanthine

Hypoxanthine, a major catabolic product of ATP, imparts a bit-
ter taste in fish and is an indicator of fish freshness. In flatfish, it
can be used as measure of duration of icing (Valdés et al., 2009). An
amperometric biosensor using gold nanoparticles based on activity
ofxanthine oxidase was developed by Cubukcu et al. (2007) for deter-
mination of hypoxanthine in tuna fish samples. Similar approach
was used by Agui et al. (2006) for the amperometric determination
of hypoxanthine in stored samples of sardines and chicken meat.

4.1.6 \Volatile Organics

A sensor series composed of SnO nanobelts or ZnO-TiO, nano-
composites has been utilized for simultaneous detection of volatile
organic compounds like acetone, ethanol and carbon monoxide
(Comini et al., 2005, 2006; Barreca et al., 2007).

4.1.7 Ethylene Gas

Ethylene is a well-known indicator of fruit ripening, softening,
and senescence. Continuous monitoring of ethylene allows stor-
age and distribution centers to manage their produce according
to its status. WO,-SnO, nanocomposites have been used for the
detection of ethylene gas and consequent ripening of the fruit
(Pimtong-Ngam et al., 2007). AWO,-SnO, binary oxide sensor is
inserted in the middle of a quartz tube. Ethylene gas is detected
using conductivity measurements at 300°C. There is a linear
response between 2 and 8 ug mL ! with sensor.

4.2 Detection of Pathogens and Their Products
4.2.1 Pathogens

New technology allows government regulatory agencies to
identify a bacterial pathogen and trace it back to its source more
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rapidly. The majority of foodborne disease outbreaks result from
unintentional contamination of a product as a result of inap-
propriate processing or handling (WHO, 2007). According to
data from Centers for Disease Control and Prevention, one-sixth
of the US population becomes ill due to foodborne diseases
(CDC, 2011). The conventional method to detect microbial con-
tamination includes culture dependent and biochemical iden-
tification, immunological detection, and PCR-based detection
(Velusamy et al., 2010). Culture-based methods are accurate
and reliable but are time consuming and labor intensive. They
usually take 7-10 days for confirmatory results (Chu et al., 2008;
Velusamy et al., 2010). Immunological methods on the other hand
are highly sensitive and faster but have narrow detection range
(Craig et al., 2013). PCR-based methods are also very sensitive but
might give errors arising from nontarget amplification and require
pathogen enrichment. Therefore, rapid, sensitive, and portable
pathogen detection is the need of the hour (Craig et al., 2013).
SERS-based approach captures pathogens of interest using selec-
tive biomolecules, imparting specificity to the sensor. They can be
easily used to differentiate between species and strains (Velusamy
et al. 2010, 2012). Although there has been significant progress in
biosensor design, simultaneous detection of multiple pathogens
is often accompanied by compromises in either precision or sen-
sitivity (Ravindranath et al. 2011).

4211 E coli

E. coli O157:H7 is major foodborne pathogen which causes
an estimated 70,000 infections annually in the USA due to con-
sumption of contaminated raw clover sprouts, ground beef, sal-
ads, frozen food samples, organic spinach, and spring-mix blends
(CDC, 2015). The infections due to production of microbial toxins
damage the intestinal lining, causing stomach cramps and anae-
mia called haemolytic uremic syndrome and hemorrhagic colitis.
Sensing techniques that enable culture enrichment or amplifica-
tion are of great interest (Valdés et al., 2009) as the minimum dose
of E. coli O157:H7 that can cause infection is fewer than 100 organ-
isms (Tuttle et al., 1999).

The quartz crystal microbalance (QCM) DNA sensor method
involves immobilization of a thiolated, E. coli O157:H7 specific
ssDNA (eaeA gene) on the surface of QCM sensor through self-
assembly (Mao et al., 2006). The hybridization of the ssDNA probe
to the complementary target DNA (in presence of pathogen)
resulted in mass change, which could be sensed in the form of
variation in resonant frequency of the QCM. Streptavidin con-
jugated Fe,O, nanoparticles are used to amplify the frequency
change to enhance the mass. E. coli 0157:H7 eaeA gene fragments
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are amplified using asymmetric PCR with biotin labeled primers
detected to sense upto 2.67 X 10? colony forming unit (cfu) mL".
Functionalized -COOH multiwall carbon nanotubes have been
utilized in association with Nafion modified glassy carbon elec-
trode (GCE) for detection of coliforms amperometrically (Cheng
et al., 2008). A suspension of Nafion (perfluorosulfonated cation-
exchanger polymer) solution/MWCNT is poured on the carbon
electrode and the solvent is allowed to evaporate to generate the
modified GCE. Galactosidase enzyme, characteristic of coliforms
when reacts with p-aminophenol B-galactopyranoside substrate
added in the bacterial solution, hydrolyzes it to p-aminophenol
detected by the MWCNT/Nafion modified GCE. The method hav-
ing a detection limit of 10 cfu mL"! for the detection of E. coli in
river water is normally recommended in the food industry due to
rapidity and sensitivity.

Zhang et al. (2007) recommended bismuth nanofilm to modify
a glassy carbon electrode for E. coli detection for medical, envi-
ronmental and food applications. The assay is based on the pres-
ence of the enzyme B-p-glucuronidase in E. coli, which catalyzes
the hydrolysis of externally added substrate 4-nitrophenyl B-b-
glucuronidase to 4-nitrophenol (4-NP). The reaction is detected
in the form of a reduction peak at —0.53 V. The assay is completed
in just 3 h and could detect upto 100 cfu mL™ E. coli cells.

Immobilized self-assembled peptide nanotubes (PNTs) on
carbon paste electrode have been developed to detect E. coli
0157:H7 electrochemically (Cho et al., 2008). FITC labeled anti-E.
coli antibodies are then attached to the electrode. The antigen—
antibody interaction is sensed by cyclic voltammetry using redox
probe; the device is highly portable allowing easy field sampling
(Cho et al., 2008).

Impedance-based biosensor for rapid detection of E. coli
0157:H7 in ground beef has been recommended in which a
gold microelectrode is coupled with magenetic (Fe/Fe,0,), anti-
body coated nanoparticles using biotin streptavidin chemistry
(Varshney and Li, 2007). Once the target is captured onto the
magnetic nanoparticles (via antigen—antibody interaction), the
nanoparticles are concentrated on an interdigitated array micro-
electrode for detection. The method did not require a redox probe,
however the LOD (limit of detection) is quite high (3 x 10°cfumL™).
A further improvement on this type of sensor is to embed labeled
magnetic nanoparticles in custom made microfluidic flow cell to
achieve lower LOD (Varshney et al., 2005; Varshney et al., 2007).

Temur et al. (2010) employed a SERS-based sandwich immu-
noassay along with gold nanoparticles to detect E. coli with a limit
of detection of 5 cfu mL~. In addition, the method has proved to
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be highly specific for detection of E. coli against Enterobacter aero-
genes and Enterobacter dissolvens. Combined with a SERS-based
sandwich immunoassay along with antibody labeled magnetic
nanoparticles was employed to enumerate E. coli with a linear
correlation from 10'-10* cfu mL™! and a LOD of 8 cfu mL™! and
analysis time less than 70 min (Guven et al., 2011).

Detection of E. coli using optical method has also been reported
by Ravindranath et al. (2009). Abdalhai et al. (2015) have developed
an electrochemical genosensor for E. coli 0157:H7 in beef sample.
Cho et al. (2015) proposed a simple and rapid technique to detect
low levels of E. coli O157:H7 in pure culture and ground beef-
based on SERS. They utilized two antibody-conjugated nanopar-
ticle complexes (gold and magnetic) to capture and separate target
bacteria. The bacteria complexed with the nanoparticles were then
localized using silver intensification and analyzed by SERS having
high sensitivity (up to 10 cfu mL™!) and short detection time (1-3 h).

4.2.1.2 Salmonella

Salmonella is the second most frequently occurring pathogen
causing foodborne illnesses in the USA (CDC, 2015). Infection of
Salmonella enteritidis and S. typhimurium causes Salmonellosis—
an enteric disease. Salmonella infantis has also been reported to
cause foodborne outbreaks associated with the egg and espe-
cially the chicken meat. Villamizar et al. (2008) developed a net-
work of single-walled carbon nanotubes SWCNTs to construct
a field effect transistor sensor for detecting S. infantis. SWCNTs
were conjugated with anti-Salmonella antibodies. The interaction
between antigen—antibody resulted in a decrease in electric cur-
rent. The detection limit of this biosensor was 100 cfu mL™! of the
pathogenin 1 h.

4213 Mycobacterium avium spp. paratuberculosis

Mycobacterium avium spp. paratuberculosis has been quanti-
tatively detected from contaminated milk by observing effects of
magnetic particle agglomeration (Kaittanis et al., 2007).

4214 Brucella

Brucella has been detected in blood serum of infected cattle
with synthesized magnetic nanoparticles (Fornara et al., 2008).

4215 Listeria monocytogenes

An IMS-based sensor utilizing magnetic nanoparticles has
been developed by immobilizing the specific antibodies on the
surface of the functionalized iron oxide nanoparticles. The sensor



608 Chapter 14 CONTAMINANT SENSORS: NANOTECHNOLOGY-BASED CONTAMINANT SENSORS

is utilized for detection of L. monocytogenes in artificially contami-
nated milk samples (Yang et al., 2007). Electrochemical detection
of L. monocytogenes has also been reported (Wang et al., 2009).

4.2.1.6 Vibrio parahaemolyticus

Outbreaks involving V. parahaemolyticus are prevalent in areas
where raw and undercooked shellfish is consumed in daily diet.
An amperometric immunosensor has been described for the
detection of V. parahaemolyticus (Zhao et al., 2007). The sensor
was constructed by employing a composite of agarose doped gold
nanoparticles to coat electrode. This membrane is then used to
immobilize HRP-labeled anti-V. parahaemolyticus antibody. The
reduction of cathodic peak current in relation to the presence of
V. parahaemolyticus was used to sense the pathogen.

4.2.1.7 Bacillus cereus

A direct-charge transfer (DCT) biosensor based on antigen—
antibody interaction and direct electron flow to generate a resis-
tance signal has been employed to detect the foodborne pathogen,
B. cereus (Pal et al., 2007). It utilizes B. cereus specific antibodies as
sensing element and polyaniline nanowire as electrical transducer
with a sensitivity of 10-100 cfu mL" for pure cultures of B. cereus.

4.2.1.8 Simultaneous Detection of Multiple Pathogens

Simultaneous detection of multiple pathogens is of particular
interest as it saves time and effort to check for presence of differ-
ent pathogens in addition to saving the sample. Several multipa-
thogen detection nanosensors have been developed.

A SERS-based nanosensor has been described to detect mul-
tiple pathogens like E. coli, Salmonella, or Listeria in several matri-
cesinreal time (Liu et al., 2008; Weidemaier et al., 2015). The assay
bypasses the requirement of wash steps required for complex
samples. In addition, the method allows continuous monitor-
ing of pathogen through enrichment process. The SERS-labeled
immunoassay reagents are added in the enrichment vessel, and
the real-time signal is monitored through the wall of the vessel,
which also enables a bio-contained food safety testing (Liu et al.,
2008; Weidemaier et al., 2015).

A sensitive multiplex fluorescence immunoassay using mul-
ticolor quantum dot probes labeled with the specific antibodies
to simultaneously detect three pathogens S. enteritidis, Staphy-
lococcus aureus, and E. coli have been developed to test multiple
food samples (Wang et al., 2015). Simultaneous detection of dif-
ferent strains of Shiga-toxin producing E. coli (STEC) have been
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demonstrated using optical biosensing with gold nanoparticles
functionalized with oligonucleotide (Quintela et al., 2015). SERS-
based strategy has been utilized to detect E. coli, E. coli O157:H7,
Staphylococcus epidermidis, E. coli DH 5a, S. aureus, and Salmo-
nella typhimurium individually and in mixture (Chu et al., 2008).
They generated AgNP substrate by oblique angle deposition
method. SERS bands common to all bacterial species and spe-
cific to different species could be identified. PCA was applied to
discriminate between Gram stain types, species, and strains. The
reliability was improved by applying linear discrimination anal-
ysis. E. coli, S. typhimurium, and S. aureus at a concentration of
10 cfu mL™ were detected using SERS probes composed of silver
nanospheres formed by assembly of silver nanocrystals. Fan et al.
(2011) utilized SERS-based strategy involving silver nanosub-
strates to differentiate E. coli O157:H7, Listeria monocytogenes,
S. epidermidis, and Enterococcus faecelis and compared two
approaches, one involving gold-coated microscope slide and
second involving internal deposition of AgNPs inside cells. It was
concluded that the latter strategy was able to enhance the Raman
signals to a large extent compared to the former by detecting and
discriminating even single cell (Fan et al., 2011).

Wang et al. (2011) developed a SERS-based immunomagnetic
sensor for multipathogen detection in food matrix where Salmo-
nella enterica serovar Typhimurium and S. aureus were detected in
spinach wash water and peanut butter sample using silica-coated
magnetic probes labeled with pathogen specific antibodies. Gold
nanoparticles integrated with Raman reporters and labeled with
antibodies against same pathogen were utilized for the sandwich
assay and obtained LOD of 10° cfu mL!. Ravindranath et al. (2011)
developed a SERS-based method utilizing different nanoprobes
labeled with Raman reporter molecules in addition to pathogen
specific antiligands. When the specific pathogen is present, these
probes quickly bind to the pathogen surface and filter out on
Millipore nanoporous membrane of 450 nm pore size, while the
unbound probe is washed out. The probes attached to the cap-
tured bacteria can then be used to directly carry out Raman spectra
analysis without the requirement of additional processing steps.
This strategy was successfully used to detect S. typhimurium,
S. aureus, and E. coli O157:H7 by incorporating gold nanoparticles
functionalizd with S. typhimurium aptamers, silver NP functional-
ized with anti-S. aureus antibodies and core-shell NPs functional-
ized with anti-E. coli O157:H7 antibodies. The nanoparticles were
coupled with Raman reporters and the pathogen was subsequently
detected using confocal Raman approach and an LOD ranging
from 10%>-10° cfu mL" was achieved (Ravindranath et al., 2011).
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43 Toxins
4.3.1 Microcystin-LR

Traditionally, Microcystin-LR toxin produced by cyanobac-
terium Microcystis aeruginosa in water has been detected using
ELISA but now this method can be replaced with a 10 times more
sensitive method using carbon nanotubes coated with anti-MCLR
antibodies (Wang et al., 2009). The binding of the toxin on the sur-
face initiates a change in electrochemical conduction, which can
be detected up to 0.6 nM sensitivity (Wang et al., 2009).

4.3.2 Aflatoxin in Milk

A highly sensitive immunosensor that detects aflatoxin B17 in
milk has been developed. This sensor is based on piezoelectric
AuNP (Jin et al., 2009).

4.3.3 Ochratoxin A

Ochratoxin-A foodborne fungal contaminant can be detected
electrochemically by utilizing chitosan nanocomposite along with
cerium oxide nanoparticle immuosensor (Kaushik et al., 2009).
A plasmonic-based optical biosensor for Ochratoxin-A has been
developed by Todescato et al. (2014); tested in different matrices
like dried milk, juices, and wheat mix. A sensitive Ochratoxin-A
sensor based on aptamer has been developed by employing
Ochratoxin-specific aptamer in conjunction with complemen-
tary DNA and double-strand specific fluorescent dye pico green to
detect the toxin (Lv et al., 2014).

4.34 Staphylococcal Enterotoxin B

Nanowire transistors (Mishra et al., 2008) and carbon
nanotubes-based optical immunodetection (Yang et al., 2008) is
being used for enterotoxin B detection.

435 Cholera Toxin

Carbon nanotubes-based technology has been developed for
detection of cholera toxin with very high sensitivity (Viswanathan
etal., 2006).

4.3.6 Botulinum Toxin Serotype A

Botulism has been of major concern due to its possible
bioterrorism applications. Quantum dots method labeled with
the respective antibody has been developed for higher LOD
(Warner et al., 2009).
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44 Banned Dyes and Adulterants
44.1 Urea

Urea is added in milk to increase solid not fat value (SNF) and
nitrogen content. This misleads the conventional testing of pro-
tein content. More than 70 mg dL ! urea in milk can lead to indi-
gestion, urinary tract obstruction, renal failure, gastrointestinal
bleeding, and cancer (Nikoleli et al., 2010). Urease functionalized
AuNPs-based bio-sensors (Nair et al., 2013) and unmodified gold
nanoparticles-based aptamer sensors (Kumar et al., 2015) have
been developed for detection of urea.

4.4.2 Melamine

Melamine in dairy products can lead to urinary calculi, renal
failure and may result in death in infants (Cheng et al., 2010;
Lin et al., 2008). Melamine adulteration has lead to major out-
breaks related with contaminated infant formula milk in China
in 2008 and contaminated pet food in United States in 2007, lead-
ing to market recalls and huge economic losses. Melamine levels
need to be monitored (Smoker and Krynitsky, 2008; Turnipseed
et al., 2008) in order to maintain the safe level in infant formula
(up to 1 mgL!) and food products (up to 2.5 mgL!). Nanosensor-
based approaches have been utilized to monitor melamine levels
in food products replacing time consuming traditional chro-
matographic detection. An optical sensor has been developed
which is based on the property of cyanuric acid to selectively
bind melamine. Presence of melamine causes concentration
dependent aggregation AuNPs fuctionalized with cyanuric acid
resulting in a visible color change from red to blue. This sensor is
highly sensitive and can detect melamine up to a concentration
aslow as 2.5 ppb (Ai et al., 2009). Another approach was based on
formation of AuNP formation in presence of reductant. In pres-
ence of melamine, the reductant is unable to cause formation of
AuNP with no change in color to red (Cao et al., 2010). Melamine
has also been detected colorimetrically by using AuNPs and ether
modified thiols (Kuang et al., 2011). A visual method based on
3-mercaptopriopionic acid MA molecules conjugated on AuNP
surfaces to form MA-modified AuNPs (MA-AuNPs), acting as
nanoprobes has been used for the detection of melamine in
infant formula (Cai et al., 2014).

Liet al. (2014) have overcome the problems of random spread-
ing and dilution of liquids by fabricating a super hydrophobic-
oleophobic mesh-like surface from Ag nanowires for SERS-based
detection of melamine and Sudan I in water and toluene. Spiked
milk samples were also successfully analyzed using this sensor.
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4.4.3 Food Colorants

Ponceau 4R and Allura Red in soft drinks (Zhang et al., 2010)
and Sudan 1 in ketchup or chilli powder (Mo et al., 2010) has been
detected using carbon nanotubes. The colorant specific oxida-
tion peak undergoes intensity changes on the basis of intensity of
analyte. Sunset yellow and chrysoidine have been detected using
a SERS-based method utilizing a substrate composed of SiO2@Au
nanoshells with a detection limit of 1 ppm and 0.5 ppm respectively
Xie et al., 2014).

45 Pharmacological Residues

A SERS-based technique utilizing dendritic AgNPs has been
reported for detection of ciprofloxacin, enrofloxacin, and chlor-
amphenicol (He et al., 2009) replacing time-consuming traditional
chromatographic antibiotic detection. The nanosubstrate is com-
posed of AgNPs deposited on a gold-coated glass slide. The three
antibiotics could be resolved by PCA and LOQ by around 20 ppb.
Chloremphenicol and crystal violet, used as an illegal antifun-
gal agent in aquaculture, has also been detected using Klarite and
Q-SERS substrates (Lai et al., 2011b) with an LOD of 20-50 ppb.
An immuno-chromatographic test strip based on Ru(phen)3(2+)-
doped silica fluorescent nanoparticle (FN) has been developed for
detection of enrofloxacin (ENR) residues in chicken meat (Huang
etal., 2013) and for furazolidone, enrofloxacin, and malachite green
(an industrial dye) in tilapia fillets using SERS (Zhang et al., 2012).
Clenbuterol, a drug used illegally to promote growth in food ani-
mals can impair lung and heart functions in humans. A competi-
tive SERS immnunoassay has been developed with 4,4'-dipyridyl,
and clenbuterol antibody labeled AuNPs attached to a substrate
for competitive combination to detect this drug in pig urine (Zhu
et al., 2011). Sulpha drugs such as sulfamethazine, sulfamerazine,
and sulfamethoxazole are used commonly to promote growth of
farm animals and to control disease outbreaks. These have been
detected using Klarite SERS-active substrate with an LOD of 10 ng
mL! (Laietal, 2011a). Leanness of swine carcass is improved using
drug raptopamine, which is banned in China and European Union
dueto the potential health risk though legal in USA (Zhaietal., 2011).
Overdose of Theophyllin, a drug widely used for airway obstruction
treatment can be lethal (Liu et al., 2011b; Mitenko et al., 1973). The-
ophyllin is found in certain food products such as tea, coffee, and
chocolate and has been detected using AgNPs coated with biomi-
metic receptors with an LOD of 10 uM in spiked green tea samples
(Liu et al., 2011b). Phenolic estrogens have been detected indi-
rectly in infant formula using SERRS (surface-enhanced resonance
Raman scattering) with an LOD of 0.1 ppb (Han et al., 2011).
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46 Pesticides

There is a growing concern over the presence of trace amounts
of pesticide residues in products derived from the crops. These
residues might lead to long-term heath effects (Craig et al., 2013).
Therefore, to assure safety of consumers, monitoring of pesti-
cides in agricultural produce on a routine basis is very important.
Nanosensor-based rapid, sensitive, and portable methods are being
developed to replace routinely used time-consuming chromato-
graphic method for pesticide analysis (Vongsvivut et al., 2010).

4.6.1 Parathion and Paraoxon

Parathion is a moderately toxic organophosphorus insecti-
cide. Wang and Li (2008) developed a ZrO,/Au nanocomposite
film electrode for determination of Parathion with the LOD of
3 ng mL™. The sensor requires a preabsorption of parathion on
electrode and detection was based on square wave voltametry.

Paraxon is a metabolite of organophosphorous insecticide
parathion and has neurotoxic property. Constantine et al. (2003)
developed an optical nanosensor for detecting paraoxon. The in-
solution detection was carried out in a film assembly composed
of layers of alternately arranged film of chitosan, organophos-
phorous hydrolase, and thioglycolic acid capped CdSe quan-
tum dots. Exposure to organophosphorous compound led to its
hydrolysis aided by OP hydrolase resulted in altered conforma-
tion and subsequent decrease luminescence of quantum dots. A
similar approach based on CdSe-ZnS quantum dots was devel-
oped by Ji et al. (2005). However, real samples need to be tested
to validate the effectiveness (Valdés et al., 2009). Vamvakaki and
Chaniotakis (2007) used inhibition of activity of enzyme acetyl
cholinesterase to detect Paraxon. The enzyme was encapsu-
lated into liposome along with a pH sensitive fluorophore pyra-
mine. Upon addition of substrate thioacetlycholine, hydrolysis
resulted in decrease in pH, which could be sensed by pyramine.
The change in pH reduction in presence of pesticide could be
monitored fluorometrically.

4.6.2 Amitrole

Amitrole is a herbicide with a maximum detectable residue
limit of 0.01 mg kg! by employing a carbon paste electrode modi-
fied with Fe(Il)-phthalocyanine (FePh) nanoparticles to detect
amitrole using square wave voltametry (Siswana et al., 2006). Crys-
tal violet and malachite green are banned antimicrobials, which
are used in aquaculture to improve production. If not used within
prescribed limits, they can be detected in fish grown in contami-
nated water (Zheng and He, 2014).
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4.6.3 Fonofos (Organophosphorous Pesticide)

A highly sensitive SERS-based technique for detecting fonofos
pesticide utilizing metal colloids and AgNPs has been developed
by Vongsvivut et al. (2010).

4.6.4 Sulphur-Containing Pesticides

A SERS-based approach have been used to identify sulphur
containing pesticides in grapes, apple, mango, pear, and peach
peels (Liu et al., 2011a). Silver-coated AuNPs have been used with
strong absorption of plasmonic resonance to achieve much higher
enhancement of Raman scattering than the individual AuNPs or
AgNPs in this technique.

4.6.5 Tricyclazole

Quantification of tricyclazole was based on SERS and a por-
table Raman instrument is used to carry out the analysis in paddy
rice (Tang et al., 2012). Pesticides that enter through water are
detected using nanoscale liposome-based detector (Vamvakaki
and Chaniotakis, 2007).

4.7 Contamination Caused by Packaging Material

Melamine used in packaging material may also enter food
under inappropriate storage/ handling conditions. As already
described earlier, melamine contamination can be detected by
using AuNPs (Ai et al., 2009; Cao et al., 2010; Kuang et al., 2011).

48 Allergens

Gliadin (inflammation causing protein in patients suffering
from celiac disease) and gluten can be detected using nanostruc-
tured silver island films in close proximity to rhodamine labeled
antigliadin antibodies. The metal-enhanced fluorescence is detected
using enhanced fluorescence linked immuno-sorbent assay (Staiano
et al., 2009) while peanut allergens by Speroni et al. (2010).

5 Nanobiosensors in Food Technology
Market

The nanotechnology market in future will be driven by
enhanced sensitivity and high throughput detection. The food and
medical industries will offer maximum opportunities in this regard
in areas of quality management and control during production,
processing, packaging, storage, and transportation. The growth in
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Table 14.3 Commercialized Nanobiosensors for the
Food Industry

Method of Commercial
Contaminant Broad Category  Detection Name References
Trans fat content NEMS Digital transform Polychromix Ritter (2005)
spectrometer
Pathogens in food Cantilever Sensing ligand European funded Jain (2008)
and water receptor interactions  project: BioFinger
Flavor analysis of Surface acoustic SAW vapor print Z-Nose Gan et al. (2005)

vegetable oils wave electronic nose

revenue generation is expected to be concomitant with advance-
ments in nanotechnology. Nanosensors incorporating improved
nanomaterials showing better characteristics will be the major
thrust in the market. Factors such as improved design, reduced
complexity, and wireless architechture will also play a critical role.
As these nanosensors begin to prove their worth, their demand
will be enhanced as evident from the example of nanobots—the
nanosensors containing tiny transducer chips for storage. The
total market share for nano sensor in 2012 was $1.2 billion and
some important companies involved with nanosensor research
and development are (1) Dow Corning, (2) Samsung, (3) Boeing,
(4) Lockheed Martin, (5) IBM, (6) Motorola, (7) Agilent, (8) start-
ups (Nanomix and Ambri). Few nanobiosensors that have been
commercialized are listed in Table 14.3.

6 Safety and Challenges

Toxicity of nanoparticles is dependent upon a large number of
factors including the size, structure, shape, elemental constitu-
ents, mass concentration, solubility, surface area, surface charge,
and surface chemistry (Tiede et al., 2008). Enhanced bioavailabil-
ity of certain nutrients or food additives might have unfavorable
effects (Ravichandran, 2010).

Nanomaterials used in food packaging are usually not inhaled
or ingested by the end users, although there is a risk that they may
enter food. If this happens, their use should be based on accept-
able daily intake (ADI) (Ravichandran, 2010). In addition, the effect
of these nanomaterials on the normal microbial flora of gut and
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mouth needs to be assessed beforehand (Sozer and Kokini, 2009).
A second possible exposure is via the inadvertent release of nano-
materials in the environment such as disposal of smart surfaces.
This type of exposure may have unforeseen, untested effects
(Ravichandran, 2010). Therefore, the long-term fate and disposal
of smart surfaces should be considered prior to use. Presently
there are no worldwide-accepted rules or regulations regarding
nanotechnology-based food products. Manufacturers have to fol-
low general existing regulations for food products; however, the
guidelines will vary from country to country. The USFDA does not
specifically cover nanoparticles. The Institute of Food Science and
Technology (UK), European Commission reiterates the require-
ment of modification of existinglaws for example, ingredientlabel-
ing to allow consumer to take informed decisions. TA Swiss (Swiss
center for technology assessment) allows use if additives appear
on a positive list of tested items identifiable by an E-number,
which is again not nanomaterial-specific (Ravichandran, 2010).
The list of generally accepted as safe (GRAS) additives should be
reexamined when used at a nanoscale level (Ravichandran, 2010).
Ultimate success of any nanomaterial-based product depends on
consumer acceptance. Public needs to be groomed to increase
acceptability of these ‘Atomically modified foods.” They should be
allowed to take informed decisions by incorporating the nanoma-
terial component in the labeling (Ravichandran, 2010).

7 Future Prospects

The most promising breakthrough of the development of
online or on-site, sensitive, low-cost, rapid methods for routine
use are expected to be made in the area of nanosensor technol-
ogy. Many prototypes for food diagnostic application in the food
and drink industry are currently being developed. They have high
potential for automation and allow the construction of simple and
portable equipment for fast analysis. These properties will open
up many applications within quality and process control, qual-
ity and safety control of raw materials, and for HACCP monitor-
ing. New technology must have high sensitivity, high specificity,
high precision (repeatability), at the same time rapid, robust, and
cheap. There is currently no method that will fulfill all require-
ments. A variety of nanosensor platforms are available for sens-
ing applications in food industry that offer specific, sensitive, and
cost-effective detection of contaminants. However, these technol-
ogies have to prove their worth for real food samples. The major
challenge among the detection systems used is the refinement of
sample preparation steps so that even an unskilled person can
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perform the analysis. An ideal sensor would be one in which the
sample preparation module is integrated with the on-site sensing
system. Thus, versatile, multifunctional sensing systems, which
can work in a variety of complex food matrices are the need of the
hour. Although multiplexing has been initiated with the e-nose
technology for detection and analysis of complex aroma com-
pounds, further work is required to delineate sample processing
steps for different types of food matrices so that the same sensor
could work in different types of food samples. Efforts are also likely
to be made to reduce the material cost in nanosensor-based sys-
tems and to integrate sensors in packaging material for direct con-
sumer analysis. Future applications might include protein quality
and the detection of allergens, genetically modified proteins, BSE
prions, pathogens, and biocide residues.

8 Conclusions

Nanomaterials have no doubt been the major drivers in the
field of biosensing in food industry catering to the specific needs
of the industry including safety testing, real-time monitoring of
food products during storage and transportation and on-site test-
ing to ensure consumer satisfaction. With their widely acclaimed
qualities such as appropriate and easily alterable size, unique
electrical, optical, chemical, magnetic, and semiconducting prop-
erties and enhanced sensing surface area that can be easily func-
tionalized, they surpass the routinely used biosensors in terms
of sensitivity and accuracy, quick response, and direct localized
detection. A range of nanosensor platforms is now available with
widely differing detection principles. The simplest nanosensors
are colorimetric metal nanoparticle detectors, which produce a
visible reaction upon reaction with analyte. Carbon nanotubes
have superior mechanical properties and have found applica-
tion in nanoelectromechanical system (NEMS). Electronic noses
and electronic tongues mimic the human nose and tongue by
decoding patterns of volatile and nonvolatile compounds respec-
tively. Nanocantilevers work by generating mechanical bending
of nanodevices in response to the presence of analyte. Optical
nanosensors can be used to probe subcellular locations using
fluorescence phenomenon and a fiber-optic nanoprobe. Aptamer
sensors can be used to design biological recognition molecules
similar to antibodies based on custom requirements. SERS utilize
Raman scattering signal of analytes adsorbed on nanomaterial
surfaces. Liposome nanovesicles have been used to amplify fluo-
rescent signals in immunosensing applications. PEBBLE can be
used for intramolecular detection of small analytes. Microfluidic
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devices/lab-on-a-chip devices offer advantages of working with
small sample volumes and rapid detection. Nanosensors have
been applied for various applications including detection of
pathogens, toxins, spoilage, banned chemicals, pharmacological
residues, pesticides, packaging material residues, and allergens. In
future, further advancements are likely to be directed at decreas-
ing the cost of the sensor, increasing the rapidity for on site testing,
automated analysis, as well as streamlining the sample prepara-
tion methods for diverse food matrices. Prospective applications
include development of nanosensors for detecting genetically
modified proteins, BSE prions, and biocide residues.
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