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Abstract - This paper focuses on improving the performance 

of non-restoring division by reducing the delay and finding a 

correct quotient quickly. Although the non-restoring division 

algorithm is the fastest and has less complexity than other 

radix-2 digit recurrent division algorithms, there are still some 

possibilities to enhance its performance. To improve its 

performance, two new approaches are proposed here. For the 

first proposed approach, a non-restori ng divider with a 

modified algorithm is presented. The new algorithm changes 

the order of the flowchart, which reduces one u nit delay of the 

multiplexer per iteration. Secondly, a new method to find a 

correct quotient is presented and it removes an error that the 

quotient is always odd number after a digit conversion from a 

digit converter from the quotient with digits 1 and -1 to a 

conventional binary number. The new logic to generate the 

LSB of the quotient quickly is also explained in this paper. 

I. INTRODUCTION 

Computers have evolved rapidly since their creation. 
However, there is one thing that has not changed: The main 
purpose of computers is to do the arithmetic to run programs 
and applications. Basically, computers handle lots of 
numbers based on the three basic arithmetic operations of 
addition, mUltiplication and division. Compared to addition 
and multiplication, division is the least used operation. 
However, computers will experience performance 
degradation if division is ignored [I,  2, 3]. There are two 
kinds of division methods devised by researchers: digit 
recurrent division and division by convergence. Each 
method has its own advantages [ I], however digit recurrence 
division is most common algorithm for division and square 
root in many floating point units, since it is simple and 
lower in complexity than division by convergence [2, 4, 5]. 
Restoring, non-restoring and SRT dividers are representative 
algorithms for digit recurrence division. This paper focuses 
on the total delay reduction of non-restoring division and 
efficient quotient error correction. To achieve these goals, 
an improved algorithm is presented in this paper. 

II. ALGORITHM MODlFICA nON FOR REDUCING DELAY 

Although division by convergence has several advantages 
such as quadratic convergence for fast division, it has some 
disadvantages including a complex structure, a large area 
due to including a multiplier and a look-up table and these 
characteristics result in spending more power. So, digit 
recurrence division is useful if the system requires a simple 
structure and small area. The restoring non-performing 
division algorithm is the least complex of the four digit 
recurrence methods, but the non-restoring division algorithm 
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is the fastest based on previous researches [6, 7]. However, 
there are a couple of ways to improve the performance of 
non-restoring division. First approach is rearranging the 
order of the computation. By doing this, the delay of the 
multiplexer for selecting the quotient digit and determining 
the partial remainder can be reduced by one unit delay per 
iteration. This reduction will rise as the number of bits are 
increased. This approach is similar to the way that a carry 
select adder selects its intermediate results based on its carry 
[8] 

A. Order Rearrangement 
Figure 1 (a) shows the implementation of the standard 

non-restoring division algorithm for a 16-bit divider. When 
the numerator and denominator enter the divider first, the 
number of bits for both the numerator and denominator are 
extended from 16-bits to 17-bits to check their signs for 
either positive or negative. Then the complement logic 
changes the denominator to one's complement form in the 
very beginning stage. After this process, the determination 
block which consists of a multiplexer and an inverter checks 
the sign of the numerator (at the first stage) or current partial 
remainder (after the first stage) and sets the quotient digit 
and determine whether to use the denominator or its 
complement for calculating the next partial remainder along 
with the current partial remainder. Then the addition is 
performed to calculate the partial remainder for the next 
iteration. The worst case delay comes from the path starting 
at the determination block and ending at the carry lookahead 
adder. 

The delay of a multiplexer can be reduced if the select 
signal for two input data reaches to the multiplexer before 
the two input data arrive. In the non-restoring division 
algorithm, the select signal is the most significant bit of the 
numerator or the current partial remainder. So, one unit of 
delay will be eliminated if the algorithm is modified to 
receive the numerator or the current partial remainder at the 
multiplexer before two input data arrive there. To achieve 
this goal, the order of the determination block and the carry 
lookahead adders is switched as shown in Figure I (b). For 
the modified algorithm, the numerator or current partial 
remainder is at the determination block and the 
determination block selects the quotient digit before the 
adders calculates its possible partial remainders. So, the 
multiplexer delay can be reduced from three units of delay 
to two. Although this delay reduction is relatively small, n 
iterations means it can critically affect the overall delay 
profile. Doubling the number of the adders is a tradeoff for 
reducing the delay. A similar structure is used for a carry 
select adder [8, 9]. 
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Fig. I. (a) Standard non-restoring division algorithm for a 16-bit divider 
(b) Modified non-restoring division algorithm for a 16-bit divider 

III. NOVEL METHOD TO CORRECT TIffi QUOTIENT ERROR 

Non-restoring division has a quotient digit set of { I, - I} 
instead of the conventional binary digit set. Using the 
different quotient set reduces the delay of non-restoring 
division and it only requires one addition per iteration 
whereas the restoring division generally requires an average 
of 1.5 additions per iteration. However, there are a couple of 
drawbacks for using the different quotient set for the non­
restoring division. First, the quotient with digits + I and - I  
must b e  converted t o  a conventional binary number using a 
digit conversion logic. On-the-tly conversion is commonly 
used and replaces the conventional digit converter as shown 
in Figure 2(a) with a I-bit left shifter and a register as shown 
in Figure 2(b) [9,10]. There still has a problem regarding a 
least significant bit of a quotient for the non-restoring 
division algorithm although a digit converter generates the 
final quotient. The least significant bit of a quotient for the 
non-restoring division always sets to one regardless its next 
iteration since 2's complement of its -1 quotient word is used 
as a part of a conversion logic. It generates an error with a 
value of TO for an n-bit divider. To eliminate this problem, a 
MSC generator to generate quickly the correct LSB of the 
quotient is explained in Section B. Second, one multiplexer 
for selecting the first quotient, qo, can be removed since it 
does not affect the final quotient. So, the delay from one 
multiplexer will be eliminated as presented in Section A. 

A. Algorithm Simplification 
There is an additional process needed to convert the 

intermediate quotient with positive and negative digits into a 
conventional binary number. This process requires three 
steps. The first step is to separate the quotient word (with a 
mixture of both +1 and -1 bits) into two quotient words, P 
and N. P consists of only the + I bits with zeroes in place of 
the -I bits. N consists of + 1 bits in place of the -I bits and 
zeros in place of the + I bits. In step 2, the two's complement 
of N is formed. Finally in step 3 the two's complement of N 
is added to P producing the positive quotient word. In this 
process, the leading bit can be ignored since the resulting 
number an unsigned binary number. The conversion 
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algorithm includes forming P and N, fonning a two's 
complement and an addition as shown in Figure 2. 

The one's complement of N (the negative portion of a 
quotient) is exactly the same as P. The result is the same as 
if a I-bit shift left of P is used instead of adding these two 
numbers together using a carry lookahead adder. A one is 
inserted at the LSB of the final quotient in all cases to 
convert the one's complement of the magnitude quotient bits 
to a two's complement. By adopting this scheme, the steps 
of computing the one's complement and the addition are 
removed from the non-restoring division algorithm and it 
allows the quotient to be calculated faster. 

As discussed above, one multiplexer for selecting the first 
quotient, qo, can be removed since it does not affect the final 
quotient. So, the delay from one multiplexer will be 
eliminated. Since the numerator entering into the tloating­
point divider is always positive [10], the leading bit can be 
ignored and one-bit quotient generated at the first stage is 
not required for the final quotient as shown in Figure 2, only 
the partial remainder is needed for the second stage. 
Therefore, the determination block that consists of one 
multiplexer at the first stage can be eliminated for algorithm 
simplification. It will also increase the calculation speed. 
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Fig. 2. Two method for converting from the set of digit + 1 and -I 
to a conventional binary number 

B. The MSC generator 

quotient 

The least significant bit of a quotient for the non-restoring 
division is always set to one regardless its next iteration as 
shown in Figure 3 since 2's complement of its -I quotient 
word is used as a part of a conversion logic. It generates an 

error of 2'0 for an n-bit divider. To remove the error, new 
logic to generate the correct LSB of the quotient quickly is 
explained in this section. 

To enhance the accuracy for the least significant bit of the 
final quotient, an extra iteration is needed and it contains 
two carry lookahead adders and one inverter [9]. The total 
area and the worst case delay resulting fTom one iteration is 
increased considerably. The whole iteration is not required if 
the most significant bit of the last partial remainder is 
known. Since the least significant bit of the final quotient is 
directly obtained from the most significant bit of the last 
partial remainder, the exact value of the partial remainder is 
not necessary. If there is a faster and simpler alternative to 
find whether the partial remainder is positive or negative, 
then the extra iteration is no longer required. 
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Fig. 3. The least significant bit for each final quotient in both cases 

Figure 4 shows how to check the most significant bit of 
the partial remainder. Initially, both the numerator and the 
denominator are all positive since they come from the 
significands in the floating-point numbers and the 
significands may be divided by two, so that it fits to perform 
division as either a numerator or a denominator [11]. Based 
on the non-restoring algorithm, the positive current 
remainder is always paired with the negative denominator, 
the ones complement of the denominator, to calculate the 
next partial remainder. On the other hands, the negative 
current remainder is always paired with the positive 
denominator to calculate the next partial remainder as 
shown in Figure 4. In other words, the most significant bit of 
the denominator, +D, is always zero if the most significant 
bit of the doubled partial remainder, 2Pi, is one and the most 
significant bit of the two's complement of the denominator, 
-D, is always one if the most significant bit of the doubled 
partial remainder, 2Pi, is zero. Since the most significant bit 
of the next partial remainder, Pi+" decides whether it is 
greater than zero or less than zero, the carry resulting from 
the addition at the n+ I-th bit is one, then the most 
significant bit of the next partial remainder, PI+" is set to 
zero and the final quotient is generated as one. If the carry is 
not propagated to the most significant bit, the partial 
remainder is assumed to be less than zero and the last 
quotient bit is a zero. 
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(b) Partial remainder is negative 

Fig. 4. A new method to check the polarity of the partial remainder 

A multilevel reverse most-significant-carry computation 
algorithm is used to calculate the most significant carry 
(MSC) quickly [12, 13]. It was originally devised for 
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compound adders to compute an addition either with or 
without its carry, so early determination of the carry reduces 
the overall delay. The basic concept of MSC determination 
is as follows. First, check the carry propagation chain from 
MSB of both operands by using exclusive-OR gates. Then, 
check the MSC by using AND gates of both operand where 
the carry propagation chain is lost. Figure 5 shows an 
example of determining the MSC. 

MSC=O 

� .. , 
I 10 IOO!Ox ... x 
001 0 I I[gx ... x 
... 

MSC= I 

�., 
I I 0 I 0 O! I! x ... x 

! ! 
OOIOII! I!x ... x 
... .. 

pj= I 
Fig. 5. Example of MSC determination 

This can be done using both AND and OR gates without 
Exclusive-OR gates. The algorithm for the most significant 
carry (MSC) generator modified for non-restoring division 
is shown in Figure 6. 
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Fig. 6. A Modified MSC determination logic for the non-restoring division 

The intermediate results gi and ki are generated by an 
AND operation and an OR operation, respectively on both 
operands. Then, hI, the MSC chain, is generated by an AND 
operation from the most significant bit to each of the 
remaining bits in order. Using the previously generated gi+1 
and hi makes di successively. Finally, OR operations from 
the most significant bit to each of the remaining bits in order 
can generate the MSC. For verification purposes, the 
estimated delays and complexities for each error correction 
method are presented in Tables I and II. 

Note that the one iteration method includes two carry 
lookahead adders, a multiplexer and an inverter. The error 
correction method with the MSC generator uses a 
multiplexer and a MSC generator. A 2-input AND or OR 

gate or an inverter is counted as 1 gate and has a delay of 1 t.. 



TABLE I 
WORST CASE DELAY COMPARISON BETWEEN ERROR CORRECTION METHODS 

Worst case 
One itemation Proposed method Difference 

delay 

8 bit 15� ll� 4� (-26.7%) 

16 bit 17� 12� 5� (-29.4%) 

32 bit 21� J3� 8�(-38 1%) 

TABLE II 
COMPLEXITY COMPARISON BETWEEN ERROR CORRECTION METHODS 

Complexity One itemation Proposed method Difference 

8 bit 277 71 224 (-74.4%) 

16 bit 551 137 414 (-75.1%) 

32 bit 1085 272 879 (-74.9%) 

Table I shows that the worst case delays for the method 
with the MSC generator is almost 38% less than its delay 
per iteration for 32-bit division algorithm and it is evident 
that the MSC calculation algorithm is much faster than the 
one iteration method. Table II shows that the number of the 
logic gates used for the proposed method is much less than 
that of the conventional method. 

A new algorithm for correcting the least significant bit of 
a quotient for the non-restoring division has been presented. 
The modified algorithm increases its speed and reduces the 
complexity by using a MSC generator. It has been analyzed 
that the proposed method to find the last quotient digit 
reduces the total delay by almost 38% per iteration. The 
reduction grows as the word size increases. The total area is 
decreased by over 74%. The new algorithm will be verified 
for correctness using Verilog models. 

IV. SIMULATION RESULTS 

In this section, simulations are performed for verification 
purposes. Nine different logic circuits are implemented 
using the Veri log Hardware Description Language (Veri log 
HDL). The FreePDK45nm version 1.0 standard cell library 
is used for the delay, the area and the power consumption. 
First, 8, 16 and 32-bit dividers using the standard non­
restoring division algorithm that corrects the error by one 
more iteration are implemented and simulated. Then, the 
modified non-restoring dividers using either the MSC 
generator or the carry lookahead adder for error correction 
with 8, 16 and 32-bits are designed and simulated. To find 
the delays, the Synopsys Verilog Compiler Simulator (VCS) 
program is used to run the simulation with various Veri log 
HDL files for the dividers. Design Vision is used for finding 
the area and the power consumption. A hundred random 
vectors are generated as both the numerators and the 
denominators for each simulation and the delays in Table III 
are the average values of a hundred simulations. 

Based on Table III, the modified non-restoring division 
algorithm with the MSC generator is the fastest and 
dramatically reduces the total delays compared to the 
standard non-restoring division algorithm. The delay 
difference between the two modified algorithms is between 
0.72 and 1.42ns. For the 8-bit case, the modified non­
restoring division algorithm with the MSC generator has a 
delay of 16.66 nanoseconds, which is almost 21 % less than 
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the standard. For 16-bit and 32-bit dividers, the delays are 
reduced by 21.2% and 21.3% respectively. As shown in 
Figure 6, the reduction in the delays becomes slightly larger 
as the number of bits is increased. 

Delay 

8 bit 

16 bit 

32 bit 

120.00 
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TABLE III 
AVERAGE DELA YS FOR EACH DIVISION CIRCUIT 

Standard 
NRD 

(a) 
21.04 ns 

51.17 ns 

112.22 ns 

8 bit 

ModifiedNRD 
with iterations 

(b) 
17.38 ns 

41.30 ns 

89.71 ns 

Delay (osee) 

Modified NRD 
Diff 

with iterations + 
(a-c) 

MSC (c) 
16.66 ns 4.38 ns 

40.30 ns 10.87 ns 

88.29 ns 23.93 ns 

CStandard NRD (a) 

.Modified NRD 
wilh iterations (b) 

.Modified NRD 
wilh iterations + 

MSC(c) 

16 bit 32 bit 

Fig. 6.Graph of the delays for each division circuit 

Since the modified non-restoring division algorithm has 
almost twice as many adders as the standard non-restoring 
divider, it occupies more area than the standard divider even 
though some logic has been removed. The 8-bit non­
restoring divider has an area of 2590llm2 whereas the 
modified one with the MSC generator occupies 39991lm2 

which is almost a 54% increase as shown in Table IV. For 
16-bit and 32-bit dividers, the areas are increased by 70.6% 
and 78.7%, respectively. This is the tradeoff between speed 
and area. In addition, just removing two carry lookahead 
adders does not have much of an effect on the total area 
since there are so many adders in a 32-bit modified non­
restoring divider. By using the modified non-restoring 
division algorithm with the MSC generator, the area is 
reduced by 461llm2 from that of the modified non-restoring 
division algorithm with one iteration for the 8-bit divider 
and the former one is almost 10% smaller than the latter one. 
For 16-bit and 32-bit dividers, the total areas are reduced by 
5% and 2.5%, respectively. 

TABLE IV 
AREAS FOR EACH DIVISION CIRCUIT 

Standard Modified Modified NRD 
Diff 

Area NRD NRDwith with iterations 
(a-c) 

(a) iterations (b) + MSC (c) 
8 bit 2590um 4460um' 3999um' 1409 urn 

16 bit 10290!lm 18486Jlm' 17556Jlm' 7266 Jlm 
32 bit 4080611m' 7479311m' 72945Jlm' 32139 urn 

IV. CONCLUSION 

A modified algorithm for non-restoring division has been 
presented. The modified algorithm increases its speed and 
enhances its precision as a result of algorithm modifications. 



It has been verified that the modified non-restoring division 

reduces the total delay by almost 21 % compared with the 

standard non-restoring division. The reduction increases as 

the word size increases. And, the least significant bit of the 

quotient is correctly generated via the modified non­

restoring division algorithm. The total area is increased by 

over 70% as a tradeoff. This modified non-restoring division 

algorithm has been verified for a 45nm technology using 

Veri log models and simulations using Synopsys Veri log 
Compiler Simulator and Design Vision. 
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