978-1-4673-5051-8/12/$31.00 ©2012 IEEE

Modified Non-restoring Division Algorithm with
Improved Delay Profile and Error Correction

Kihwan Jun and Earl E. Swartzlander, Jr.
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, Texas 78712 USA

Abstract - This paper focuses on improving the performance
of non-restoring division by reducing the delay and finding a
correct quotient quickly. Although the non-restoring division
algorithm is the fastest and has less complexity than other
radix-2 digit recurrent division algorithms, there are still some
possibilities to enhance its performance. To improve its
performance, two new approaches are proposed here. For the
first proposed approach, a non-restoring divider with a
modified algorithm is presented. The new algorithm changes
the order of the flowchart, which reduces one unit delay of the
multiplexer per iteration. Secondly, a new method to find a
correct quotient is presented and it removes an error that the
quotient is always odd number after a digit conversion from a
digit converter from the quotient with digits 1 and -1 to a
conventional binary number. The new logic to generate the
LSB of the quotient quickly is also explained in this paper.

1. INTRODUCTION

Computers have evolved rapidly since their creation.
However, there is one thing that has not changed: The main
purpose of computers is to do the arithmetic to run programs
and applications. Basically, computers handle lots of
numbers based on the three basic arithmetic operations of
addition, multiplication and division. Compared to addition
and multiplication, division is the least used operation.
However, computers will experience performance
degradation if division is ignored [1, 2, 3]. There are two
kinds of division methods devised by researchers: digit
recurrent division and division by convergence. Each
method has its own advantages [1], however digit recurrence
division is most common algorithm for division and square
root in many floating point units, since it is simple and
lower in complexity than division by convergence [2, 4, 5].
Restoring, non-restoring and SRT dividers are representative
algorithms for digit recurrence division. This paper focuses
on the total delay reduction of non-restoring division and
efficient quotient error correction. To achieve these goals,
an improved algorithm is presented in this paper.

II. ALGORITHM MODIFICATION FOR REDUCING DELAY

Although division by convergence has several advantages
such as quadratic convergence for fast division, it has some
disadvantages including a complex structure, a large area
due to including a multiplier and a look-up table and these
characteristics result in spending more power. So, digit
recurrence division is useful if the system requires a simple
structure and small area. The restoring non-performing
division algorithm is the least complex of the four digit
recurrence methods, but the non-restoring division algorithm

1460

is the fastest based on previous researches [6, 7]. However,
there are a couple of ways to improve the performance of
non-restoring division. First approach is rearranging the
order of the computation. By doing this, the delay of the
multiplexer for selecting the quotient digit and determining
the partial remainder can be reduced by one unit delay per
iteration. This reduction will rise as the number of bits are
increased. This approach is similar to the way that a carry
select adder selects its intermediate results based on its carry

(8]

A. Order Rearrangement

Figure 1(a) shows the implementation of the standard
non-restoring division algorithm for a 16-bit divider. When
the numerator and denominator enter the divider first, the
number of bits for both the numerator and denominator are
extended from 16-bits to 17-bits to check their signs for
either positive or negative. Then the complement logic
changes the denominator to one's complement form in the
very beginning stage. After this process, the determination
block which consists of a multiplexer and an inverter checks
the sign of the numerator (at the first stage) or current partial
remainder (after the first stage) and sets the quotient digit
and determine whether to use the denominator or its
complement for calculating the next partial remainder along
with the current partial remainder. Then the addition is
performed to calculate the partial remainder for the next
iteration. The worst case delay comes from the path starting
at the determination block and ending at the carry lookahead
adder.

The delay of a multiplexer can be reduced if the select
signal for two input data reaches to the multiplexer before
the two input data arrive. In the non-restoring division
algorithm, the select signal is the most significant bit of the
numerator or the current partial remainder. So, one unit of
delay will be eliminated if the algorithm is modified to
receive the numerator or the current partial remainder at the
multiplexer before two input data arrive there. To achieve
this goal, the order of the determination block and the carry
lookahead adders is switched as shown in Figure 1(b). For
the modified algorithm, the numerator or current partial
remainder is at the determination block and the
determination block selects the quotient digit before the
adders calculates its possible partial remainders. So, the
multiplexer delay can be reduced from three units of delay
to two. Although this delay reduction is relatively small, n
iterations means it can critically affect the overall delay
profile. Doubling the number of the adders is a tradeoff for
reducing the delay. A similar structure is used for a carry
select adder [8, 9].

Asilomar 2012



Non-Restoring Bivision for 16bit Modificd Non-Restoring Bivision for 16bit

(2) (b)

Fig. 1. (a) Standard non-restoring division algorithm for a 16-bit divider
(b) Modified non-restoring division algorithm for a 16-bit divider

I1I. NOVEL METHOD TO CORRECT THE QUOTIENT ERROR

Non-restoring division has a quotient digit set of {1, -1}
instead of the conventional binary digit set. Using the
different quotient set reduces the delay of non-restoring
division and it only requires one addition per iteration
whereas the restoring division generally requires an average
of 1.5 additions per iteration. However, there are a couple of
drawbacks for using the different quotient set for the non-
restoring division. First, the quotient with digits +1 and -1
must be converted to a conventional binary number using a
digit conversion logic. On-the-fly conversion is commonly
used and replaces the conventional digit converter as shown
in Figure 2(a) with a 1-bit left shifter and a register as shown
in Figure 2(b) [9,10]. There still has a problem regarding a
least significant bit of a quotient for the non-restoring
division algorithm although a digit converter generates the
final quotient. The least significant bit of a quotient for the
non-restoring division always sets to one regardless its next
iteration since 2's complement of its -1 quotient word is used
as a part of a conversion logic. It generates an error with a
value of 2™ for an n-bit divider. To eliminate this problem, a
MSC generator to generate quickly the correct LSB of the
quotient is explained in Section B. Second, one multiplexer
for selecting the first quotient, ¢y, can be removed since it
does not affect the final quotient. So, the delay from one
multiplexer will be eliminated as presented in Section A.

A. Algorithm Simplification

There is an additional process needed to convert the
intermediate quotient with positive and negative digits into a
conventional binary number. This process requires three
steps. The first step is to separate the quotient word (with a
mixture of both +1 and -1 bits) into two quotient words, P
and N. P consists of only the +1 bits with zeroes in place of
the -1 bits. N consists of +1 bits in place of the -1 bits and
zeros in place of the +1 bits. In step 2, the two's complement
of N is formed. Finally in step 3 the two’s complement of N
is added to P producing the positive quotient word. In this
process, the leading bit can be ignored since the resulting
number an unsigned binary number. The conversion

1461

algorithm includes forming P and N, forming a two’s
complement and an addition as shown in Figure 2.

The one's complement of N (the negative portion of a
quotient) is exactly the same as P. The result is the same as
if a 1-bit shift left of P is used instead of adding these two
numbers together using a carry lookahead adder. A one is
inserted at the LSB of the final quotient in all cases to
convert the one's complement of the magnitude quotient bits
to a two's complement. By adopting this scheme, the steps
of computing the one's complement and the addition are
removed from the non-restoring division algorithm and it
allows the quotient to be calculated faster.

As discussed above, one multiplexer for selecting the first
quotient, ¢, can be removed since it does not affect the final
quotient. So, the delay from one multiplexer will be
eliminated. Since the numerator entering into the floating-
point divider is always positive [10], the leading bit can be
ignored and one-bit quotient generated at the first stage is
not required for the final quotient as shown in Figure 2, only
the partial remainder is needed for the second stage.
Therefore, the determination block that consists of one
multiplexer at the first stage can be eliminated for algorithm
simplification. It will also increase the calculation speed.

171001110
KK K KK b KK

X1001 11 0. quotient

take apart

2's
complement

X10011101 auotient

(a) conventional conversion (b) on-the-fly conversion

Fig. 2. Two method for converting from the set of digit +1 and -1
to a conventional binary number

B. The MSC generator

The least significant bit of a quotient for the non-restoring
division is always set to one regardless its next iteration as
shown in Figure 3 since 2's complement of its -1 quotient
word is used as a part of a conversion logic. It generates an
error of 2" for an n-bit divider. To remove the error, new
logic to generate the correct LSB of the quotient quickly is
explained in this section.

To enhance the accuracy for the least significant bit of the
final quotient, an extra iteration is needed and it contains
two carry lookahead adders and one inverter [9]. The total
area and the worst case delay resulting from one iteration is
increased considerably. The whole iteration is not required if
the most significant bit of the last partial remainder is
known. Since the least significant bit of the final quotient is
directly obtained from the most significant bit of the last
partial remainder, the exact value of the partial remainder is
not necessary. If there is a faster and simpler alternative to
find whether the partial remainder is positive or negative,
then the extra iteration is no longer required.



LSB is negative LSB is positive

111771110 111771110
11001110 11001101
. " takeapart take apart
00110001 00110010
(I OROR N IRO 11003101
10011101 2 10011011 2
T 11 complement +1 1 I complement
e 1 ettt bttt 1
X10011100) aoten X1001 1100 aoten

LSB of the quotient is one

Fig. 3. The least significant bit for each final quotient in both cases

LSB of the quotient is one

Figure 4 shows how to check the most significant bit of
the partial remainder. Initially, both the numerator and the
denominator are all positive since they come from the
significands in the floating-point numbers and the
significands may be divided by two, so that it fits to perform
division as either a numerator or a denominator [11]. Based
on the non-restoring algorithm, the positive current
remainder is always paired with the negative denominator,
the ones complement of the denominator, to calculate the
next partial remainder. On the other hands, the negative
current remainder is always paired with the positive
denominator to calculate the next partial remainder as
shown in Figure 4. In other words, the most significant bit of
the denominator, +D, is always zero if the most significant
bit of the doubled partial remainder, 2P;, is one and the most
significant bit of the two’s complement of the denominator,
-D, is always one if the most significant bit of the doubled
partial remainder, 2P;, is zero. Since the most significant bit
of the next partial remainder, P;;,, decides whether it is
greater than zero or less than zero, the carry resulting from
the addition at the n+1-th bit is one, then the most
significant bit of the next partial remainder, P, is set to
zero and the final quotient is generated as one. If the carry is
not propagated to the most significant bit, the partial
remainder is assumed to be less than zero and the last
quotient bit is a zero.

[16] ... [e][s5] [4] [3] [2] [1] [0]
_Carry

(a) Partial remainder is positive

[16] ... [e][s5] [4] [3] [2] [1] [0]
__Carry

2P;
+D

Piss

(b) Partial remainder is negative
Fig. 4. A ne wmethod to check the polarity of the partial remainder

A multilevel reverse most-significant-carry computation
algorithm is used to calculate the most significant carry
(MSC) quickly [12, 13]. It was originally devised for

1462

compound adders to compute an addition either with or
without its carry, so early determination of the carry reduces
the overall delay. The basic concept of MSC determination
is as follows. First, check the carry propagation chain from
MSB of both operands by using exclusive-OR gates. Then,
check the MSC by using AND gates of both operand where
the carry propagation chain is lost. Figure 5 shows an
example of determining the MSC.

MSC =0

110100/0x...x

00101 1{0ix ... x
-~

pi=1

Fig. 5. Example of MSC determination

This can be done using both AND and OR gates without
Exclusive-OR gates. The algorithm for the most significant
carry (MSC) generator modified for non-restoring division
is shown in Figure 6.

Multiplied by 2

2P, +Dor-D

g

‘ Beginning of the MSC chain

h=1]

Value of the carry
d =hgi

ld‘

‘ Collect MSC ‘

MSC =d; + " +4

MsC

Fig. 6. A Modified MSC determination logic for the non-restoring division

The intermediate results g; and k; are generated by an
AND operation and an OR operation, respectively on both
operands. Then, h,, the MSC chain, is generated by an AND
operation from the most significant bit to each of the
remaining bits in order. Using the previously generated g;,
and h; makes d; successively. Finally, OR operations from
the most significant bit to each of the remaining bits in order
can generate the MSC. For verification purposes, the
estimated delays and complexities for each error correction
method are presented in Tables I and II.

Note that the one iteration method includes two carry
lookahead adders, a multiplexer and an inverter. The error
correction method with the MSC generator uses a
multiplexer and a MSC generator. A 2-input AND or OR
gate or an inverter is counted as 1 gate and has a delay of 1A.



the standard. For 16-bit and 32-bit dividers, the delays are

TABLEI reduced by 21.2% and 21.3% respectively. As shown in
WORST CASE DELAY COMPARISON BETWEEN ERROR CORRECTION METHODS Figure 6, the I‘eduCtiOIl in the delayS becomes Sllghtly larger
Worst case . . hod Diff e n ¢
delay One iternation | Proposed metho ifference as the number of bits is increased.
8 bit 15A 11A 4A (-26.7%)
- TABLE III
16 bit 17A 12A 5A (-29.4%) AVERAGE DELAYS FOR EACH DIVISION CIRCUIT
32 bit 21A 13A 8A (-38.1%) Standard | Modified NRD | Modified NRD Diff
Delay NRD with iterations with iterations + ( )
@ (b) MSC (©) e
TABLEIT 8bit | 2104ns 1738 ns 1666 ns 438 s
COMPLEXITY COMPARISON BETWEEN ERROR CORRECTION METHODS oo T 5117 ms 30 1030 s 1087 s
Complexity | One iternation | Proposed method Difference 3 bit llé s 89-71 s 88.29 s 23'93 s
8 bit 277 71 224 (-74.4%)
16 bit 551 137 414 (-75.1%)
32 bit 1085 272 879 (-74.9%)
Delay (nsec)
Table I shows that the worst case delays for the method 120.00
with the MSC generator is almost 38% less than its delay o ]
per iteration for 32-bit division algorithm and it is evident '
that the MSC calculation algorithm is much faster than the 80.00 OStandard NRD ()
one iteration method. Table II shows that the number of the )
. : 60.00 ®Modified NRD
logic gates used for the proposed method is much less than with itcrations (b)
that of the conventional method. 40.00 mModificd NRD
g g 4 S g th iterations +
A new algorithm for correjctmg' tbf? least significant bit of 2000 MSC @)
a quotient for the non-restoring division has been presented. :I:i
The modified algorithm increases its speed and reduces the 000 - . .
complexity by using a MSC generator. It has been analyzed 3 bit 16 bit 32 bit

that the proposed method to find the last quotient digit
reduces the total delay by almost 38% per iteration. The
reduction grows as the word size increases. The total area is
decreased by over 74%. The new algorithm will be verified
for correctness using Verilog models.

IV. SIMULATION RESULTS

In this section, simulations are performed for verification
purposes. Nine different logic circuits are implemented
using the Verilog Hardware Description Language (Verilog
HDL). The FreePDK45nm version 1.0 standard cell library
is used for the delay, the area and the power consumption.
First, 8, 16 and 32-bit dividers using the standard non-
restoring division algorithm that corrects the error by one
more iteration are implemented and simulated. Then, the
modified non-restoring dividers using either the MSC
generator or the carry lookahead adder for error correction
with 8, 16 and 32-bits are designed and simulated. To find
the delays, the Synopsys Verilog Compiler Simulator (VCS)
program is used to run the simulation with various Verilog
HDL files for the dividers. Design Vision is used for finding
the area and the power consumption. A hundred random
vectors are generated as both the numerators and the
denominators for each simulation and the delays in Table 111
are the average values of a hundred simulations.

Based on Table III, the modified non-restoring division
algorithm with the MSC generator is the fastest and
dramatically reduces the total delays compared to the
standard non-restoring division algorithm. The delay
difference between the two modified algorithms is between
0.72 and 1.42ns. For the 8-bit case, the modified non-
restoring division algorithm with the MSC generator has a
delay of 16.66 nanoseconds, which is almost 21% less than

1463

Fig. 6.Graph of the delays for each division circuit

Since the modified non-restoring division algorithm has
almost twice as many adders as the standard non-restoring
divider, it occupies more area than the standard divider even
though some logic has been removed. The 8-bit non-
restoring divider has an area of 2590um’® whereas the
modified one with the MSC generator occupies 3999um>
which is almost a 54% increase as shown in Table IV. For
16-bit and 32-bit dividers, the areas are increased by 70.6%
and 78.7%, respectively. This is the tradeoff between speed
and area. In addition, just removing two carry lookahead
adders does not have much of an effect on the total area
since there are so many adders in a 32-bit modified non-
restoring divider. By using the modified non-restoring
division algorithm with the MSC generator, the area is
reduced by 461um? from that of the modified non-restoring
division algorithm with one iteration for the 8-bit divider
and the former one is almost 10% smaller than the latter one.
For 16-bit and 32-bit dividers, the total areas are reduced by
5% and 2.5%, respectively.

TABLEIV
AREAS FOR EACH DIVISION CIRCUIT
Standard Modified Modified NRD Diff
Area NRD NRD with with iterations .
(a) iterations (b) + MSC (c) (a-c)
8bit | 2590um’ 4460um’ 3999 um’ 1409 um’
16 bit | 10290um 18486um’ 17556um’ 7266 um
32 bit | 40806um’ 74793um* 72945um? 32139 um?

IV. CONCLUSION

A modified algorithm for non-restoring division has been
presented. The modified algorithm increases its speed and
enhances its precision as a result of algorithm modifications.




It has been verified that the modified non-restoring division
reduces the total delay by almost 21% compared with the
standard non-restoring division. The reduction increases as
the word size increases. And, the least significant bit of the
quotient is correctly generated via the modified non-
restoring division algorithm. The total area is increased by
over 70% as a tradeoff. This modified non-restoring division
algorithm has been verified for a 45nm technology using
Verilog models and simulations using Synopsys Verilog
Compiler Simulator and Design Vision.

ACKNOWLEDGMENT

Earl Swartzlander's effort is supported in part by a grant
from AMD.
REFERENCES

[1] S. F. Oberman and M. J. Flynn, “Design issues in division and other
floating-point operations,” IEEE Transactions on Computers, vol. 46,
pp. 154-161, 1997.

[2] Inwook Kong, “Modified Improved Algorithms and Hardware Designs
for Division by Convergence,” Doctoral dissertation, University of
Texas at Austin, 2009.

[3] Peter Soderquist and Miriam Leeser, “Division and square root:
choosing the right implementation,” /EEE Micro, vol. 17, no. 4, pp.
56-66, July-Aug. 1997.

1464

[4] Milos D. Ercegovac and Tomas Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations, Boston: Kluwer
Academic Publishers, 1994.

[5] S. F. Oberman and M. J. Flynn, “Division algorithms and
implementations,” IEEE Transactions on Computers, vol. 46, pp. 833—
854,1997.

[6] AW. Burks, HH. Goldstein, and J. von Neumann, Preliminary
Discussion of the Logical Design of an Electronic Computing
Instrument, 2nd edition, Section 5.14, Princeton: Institute for
Advanced Study, 1947.

[7] Gustavo Sutter, Jean-Pierre Deschamps, Gery Bioul and Eduardo
Boemo, “Power Aware Dividers in FPGA,” Power and Timing
Modeling, Optimization and Simulation 2004, LNCS 3254, pp. 574—
584, 2004.

[8] O. J. Bedrij, “Carry-select adder,” IRE Transactions on Electronic
Computers, vol. EC-11, pp. 340 =346, 1962.

[9] Behrooz Parhami, Computer Arithmetic - Algorithms and Hardware
Designs, Oxford: Oxford University Press, 2000.

[10] ANSV/IEEE Standard 754-1985, IEEE Standard for Binary Floating-
Point Arithmetic, 1985.

[11] Shlomo Waser and Michael J. Flynn, Introduction to Arithmetic for
Digital Systems Designers, Holt, Rinehart & Winston, CBS College
Publishing, 1982.

[12] J. D. Bruguera and Tomas Lang, "Multilevel Reverse Most-significant
Carry Computation," Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on , vol 9, no.6, pp.959-962, Dec. 2001.

[13] J. D. Bruguera and Tomas Lang, “Multilevel Reverse Carry Adder,”
Proceedings of the 2000 IEEE International Conference on Computer
Design: VLSI in Computers & Processors, pp. 155-162, 2000.



