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The Bayesian information
criterion: background, derivation,
and applications
Andrew A. Neath1 and Joseph E. Cavanaugh2∗

The Bayesian information criterion (BIC) is one of the most widely known and
pervasively used tools in statistical model selection. Its popularity is derived
from its computational simplicity and effective performance in many modeling
frameworks, including Bayesian applications where prior distributions may be
elusive. The criterion was derived by Schwarz (Ann Stat 1978, 6:461–464) to serve
as an asymptotic approximation to a transformation of the Bayesian posterior
probability of a candidate model. This article reviews the conceptual and theoretical
foundations for BIC, and also discusses its properties and applications. © 2011 Wiley
Periodicals, Inc.

How to cite this article:
WIREs Comput Stat 2012, 4:199–203. doi: 10.1002/wics.199

Keywords: Bayes factors, BIC, model selection criterion, Schwarz information
criterion

INTRODUCTION

In statistical modeling, an investigator often faces the
problem of choosing a suitable model from among

a collection of viable candidates. Such a determination
may be facilitated by the use of a selection criterion,
which assigns a score to every model in a candidate
set based on some underlying statistical principle. The
Bayesian information criterion (BIC), introduced by
Schwarz,1 is derived to serve as an asymptotic approx-
imation to a transformation of the Bayesian posterior
probability of a candidate model. In large sample
settings, the model favored by BIC ideally corresponds
to the candidate model which is a posteriori most
probable; i.e., the model which is rendered most
plausible by the data at hand. The computation of
BIC is based on the empirical log-likelihood and does
not require the specification of priors. Thus, BIC has
appeal in many Bayesian modeling problems where
priors are hard to set precisely.
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BACKGROUND

To formally introduce BIC, consider the following
model selection framework. Suppose we endeavor to
find a suitable model to describe a collection of n
response measurements y. We will assume that y has
been generated according to an unknown density g(y).
We refer to g(y) as the true or generating model. A
model formulated by the investigator to describe the
data y is called a candidate or approximating model.
We will assume that any candidate model structurally
corresponds to a parametric class of distributions.
Specifically, for a particular candidate model Mk, we
assume there exists a k-dimensional parametric class
of density functions

F(k) = {
f (y| θk) : θk ∈ �(k)

}
,

a class in which the parameter space �(k) consists
of k-dimensional vectors whose components are
functionally independent. Let L(θk |y) denote the
likelihood corresponding to the density f (y| θk), i.e.,
L(θk |y) = f (y| θk). Let θ̂k denote a vector of estimates
obtained by maximizing L(θk |y) over �(k).

Suppose we formulate a collection of candidate
models Mk1 , Mk2 , . . . , MkL

. These models may be
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based on different subsets of explanatory variables,
different mean and variance/covariance structures,
and even different specifications for the type of
distribution for the response variable. Our objective
is to search among this collection for the model that
‘best’ approximates g(y).

The BIC for candidate model Mk is defined as

BIC = −2 ln L(θ̂k |y) + k ln(n). (1)

In practice, BIC is computed for each of the models
Mk1 , Mk2 , . . . , MkL

, and the model corresponding to
the minimum value of BIC is selected.

In the next section, we present a justification of
BIC which is general, yet informal. BIC was justified
by Schwarz 1 ‘for the case of independent, identically
distributed observations, and linear models,’ under
the assumption that the likelihood is from the regular
exponential family. Generalizations of Schwarz’s
derivation are presented by Stone,2 Kashyap,3

Leonard,4 Haughton,5 and Cavanaugh and Neath.6

In the subsequent section, we discuss properties
and applications of BIC as a model selection tool.
Specifically, we present the use of BIC in the
computation of Bayes factors and in the determination
of weights in model averaging.

DERIVATION

We consider the model selection framework described
in the previous section. Data y is to be described
using a model selected from a set of candidates
Mk1 , Mk2 , . . . , MkL

. Consider any of the candidate
models Mk, for k ∈ {

k1, . . . , kL
}
. We assume that

derivatives of the likelihood function L(θk |y) up to
order two exist with respect to θk, and are continuous
and suitably bounded for all θk ∈ �(k).

The motivation behind BIC can be seen through
a Bayesian development of the model selection
problem. Let π (k), k ∈ {

k1, . . . , kL
}
, denote a discrete

prior over the models Mk1 , Mk2 , . . . , MkL
. Let g(θk |k)

denote a prior on θk given the model Mk. Applying
Bayes Theorem, the joint posterior of Mk and θk can
be written as

h
(
(k, θk) |y) = π (k)g(θk |k)L(θk |y)

m(y)
,

where m(y) denotes the marginal distribution of y.
A Bayesian model selection rule aims to choose the
model which is a posteriori most probable. The
posterior probability for Mk is

P(k |y) = m(y)−1π (k)
∫

�(k)
L(θk |y) g(θk |k) dθk.

Now consider minimizing −2 ln P(k |y) as
opposed to maximizing P(k |y). We have

−2 ln P(k |y) = 2 ln
{
m(y)

} − 2 ln
{
π (k)

}
− 2 ln

{∫
L(θk |y) g(θk |k) dθk

}
.

The term involving m(y) is constant with respect to k;
thus for the purpose of model selection, this term can
be discarded. We define

S(k |y) = −2 ln
{
π (k)

} − 2 ln
{∫

L(θk |y) g(θk |k) dθk

}
.

(2)

Consider the integral that appears in Eq. (2). In
order to obtain an approximation to the integrand,
we take a second-order Taylor series expansion of the
log-likelihood about θ̂k. We have

ln L(θk |y) ≈ ln L(θ̂k |y) + (θk − θ̂k)
′ ∂ ln L(θ̂k |y)

∂θk

+ 1
2

(θk − θ̂k)
′
[

∂2 ln L(θ̂k |y)

∂θk ∂θ
′
k

]
(θk − θ̂k)

= ln L(θ̂k |y) − 1
2

(θk − θ̂k)
′ [

n I(θ̂k, y)
]

× (θk − θ̂k), (3)

where

I(θ̂k, y) = −1
n

∂2 ln L(θ̂k |Yn)

∂θk ∂θ
′
k

is the average observed Fisher information matrix.
Thus,

L(θk |y) ≈ L(θ̂k |y)

× exp
{
−1

2
(θk − θ̂k)

′ [
n I(θ̂k, y)

]
(θk − θ̂k)

}
.

We therefore have the following approximation for
the integral in Eq. (2):∫

L(θk |y) g(θk |k) dθk

≈ L(θ̂k |y)
∫

exp
{
−1

2
(θk − θ̂k)

′ [
n I(θ̂k, y)

]
(θk − θ̂k)

}
× g(θk |k) dθk. (4)

The Taylor series approximation in Eq. (3) holds
when θk is close to θ̂k. Thus, the approximation in
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Eq. (4) should be valid for large n. In this instance,
the likelihood L(θk |y) should dominate the prior
g(θk |k) within a small neighborhood of θ̂k. Outside of
this neighborhood, L(θk |y) and the exponential term
should be small enough to force the corresponding
integrands in Eq. (4) near zero. Therefore, it is
defensible to simplify the justification by using the
noninformative prior g(θk |k) = 1. In this case, we can
evaluate the second integral in Eq. (4) as∫

exp
{
−1

2
(θk − θ̂k)

′ [
n I(θ̂k, y)

]
(θk − θ̂k)

}
g(θk |k) dθk

= (2π)(k/2)
∣∣∣n I(θ̂k, y)

∣∣∣−1/2
.

This leads to an approximation of the first integral in
Eq. (4) as∫

L(θk |y) g(θk |k) dθk

≈ L(θ̂k |y) (2π)(k/2)
∣∣∣n I(θ̂k, y)

∣∣∣−1/2

= L(θ̂k |y)
(

2π

n

)(k/2) ∣∣∣I(θ̂k, y)
∣∣∣−1/2

. (5)

The former can be viewed as a variation
on the Laplace method of approximation. The
approximation in Eq. (5) is valid so long as g(θk |k)
is noninformative or ‘flat’ over the neighborhood of
θ̂k where L(θk |y) is dominant (see Cavanaugh and
Neath6 for the formalities), although the choice of
g(θk |k) = 1 makes the derivation more tractable. We
can now approximate S(k |y) in Eq. (2) as

S(k |y) ≈ −2 ln
{
π (k)

}
− 2 ln

[
L(θ̂k |y)

(
2π

n

)(k/2) ∣∣∣I(θ̂k, y)
∣∣∣−1/2

]

= −2 ln
{
π (k)

} − 2 ln L(θ̂k |y) + k
{
ln

( n
2π

)}
+ ln

∣∣∣I(θ̂k, y)
∣∣∣ . (6)

Ignoring the terms in Eq. (6) that are bounded as the
sample size grows to infinity, we obtain

S(k |y) ≈ −2 ln L(θ̂k |y) + k ln n.

With this motivation, the BIC is defined
in Eq. (1) as an asymptotic approximation to
−2 ln P(k |y), a transformation of the Bayesian
posterior probability of model Mk.

PROPERTIES AND APPLICATIONS

In a model selection application, the chosen model
is identified by the minimum value of BIC. Model
selection based on BIC is advantageous in the
sense that BIC has the property of consistency.
Suppose that the generating model g(y) is of finite
dimension, and that this model is represented in
the candidate collection. A consistent criterion will
asymptotically select, with probability one, the
candidate model having the correct structure.7 From
a theoretical standpoint, consistency is arguably the
strongest optimality property of BIC. The property
of consistency requires the condition that one of the
candidate models be correctly specified. Interestingly
enough, the Bayesian justification of BIC does not
require this condition. If the true model is not a
member of the candidate collection, the idea of
consistency for BIC must be modified. The BIC
selected model converges with probability one to
what can be called the quasi-true model. The quasi-
true model in a candidate collection is the most
parsimonious model that is closest to the true model,
as measured by the Kullback-Leibler information.7

Some frequentist practitioners prefer the use
of BIC over model selection criteria justified under
frequentist principles, such as the Akaike information
criterion (AIC).8,9 As a model selection criterion, BIC
tends to choose models that are more parsimonious
than those favored by AIC. In small to moderate
sample size settings, simulation studies indicate that
BIC outperforms other popular model selection
criteria, such as AIC, as measured by the proportion
of times a criterion selects the correct model
structure. (See, for instance, McQuarrie and Tsai.10)
In regression and time series applications, Neath and
Cavanaugh11 show how terms dropped from Eq. (6)
when defining BIC can be included in forming a
small sample variant of BIC having improved selection
properties.

In Bayesian applications, comparisons between
models are often based on Bayes factors. Consider two
candidate models, Mk1 and Mk2 . The Bayes factor,
B12, is defined as the ratio of the posterior odds
of Mk1 , P(k1 |y)/P(k2 |y), to the prior odds of Mk1 ,
π (k1)/π (k2). If B12 > 1, then model Mk1 is favored by
the data. If B12 < 1, then model Mk2 is favored by the
data. Assuming two candidate models are regarded as
equally probable a priori, a Bayes factor represents the
ratio of the posterior probabilities of the two models.
In certain settings, model selection based on BIC is
roughly equivalent to model selection based on Bayes
factors.12 Let BIC(k1) denote BIC for model Mk1 , let
BIC(k2) denote BIC for model Mk2 , and let �12 =
BIC(k1)−BIC(k2). Kass and Raftery12 argue that as
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TABLE 1 Strength of Evidence Provided by the Difference in BIC
Values �12 = BIC(k1)-BIC(k2).

�12 Evidence to favor Mk2 over Mk1

0–2 Not worth more than a bare mention

2–6 Positive

6–10 Strong

>10 Very strong

n → ∞,

−2 ln B12 − �12

−2 ln B12
→ 0.

Thus, �12 can be viewed as an approximation
to −2 ln B12. Kass and Wasserman13 show that
for a reasonable choice of priors, known as unit
information priors, we have the stronger result
of exp {−�12/2} /B12 → 1, with error of order
Op

(
n−1/2

)
. The Bayes factor for comparing models

Mk1 and Mk2 can then be approximated by

B12 ≈ exp
{
−1

2
�12

}
.

A problem closely related to model selection
is one of model evaluation. Here, an investigator is
less interested in the selection of a single model, and
more interested in assessing preference from the data
toward each of the models in the candidate collection.
Following guidelines proposed by Jeffreys,14 Kass and
Raftery12 provide rules for defining the strength of
evidence in terms of Bayes factors. We adapt their
table to highlight that strength of evidence can equiv-
alently be stated in terms of BIC. Here, we consider a
comparison between models Mk1 and Mk2 , as quanti-
fied by the BIC difference �12. We assume that model
Mk2 has the smaller value of BIC. See Table 1.

As BIC approximates a transformation of a
model’s posterior probability, one can perform model
evaluation by transforming BIC back to a probability.
Let BIC(k∗) denote the minimum BIC value across
the candidate collection Mk1 , Mk2 , . . . , MkL

. Let �k =

BIC(k)−BIC(k∗). The posterior probability on model
Mk can be approximated as

P(k |y) ≈ exp
{−1

2�k
}∑L

l=1 exp
{−1

2�l
} . (7)

The set of posterior probabilities represented in
Eq. (7) can be used solely as a model evaluation tool,
or can be included in the analysis via model averaging.
Consider inference on a parameter δ that is defined
within each model in the collection of candidates.
Rather than taking a selected model as correct with
probability one, model averaging allows for a quantifi-
cation of the uncertainty inherent to model selection.
The posterior distribution on δ is found as a weighted
average of the posterior distributions conditional on
each model in the candidate set:

h(δ |y) =
L∑

l=1

h(δ |kl, y) P(kl |y).

Hoeting et al. 15 present an overview of Bayesian
model averaging. The process of model averaging is
seen to improve estimation and prediction, and to
adjust interval estimates which tend to be over-
confident if one proceeds as if a selected model
is correct with certainty. Neath and Cavanaugh16

use BIC and the approximation in Eq. (7) for com-
puting model weights in a multiple comparisons
problem.

CONCLUSION

The BIC is a widely used tool in model selection,
largely because of its computational simplicity and
effective performance in many modeling frameworks.
The Bayesian justification leads to interpretations of
BIC values in terms of Bayes factors, posterior model
probabilities, and model averaging weights. It is seen
from these applications that BIC provides an effective
scientific measure for describing the results of a model
selection problem.
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