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The production of metal parts via laser powder bed fusion additive manufacturing is growing

exponentially. However, the transition of this technology from production of prototypes to production

of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be

established via a fundamental understanding of the physics of the process. It is generally accepted that

this understanding will be increasingly achieved through modeling and simulation. However, there are

significant physics, computational, and materials challenges stemming from the broad range of length

and time scales and temperature ranges associated with the process. In this paper, we review the

current state of the art and describe the challenges that need to be met to achieve the desired

fundamental understanding of the physics of the process. VC 2015 AIP Publishing LLC.
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I. INTRODUCTION

A. Laser powder bed fusion

Metal additive manufacturing is “the process of joining

materials to make objects from 3D computer-aided design

(CAD) model data, usually layer upon layer, as opposed to

subtractive manufacturing technologies.”1 Metal additive

manufacturing has a number of modalities, including mate-

rial extrusion, material jetting, material droplet printing,

binder jetting, sheet lamination, powder bed fusion, and

directed energy deposition.2 Most current metal additive

manufacturing systems are of the powder bed fusion type.2

In the powder bed fusion process, thin layers of powder are

applied to a build plate and an energy source (a laser or elec-

tron beam) is used to fuse the powder at locations specified

by the model of desired geometry. When one layer is com-

pleted, a new layer of powder is applied and the process is

repeated until a 3D part is produced. The powder bed fusion

process is alternately known as selective laser sintering

(SLS), selective laser melting (SLM), direct metal laser sin-

tering (DMLS), direct metal laser melting (DMLM), and

electron beam melting (EBM).3 Current metal powder bed

fusion additive manufacturing systems tend to use melting as

opposed to sintering to build full-density parts.

Metal laser powder bed fusion additive manufacturing

systems have designs similar to that illustrated in Fig. 1.4

They are composed of powder delivery and energy delivery

systems. The powder delivery system comprises a piston to

supply powder, a coater to create the powder layer, and a pis-

ton that holds the fabricated part. The energy delivery system

is made up of a laser (usually a single-mode continuous-

wave Ytterbium fiber laser operating at 1075 nm wavelength)

and a scanner system with optics that enable the delivery of

a focused spot to all points of the build platform. A flow of

gas (usually nitrogen or argon) passes over the powder bed

with the intention to (a) protect the part from oxygen and (b)

to clear any “spatter” and metal fumes that are created from

the laser path. Some systems have an in situ process-

monitoring capability that can image the melt pool using a

high-speed camera or a temperature sensor that is inline with

the laser system.5

During production, the laser executes a scanning or ex-

posure strategy. The strategies associated with the laser path

are characterized by the length, direction, and separation

(hatch spacing) of neighboring scan vectors. A detailed dis-

cussion of scanning strategies is beyond the scope of this pa-

per, but a list of scanning strategies has been compiled by

Yasa.6 Scanning strategies can affect the properties of the

part including density, mechanical properties, and residual

stress. Residual stress is one of several important material

responses that need to be optimized for laser-based addi-

tively manufactured parts. A part can be fabricated within

tolerances only to have residual stress-induced distortions

put the part out of tolerance when removed from the build

plate. Residual stresses can also cause a part’s connection to

support structures to fail or result in surface deformations

that can damage the coater or inhibit the coater’s motion.

B. The role of high performance computing for SLM
modeling and simulation

In recent years, the state of the art in metal powder bed

fusion additive manufacturing has improved to the point

where it is transforming from a rapid-prototyping technology

to a production technology. Parts can be fabricated at near

full density (99.5þ%) with mechanical properties that are

similar to conventionally produced metals. Potential applica-

tions are broad, increasing, and particularly notable in the

medical2 and aerospace sectors.7–9 Despite this progress, one

of the most serious hurdles to the broad adoption of additive

manufacturing of metals is the qualification of additively

manufactured parts. Some 47% of manufacturers surveyed

indicated that uncertain quality of the final product was a

barrier to adoption of additive manufacturing.8

A physical understanding of the metal powder bed

fusion process can provide insight into performance margins,

uncertainties in those margins, and their sensitivities to pro-

cess parameters. Thus, a physical understanding of the pro-

cess is an essential element of part qualification. Such an

understanding should also enable increased control of the

process, which in turn improves the likelihood of producing

qualified parts. Modeling and simulation of the additive

FIG. 1. This figure provides a sche-

matic overview of the select laser melt

process both at the machine and pow-

der scales Reprinted from Knowledge

Based Process Planning and Design

for Additive Layer Manufacturing,

KARMA, funded by the European

Commission, 7th research program.4
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manufacturing process provides a mechanism to develop this

understanding. Several roadmaps for additive manufacturing

have highlighted the needs for and benefits of a process mod-

eling and simulation capability.3,10–12 These will only be

fully realized through leveraging the scale of modeling

achievable through high-performance computing.

Although the powder bed fusion process is conceptually

simple, the underlying physics is complex and covers a broad

range of time and length scales. Laser beams and powder layer

thicknesses are �10 s of lm and laser speeds are �1 m/s. On

the other hand, parts are many cubic centimeters in dimension

and build times can be hours, days, even weeks. Further, the

process involves around 130 parameters that could affect the

quality of the final part.13 Parameters such as the laser power,

speed, and beam size control the length, width, and depth of

the melt pool. The geometry of the melt pool is important as

its width and depth can affect part density and length can affect

the microstructure through the cooling rate. Generally speak-

ing, it is desirable to maintain a constant or controlled melt

pool geometry during a build. However, because the thermal

boundary conditions change as a function of the part geometry,

the parameters required to achieve desired melt pool character-

istics will also be a function of geometry. In current powder

bed fusion systems, geometry-specific parameters can be

entered for geometries such as the core, skin, and downward-

facing surfaces. But, achieving controlled melt pool character-

istics throughout a part requires voxel-by-voxel control of the

parameters. In situ sensors and feedback schemes aid such con-

trol.14–16 Feedback works best when the parameters are close

to the optimal for the given geometry. This is particularly the

case for the high laser speeds involved in metal powder bed

fusion where the time constant for the response of the melt

pool to changes in power or speed can be relatively slow.

Achieving optimized input parameters is referred to as a
priori17 or “intelligent feed forward”10,18 control. One system

manufacturer is implementing a geometry-dependent scanning

(or exposure) strategy.19 Modeling and simulation combined

with high-performance computing optimization (solving the

inverse problem) have the potential to provide the next step in

such voxel-by-voxel control of the process.

A number of papers have had significant impact (as

measured by an average of �5 citations/year) in the field of

modeling and simulation of the powder bed fusion additive

manufacturing process. Williams and Deckard recognized the

need for process modeling and simulation in the early days of

polymer powder bed fusion.20 In the case of metals, contribu-

tions with significant impact include thermal models of the

process,21–24 thermomechanical models of the process,25,26 re-

sidual stress modeling,27 and laser-powder interaction.28–30

C. Outline

In this paper, we give a brief review of recent progress

in developing physics-based models for the metal powder

bed fusion process. We first discuss the fundamental aspects

of melting of the metal powder. We then discuss a model at

the scale of the powder. This model is used to simulate the

melting of powder and its resulting densification. It resolves

individual powder particles in 3D. The laser-material

interaction is treated via ray tracing and a physics-based

absorption model. It models melting of the powder, flow and

convection of the liquid, and behavior of trapped gas. It cov-

ers time scales of fractions of a second and length scales of

fractions of a millimeter. We also discuss a model at the

scale of the part that is used to computationally build a com-

plete part and predict properties such as residual stress in

3D. It treats the powder as a lower-density, low-strength

solid. The laser-material interaction is treated using an

energy source term. The part-scale model represents melting,

solidification, and includes strength; it can be readily

extended to include solid-state phase transformations for

future material systems of interest. It covers time scales to

hours and length scales to centimeters. We discuss the role

of data mining and uncertainty quantification in the modeling

and simulation process and describe future applications.

II. FUNDAMENTAL ASPECTS OF MELTING

The selective laser melting process includes a variety of

physical effects with huge disparities in temporal and spatial

scales, making comprehensive, first-principles modeling prac-

tically impossible. However, the disparity in scales enables

the use of simplified models for aspects of the process. A sim-

ulation at the scale of the powder would consider the laser

interaction with the powder, powder melting, and evolution of

the melt (see Section III). A simulation at the scale of the part

would take into account laser heating and melting treated as a

thermal source, part shape, and laser scan strategies and would

be able to calculate the residual stresses (see Section IV). The

ranges of applicability of the simulations can overlap, opening

the possibility for the mutual code validation.

Modeling of the SLM process has some similarities

with modeling of welding, but with two significant differen-

ces. First, in SLM we must be able to model the new

physics associated with the interaction of the laser with the

metal powder, including radiation absorption and scatter-

ing, powder melting, and melt wetting. The second is a pos-

sible significant simplification of the description. It is clear

that additively manufactured material quality degrades

when the energy deposited exceeds the threshold for key-

hole mode melting.31 This means that modeling of the SLM

process does not need to include the plasma formation

description, the radiation interaction with the vapor, and the

variety of the interface instabilities that are observed in

keyhole mode.

A. Numerical modeling of powder absorptivity

An important component of metal additive manufactur-

ing process modeling efforts is the description of the absorp-

tion of laser light by the metal powder and the spatial

distribution of the absorbed energy. Direct measurements of

the absorption are quite difficult.32 Also it is problematic to

make use of measurements obtained without detailed specifi-

cations of the experiment, since the absorption depends on

the powder material, the distribution of particle sizes, the

spatial distribution of the particles, and the laser beam size

and profile. Thus, it is not sufficient to know only the results

for one particular powder of a given material and for a
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particular beam. Similarly, the spatial distribution of

absorbed energy is difficult to obtain experimentally. These

considerations reinforce the usefulness of absorption

calculations.

A commonly used laser absorption model proposed by

Gusarov et al.33 assumes diffusive radiation transport in the

powder. The model can be applicable to a ceramic powder or

to a thick, high-porosity metal powder. This assumption,

however, is not applicable for the thin (a few powder par-

ticles thick), low-porosity metal powder layers used in the

selective laser-melting process. As we shall see, in this case

most of the energy is absorbed at the surface of the top layer,

and the absorption is highly non-uniform even on the scale

of individual powder particles. This situation is inconsistent

with a diffusion model. Also, Gusarov et al.33 assume volu-

metric deposition of the energy instead of surface deposition.

In a typical experimental situation, the diffusion time a2/D is

longer or comparable with dwell time a/u. Here, a is a pow-

der particle size, D is material thermal diffusivity, and u is

scan speed. In reality, the laser deposits the energy on the

surface of the particle changing the melt dynamics in com-

parison with the volume deposition.

Physically, the powder is an assembly of metal particles,

taken here to be spheres, with sizes appreciably larger than

the laser wavelength (taken as about 1 lm) and with a com-

plex refractive index appropriate to the material and the

wavelength. It is natural to use ray tracing to calculate the

powder absorption. This has previously been considered,

e.g., in Wang et al.,34 but the angular and polarization de-

pendence of the absorption of incident rays was neglected.

Boley et al.35 reported the results of comprehensive

absorption modeling, including all the effects mentioned

above. A challenge was the problem of tracing rays within

an assembly of thousands of objects, while keeping track of

the angle, polarization, power, and reflection/refraction of

individual rays. However, this issue has long been consid-

ered, and commercial software is available for handling it.

Boley et al.35 used the FRED36 code, a multipurpose optics

code widely used in optical design and analysis.

To begin the calculations, we consider a powder consist-

ing of spheres of a single size that are densely packed in a

hexagonal structure. Six materials (Ag, Al, Au, Cu, stainless

steel [SS], and Ti) are considered. We first study the overall

absorptivity of such a powder, by assuming a uniform beam

of width large compared with the particle size, so that the

absorption is nearly independent of the beam position. The

refractive indices near 1 lm were taken from a data compila-

tion.37 The results are summarized in Table I. Most impor-

tant for each metal is the total absorptivity by the spheres

and the substrate (column 9). This is to be compared with the

absorptivity of the metal at normal incidence on a flat surface

(column 4), and the average absorptivity of an isolated

sphere illuminated by a uniform beam (column 5). The cal-

culations show that the resulting powder absorptivity is sig-

nificantly higher than the absorptivity of a flat surface or of a

single, isolated sphere, thus confirming the important role of

multiple scattering, as illustrated in Fig. 2. A ray can scatter

repeatedly, leading to additional absorption relative to the

case of a flat surface. Thus the relative increase in absorptiv-

ity is higher for highly reflective metals (Ag, Al, Au, and

Cu) than for moderately absorbing metals (SS and Ti). In the

former case, this ratio (column 10) varies from 4.7 to 7.2,

while in the latter case the ratio is 1.7. Note that most of the

power is absorbed in the top layer of the spheres (column 6).

Little more than 1% of the power penetrates beneath the two

layers to the substrate (column 8).

TABLE I. Absorptivity calculated for a number of materials and material configuration (a denotes the absorptivity).

(1)

Material

(2)

Re(n)

(3)

Im(n)

(4) a
(flat surface)

(5) a
(isolated sphere)

(6) a
(top layer)

(7) a
(bottom layer)

(8) a
(substrate)

(9) a
(spheresþ substrate)

(10) a (spheresþ substrate)/a
(flat surface)

Ag 0.23 7.09 0.018 0.020 0.072 .047 0.010 0.13 7.2

Al 1.244 10. 0.047 0.056 0.15 0.063 0.011 0.22 4.7

Au 0.278 7.20 0.021 0.024 0.081 0.050 0.011 0.14 6.7

Cu 0.35 6.97 0.028 0.032 0.101 0.055 0.011 0.17 6.1

SS 3.27 4.48 0.34 0.36 0.53 0.062 0.013 0.60 1.7

Ti 3.45 4. 0.38 0.40 0.56 0.062 0.014 0.64 1.7

FIG. 2. (a) Typical rays during illumination of the ideal array. (b) Detail of

ray trajectories in (a), showing multiple scattering from spheres.
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More generally, one is interested in not only the total

absorbed power but also the spatial distribution of the

absorbed power. In some additive manufacturing machines,

the laser beam size is roughly comparable to the powder par-

ticle size. Here we consider a powder with spheres of radius

10 lm and a beam having a 1/e2 radius of 24 lm.

Fig. 3 shows the distribution of absorbed irradiance along

the top layer of an array of stainless steel spheres as the beam

is rapidly scanned across the array. This distribution was

obtained by calculating the absorbed irradiance pattern at a

number of points along the path and plotting the sum as a

function of position. It gives a qualitative picture of the

absorbed irradiance on a time scale short compared to thermal

times, i.e., for a sufficiently fast scanning speed. We see that

the scattered light is well confined and that the typical absorp-

tion area is comparable to the beam area.

The absorptivity can be sensitive to the beam size, and

fluctuations of the absorptivity are smoothed with increasing

beam size. For the example presented in Fig. 3, the absorptiv-

ity fluctuates along the scan by about 20% and the distribution

of absorbed power in a single sphere is very non-uniform.

Real powder is different from the monosized powder

considered above. A realistic powder has a distribution of

sizes and a non-uniform geometrical arrangement, generally

with porosity greater than that of an ideal array. To generate

the powder geometry, Boley et al.35 used a particle-packing

algorithm38 similar to that of the rain model for random dep-

osition.39 The algorithm randomly places powder particles

with a specified distribution of sizes on a powder bed until

the first contact with other particles or with the substrate. If

the contact is with a particle, the particle is randomly per-

turbed, in an effort to minimize the potential energy. To sim-

ulate the removal of extra powder by a coater blade, the

algorithm inserts a plane at a specified distance from the sub-

strate and removes all particles intersected by the plane or

situated above it. It should be noted that discrete element

method (DEM) modeling is also being used by some investi-

gators to understand the packing of the powder layers.40–42

Boley et al.35 discussed two different types of powders.

The first, shown in Fig. 4, mimics the powder used in the

Concept Laser metal additive manufacturing machine

(www.concept-laser.de/en/home.html). The powder has a

Gaussian distribution of radii, with an average radius of

13.5 lm, a full width at half-maximum equal to 2.3 lm, radial

FIG. 4. Powder with a Gaussian distribution of sizes. The length of the bed

is about 1100 lm, and the beam path is indicated.

FIG. 3. Irradiances (arbitrary scale) for 61 successive beam positions, from

lower left to upper right, in steps of 2 lm. The irradiances pertain to the

spherical surfaces. A sample beam spot (1/e2 radius) is shown.

FIG. 5. Absorptivity a as calculated

along the beam path for the Gaussian

powder of Fig. 7. The material is stain-

less steel. The insets show the powder

and incident beam size (1/e2) at loca-

tions with high absorption (left) and

low absorption (right).

041304-5 King et al. Appl. Phys. Rev. 2, 041304 (2015)
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cutoffs at 8.5 lm and 21.5 lm, and a powder layer thickness

of 43 lm.31 In the absorption calculations, the path of the

beam extends along the length of the powder bed, as shown in

the figure.

The calculated absorption for stainless steel for a 1 mm

laser beam path is shown in Fig. 5. Local variations in the

powder structure give rise to sizeable fluctuations in the

absorption. The fluctuations occur on a scale of about

100 lm, which is much larger than the typical sphere size.

The mechanism for the fluctuations can be seen in the two

insets in Fig. 5. In the left inset, the incident beam has

mainly struck small spheres, with larger spheres on the pe-

riphery. This results in multiple reflections and an increased

absorption. In the right inset, on the other hand, much of the

incident power has reached the substrate, producing fewer

reflections and a decreased absorption.

For the second example of a powder, shown in Fig. 6

(Ref. 35) consider a bimodal distribution characterized by a

7:1 ratio of radii and a volume fraction of small spheres

equal to 20%, as discussed in Kelkar et al.43 This powder

was chosen because of its high density, or low porosity.

Following Kelkar et al.43 we consider a large-sphere radius

of 42 lm and a powder thickness of 50 lm.

Fig. 7 shows the calculated absorption for stainless steel

along a 1 mm laser beam path. In this configuration, holes in

the powder layer are practically absent. The absorption min-

ima correspond to situations when the beam mainly strikes a

large sphere, with much of the light directly reflected (left

inset). The largest absorption occurs when the beam strikes a

local assembly of small spheres, as seen in the right inset.

The difference between these two cases lies in the ratio of

the beam size to the size of the irradiated spheres, with a

larger ratio offering more opportunity for multiple reflec-

tions. As in the previous case, the absorption fluctuates on a

distance scale larger than a particle size, or about 100 lm.

Parenthetically, it should be noted that the problem of a

powder structure producing a maximum density has been

investigated in a number of studies, e.g., see Hopkins et al.44

Powder packing with density over 80% of the bulk material

was demonstrated computationally for complex powder size

distributions but may not be practical.

Returning to the Gaussian and bimodal powders, let us

compare the overall results with those for the hexagonal pow-

der array of Sec. II A. The results are summarized in Table II,

which demonstrates that a change in the powder structure can

noticeably affect the absorptivity. For a moderately absorbing

metal such as stainless steel, the difference is not large, about

a few percent. As a consequence, the absorptivities of the

stainless steel and titanium are not very sensitive to powder

structure and powder feed system. On the other hand, for

highly reflective metals such as silver and gold, the variation

can be nearly a factor of two. In these cases, multiple scatter-

ing is very important, and the powder configuration and size

distribution affect the total absorptivity.

FIG. 6. Powder with a bimodal distribution of sizes. The powder bed and

the beam are as in Fig. 4.

FIG. 7. Absorptivity a as calculated

along the beam path for the bimodal

powder of Fig. 5 (stainless steel). The

insets show the powder and incident

beam size at locations with low

absorption (left) and high absorption

(right).

TABLE II. Total absorptivity for selected materials.

Material Ideal array (Table I) Gaussian array Bimodal array

Ag 0.13 0.081 0.14

Au 0.14 0.093 0.16

SS 0.60 0.58 0.63
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B. Direct absorptivity measurements

There are many reasons to do direct absorptivity meas-

urements, even in the presence of detailed absorptivity simu-

lations: the powder particle shape can differ from ideal

spheres, (see Fig. 8), the real powder structure in an experi-

ment can differ from that produced by the numerical model,

surface oxides can affect the absorptivity, and the refractive

index of the alloy materials can be very different from the

pure metal measurements.45 As an example, the Al absorp-

tivity for 1 lm light according to Palik37 is about 5%. The

real measurements of the bulk Al gives absorptivity about

20%. This is partially explained by the effect of the oxide

layer and partially by the surface roughness.45,46

As a result, there is increasing demand for a simple com-

pact system for fast measurements of the temperature-

dependence of the laser absorptivity up to and including the

molten state. Existing systems, e.g., see Tolchko et al.32 and

McVey et al.,47 measure the reflected light from the powder

with the help of an integrating sphere and are typically com-

plex and expensive. The distribution of the scattered light is

broad and even the small absorption in the integrating sphere

coating can affect the result. Calorimetry has also been used

to measure the absorbed energy for a moving beam melting

the powder layer. But in this case the most energy was

absorbed by the melt not powder and the losses due to the

radiative and convective transport were unaccounted effec-

tively increasing the absorptivity.48

Recently,49 a simple calorimetric scheme for direct

absorptivity measurements had been proposed. The scheme of

the measurements is presented in Fig. 9. A thin layer of pow-

der is placed on a thin disk made from refractory metal. A

laser or diode array beam uniformly irradiates the thermally

isolated disk. The temperature increase is measured by ther-

mocouples underneath the disk. The disk holder is designed

such that it does not significantly absorb radiation nor affect

the temperature distribution in the target. The input heating is

selected to be slow compared to the rate of thermal diffusion,

resulting in a uniform temperature through the powder and

substrate. The temperature across the face of the disk will be

uniform due to the uniform nature of the laser irradiation.

Consider a thin layer of powder with thickness d1 on a

flat disk substrate of refractory metal with thickness d2 and

radius R uniformly illuminated by light with intensity I. For

absorptivity of powder (or melt), assuming uniform tempera-

ture through the disk, the temperature evolution is

q1c1d1 þ q2c2d2ð Þ dT

dt
¼ A Tð ÞI � Q Tð Þ; (1.1)

where A(T) is the absorptivity, Q(T) is the thermal losses

including convective and radiative losses, q is the density, c
is the specific heat, d is the thickness, and subscript “1” for

powder and “2” the substrate.

Consider a flat top, finite duration heating pulse. A typi-

cal temperature history is presented in Fig. 10 and comprises

two phases, heating and cooling. First, we consider the tem-

perature evolution during the cooling phase, when I¼ 0 in

order to determine the convective and radiative losses Q(T)
for known heat capacities and material densities. Next, we

FIG. 8. Scanning electron microscope image of the real, stainless steel pow-

der, with rough surface and agglomeration with small particles.

FIG. 9. Diagram of the measurement scheme. A thin layer of powder is

placed on a thin disk made from refractory metal and is uniformly irradiated

by 1 lm laser light sources. Temperature is measured by thermocouples

attached to the bottom of the disk.

FIG. 10. Sample data from thermocouples attached to the refractory disk

showing the temperature variation during the heating and cooling periods.
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will find the temperature dependent absorptivity A(T) consid-

ering the temperature evolution during the heating phase.

The missing piece in this scheme is the measurement of the

powder density (porosity). This problem can be solved

through a special target design. The target disk with diameter

d has a rim with height h to determine the powder thickness.

The disk is filled with powder and a blade or roller removes

the extra material, mimicking the powder deposition of com-

mercially available additive manufacturing systems. If we

multiply Eq. (1.1) by the disk area S, the equation can be

rewritten as

m1c1 þ m2c2ð Þ dT

dt
¼ A Tð ÞP� Q Tð ÞS: (1.2)

Here, m1 and m2 are the masses of the powder and disk,

respectively. P¼ IS represents the total power incident on

disk. Weighing the disk with and without powder gives the

powder weight needed to calculate the absorptivity from Eq.

(1.2). A similar set-up was used in a previous study to mea-

sure the absorptivity of solid metal, see Rubenchik et al.46

where more details of physical effects related to the experi-

ment can be found.

Measurements49 were done for 316L stainless steel, Ti-

6Al-4V, and 99.9% purity Al powder. The density and heat

capacity of Ta as function of temperature were taken from

Bodryokov.50 For stainless steel, Ti alloy, and Al, we used

the density and heat capacities from Mills.51 The results of

the measurements are presented in Figs. 11(a)–11(c). The

stainless steel powder (Fig. 5(a)) was the same as used in

experiments carried out in a Concept Laser AM machine.

The powder has a Gaussian size distribution with average ra-

dius 13.5 lm, a full width at half-maximum of 2.3 lm, radial

cutoffs at 8.5 lm and 21.5 lm.31 After the first measurement

the sample was allowed to cool and the measurement was

repeated (blue lines). Some small difference in results has

been observed, probably due to powder re-configuration

driven by thermal expansion. Performing the measurement at

two laser intensities gave consistent results, suggesting that

the absorptivity is independent of the heating rate.

For Ti-6Al-4V (Fig. 11(b)), measurements are from

powders from two different suppliers. The powders have dif-

ferent particle size distributions (with the same average di-

ameter �27 lm, same as for stainless steel) and they

behaved differently when spread across the target disk. One

powder was more cohesive than the other, tending to stick to

the coater blade and roller and to form clusters. Al powder of

99.9% purity was supplied by Goodfellow (Goodfellow

Al006031).

The measurements presented here were done at tempera-

tures up to 500 �C. At higher temperatures, oxidation

becomes important and the material changes color.46 In a

typical additive manufacturing process, the melting takes

place in an Ar environment and we plan to make our high-

temperature measurements under similar conditions. The use

of a Ta disk presents a possibility to go above the melting

points of most materials of interest and measure the absorp-

tivity of the melt.

Let us compare the results with recent, first-principles

modeling of laser absorption in powder using the ray trac-

ing code presented above. It was demonstrated that due to

multiple scattering the powder absorptivity is greatly

increased in comparison to flat surface absorptivity. The

absorption for the metals with high absorptivity (SS, Ti) is

practically independent of powder structure. For stainless

steel, the calculated results presented in Tables I and Table

II give 60% absorptivity for monosized hexagonally packed

powder and 58% for powder with experimentally measured

size distributions packed according to the “rain drop”

method.38 Experimental measurements are consistent with

these calculations.

The insensitivity of absorption to the powder structure

may explain the independence of Ti-6Al-4V absorption on

powder type. The absorptivity value for Ti alloy in our
FIG. 11. Measured absorptivity data for (a) stainless steel 316L, (b) Ti-6Al-

4 V, and (c) 99.9% purity Al (Goodfellow Al006031).
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measurements is about 70%, somewhat higher than predicted

by the modeling value �65% (Table I) One possible expla-

nation is that the calculations in Boley et al.35 used the re-

fractive index for the pure Ti, which can differ from that of

Ti-6Al-4V.

Calculated values for Al are very different from the

measurements (Fig. 11(c)). They suggest that the oxide layer

and the structure of the surface are important. For a flat sur-

face, the observed absorptivity of Al is over 20% for 1 lm

light, much higher than the 5% value predicted using the

textbook refractive index (see discussion in Rubenchik

et al.46). The increase in powder absorptivity in comparison

with a solid material is consistent with numerical results.35

III. MODELING AT THE SCALE OF THE POWDER

A. Description and purpose

The powder scale model uses the input laser beam char-

acteristics to transform a particle bed through the dynamics

of the molten state into solidified material. The model is ini-

tialized with powder particles of the desired size distribution

and layer thickness, often on a uniform substrate or on a pre-

viously processed layer. The combined thermal and hydrody-

namic simulations model the appropriate distribution of the

laser’s energy as it interacts with the powder particles, the

substrate, and the melt pool. The deposited energy from

the laser heats the powder above the melting point, where

the model coalesces the particles into a melt pool that flows

under the influence of surface tension and vaporization

recoil. The powder model tracks the various modes of heat

loss, including conduction and evaporation, until the melted

material solidifies onto the existing substrate. The contribu-

tions of the powder model to the overall additive manufac-

turing modeling effort come in four areas: laser interaction

with the powder bed, powder response, melt pool characteri-

zation, and the build quality metrics of surface finish and

final part density.

The total energy absorbed from the laser is an important

integrated quantity that must be provided by the powder

model. Another important quantity, the net energy deposited

into the part, accounting for losses including evaporation and

thermal radiation, will also come from the powder model sim-

ulation results. The net deposited energy plays an important

role in the part scale model simulations, particularly as the

details of individual layers are abstracted away for computa-

tional efficiency. The powder model has the capability to

include effects of the laser beam geometry, including spot

size and shape and various option for the distribution of power

within the beam, such as Gaussian, top hat, or “donut.”

Through modeling of various arrangements of individual

powder particles, the powder scale simulations are used to

determine their integrated effects. The particle size distribu-

tion is used by the powder model to initialize the geometry,

thereby affecting a number of model outputs, including the

powder bed packing density and the effective thermal con-

ductivity of the unconsolidated powder bed. The thickness of

the powder layer has significant effects on the part quality,

including the obtainable density and surface roughness,

which can be investigated with a powder scale model.

The powder model includes the formation, evolution,

and eventual solidification of the melt pool. Single-track52

parameters such as width, height, and depth can be compared

with experimental data for validation of the model. The pow-

der model can determine the uniformity of the track/bead,

which is useful for creating maps of optimal process parame-

ters. As part of the hydrothermal calculations of the melt

pool motion and solidification, the powder model can gener-

ate temperature-time history data for use in models of micro-

structure evolution.

The role of the powder model also includes build-

quality measures such as surface roughness and obtainable

density. Multi-track simulations will give the solidified shape

of many overlapping or overlaying melt tracks, giving the

roughness of top, bottom, and side-facing surfaces of the

part. These simulations can also be used to study the forma-

tion of voids in the final part structure. The powder model

may be used to investigate mitigation strategies to improve

these quantities by such techniques as laser power or speed

variations.

B. Physics representation

1. Included physics

The powder model begins with the three-dimensional

geometry of a random powder layer on a substrate. A prepro-

cessing program generates the locations of non-overlapping

spheres with the desired particle-size distribution in a ran-

domly packed arrangement. The program fits in spheres until

the desired density fraction is reached, usually near the typi-

cal experimental value of about 55%. The powder particles

are overlaid on a uniform background mesh, replacing the

background “void material” with metal for finite elements

within the preprocessing program’s defined spherical shapes.

The background mesh is fine enough, typically about 3

microns, to resolve the individual powder particles.

Several approaches are possible for modeling the inter-

action of the laser beam with the powder bed. Some

approaches (e.g., see Gusarov et al.53) utilize the methods of

radiation transport to analyze the absorption and scattering

of the laser beam within a 50% dense packing of uniform

spheres. These methods determine an energy deposition pro-

file that is not concentrated at the surface of the powder bed,

but rather is distributed into the depth of the powder layer

with a roughly exponential fall-off. The depth of deposition

is determined by the packing fraction, the powder bed depth,

and the absorptivity of the metal particles. This energy depo-

sition profile is moved with the laser scanning velocity at a

fixed height corresponding to the nominal powder bed depth.

These methods are most applicable to applications such as

SLS, where the particles for the most part retain their origi-

nal geometric arrangement for the duration of the laser

irradiation.

For SLM applications, the powder particles rapidly melt

and begin to consolidate well within the laser beam spot, so

that a more dynamic laser deposition model is required. An

approach is needed that will deposit energy on the powder

particles and melt surface, dynamically following the melt

pool evolution. Powder scale models that include the recoil
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pressure from evaporation of the metal show significant

depression of the melt surface under the laser beam, to below

the original substrate level. Energy deposition models that

provide fixed deposition versus depth profiles then have

almost no metal remaining in the deposition volume.

Perhaps ideally, the laser deposition would be modeled

with a ray-tracing algorithm that would operate in an inte-

grated fashion with the calculation of the hydrodynamic

motion of the melted particles. Such an approach would

properly distribute the laser energy scattered between par-

ticles near the leading edge of the beam, while accounting

for deposition on the melt pool surface, as well as any

absorption of laser energy reflected off a dynamically chang-

ing melt pool surface. This method is computationally chal-

lenging due to the complex, rapidly changing powder and

melt surface topology.

For laser deposition, we used a ray-tracing model that

does not take into account the multiple reflections. For opti-

mal processing conditions, the laser beam must melt the

powder layer and some depth of substrate to provide good

bonding of the new layer. When the laser interacts with the

powder particles, the particles are practically thermally iso-

lated from each other and the melting is rapid. When the

laser starts to melt the substrate, the thermal conduction

losses through the substrate slow down the rate of melting.

In an optimal processing regime, the substrate under the laser

spot will be melted to a depth comparable with the thickness

of the new layer. From the above arguments it follows that in

the optimal regime, the powder particles must be melted

near the leading edge of the laser spot and most of the spot

intersects a smooth melted surface. The results of the model-

ing are consistent with the above arguments. Relatively few

of the incident rays would hit the metal after reflection. From

this pattern it is clear that the multiple reflections play a lim-

ited role and can be disregarded.

Another effect we do not take into account is the interac-

tion of the laser with the evaporated plume. It is usually

assumed that for intensities below 100 MW/cm2 the laser

absorption in the evaporated plume and laser-produced

plasma is unimportant. For optimal processing, we want to

model the laser intensity I< 10 MW/cm2. While the plasma

produced as a result of this interaction can be useful as the

diagnostic tool, it will not affect the energy balance or the

material flow.

To account for laser light reflected away from the metal

surfaces, a constant absorptivity value A¼ 0.3 was adopted

in calculations. This value is a conservative lower limit, e.g.,

the absorptivity at room temperature is �0.34 and the

absorptivity of the melt is higher. The somewhat lower value

is chosen to account for the decrease in the effective absorp-

tivity of the sloped surfaces.

The powder model tracks the energy content of the metal

throughout the finite element mesh. Local temperatures are

derived from the energy based on the heat capacity and the

latent heat of the material, which are included in a tabular

equation of state (EOS). The model also computes the density

changes due to thermal expansion using this same EOS.

Melting of an alloy occurs over a temperature range, and not

at a particular melting temperature, and this is also included

in the EOS treatment. What is not included is the hydrody-

namic effect of such a “mushy zone” between solidus and liq-

uidus, where solid and liquid phases are mixed. The model

instead decreases the material strength linearly from room

temperature down to zero at the liquidus temperature.

One of the primary drivers for consolidation of the

melted particles and subsequent motion of the melt pool is

surface tension. The powder model includes an algorithm

that identifies the material boundaries between the metal and

background void. Based on information on the surface loca-

tions in adjoining elements, the model determines local

curvature of the metal surface and applies the temperature-

dependent surface tension force to the appropriate nodes.

Since there is a large curvature at a “neck” where a particle

first contacts an edge of the melt pool, this is a mechanism

for drawing powder particles out of the bed and into the melt

pool. Gravity effects are also included in the powder model,

even though these are overwhelmed by the surface tension

forces.

Marangoni convection is driven by the surface tempera-

ture gradient between regions of high and low temperature

on the surface of the melt pool. For many materials, surface

tension decreases as the temperature increases, leading to a

flow away from the melt surface closest to the laser spot.

Other drivers of melt-flow motion are the inflow of newly

melted material and curvature-driven surface tension. The

Plateau-Raleigh instability in a long, cylindrical melt bead

can cause a pinching-off of some sections of the pool from

others. The strong curvature of the melt pool near the laser

spot draws melt flow back into this region.

Eventually the melt must solidify, so the powder model

includes several modes of heat loss from the melt and heated

solid. One primary loss mechanism is through thermal con-

duction, largely to the substrate. This energy loss is com-

puted as part of the thermo-mechanical solution at every

time step of the simulation. The model also includes conduc-

tion through the adjacent powder bed, though this effect is

limited by the poor effective thermal conductivity of the bed,

only about an order of magnitude higher than the gas used as

the backfill atmosphere.54 The model uses a boundary condi-

tion on the bottom of the substrate that approximates the

response of a semi-infinite slab, reducing the thickness of

substrate that must be modeled. A thermal radiation loss is

also computed for the top surface of the melt pool, based on

the usual T4 relation, modified by an effective emissivity of

the liquid metal. The model also includes an energy loss due

to evaporation, which will be discussed below.

As the melt cools, its motion is eventually stopped by

the strength terms in the material model turning back on

when the temperature falls below the melt temperature. As

the material solidifies, the temperature and thermal shrinkage

are tracked as the energy is brought lower through the ther-

mal loss mechanisms discussed. Again, no “mushy zone” is

accounted for as the material passes from liquidus to solidus.

2. Abstracted physics

Evaporation of metal, particularly under the intense

laser spot, is an important part of the dynamics and energy
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balance of the SLM process. Because the mass loss is

expected to be small and the processes are dominated by

very near-surface effects, the evaporated material is not

modeled directly. The powder model does include the effects

of evaporation through an abstracted model approach. The

two effects that are modeled are the energy loss due to the

loss of metal vapor from the modeled system, and the recoil

pressure that balances the momentum of the departing vapor.

The theory of rapid vaporization is well established in

the literature.55–57 Adjacent to the surface there develops a

thin layer where the vapor velocity distribution is dominated

by the evaporating material, and so is not in translational

equilibrium. Within a few mean-free paths, collisions

between the vapor molecules establish equilibrium condi-

tions. The gas dynamics model of this thin Knudsen layer

employs jump conditions that conserve mass, momentum,

and energy.

There are several different treatments for the evapora-

tion rate that boil down to the same exponential dependence

on the surface temperature. For example, in Klassen58 the

Clausius-Claperon relation can be used to compute the satu-

ration vapor pressure from the material’s latent heat of va-

porization, boiling temperature at atmospheric pressure, and

the critical temperature. The net mass transport rate, includ-

ing the effects of condensation, is computed from a local

Mach number based on the ambient pressure and the satura-

tion vapor pressure as a function of surface temperature.

This result determines the evaporation coefficient, the net

fraction of molecules leaving the surface. Finally, the recoil

pressure is computed based on a pressure balance across the

Knudsen layer using the evaporation coefficient and the satu-

ration vapor pressure.

The powder model makes use of the recoil pressure fol-

lowing the treatment of Anisimov.59 A table of recoil pres-

sure as a function of surface temperature for a particular

material is first created. The model reconstructs the location

of the top surface of the melt pool every cycle using informa-

tion on the volume fraction of metal in each zone and its

neighbors, as discussed above in relation to application of

surface tension forces. The recoil pressure forces are added

normal to the local interface direction, with a magnitude

determined by the local surface temperature.

The mass lost to evaporation is expected to be small, at

least for the optimized build conditions for a particular mate-

rial. Approximately, the mass loss is less than a percent of a

single powder particle per millimeter of laser beam travel, so

the powder model does not adjust masses to account for the

net vaporization rate. However, the energy content of the

vaporized material is significant, since the latent heat of va-

porization is quite large. Using the computed net vapor flux

and the latent heat of vaporization, a table is constructed giv-

ing the energy loss rate as a function of surface temperature

for the material under study. The thermal solver part of the

powder model uses this table as a (negative) source term

applied to the surface elements of the melt pool. One great

benefit of applying this evaporative cooling to the simulation

is to effectively limit the peak temperature under the laser

spot to near the boiling point. For example, a calculation of a

400 W laser beam on steel would give a peak temperature

near 3000 K, not the 7000 K that is seen without the evapora-

tive loss.

An underlying assumption in this evaporation treatment

is that the material is pure, or can be effectively modeled

with an averaged set of material properties in the case of

alloys. It is well known in the laser welding literature that

lower vapor pressure constituents can preferentially vapor-

ize, depleting the remaining material in these components.

The effect of our approximation is unknown, and will vary

by material and processing conditions.

3. Neglected physics

One of the limits of this powder model is that it cannot be

used under conditions of intense vaporization, such as those

that might be found in keyhole welding.60 The powder model

assumes that there is no interaction of the vaporized material

with the incoming laser beam. Doing so would involve com-

putations of laser-plasma interactions and the subsequent

re-radiation of energy deposited in the plasma back to the

workpiece. While models for these processes are available in

the literature, experimental evidence related to our work has

indicated that a mode of SLM processing that approaches the

keyhole regime is not advantageous to build quality.60,61

Another laser-related feature not included in the powder

model is a true laser ray-tracing capability. Such a model

would be expected to improve calculations of the spatial dis-

tribution of the laser energy deposition. This would particu-

larly be true with strongly concave melt pool surfaces where

reflected laser light might deposit energy on the far side of

the depression, rather than being lost. Until this capability is

fully installed and tested with the powder model, the line-of-

sight laser deposition model will be used, albeit with some

needed experimental calibration for total absorbed fraction.

The convective losses to a flowing guard gas in the build

chamber are ignored in the current model. Computational

limitations, discussed below, permit only small spatial areas

to be modeled, on the order of a fraction of a square milli-

meter over a few dozen milliseconds. During these time

scales, evaporation, thermal radiation, and conduction to the

substrate dominate the heat loss from the solidifying melt

track. The convective losses will be more important when

we can scale up to several square millimeters of build area.

The current powder model ignores the gas dynamics of

any trapped background gas, instead modeling only the metal

and a “void material.” The void disappears if a gap between

two powder particles is closed, obviating the need to track

the motion of any gas. The strong dynamics of the melt flow

driven by Marangoni convection and the recoil pressure sug-

gest that the melt is fairly well mixed, so any trapped gas

should be able to escape, given sufficient melt depths.

The powder particles used thus far in the modeling have

been spherical. The pre-processing program can utilize ellip-

soids as well as spheres, but this work has not yet been done.

A more significant omission in the powder particles is

ignoring any oxide layers. Although particles tend to melt

fairly quickly and so change the surface, the melt flow is

largely driven by surface tension. Surface tension can be
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significantly changed by contamination, but there tends not

to be sufficient data to permit addressing this issue.

The powder model does not contain any consideration

for the formation of metal grains and for grain growth as the

melt pool solidifies. A simple isotropic model adds material

strength as it cools below the melt temperature.

C. Computational challenges

1. Need to approximate some physics

Evaporation is an important phenomenon in SLM, but

the dominant length scale is the Knudsen layer, which is

much smaller than what can be explicitly modeled with the

powder-scale finite element mesh. This situation demands a

sub-scale model of the process that must be pre-computed by

a separate model of the Knudsen layer flow. Although some-

what cumbersome, the approach of applying pre-generated

tables to the simulations is quite effective.

The most significant approximation with the laser depo-

sition portion of the powder model is the assumption of no

interaction of the incoming laser with any vaporized mate-

rial. With this assumption, the computational model does not

need to track laser energy absorption, scattering, and subse-

quent re-emission. The first two factors would involve much

more sophisticated laser-plasma interaction capabilities,

while the last factor would require dynamically changing

energy fluxes on the neighboring surfaces of the melt pool

and powder bed. We are working on validation experiments

to determine if this assumption is valid for the preferred

range of SLM operating parameters.

2. Need for fine zoning

The powder model needs to resolve the individual par-

ticles in the powder bed. There must be adequate resolution

for accurate determination of surface shapes for the surface

tension computations. For the thermal solution steps, the

cavities between the powder particles must be resolved to

obtain an accurate model for the thermal conduction through

the unconsolidated powder bed. On a coarse mesh, adjacent

particles will appear to have a “neck” of connected metal

between them, greatly increasing the effective thermal con-

ductivity. These requirements have led to a typical finite ele-

ment size of about 3 lm on a side, for simulating particles of

a 27 lm mean diameter.

3. Explicit time marching limits time step

The powder model uses an explicit hydrodynamic for-

mulation for the motion of the powder and the melt. This

approach brings with it a limit on stability based on the time

required for a sound wave to cross a zone. With a 3 lm zone

size and sound speeds of a typical metal, the time-step size

cannot exceed about a nanosecond. Thus simulations cover-

ing several milliseconds require millions of time steps, lead-

ing to long simulation times for detailed models.

One well-known trick to mitigate the effects of this stabil-

ity restriction is to artificially raise the density of the material

under study, thereby reducing the sound speed somewhat, and

so increasing the minimum time step. The difficulty with this

trick is that the dynamics of the material motion can be

affected by this artificial density change. Through various nu-

merical experiments using various levels of density scaling, it

was found that at most a factor of three to five in sound speed

could be achieved with this approach without adversely

affecting the results.

D. Materials challenges

1. Experimental data required

Powder morphology is needed to properly initialize sim-

ulations of powder bed SLM, as these characteristics affect

packing density and minimum reasonable powder layer

thicknesses. A primary metric needed from the supplier or

preferably from direct measurements is the particle size dis-

tribution. Direct measurement is important if the excess pow-

der from previous builds is to be reused, since the particle

size distribution will evolve through reuse cycles. Another

metric of powder morphology is the particle shape. Spheres

are of course easiest to model, but any powder with a signifi-

cant amount of non-spherical particles should have some

quantitative measure of the shape to ensure good fidelity in

establishing the initial powder bed for a simulation. The

effective packing density should be measured in the SLM

machine by performing a build of a known-size box that is

removed from the build chamber with the enclosed unconso-

lidated powder still in place. Weight measurements before

and after removing this powder will provide a good target

for the modeled powder bed. Our measurements have shown

approximately a 55% packing fraction. This number should

probably be treated as an upper bound as the powder layer

becomes thin, nearing the maximum particle size.

The powder model has fairly extensive requirements for

material property data. The elemental composition of the

powder particles must be known, both for the main constitu-

ents and for any oxides or other impurities that might be pres-

ent. Knowledge of the composition is necessary both to select

the proper literature values of any properties that will not be

measured, and to allow construction of tabular equations of

state to cover the thermodynamic phase space. Density of the

material, not just at room temperature, but as a function of

temperature up to and beyond the melting point, is required

for proper computation of thermal expansion. The melting

temperature or solidus and liquidus temperatures for alloys

must be known. The latent heat of melting must be known to

properly capture the melting rate and particularly the cooling

rates as the melt pool solidifies. Because evaporation of the

metal can occur under the laser spot, the boiling temperature

and heat of vaporization must be known for the material. For

alloys, this can be an average of the properties of the constitu-

ents, or just the values for the major component, depending

on the available data. The heat capacity and thermal conduc-

tivity of the material must be known from room temperature

up to and beyond melt. Because much of the dynamics is

driven by surface tension, this must be known for the liquid

metal. To include the effects of Marangoni convection, the

temperature dependence of the surface tension must also be

measured. Some measure of the viscosity of the liquid metal

should be made, though since many metals have rather low
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viscosities; however, this quantity is not as critical for success

of the model. Laser absorption properties of the material must

be known, both for a packed powder bed and for a solid and a

liquid surface.

The laser input parameters must be known for input into

the powder model. The laser wavelength is needed to properly

assess absorption properties. The laser temporal characteristics

must be known, either CW (steady continuous wave) or pulsed

duration and repetition rate. The total power must be specified.

The beam size is an important measure, and must be accompa-

nied by a good definition of “beam size,” be it 1/e2, D4r, 95%

power, or another measurement standard. The power distribu-

tion within the laser must be specified, usually Gaussian,

though flat top, donut, and other options are possible.

2. Description of material models

The powder model is based on the ALE3D multiphysics

code to model the heat transfer and material motion. The ther-

mal solution makes use of the temperature dependent thermal

conductivity and heat capacity entered as part of the material

data. Thermal expansion and response to pressure loading is

handled using a tabular equation of state that defines pressure

and temperature as functions of density and energy over the

range from room temperature to boiling. The strength model

is of less importance to the powder model than to the effective

medium model, since the primary use of strength is to com-

pute residual stresses in the part scale model. A standard

ALE3D model of a high-deformation rate, temperature-

dependent strength is used for the simulations.62

E. Application examples

1. Powder bed thermal conductivity

The thermal conductivity of the particle powder bed is

computed “on the fly” from first principles. All that is

required is the thermal conductivities of the stainless steel ma-

terial and of air at a given temperature. The powder has lower

thermal conductivity than bulk stainless steel. This is because

the particles are at point contact and the heat diffusion in gaps

between the particles depends strongly on the gas’s thermal

conductivity, which is lower than that of the metal.54 As a

code validation test, we compute the thermal conductivity of

stainless steel powder. We find for a powder packing density

of 36%, the ratio of powder thermal conductivity over thermal

conductivity of air is 3.0; for 45% it is 4.2; for 55% it is 6.6.

These results agree well with the values 3.0, 4.5, and 6.0,

respectively, in Fig. 5 of Rombouts et al.54

2. Single track formation

First, we examine a single track simulation to illustrate

the effects of melt flow driven by surface tension, including

flow instabilities leading to non-uniformity of the final sol-

idified bead. The material is stainless steel, 316L, in a pow-

der with a log-normal distribution about 27 lm. The powder

is distributed in a random packing to a depth of 35 lm on a

thicker substrate. The laser source is about 1 lm wavelength,

200 W power, 2.0 m/s scanning speed, and beam size (D4r)

of 54 lm diameter. The computational domain is 1000 lm

long and 300 lm wide. The simulation includes the effects of

surface tension and Marangoni convection, but neglects

evaporation and recoil pressure for this case.

We find that the surface-tension effects on topology and

heat transfer drive the SLM process. As soon as a melt

forms, the surface tension acts to decrease the surface

energy. Although the viscosity is low, we still consider it

whenever surface tension is computed. The model includes

gravity; however, surface tension forces are stronger and the

time scales we consider are short, so we do not expect grav-

ity to play a major role.

Our fine-scale approach demonstrates the 3D nature of

the SLM process and the influence of the stochastic powder

bed. Figs. 12 and 13 show the temperature contour lines on

the surface of the stochastic powder bed and inside the sub-

strate, respectively. The black contours surround a region of

temperatures higher than 5000 K (this temperature exceeds

the boiling point and is addressed below), which indicates

the location of the laser spot. The next interesting contour

line is the red melt line with a temperature of 1700 K, which

surrounds regions of liquid metal. One notices that the red

line, i.e., liquid melt, races ahead of the laser spot. The

region that separates the laser spot and the solid particles

ahead is quite narrow. These contour lines also indicate that

temperature gradients are the strongest near the laser spot

and decrease in the back of the flow. This suggests that the

Marangoni effect should contribute to the flow and that its

effect will be largest close to the laser spot.

One also notices islands of liquid regions at the back of

the flow (Fig. 12). The temperature profiles on the surface

and the substrate are intimately connected to the melt topol-

ogy. These island formations are evidence of the Plateau-

Rayleigh instability, which creates peaks and troughs. At the

troughs, the melt height is low. It takes less time for the sub-

strate to cool these regions since less liquid is present there.

At the peaks, the opposite is true. More liquid means more

stored heat and the liquid lives longer. This non-uniformity

FIG. 12. 3D simulation snapshot

shows the temperature distribution on

the surface as the laser spot moves to

the right. The time is expressed in

microseconds, length in micrometers

and the temperature is in Kelvin. The

temperature profiles are correlated

with the surface topology.
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of surface cooling can be an important feature that the pow-

der scale model can pass on to the microstructure and part

scale models.

Going beyond what was shown in the previous simula-

tion, the inclusion of recoil pressure in the powder model

reveals robust dynamics under the laser spot. Fig. 14 illus-

trates the melt pool dynamics in a slice taken through the

center of the laser path, with color indicating temperature

and vectors representing the velocity field. Hot droplets are

seen ejected from the melt pool, like the sparking that is

observed experimentally. Spatter of liquid droplets is

observed in front of the laser spot. Recoil pressure has a sig-

nificant effect on the topology of the powder and melt,

allowing melt penetration well into the solid substrate.

Marangoni convection is moving the surface of the melt

away from the laser, but the curvature of the melt surface is

strongly pulling the melt back into the depression formed by

the laser beam. Though not shown in the figure, inclusion of

the evaporative energy loss term decreases the peak tempera-

tures under the laser spot from being in excess of 5000 K pre-

viously to about 2700–3000 K, the boiling point of steel.

F. Alternate approaches

1. Lattice-Boltzmann methods in 2D

Granular or fine fine-scale models are expected to be

computationally demanding. In Klassen58 and K€orner,63,64

a mesoscopic simulation of the melting process uses the

two-dimensional lattice Boltzmann method to create a pro-

cess map. These researchers have included much of the

same physics included in the present study, adding more

features over time, such as the recent addition of recoil

pressure and evaporative losses. These works show the

influence of surface tension and the packing density of the

powder bed have a significant effect on the melt pool char-

acteristics. The process maps show regions in scan speed/

laser energy space where certain melt bead morphologies

are to be expected. While two-dimensional models are com-

putationally efficient, the SLM process is inherently three-

dimensional, requiring the method to employ several

approximations to achieve useable results.

2. Open source models in 3D

Another recent approach applies the computational fluid

dynamics toolbox called OpenFOAM, with some special-

purpose routines for SLM, to model the powder bed in three

dimensions.65 The simulations presented in the paper show a

uniformly packed powder bed, which reduces the stochastic

nature of the powder scale processes somewhat. Their flow

is driven by surface tension, though Marangoni convection

was not included. The model also includes effects of evapo-

ration under the laser beam, resulting in melt surface depres-

sion under the laser spot, in general agreement with the

FIG. 13. This 2D longitudinal slice corresponds to the 3D snapshot in Fig. 12. The slice is taken in the middle of the melt track. It shows the temperature distri-

bution in the melt pool and substrate. The time is expressed in microseconds, length in micrometers and temperature in Kelvin. The temperature profiles are

correlated with the surface topology.

FIG. 14. This 2D longitudinal slice is taken in the middle of the melt track. Colors indicate the temperature distribution in the melt pool and substrate, with red

being melted material, while the vectors represent melt velocities. The drawn-in laser beam is approximately in the correct location at this time in the simula-

tion. The “floating” powder particles result from the 2D slice through a random 3D distribution.
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present model. A primary disadvantage of their approach is

that while the open-source tool is designed to be flexible, it

is not well suited to large-scale calculations requiring good

parallel scaling for many thousands of processor-hours.

3. Discrete element methods in 3D

The DEM is a natural choice for modeling behavior of

particle beds. Some recent work in this area66 utilizes the

DEM method to analyze the selective laser sintering process,

in which particles are heated sufficiently to begin to sinter to-

gether, but do not develop into a convecting melt pool. The

DEM method is capable of thermo-mechanical analyses,

with some calibrations required for certain parts of the

model. The initial conditions in a random powder bed are set

by allowing a number of particles to settle on a flat plate

under the influence of gravity. For the thermal conduction,

the model handles conduction between particles at contact

points but must be adjusted to account for the additional gas

phase conduction that is usually significant. Ganeriwala

et al. describe the thermal solution to the laser energy depo-

sition on the layer and the effects of particle size on melt

rates. The DEM has promise for selective laser sintering sim-

ulations, but selective laser melting modeling requiring melt

pool dynamics is problematic.

IV. MODELING AT THE SCALE OF THE PART

A. Purpose

The metal additive manufacturing enterprise needs in-

formation and knowledge at the overall scale of the desired

part and builds process to inform many engineering deci-

sions. Currently, these decisions are primarily informed by

past experience and test fabrications. Ideally, simulation

insights would help inform design, process specification and

qualification, process monitoring, and part acceptance.

Quantities of interest at the part scale include:

• Deformations that could halt machine operation or place

the completed part outside the desired geometric tolerances
• Residual stresses causing those deformations and/or creat-

ing initial conditions detrimental to service-life concerns

such as failure and fatigue
• Local effective material properties, or at least indicators of

where they might significantly deviate from the nominal

properties expected from the process

The ability to reliably predict such responses would aid

adoption of AM technology and speed its ongoing adaptation

to new material systems and specific part geometries. These

predictions must be attainable in a timely manner with ac-

ceptable and assessable computational resources. An even-

tual goal is fabrication models that are so efficient they could

be evaluated as part of the performance evaluation for a trial

design within an automated design optimization process.

B. Physics challenges

Selective Laser Melting (SLM) is a process calling for

multiscale modeling: local (O(10–100 lm)) extreme material

transformation is taking place over brief time intervals

O(10 ms) as an overall part O(10 cm)3 is fabricated in a proc-

esses lasting O(hours-days). Yet, in-line multiscale material

response modeling is little utilized in any application space,

let alone AM, due to its extreme computational demands.

The very separation of these scales suggests that multiple

models can each provide useful insights and build knowl-

edge leading toward eventual coupling or coordination. In

creating tractable simulation approaches for part-scale fabri-

cation, a series of modeling topics must be addressed—or

consciously avoided. The eventual strategy decisions must

be tested through assessing the ability of the resulting overall

model to produce meaningful insights.

The local SLM process is an extreme, thermally driven

material transformation, as illustrated in Sec. III on modeling

at the powder scale. At the part scale, one seeks to obscure

the details of the local power-laser interaction. Instead, the

goal is to capture the aggregate influence of the SLM process

on the macroscopic state of the part during and at the

completion of its fabrication. By choosing to ignore flow dy-

namics in the melt pool, the simulation can be cast as the

thermo-mechanical response of a nonlinear solid continuum.

Within that perspective, the powder can be represented as a

reduced-density, low-strength solid. The deposition of the

laser energy into the powder can then be represented by a

volumetric energy source term. The spatial distribution

derived by Gusarov et al.67 has been one common choice,

even if utilized outside the original assumptions of that anal-

ysis. Gusarov introduces a simple knockdown factor to the

total nominal laser power to acknowledge the effects of

reflected radiation and metal evaporation. Melting can be

represented thermally through a latent heat and mechanically

as a near-total loss of strength. Some researchers view the

only relevant response being the subsequent freezing and

choose to simply initialize the active fabrication area at

Tsolidus, e.g., Zaeh et al.68 Having the temperature-dependent

strength rise as temperature falls below Tsolidus is currently

our only acknowledgement of the complex behavior in the

“mushy zone” at the melt pool boundary.

With an effective medium model such as discussed

here, the geometry of powder particles is not resolved. It is

indeed a choice as to what powder volume is directly repre-

sented in the computational domain. For true part-scale spa-

tial domains, the common modeling practice to date is to

largely ignore the adjacent regions of un-melted powder, at

most perhaps representing their thermal interaction with the

part through some Neumann boundary condition. Some of

the present authors have analyzed Representative Volume

Element domains consisting of a cubic millimeter of mate-

rial.69 In this case, successive 50 lm layers of powder are

initialized and scanned by moving the energy source loca-

tion. To model the gross loss of porosity due to powder

melting, an irreversible “phase strain” was introduced into

the thermo-mechanical constitutive model that is activated

during the material’s first excursion above Tsolidus. This

“phase strain” magnitude was simply assigned to result in a

net volume associated with full-density material. If future

powder-scale modeling can identify a phenomenological

evolution law for porosity, e.g., based upon the local history

of temperature and temperature gradients, then the part
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scale model could adaptively assign the appropriate local

phase strain or at least output a map of regions likely to

have unacceptable porosity.

C. Computational challenges

The computational challenges of part scale thermo-

mechanical simulations are driven by the disparate spatial

scales of the laser energy source and the overall part geome-

try and compounded by the disparate time scales of local

heating versus overall heat transfer and the actual time of

fabrication, which is at least hours and often days. This has

led most researchers to concentrate on coarse mesh represen-

tations capable of capturing overall part deformations while

minimizing computational costs for each time step. Others

are complementing this with multi-resolution approaches,

e.g., adaptive mesh refinement or forms of embedded grid, to

localize some higher resolution in the vicinity of the active

material transformation.

The aggregation of process representation to more com-

putationally tractable length scales reinforces the similarities

between SLM and welding: this potentially obviates some of

the physical differences already noted between the two. Not

surprisingly then, some of the active AM researchers come

out of the weld modeling community and are informed by

the well-established methodologies represented by standard

texts in that field, e.g., Goldak70 and Lindgren.71 This is par-

ticularly so with the related metal AM technology of L

Engineered Net Shaping (LENS) and similar direct metal

deposition methods having a larger (wider) active deposition

zone, closer to a weld bead. Representative of work in this

vein are publications by Michaleris and co-workers, e.g.,

Michaleris et al.72 and Denlinger et al.73

One approach to thermo-mechanical modeling of SLM

fabrication is being pursued in the context of the computa-

tional perspective and resources at a national laboratory.

Some of the present authors are involved in adapting the in-

house, general purpose implicit nonlinear finite element

code Diablo,74 capable of effectively utilizing commodity

parallel-processing platforms. Early efforts focused on

developing SLM modeling and algorithmic approaches in

the context of 50 lm layer-resolved simulations for repre-

sentative volumes comprising 1 mm3.69 That paper provides

a detailed description of the balance laws, boundary condi-

tions and material models utilized. These coupled thermo-

mechanical simulations utilize the laser deposition model

of Gusarov directed in a serpentine pattern with alternating

layer orientations. These calculations typically used 32–128

processors simultaneously, eventually taking less than two

days. Peak heating and cooling rates of O(105 K) are

observed, as also reported in Schilp et al.75 Importantly,

these simulations highlight that it is misleading to think

merely in terms of the temperature history of the material in

the active powder layer. These simulations clearly show

that the material located several or more layers below the

active work surface is still undergoing significant tempera-

ture excursions, which will contribute to continued evolu-

tion of the local microstructure.

D. Material challenges

With our current thermo-mechanical modeling strategy,

the material response is represented via rather standard heat

conduction and J2-plasticity models, parameterized with

temperature-dependent properties. As engineering materials

are typically not envisioned to have service life at tempera-

tures near Tsolidus, it is not surprising that scant handbook-

type property data is available in that regime. Thus, to date

we have relied upon artful interpolations between available

elevated temperature properties and melt. The casting litera-

ture is another area for us to explore, though the time scale

of SLM solidification may not match well with useful repre-

sentations/correlations established in that field of modeling.

Of course none of the thermo-mechanical responses

described says anything about microstructure evolution and

resulting service-temperature properties. We envision role of

part-scale modeling to be producing histories of temperature,

temperature gradients, cooling rates, etc., that would inform

a microstructure prediction model.

E. Application examples

We first consider a case where even looking at the lim-

ited domain of a representative volume provides insight into

a common SLM challenge: fabrication of downward-facing

surfaces. Such “overhang” features often result in an undesir-

able finish on the underside that could necessitate further

machining—if accessible. Fig. 15 contrasts two build strat-

egies. A common domain is defined: a 1 mm2 plan form

starting on a build plate shown in grey. For the first six

layers, the energy source only scans over the left half. Blue

represents unconsolidated powder and red fully transformed

material; intermediate colors represent incompletely consoli-

dated material. Starting with the seventh layer, the energy

source scans the entire plan form. With the leftward case,

which maintains constant laser power, we see the relative

insulating properties of powder lead to localization of the

energy and deeper penetration of the melt pool. With the

rightward case, the laser power is modulated to one-fourth

its nominal value as it reaches the right edge of the domain.

This produces a transformed overhang region much nearer

the desired horizontal surface. Note however this simulation

also shows the mitigation strategy should only be utilized

during the initial overhang layers. By the third overhang

layer, the reduced power is leading to substantially incom-

plete melting of the powder as evidenced by the green

regions.

Our modeling approach is being revised and extended to

address dimensions of real engineered parts. Material addi-

tion is modeled via meta-layers comprising the dimension of

many physical powder layers (cf. Zaeh et al.68), though in

our case the energy is deposited in a coarse, serpentine pat-

tern, rather than instantaneously over an entire layer. Early

efforts have been encouraging. Fig. 16 shows a comparison

of experimental and simulation results, in particular, con-

tours of normal stress magnitude on the mid-plane of a 316L

specimen 3 cm tall. The experimental characterization, made

with the build plate still attached, fused in-volume neutron

diffraction measurements with digital image correlation
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(DIC) on the side-surfaces.76 The simulation results are plot-

ted with identical color ranges and display the ability of the

finite element analysis to capture the high compressive

stresses in the interior of each arm, balanced by surrounded

tensile stress. Further refinements are being pursued, both for

physics representation and computational efficiency.

F. Alternative approaches

The majority of academic researchers use commercial

Computer-Aided Engineering (CAE) software modeling tools.

This reflects both a lack of native software assets within these

research teams as well as a pragmatic recognition that com-

mercial tools are the most likely avenues for subsequent

industrial adoption. This choice allows these researchers to le-

verage software with a rich feature set, yet also places some

key restrictions on their modeling approaches. First, having

no ability to customize/extend the software, they must rely

upon the publically documented interfaces allowing specifica-

tion of simulation components such as user-defined boundary

conditions and material models. Furthermore, these software

tools typically can still only leverage modest computational

resources, thus limiting the size of the computational mesh

utilized. Within this context, insightful efforts have been

achieved by teams such as Zaeh and co-workers.68 There, a

simple part geometry is accreted through a succession of

meta-layers, each 1 mm thick, hence representing a collection

of roughly 20 actual powder layers. Simultaneous cooling of

an entire meta-layer from an assigned temperature of Tsolidus

captures the overall bending behavior induced in the test fab-

rication, but clearly cannot capture more local behaviors influ-

enced by specifics of the laser scanning strategy. More

recently, that team has developed a means of abstracting the

true laser scan paths to identify areal boxes in the plane of the

active meta-layer.77 This abstraction considers the laser scan

strategy on a subset of the true powder layers comprising the

FIG. 15. A comparison of results from two overhang fabrication scenarios. The domains are 1-mm-square in plan form. The grey base represents the build

plate, blue untransformed powder, and red fully transformed material. The first scenario maintains constant laser power throughout the build scans. The second

scenario modulates the laser power whenever the scans extend into the overhang section, leading to a more uniform build thickness.

FIG. 16. A comparison of normal

stress at the mid-plane of a 316L speci-

men assessed experimentally (left)

combining neutron diffraction and dig-

ital image correlation76 to a thermo-

mechanical finite element simulation.
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meta-layer, arriving at an aggregate heat load applied to suc-

cessive planar areas. Results for improved fidelity are promis-

ing.75 It is interesting to note that this team often utilizes a

“one-way” coupled approach, where a thermal solution for

the part formation is pre-computed and then utilized by a sub-

sequent mechanics-only simulation of the stress response.

Academic modeling research has not been solely

focused upon commercial software. One example of this is

the work by Stucker and his research team. Pal et al.78 sum-

marize a series of numerical algorithms they have explored

with the goal of significantly reducing the computational

cost for finite element simulation of the SLM process. For

instance, a limited volume of fine mesh near the active melt

region incrementally traverses a coarse mesh representation

of the entire part volume. They have also explored reusing

significant parts of the stiffness matrix to reduce costs associ-

ated with numerical linear algebra. The size of the thermal

problem is further reduced by representing the coarse-mesh,

far-field temperature field through a basis constructed from a

small number of eigenvectors. Publications to date have not

documented the complete integration of all these numerical

technologies, and that process is now being pursued in the

context of a commercial start-up. We also note that this team

has demonstrated to date perhaps the most complex material

constitutive model for SLM applications, a crystal plasticity

representation incorporating dislocation density.79

V. ROLE OF DATA MINING AND UNCERTAINTY
QUANTIFICATION (UQ)

The use of modeling and simulation to gain insight into

the physical processes that govern additive manufacturing

(AM) is one step in the process of part qualification. To fully

understand the factors that influence part quality and to pro-

vide a confidence interval on the properties of a part pro-

duced using AM, we also need experiments, data mining,

and statistical inference. The role of the experiments is in

validating the simulations to ensure that the computer model

adequately represents reality.80 Data mining techniques

allow us to extract useful information from both simulations

and experiments, providing insight and efficiencies in build-

ing parts with desired properties. Statistical inference enables

us to reason in the presence of uncertainties; these could be

uncertainties in either the experiments or the simulations.

This section provides a glimpse into some of the many

ways in which ideas from the multi-disciplinary, and often

overlapping, fields of data mining, statistics, and uncertainty

analysis can be used in AM. Since the application of these

ideas in AM is relatively new, this overview is necessarily

introductory in nature. It is not intended to be a comprehen-

sive review or comparison of techniques. Instead, we address

two questions associated with AM: first, how do we select

the different process parameters to build a part, and second,

how do we quantify the uncertainties in the properties of a

part?

A. Building AM parts with desired properties

Determining the optimal parameters required to create a

part with a desired property, such as density >99%, is often

challenging, requiring extensive experimentation. This is

because the number of parameters that control the AM pro-

cess is large, numbering over a hundred by some estimates.13

This optimization process unfortunately has to be repeated

with changes in the material or the property being optimized,

as well as changes in the machine parameters, such as the

laser power or beam spot size. Modeling and simulation can

play an important role in reducing the costs of this process

optimization. We next describe briefly several of the current

approaches that rely mainly on experimentation and compare

them with an approach we have recently proposed that com-

bines experiments with simulations using data mining tech-

niques. We focus on part density, as this is one of the first

properties needing to be optimized in building an additively

manufactured part. We describe the approach using 316L

stainless steel as an example, though the ideas can be applied

to other materials and other properties as well.

1. Design of computational and physical experiments

There have been several studies that primarily use

experiments to determine the process parameters that result

in high-density parts. The approach taken is based on one or

more of the following: (i) selecting parameters based on

theory where the energy density, defined as a function of

laser speed, power, and scan spacing, is restricted to lie

within certain predetermined values; (ii) implementing sim-

ple single-track experiments to identify parameters that

result in a sufficiently deep melt pool; (iii) building small pil-

lars using various combinations of parameters and determin-

ing their density; and (iv) combining experiments with ideas

from the field of design of experiments.

Single-track experiments52 are a simple way to deter-

mine which combinations of laser power and speed result in

melt pools that are deep enough to melt through the powder

layer into the substrate. A layer of powder of a specified

thickness is spread on a thin plate and several tracks, at vary-

ing laser power and speeds, are created. The plate is then cut,

the cross-section is etched and polished to reveal the melt-

pool perpendicular to the laser track, and the melt-pool char-

acteristics are obtained, as shown in Fig. 17. Both the top

view of the tracks and the melt-pool characteristics provide

useful insight into the surface roughness, the continuity of

the track, and the depth and width of the melt pool. With

increasing power or reduced speed, the melt pool becomes

deeper, as shown in the three examples on the right of Fig.

17. For high-density parts, we need to select parameters that

locally reduce porosity by ensuring (i) that the powder melts

completely, removing any voids in the powder bed, and (ii)

that the process does not enter key-hole mode melting, where

the laser can drill deep into the substrate, resulting in vapori-

zation and formation of voids.31 A simple way to improve

the efficiency of the single-track experiments is to use a

tilted plate81 so that several powder layer thicknesses can be

evaluated using a single track.

While a suitable choice of the laser power and speed can

ensure sufficient melting locally for a given powder layer

thickness, the density of a part is also determined by other

processing parameters, including the overlap between
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adjacent scan lines and the scanning strategy that determines

how the area in one layer is scanned and how the scan pat-

tern in one layer is related to the scan pattern in the next

layer. A fully experimental approach to study the effect of

these parameters was used by Yasa et al.6,82 who built small

pillars using different parameter settings and evaluated their

density using the Archimedes method. A slightly different

approach was used by Kempen et al.83 who started with

single-track experiments and used the quality of the tracks to

identify a process window for building pillars for density

evaluation.

As the design space of AM machines has expanded with

the use of higher-powered lasers, new scanning strategies,

new materials, and new processing techniques, ideas from the

field of design of experiments84,85 have started to play a role

in systematic studies to understand the influence of various

parameters on properties of parts. This field is relevant to

understanding the design space of both experiments as well as

simulations, which are sometimes referred to as computa-

tional experiments. It provides guidance on the selection of

parameters and their values, as well as the analysis of the

results. For example, Delgado et al.86 used a full factorial ex-

perimental design with three factors (layer thickness, scan

speed, and build direction) and two levels per factor in their

study on part quality for a fixed laser power. The outputs of

interest were dimensional accuracy, mechanical properties,

and surface roughness. The results of the experiments were

analyzed using an ANOVA (Analysis Of VAriance) approach

to understand the effects of various factors on the outputs.

We have recently developed an approach to process

optimization for high-density parts that exploits both simula-

tions and experiments by combining the insight from each

using data mining and statistical techniques.87 Since multi-

scale simulations, as well as experiments involving single

tracks and pillars, can be very expensive, we developed an

iterative approach that starts with simple simulations and

experiments and uses the results to guide the choice of pa-

rameters for more complex simulations and experiments.

We first used a very simple, and computationally inex-

pensive, Eagar-Tsai model88 to explore the design space. This

model considers a Gaussian beam on a flat plate to describe

conduction-mode laser melting. The temperature distribution

is then used to compute the melt-pool width, depth, and length

as a function of four input parameters—laser power, laser

speed, beam size, and laser absorptivity of the powder. The

Eagar-Tsai model does not directly relate the process parame-

ters to the density of a part. Further, it does not consider pow-

der other than the effect of powder on absorptivity, so its

results provide only an estimate of the melt-pool characteris-

tics. However, it is a simple model, making it computationally

inexpensive. This means that we can sample the input param-

eter space rather densely to understand how the melt-pool

depth and width vary with the four inputs.

2. Sampling strategies

There are many ways in which the design space of input

parameters to the simulations and experiments can be

sampled. Screening experiments, which are done at the ini-

tial stages of a traditional design of experiments endeavor,89

use a large number of parameters, each sampled at two

extreme points that cover the range of each parameter. For d
parameters, this results in 2d experiments. However, if the

range of a parameter is large, sampling at the two extreme

values might not be sufficient. If k sample values are used

for each parameter, the number of experiments increases

exponentially to kd; this can become prohibitively expensive

even for moderate values of k and d. Therefore, a screening

experiment using just two levels is often used first to identify

the important parameters, which are then sampled more fre-

quently. Sampling of the design space is often accompanied

by analysis of the results using ANOVA to determine the

factors that have an effect on the response, or using response

surface methods, where a first- or second-order model is fit

to the data. These parametric response surfaces can also act

as surrogates to the data.

The traditional approach to the design of experiments

was motivated by physical experiments where it was

expected that repeating an experiment would give slightly

different results. More recently, similar ideas have been

applied to simulations, where repetition usually does not

have any effect on the results. The ideas used in the field of

DACE (Design and Analysis of Computer Experiments) also

involve sampling the input parameter space of the simula-

tions and building surrogates that act as predictive models. If

the sampling is adequate, the latter can be considered as pro-

viding reasonable approximations to the simulation output

variables for a specific range of input parameters. These

FIG. 17. On the left, a small build

plate, 40 mm � 40 mm in dimensions,

with 14 single tracks. The plate is

tilted, so that when a layer of powder

is spread, its thickness is zero at the

left edge, and increases linearly to

200 lm at the right edge. Once each

track has been created using a specified

laser power and speed, the plate can be

cut at various powder thickness values

to obtain the cross-section of the track,

as shown on the right for three sample

tracks.
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surrogates can be extremely useful in problems when the

simulations are computationally very expensive.

Since the accuracy of the surrogates depends on how

well the input space of parameters is sampled, but the func-

tion relating the output to the inputs is unknown, the initial

set of samples is usually placed randomly and additional

samples are added as necessary. Using a simple random sam-

pling can result in regions that are under- or over-sampled,

as shown in Fig. 18 for a two-dimensional domain. To

address this, we used stratified sampling, where each of the

four input parameters was divided into a number of levels

and a point selected randomly in each of the resulting cells.

As the range of values of the laser beam size and absorptivity

of the powder was small, we used a smaller number of levels

for these inputs in comparison with the laser power and

speed parameters. Fig. 18 shows that a stratified sampling

approach results in an improved placement of samples rela-

tive to a straightforward random sampling.

In our work with 316L stainless steel, we varied the

speed from 50 mm/s to 2250 mm/s with 11 levels, the power

from 50 W to 400 W using 7 levels, the beam size (D4r)

from 50 lm to 68 lm using 3 levels, and the laser absorptiv-

ity from 0.3 to 0.5 using 2 levels. This resulted in 462 param-

eter combinations that were input to our simulation. These

ranges were selected as follows: The upper bound on the

power was set to the peak power of our machine. The lower

limit on the speed was set to ensure sufficient melting at the

low power values such that the melt-pool depth would be at

least 30 lm (the layer thickness selected for our experi-

ments). The upper limit on the speed was estimated at a

value that would likely result in a relatively shallow melt

pool at the high power value. The lower and upper limits on

the beam size were obtained from measurements of the beam

size on our machine at focus offsets of 0 mm and 1 mm. By

varying the beam size and the absorptivity, we were able to

account for possible variations in these parameters over time

or with changes in build conditions as we built the parts.

A drawback of the stratified random sampling approach

is that the number of samples is determined by the number of

input parameters and the number of levels in each parameter;

it cannot be set to a pre-specified value. As mentioned earlier,

this number can be quite large. In our work using the Eagar-

Tsai model, this was not an issue as the model is computation-

ally inexpensive. However, for more expensive models, where

we want to control the number of samples by starting with a

small number and incrementally adding new samples, an al-

ternative approach using low-discrepancy sampling is often

used. In a low-discrepancy sampling in two (or three) dimen-

sions, the number of sample points falling into an arbitrary

subset of the domain is proportional to the area (or volume) of

the subset. This essentially results in samples that are ran-

domly placed far apart from each other. An example of such a

sampling is the Poisson disk sampling, shown in Fig. 18,

where no two points are closer than a pre-specified distance.90

3. Feature selection

In our approach to finding optimal parameters for high

part density, we were able to sample the input parameter

space of the Eagar-Tsai model quite densely as it had only

four input parameters. However, there are more than a hun-

dred variables in additive manufacturing when we consider

material properties, powder bed conditions, laser parameters,

and so on. Some of these variables, such as material proper-

ties, are fixed for a material, though their values may not be

known precisely, or may have a range associated with them.

Other variables, such as the laser speed and power, are set

during the manufacture of a part. Given this large number of

variables, a commonly used class of algorithms in data min-

ing, namely, dimension reduction,91 become relevant in mak-

ing the task of process optimization tractable. The dimension

of a problem is the number of features or variables describing

an experiment or simulation. By reducing the dimension of a

problem, we can focus on just the most important variables,

making it easier to understand how the outputs, such as melt

pool dimensions, are related to the input variables. Further, as

mentioned in Section V A 2, the number of samples required

to fully cover the design space is exponential in the number of

dimensions. Therefore, reducing the dimensions is important

when the experiments and simulations are expensive.

There are a number of dimension-reduction algorithms,

including linear and non-linear methods that transform the

input parameter space into a reduced dimension space, as

FIG. 18. 100 sample points distributed randomly in a two-dimensional space using, from left to right, random sampling, random stratified sampling, and

Poisson disk sampling.
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well as feature subset selection methods that rank the input

variables, or features, in order of importance. The latter are

more relevant in the context of additive manufacturing as we

need to set values of specific parameters, not their linear or

non-linear combinations.

One way in which these feature selection techniques can

be used is for the identification of the important input param-

eters in the simulations. In Section V A 2, we used stratified

random sampling to identify the sample points in the four-

dimensional space of laser power, laser speed, beam size,

and laser absorptivity. We then ran the Eagar-Tsai simula-

tion at these sample points and obtained the melt-pool width,

depth, and length. Of these melt-pool characteristics, we are

most interested in the depth and the width. The depth indi-

cates if the energy density is sufficient to melt through the

powder to the substrate below. The width helps us to deter-

mine how far apart the adjacent laser tracks should be to

ensure that no un-melted powder is left between the tracks.

We used two feature selection techniques to understand

the order of importance of the four input variables in deter-

mining the melt-pool depth and width.

The Correlation-based Feature Selection (CFS)

method92 is a simple approach that calculates a figure of

merit for a feature subset of k features defined as

k rcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k k � 1ð Þrf f

q ;

where rcf is the average feature-output correlation and rf f is

the average feature-feature correlation. We use the Pearson

correlation coefficient between two vectors, X and Y,

defined as

Cov X; Yð Þ
rXrY

;

where CovðX; YÞ is the covariance between the two vectors,

and rX is the standard deviation of X. A higher value of merit

results when the subset of features is such that they have a

high correlation with the output and a low correlation among

themselves.

The mean-squared error (MSE) method: In the second

feature selection method, the features are ranked using the

MSE as a measure of the quality of a feature.93 This metric

is used in regression trees (Section V A 4) to determine

which feature to use to split the samples at a node of the tree.

Given a numeric feature x, the feature values are first sorted

x1< x2<…< xn. Then, each intermediate value, (x1þ x1þ1)/

2, is proposed as a splitting point, and the samples are split

into two depending on whether the feature value of a sample

is less than the splitting point or not. The MSE for a split A
is defined as

MSEðAÞ ¼ pL sðtLÞ þ pR sðtRÞ;

where tL and tR are the subset of samples that go to the left

and right, respectively, by the split based on A, pL and pR are

the proportion of samples that go to the left and right, and

s(t) is the standard deviation of the N(t) output values, ci, of

samples in the subset t, defined as

s tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N tð Þ
XN tð Þ

i¼1

ci � c tð Þ
� �2

;

vuut

where cðtÞ is the mean of the values in the subset t. For each

feature, the minimum MSE across the values of the feature is

obtained, and the features are rank ordered by increasing val-

ues of their minimum. This method considers a feature to be

important if it can split the data set into two, such that the

standard deviation of the samples on either side of the split is

minimized, that is, the output values are relatively similar on

each side. Note that unlike CFS, which considers subsets of

features, this method considers each feature individually.

Table III presents the ordering of subsets of input fea-

tures by importance for the melt-pool width, length, and

depth obtained using the CFS method. A noise feature was

added as another input; this is consistently ranked as the least

important variable, as might be expected. The table indicates

that for the melt-pool depth and width, the single most im-

portant input is the speed, while the top-two most important

inputs are the speed and power. In contrast, for the length of

the melt pool, the top-two two most important inputs are

power and absorptivity.

Table IV presents the results for the MSE method.

These are very similar to the CFS method, with the exception

that the beam size is ranked lower than the noise variable for

the depth of the melt pool. For all three melt-pool character-

istics, the three lowest ranked variables have the MSE value

roughly the same, so the corresponding three variables have

roughly the same order of importance.

These results indicate that we should focus on the laser

power and speed as they are the most important inputs

related to the melt-pool depth and width based on the Eagar-

Tsai simulations. While these simple simulations relate just

four inputs to the melt-pool characteristics, we expect that as

we move to more complex simulations, feature selection and

other dimension reduction techniques will become more use-

ful in helping us to focus on the important variables, poten-

tially limiting the number of experiments or simulations

required to create parts with desired properties.

TABLE III. Order of importance of subsets of features using the CFS

method. A higher rank indicates a more important input; the best subset of

features is the one with the highest ranks.

Speed Power Beam size Absorptivity Noise

Width 5 4 2 3 1

Length 3 5 2 4 1

Depth 5 4 2 3 1

TABLE IV. Order of importance of subsets of features using the MSE

method. A higher rank indicates a more important input.

Speed Power Beam size Absorptivity Noise

Width 5 4 2 3 1

Length 3 5 2 4 1

Depth 5 4 1 3 2
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4. Data-driven predictive modeling

Our simulations using the Eagar-Tsai model provide the

melt-pool characteristics at specific input values. These sim-

ulation inputs and outputs can also be used to build a data-

driven predictive model, or a surrogate, that can be used to

predict the output values at other inputs. A simple predictive

model is a regression tree,93 which is similar to a decision

tree, but with a continuous instead of a discrete output.

A regression tree is a structure that is either a leaf, indi-

cating a continuous value, or a decision node that specifies

some test to be carried out on a feature, with a branch and

sub-tree for each possible outcome of the test. If the feature

is continuous, there are two branches, depending on whether

the condition being tested is satisfied or not. The decision at

each node of the tree is made to reveal the structure in the

data. Regression trees tend to be relatively simple to imple-

ment, yield results that can be interpreted, and have built-in

dimension reduction.

Regression algorithms typically have two phases. In the

training phase, the algorithm is “trained” by presenting it

with a set of examples with known output values. In the test

phase, the model created in the training phase is tested to

determine how accurately it performs in predicting the out-

put for known examples that were not used in training. If the

results meet expected accuracy, the model can be put into

operation to predict the output for a sample point, given its

inputs.

The test at each node of a regression tree is determined

by examining each feature and finding the split that opti-

mizes an impurity measure. We use the mean-squared error,

MSE, as defined in Section V A 3, as the impurity measure.

The split at each node of the tree is chosen as the one that

minimizes MSE across all features for the samples at that

node. To avoid splitting the tree too finely, we stop the split-

ting if the number of samples at a node is less than 5 or the

standard deviation of the values of the output variable at a

node has dropped below 5% of the standard deviation of the

output variable of the original data set.

There are different ways in which we can evaluate the

accuracy of the regression trees. The first is k runs of m-fold

cross validation, where the data are divided randomly into m
equal parts, the model is trained on (m-1) parts, and eval-

uated on the part that is held out. This is repeated for each of

the m parts. The process is repeated k times, each with a

different random partition of the data. The final accuracy

metric is the average of the accuracy for each of the k m
parts. We use the relative mean-squared error metric, defined

as

Xn

i¼1

ðpi � aiÞ2
�Xn

i¼1

ð�a � aiÞ2;

where pi and ai are the predicted and actual values, respec-

tively, of the i-th sample point in the test data consisting of n
points, and �a is the average of the actual values in the test

data. This is essentially the ratio of the variance of the resid-

ual to the variance of the target (that is, actual) values and is

equal to (1.0 � R2), where R2 is the coefficient of determina-

tion. The second metric is the prediction using a leave-one-

out (LOO) approach, where a model, which is built using all

but one of the sample points, is used to predict the value at

the point that is held out. For a data set with N points, this is

essentially N-fold cross validation.

A common approach to improving the accuracy of

regression algorithms is to use an ensemble, where many

models, built from the same training data using randomiza-

tion, are created.91 The final prediction is the mean of the

prediction from each of the models. In our work, we consider

10 trees in the ensemble, with randomization introduced

through sampling. Instead of using all the sample points at a

node of the tree to make a split, we use a random subset of

the samples, thus making each tree in the ensemble different

from the others.

Fig. 19 shows the accuracy of the regression tree model

in predicting the depth using the 462 simulations of the

Eagar-Tsai model as the training set. Panels (a) and (b) show

the predicted vs. actual values using LOO for 1 tree and 10

trees, respectively. We observe that most of the points are

near the blue line at 45 degrees (indicating perfect predic-

tion), though the scatter is greater at larger melt-pool depths.

The scatter reduces with the use of ensembles as would be

expected. Using 5 runs of 5-fold cross validation as the error

metric, we obtain a relative mean-squared error of 8% with a

single tree and 3.6% with an ensemble of 10 trees.

The regression tree acts as a surrogate for the data from

the Eagar-Tsai simulations and can be used to predict the

width, depth, and length of the melt pool for a given set of

inputs. The inputs for a sample point are used to traverse the

tree, following the decision at each node, until a leaf node is

FIG. 19. From left to right: The predicted versus actual depth using LOO for 1 tree and 10 trees, respectively; the predicted depth on a 40 � 40 grid in the

power-speed space and the resulting viable sample points.
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reached; the predicted value assigned to the sample is the

mean of the output values of the training data that end up at

that leaf node. Fig. 19(c) shows the depth prediction at sam-

ple points on a 40 � 40 grid over the power-speed design

space, using a fixed value of D4r¼ 52 lm and absorptivity

of 0.4 for 316L stainless steel. The prediction was obtained

using the 462 Eagar-Tsai points to build a model with 10

regression trees. Panel (d) shows the viable space in the

power-speed plot, where viability is defined as any grid point

with predicted depth greater than, or equal to, 60 lm and

less than, or equal to, 120 lm. In comparison with the Eagar-

Tsai simulations, where each simulation takes approximately

1 min on a laptop, it takes a few microseconds to build the

regression tree surrogate from the 462 simulations and prac-

tically no time to generate the melt-pool depth for a set of

input variables using the surrogate.

5. Example of density optimization

The Eagar-Tsai model, combined with sampling tech-

niques, feature selection, and the building of data-driven

predictive models, enables us to determine the melt-pool

characteristics for a given power and speed combination.

The accuracy of these predictions depends on the number

and location of the sample points, the accuracy of the

physics model, as well as the complexity of the function

being predicted. The Eagar-Tsai model, being relatively

simple, gives us an approximation of the melt-pool charac-

teristics. We use it to determine the viable region of the

power-speed space (these being the most important varia-

bles) and then select a few points in this region for single-

track experiments, as shown in Fig. 17. Once we know the

actual melt-pool characteristics at specific power-speed val-

ues, we can use them to identify process parameters for

building small, three-dimensional pillars, whose density is

measured using the Archimedes method.

Fig. 20 shows the first set of 24 pillars of 316L stainless

steel in powder, along with the density for the first two sets

of pillars. Each pillar is 10 mm � 10 mm � 8 mm. The rows

correspond to different power values, while the columns rep-

resent different speeds. Having obtained the density estimate

for the first set of 24 pillars, we ran another 24 at the same

power values, but with the speeds chosen to complete the

gaps in the density curves.87

We have successfully used this approach to build high-

density parts for several different materials and powders of

different sizes. While our early work used a tilted plate for

single-track experiments, we found that we typically used

only one value for powder layer thickness. As a result, it was

more efficient to use a flat plate. This also allowed us to dou-

ble the number of tracks on a plate, leading to better explora-

tion of the power-speed space using experiments.

B. Uncertainty analysis

There are many ways in which we can use simulations

and experiments, both simple and complex ones, in additive

manufacturing. In Subsection V A, we outlined a process by

which we can combine simple simulations with experiments

to create an approach that efficiently identifies the process

parameters for high-density parts. However, we expect that

the conditions under which a part is built will vary even if

we set the parameters to certain fixed values. For example,

the laser beam size may change as the optics get heated dur-

ing use, or the porosity of the powder bed may vary depend-

ing on the distribution of powder particles in a layer, or the

powder size distribution may vary with re-use, or the calibra-

tion of the laser power, speed, and beam size may change

over time. All these variations will influence the properties

of the part being built.

As we start using additively manufactured parts in situa-

tions where their failure could have serious consequences, it

becomes important to quantify how much variation we can

expect in the part resulting from variations in the inputs.

This quantification of the uncertainty in the properties of a

part, such as its density or dimensions, is an important step

in qualification and certification of AM parts. Such issues are

not restricted to experiments alone. In the case of simula-

tions, it is not just the input parameters, such as laser power

and beam size, that might vary. Other variables in the simu-

lations, such as the material properties, may not be known

precisely, or may be known within a certain range. We then

need to understand the sensitivity of the simulation outputs

to these variations in the inputs and material properties.

One approach to addressing these questions is to build

many parts over time with the same set of parameters, and

evaluate their properties, or run many simulations, varying

the parameters over their expected range, and evaluate the

range of output values. This can be prohibitively expensive,

FIG. 20. On the left, 24 pillars from

the first set in powder; speed increases

from left to right and power increases

from top to bottom. On the right, the

density of pillars from the first two

sets, built using 316L powder from

Concept Laser (CL) on a CL M2

machine.
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especially when the simulations are computationally inten-

sive and measuring the properties of the parts is time con-

suming and labor intensive. An alternative is to use

uncertainty analysis techniques from statistics and machine

learning.80 The application of these ideas in AM is at the

very early stages, though they are being applied in other

domains. We next present some preliminary thoughts on the

ways in which we can address uncertainty issues in AM.

In Section V A 4, we used a regression tree surrogate

model for predicting the depth of the melt pool, with the

model built from Eagar-Tsai simulations run at various sam-

ple points in the design space. Another class of predictive

models, referred to as Gaussian process models94 provide

not only a prediction, but also an associated uncertainty.

These techniques can be applied to simulation data, where

the simulations run at specific points are used to constrain

the uncertainty in the predictions, as well as experimental

data, where the experiments, run at specific sample points,

also have associated uncertainties that are used to evaluate

the uncertainty at new sample points.

The idea of ensembles described in Section V A 4 can

also be used to obtain an idea of the uncertainty due to the sur-

rogate model. Since each regression tree in the ensemble will

provide a slightly different result, the spread of values will

reflect how much we can expect the results to vary as we build

regression models with slightly different training data.

VI. FUTURE APPLICATIONS

A. Powder model

The powder model is a powerful tool to study and opti-

mize various aspects of the additive manufacturing process.

These include:

• Understanding the effects of laser power, speed, beam

size, shape, and profile95–97

• Understanding the effects of powder size distribution and

packing density
• Developing parameters for new materials
• Guiding development of alloys specifically engineered for

additive manufacturing
• Understanding the effects that control surface finish
• Understanding the effects that control “sparks” and

“spatter.” (Spatter is molten metal droplets that are ejected

from the melt pool.)

Using the powder model is much more economical in

terms of time and cost compared with carrying out experi-

ments in an additive manufacturing system, particularly a

commercial system where such studies may be prohibited by

the manufacturer. With this capability, it is possible to help

define the additive manufacturing systems of the future.

B. Effective medium model

Proper effective medium models can be utilized to com-

putationally explore a number of issues regarding part design

and fabrication SLM processes:

• Predict the deformations occurring during fabrication and

thus evaluate the possibility of process breakdown or out-

of-tolerance end product
• Predict the residual stresses from fabrication and thus pro-

vide initial conditions for evaluating their impact on a

design’s intended performance
• Develop parameters that can be used to improve the qual-

ity of challenging configurations through examination of

representative geometries such as:
• Unsupported downward-facing surfaces
• Thin walls
• Horizontal holes
• Vertical holes
• Unsupported overhangs
• Unsupported bridges

• Provide histories of local, configuration-specific tempera-

tures, and temperature gradients to help assess the likely

resulting material microstructures
• Permit full initial condition to assess the effects of post-

processes such as heat treatment
• Provide the basis for reduced order models that can be

integrated with control systems on SLM machines.

Part scale modeling would also be the likely point-of-

intersection with part design optimization, and one can envi-

sion combining design and process identification under a

multi-objective optimization framework.

C. Solving the inverse problem

Both the powder and effective medium models will be

essential elements underpinning the solution of the inverse

problem (solving the inverse problem involves “use of the

actual results of some measurements of the observable pa-

rameters to infer the actual values of the model parame-

ters.”98). That is, specifying desired properties and using

optimization to find the voxel-by-voxel parameters for build-

ing a part. Because of the long computational times required

to compute a full part at high resolution using the physics-

based models described here, an alternate approach is

required to control the process better and identify the stable

operating regimes for qualification. This involves approxi-

mating the large-scale simulations with low-computational-

cost surrogates. Since powder bed fusion is a complex

process, it is necessary to identify the important “science” in

the regimes of interest. By focusing on the important science

and ignoring the less important, we can identify optimized

build direction, optimized support structures, and implement

an intelligent feed forward capability.

VII. SUMMARY AND CONCLUSIONS

A. Powder model

The powder model combines in three dimensions the

laser beam interaction with the powder with the thermo-

mechanical response of the powder bed material through

melt and eventual resolidification. The method incorporates

as inputs many of the process parameters that may be varied

for optimization of SLM for a particular material. The inclu-

sion of many of the important physical processes in the
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metal’s response to the laser beam allows valuable insights

to be obtained into the physics of the SLM process. Outputs

from the powder model can be used for inputs to other mod-

els, for example, temperature histories for microstructural

modeling, or the outputs may be directly useable, such as

surface roughness estimates. The powder model is an impor-

tant part of the suite of tools needed to optimize SLM builds

and eventually certify the fabricated parts for use.

B. Effective medium model

Effective medium models provide an abstraction to

examine larger-scale phenomenon in a computationally trac-

table manner that can support the engineering design process

in a timely manner. One should anticipate a continuing evo-

lution of approaches, with alternatives building upon general

commercial software, adapting in-house tools, and develop-

ing dedicated solutions. As analysis of real-world part con-

figurations is the overall objective, and an important

consideration will be forging the software links supporting

transfers between the geometry specification, the machine

scan specification, and the actual simulation. This breadth

across the part scale will be complemented by more formal

interchanges of information with the powder-scale model

and eventual microstructure models, as well as integration

with formal process and design optimization.

C. Data mining and UQ

Data mining techniques are being used to extract useful

information from simulations and experiments, providing

insight and efficiencies in building parts with desired proper-

ties. These techniques have been used to identify process pa-

rameters for high-density parts for a variety of materials.

They can be combined with uncertainty analysis to under-

stand how uncertainties in process parameters will affect the

properties of a part, or uncertainties in input parameters and

material properties used in a simulation will influence the

output. When combined with experiments, techniques from

data mining and uncertainty analysis will form an integral

part of qualification and certification of the additive manu-

facturing process.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National

Laboratory under Contract No. DE-AC52-07NA27344. This

work was funded by the Laboratory Directed Research and

Development Program at LLNL under project tracking code

13-SI-002.

1ASTM International, Standard Terminology for Additive Manufacturing
Technologies (ASTM International, West Conshohocken, PA, 2010).

2T. T. Wohlers, Wohlers Report 2014 Additive Manufacturing and 3D
Printing State of the Industry Annual Worldwide Progress Report
(Wohlers Associates, Inc, Fort Collins, Colorado, 2014).

3S. Srivatsa, Additive Manufacturing (AM) Design and Simulation Tools
Study (Air Force Research Laboratory, Wright-Patterson Air Force Base,

OH, 45433, 2014).
4Knowledge Based Process Planning and Design for Additive Layer

Manufacturing (KARMA), Detailed report on Laser Cusing, SLA, SLS

and Electron Beam Melting (including technical, economical and safety

features) (Valencia (ESPA~NA), Report No. DL 1.1, 2011.
5T. Craeghs, Ph.D. thesis, University of Leuven, 2012.
6E. Yasa, Ph.D. thesis, Katholieke Universiteit Leuven, 2011.
7L. Adams, MICROmanufacturing (Don Nelson, Northfield, IL, 2013), Vol.

SEPTEMBER/OCTOBER, p. 44.
8PWC, 3D Printing and the New Shape of Industrial Manufacturing
(PricewaterhouseCoopers LLP, Delaware, 2014).

9J. Coykendall, M. Cotteleer, J. Holdowsky, and M. Mahto, 3D Opportunity
in Aerospace and Defense (Deloitte University Press, Washington, DC,

2014).
10D. L. Bourell, M. C. Leu, and D. W. Rosen, Roadmap for Additive

Manufacturing Identifying the Future of Freeform Processing (The

University of Texas at Austin, Austin TX, 2009).
11Energetics Incorporated, Measurement Science Roadmap for Metal-Based

Additive Manufacturing (Energetics Incorporated, Columbia, Maryland,

2013).
12R. Berger, Additive Manufacturing: A Game Changer for the

Manufacturing Industry? (Roland Berger Strategy Consultants GmbH,

Munich, 2013).
13I. Yadroitsev, Selective Laser Melting: Direct Manufacturing of 3D-

Objects by Selective Laser Melting of Metal Powders (LAP Lambert

Academic Publishing, Saarbr€ucken, 2009).
14J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, and T. Craeghs, Feedback

Control of Selective Laser Melting (Taylor & Francis Ltd, London, 2008),

p. 521.
15T. Craeghs, F. Bechmann, S. Berumen, and J. P. Kruth, in Proceedings of

the Laser Assisted Net Shape Engineering 6 (LANE 2010), Part 2, edited

by M. Schmidt, F. Vollertsen, and M. Geiger (Elsevier Science Bv,

Amsterdam, 2010), Vol. 5, p. 505.
16T. Craeghs, S. Clijsters, J.-P. Kruth, F. Bechmann, and M.-C. Ebert, Phys.

Proc. 39, 753 (2012).
17S. Clijsters, T. Craeghs, and J. P. Kruth, A priori Process Parameter

Adjustment for SLM Process Optimization (CRC Press-Taylor & Francis

Group, Boca Raton, 2012), p. 553.
18W. Frazier, J. Mater. Eng. Perform. 23(6), 1917 (2014).
19See http://www.realizer.com/rdesigner for information on a feed forward

capability.
20J. D. Williams and C. R. Deckard, Rapid Prototyping J. 4(2), 90 (1998).
21S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher, Int. J.

Mach. Tools Manuf. 44(2–3), 117 (2004).
22K. Dai, X. X. Li, and L. L. Shaw, Rapid Prototyping J. 10(1), 24 (2004).
23I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors, Int.

J. Mach. Tools Manuf. 49(12–13), 916 (2009).
24N. Contuzzi, S. Campanelli, and A. D. Ludovico, Int. J. Simul. Model.

10(3), 113 (2011).
25M. Matsumoto, M. Shiomi, K. Osakada, and F. Abe, Int. J. Mach. Tools

Manuf. 42(1), 61 (2002).
26A. Hussein, L. Hao, C. Yan, and R. Everson, Mater. Des. 52(0), 638

(2013).
27M. Zaeh and G. Branner, Prod. Eng. 4(1), 35 (2010).
28P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R.

Glardon, Acta Mater. 51(6), 1651 (2003).
29N. K. Tolochko, M. K. Arshinov, A. V. Gusarov, V. I. Titov, T. Laoui, and

L. Froyen, Rapid Prototyping J. 9(5), 314 (2003).
30A. V. Gusarov and I. Smurov, Phys. Proc. 5, 381 (2010).
31W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs, D. E.

Hahn, C. Kamath, and A. M. Rubenchik, J. Mater. Process. Technol.

214(12), 2915 (2014).
32N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titov,

and M. B. Ignatiev, Rapid Prototyping J. 6(3), 155 (2000).
33A. V. Gusarov and J. P. Kruth, Int. J. Heat Mass Transfer 48(16), 3423 (2005).
34X. C. Wang, T. Laoui, J. Bonse, J. P. Kruth, B. Lauwers, and L. Froyen,

Int. J. Adv. Manuf. Technol. 19(5), 351 (2002).
35C. Boley, S. Khairallah, and A. Rubenchik, Appl. Opt. 54(9), 2477 (2015).
36FRED is distributed by Photon Engineering, LLC, Tucson, AZ.
37E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,

Orlando, 1985).
38G. Friedman, ParticlePack User’s Manual (Lawrence Livermore National

Laboratory, Livermore, CA, 2011).
39P. Meakin and R. Jullien, J. Phys. 48(10), 1651 (1987).
40E. J. R. Parteli, in Powders and Grains 2013, edited by A. Yu, K. Dong,

R. Yang et al. (American Institute of Physics, Melville, 2013), Vol. 1542,

p. 185.

041304-25 King et al. Appl. Phys. Rev. 2, 041304 (2015)

http://dx.doi.org/10.1016/j.phpro.2012.10.097
http://dx.doi.org/10.1016/j.phpro.2012.10.097
http://dx.doi.org/10.1007/s11665-014-0958-z
http://www.realizer.com/rdesigner
http://dx.doi.org/10.1108/13552549810210257
http://dx.doi.org/10.1016/j.ijmachtools.2003.10.019
http://dx.doi.org/10.1016/j.ijmachtools.2003.10.019
http://dx.doi.org/10.1108/13552540410512507
http://dx.doi.org/10.1016/j.ijmachtools.2009.07.004
http://dx.doi.org/10.1016/j.ijmachtools.2009.07.004
http://dx.doi.org/10.2507/IJSIMM10(3)1.169
http://dx.doi.org/10.1016/S0890-6955(01)00093-1
http://dx.doi.org/10.1016/S0890-6955(01)00093-1
http://dx.doi.org/10.1016/j.matdes.2013.05.070
http://dx.doi.org/10.1007/s11740-009-0192-y
http://dx.doi.org/10.1016/S1359-6454(02)00567-0
http://dx.doi.org/10.1108/13552540310502211
http://dx.doi.org/10.1016/j.phpro.2010.08.065
http://dx.doi.org/10.1016/j.jmatprotec.2014.06.005
http://dx.doi.org/10.1108/13552540010337029
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.01.044
http://dx.doi.org/10.1007/s001700200024
http://dx.doi.org/10.1364/AO.54.002477
http://dx.doi.org/10.1051/jphys:0198700480100165100


41I. Kovaleva, O. Kovalev, and I. Smurov, Phys. Proc. 56(0), 400 (2014).
42E. J. R. Parteli and T. P€oschel, Powder Technol. 288, 96 (2016).
43R. M. Kelkar, T. Anderson, P. Wang, and D. Bartosik, DMLM: Effect of

Bi-Modal Particle Size Distribution on Surface Finish (Additive

Manufacturing with Powder Metallurgy, 2014).
44A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. E 88(2),

022205 (2013).
45A. M. Prokhorov, V. I. Konov, I. Ursu, and N. Mihailescu, Laser Heating

of Metals (A. Hilger, Bristol, Philadelphia, 1990).
46A. M. Rubenchik, S. S. Q. Wu, V. K. Kanz, M. M. LeBlanc, W. H.

Lowdermilk, M. D. Rotter, and J. R. Stanley, Opt. Eng. 53(12), 122506

(2014).
47R. W. McVey, R. M. Melnychuk, J. A. Todd, and R. P. Martukanitz,

J. Laser Appl. 19(4), 214 (2007).
48R. P. Martukanitz, R. M. Melnychuk, M. S. Stefanski, and S. M. Copley,

J. Laser Appl. 19(4), 214 (2007).
49A. Rubenchik, S. Wu, S. Mitchell, I. Golosker, M. LeBlanc, and N.

Peterson, Appl. Opt. 54(24), 7230 (2015).
50V. Y. Bodryakov, High Temp. 51(2), 206 (2013).
51See http://app.knovel.com/hotlink/toc/id:kpRVTPSCA1/recommended-

values-of for recommended values of thermophysical properties for

selected commercial alloys.
52I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, J. Mater.

Process. Technol. 210(12), 1624 (2010).
53A. V. Gusarov and E. P. Kovalev, Phys. Rev. B 80(2), 024202 (2009).
54M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C.

Glorieux, J. Appl. Phys. 97(2), 013533 (2005).
55S. I. Anisimov, High Temp. 6(1), 110 (1968).
56S. I. Anisimov, Sov. Phys. JETP-USSR 27(1), 182 (1968).
57C. J. Knight, AIAA J. 17(5), 519 (1979).
58A. Klassen, T. Scharowsky, and C. Korner, J. Phys. D: Appl. Phys. 47(27),

275303 (2014).
59S. I. Anisimov and V. A. Khokhlov, Instabilities in Laser-Matter

Interaction (CRC Press, Boca Raton, Florida, 1995).
60R. Rai, J. W. Elmer, T. A. Palmer, and T. DebRoy, J. Phys. D: Appl. Phys.

40(18), 5753 (2007).
61G. G. Gladush and I. Smurov, Physics of Laser Materials Processing:

Theory and Experiment (Springer, Berlin, 2011).
62D. Steinberg, Lawrence Livermore National Laboratory, Report

No.UCRL-MA-106439, 1996.
63C. K€orner, E. Attar, and P. Heinl, J. Mater. Process. Technol. 211(6), 978

(2011).
64C. K€orner, A. Bauereiß, and E. Attar, Modell. Simul. Mater. Sci. Eng.

21(8), 085011 (2013).
65F. J. Gurtler, M. Karg, K. H. Leitz, and M. Schmidt, in Lasers in

Manufacturing, edited by C. Emmelmann, M. F. Zaeh, T. Graf et al.
(Elsevier Science Bv, Amsterdam, 2013), Vol. 41, p. 874.

66R. Ganeriwala and T. I. Zohdi, Proc. CIRP 14(0), 299 (2014).
67A. V. Gusarov, I. Yadroitsev, P. Bertrand, and I. Smurov, J. Heat Transfer

131(7), 072101 (2009).
68M. F. Zaeh, G. Branner, and T. A. Krol, in Innovative Developments in

Design and Manufacturing: Advanced Research in Virtual and Rapid
Prototyping, edited by P. J. D. Bartolo, A. C. S. DeLemos, A. M. H. Pereira

et al. (CRC Press-Taylor & Francis Group, Boca Raton, 2010), p. 415.
69N. E. Hodge, R. M. Ferencz, and J. M. Solberg, Comput. Mech. 54(1), 33

(2014).
70J. A. Goldak and M. Akhlaghi, Computational Welding Mechanics

(Springer, New York, 2005).
71L. E. Lindgren, Computational Welding Mechanics: Thermomechanical

And Microstructural Simulations (Woodhead and Maney Pub.,

Cambridge, England; CRC Press, Boca Raton, 2007).

72P. Michaleris, Finite Elem. Anal. Des. 86, 51 (2014).
73E. R. Denlinger, J. Irwin, and P. Michaleris, J. Manuf. Sci. Eng. 136(6),

061007 (2014).
74J. M. Solberg, N. E. Hodge, R. M. Ferencz, I. D. Parsons, M. A. Puso, M.

A. Havstad, R. A. Whitesides, and A. P. Wemhoff, Diablo User Manual

Livermore, CA, Report No. LLNL-SM-651163, 2014.
75J. Schilp, C. Seidel, H. Krauss, and J. Weirather, Adv. Mech. Eng. 6,

217584 (2014).
76A. S. Wu, D. W. Brown, M. Kumar, G. F. Gallegos, and W. E. King,

Metall. Mater. Trans. A 45(13), 6260–6270 (2014).
77C. Seidel, M. F. Zaeh, M. Wunderer, J. Weirather, T. A. Krol, and M. Ott,

Proc. CIRP 25(0), 146 (2014).
78D. Pal, N. Patil, K. Zeng, and B. Stucker, J. Manuf. Sci. Eng.-Trans.

ASME 136(6), 061022 (2014).
79D. Pal, N. Patil, and B. E. Stucker, paper presented at the International

Solid Freeform Fabrication Symposium–An Additive Manufacturing

Conference Austin, Texas (2012).
80National Research Council, Assessing the Reliability of Complex Models:

Mathematical and Statistical Foundations of Verification, Validation, and
Uncertainty Quantification (The National Academies Press, Washington,

DC, 2012).
81I. Yadroitsev and I. Smurov, Phys. Proc. Part B 5(0), 551 (2010).
82J. P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, and J. Van

Humbeeck, paper presented at the 16th International Symposium on

Electromachining (ISEM XVI), Shanghai-China (2010).
83K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J.-P.

Kruth, in Twenty Third Annual International Solid Freeform Fabrication
Symposium—An Additive Manufacturing Conference, edited by D. Bourell

(University of Texas at Austin, Austin, Texas, USA, 2011), p. 484.
84G. W. Oehlert, A first Course in Design and Analysis of Experiments (W.

H. Freeman, New York, 2000).
85K. Fang, R.-z. Li, and A. Sudjianto, Design and Modeling for Computer

Experiments (Chapman & Hall/CRC, Boca Raton, FL, 2006).
86J. Delgado, L. Sereno, J. Ciurana, and L. Hernandez, Methodology for

Analyzing the Depth of Sintering in the Building Platform (CRC Press-

Taylor & Francis Group, Boca Raton, 2012), p. 495.
87C. Kamath, B. El-dasher, G. F. Gallegos, W. E. King, and A. Sisto, Int. J.

Adv. Manuf. Technol. 74(1–4), 65 (2014).
88T. W. Eagar and N. S. Tsai, Weld. J. 62(12), S346 (1983).
89D. C. Montgomery, Design and Analysis of Experiments (John Wiley &

Sons, Hoboken, NJ, 2004).
90R. Bridson, in ACM SIGGRAPH 2007 Sketches (ACM, San Diego,

California, 2007), p. 22.
91C. Kamath, Scientific Data Mining: A Practical Perspective (SIAM,

Philadelphia, 2009).
92M. A. Hall, Correlation-Based Feature Selection for Discrete and

Numeric Class Machine Learning (Department of Computer Science,

University of Waikato, Hamilton, New Zealand, 2000).
93L. Breiman, Classification and Regression Trees (Wadsworth International

Group, Belmont, California, 1984).
94C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning (MIT Press, Cambridge, Massachusetts, 2006).
95A. Okunkova, M. Volosova, P. Peretyagin, Y. Vladimirov, I. Zhirnov, and

A. V. Gusarov, Phys. Proc. 56(0), 48 (2014).
96A. Okunkova, P. Peretyagin, Y. Vladimirov, M. Volosova, R. Torrecillas,

and S. V. Fedorov, Proc. SPIE 9135, 913524 (2014).
97I. V. Zhirnov, P. A. Podrabinnik, A. A. Okunkova, and A. V. Gusarov,

Mech. Ind. 16, 709 (2015).
98A. Tarantola, Inverse Problem Theory and Methods for Model Parameter

Estimation (SIAM, Philadelphia, 2005).

041304-26 King et al. Appl. Phys. Rev. 2, 041304 (2015)

http://dx.doi.org/10.1016/j.phpro.2014.08.143
http://dx.doi.org/10.1016/j.powtec.2015.10.035
http://dx.doi.org/10.1103/PhysRevE.88.022205
http://dx.doi.org/10.1117/1.OE.53.12.122506
http://dx.doi.org/10.2351/1.2756854
http://dx.doi.org/10.2351/1.2756854
http://dx.doi.org/10.1364/AO.54.007230
http://dx.doi.org/10.1134/S0018151X13010033
http://app.knovel.com/hotlink/toc/id:kpRVTPSCA1/recommended-values-of
http://app.knovel.com/hotlink/toc/id:kpRVTPSCA1/recommended-values-of
http://dx.doi.org/10.1016/j.jmatprotec.2010.05.010
http://dx.doi.org/10.1016/j.jmatprotec.2010.05.010
http://dx.doi.org/10.1103/PhysRevB.80.024202
http://dx.doi.org/10.1063/1.1948509
http://dx.doi.org/10.2514/3.61164
http://dx.doi.org/10.1088/0022-3727/47/27/275303
http://dx.doi.org/10.1088/0022-3727/40/18/037
http://dx.doi.org/10.1016/j.jmatprotec.2010.12.016
http://dx.doi.org/10.1088/0965-0393/21/8/085011
http://dx.doi.org/10.1016/j.procir.2014.03.015
http://dx.doi.org/10.1115/1.3109245
http://dx.doi.org/10.1007/s00466-014-1024-2
http://dx.doi.org/10.1016/j.finel.2014.04.003
http://dx.doi.org/10.1115/1.4028669
http://dx.doi.org/10.1155/2014/217584
http://dx.doi.org/10.1007/s11661-014-2549-x
http://dx.doi.org/10.1016/j.procir.2014.10.023
http://dx.doi.org/10.1115/1.4028580
http://dx.doi.org/10.1115/1.4028580
http://dx.doi.org/10.1016/j.phpro.2010.08.083
http://dx.doi.org/10.1007/s00170-014-5954-9
http://dx.doi.org/10.1007/s00170-014-5954-9
http://dx.doi.org/10.1016/j.phpro.2014.08.095
http://dx.doi.org/10.1117/12.2053602
http://dx.doi.org/10.1051/meca/2015082

	l
	n1
	s1
	s1A
	s1B
	f1
	s1C
	s2
	s2A
	t1
	f2
	f4
	f3
	f5
	f6
	f7
	t2
	s2B
	d1.1
	f8
	f9
	f10
	d1.2
	f11
	s3
	s3A
	s3B
	s3B1
	s3B2
	s3B3
	s3C
	s3C1
	s3C2
	s3C3
	s3D
	s3D1
	s3D2
	s3E
	s3E1
	s3E2
	f12
	s3F
	s3F1
	s3F2
	f13
	f14
	s3F3
	s4
	s4A
	s4B
	s4C
	s4D
	s4E
	s4F
	f15
	f16
	s5
	s5A
	s5A1
	s5A2
	f17
	s5A3
	f18
	s5A3
	t3
	t4
	s5A4
	f19
	s5A5
	s5B
	f20
	s6
	s6A
	s6B
	s6C
	s7
	s7A
	s7B
	s7C
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81
	c82
	c83
	c84
	c85
	c86
	c87
	c88
	c89
	c90
	c91
	c92
	c93
	c94
	c95
	c96
	c97
	c98

