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Gradient Boosting (GB) is an iterative algorithm that combines simple parameterized functions with
‘‘poor’’ performance (high prediction error) to produce a highly accurate prediction rule. In contrast to
other statistical learning methods usually providing comparable accuracy (e.g., neural networks and sup-
port vector machines), GB gives interpretable results, while requiring little data preprocessing and tuning
of the parameters. The method is highly robust to less than clean data and can be applied to classification
or regression problems from a variety of response distributions (Gaussian, Bernoulli, Poisson, and
Laplace). Complex interactions are modeled simply, missing values in the predictors are managed almost
without loss of information, and feature selection is performed as an integral part of the procedure. These
properties make GB a good candidate for insurance loss cost modeling. However, to the best of our knowl-
edge, the application of this method to insurance pricing has not been fully documented to date. This
paper presents the theory of GB and its application to the problem of predicting auto ‘‘at-fault’’ accident
loss cost using data from a major Canadian insurer. The predictive accuracy of the model is compared
against the conventional Generalized Linear Model (GLM) approach.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Generalized Linear Models (GLMs) (McCullagh & Nelder, 1989)
are widely recognized as an accepted framework for building
insurance pricing models. These models are based on a traditional
approach to statistical modeling which starts by assuming that
data are generated by a given stochastic data model (e.g., Gaussian,
Gamma, Poisson, etc.). There is vast insurance pricing literature on
such models (Anderson, Feldblum, Modlin, Schirmacher, & Thandi,
2007; Brockman & Wright, 1992; Haberman & Renshaw, 1996).
They are attractive in the sense of producing interpretable param-
eters which are combined in a multiplicative fashion to obtain an
estimate of loss cost, defined here as the portion of the premium
which covers losses and related expenses (not including loadings
for the insurance company’s expenses, premium taxes, contingen-
cies, and profit margins). Model validation is usually done using
goodness-of-fit tests and residual examination.

In the past two decades, the rapid development in computation
and information technology has created an immense amount of
data. The field of statistics was revolutionized by the creation of
new tools that helped analyze the increasing size and complexity
in the data structures. Most of these tools originated from an algo-
rithmic modeling culture as opposed to a data modeling culture
(Brieman, 2001). In contrast to data modeling, algorithmic model-
ing does not assume any specific model for the data, but treats the
ll rights reserved.
data mechanism as unknown. As a result, algorithmic models sig-
nificantly increase the class of functions that can be approximated
relative to data models. They are more efficient in handling large
and complex data sets and in fitting non-linearities to the data.
Model validation is measured by the degree of predictive accuracy
and this objective is usually emphasized over producing interpret-
able models. It is probably due to this lack of interpretability in
most algorithmic models, that their application to insurance pric-
ing problems has been very limited so far. Chapados et al. (2001)
used several data-mining methods to estimate car insurance pre-
miums. Francis (2001) illustrates the application of neural net-
works to insurance pricing problems such as the prediction of
frequencies and severities. Kolyshkina, Wong, and Lim (2004) dem-
onstrate the use of multivariate adaptive regression splines (MARS)
to enhance GLM building. To the best of our knowledge, the appli-
cation of Gradient Boosting (GB) to insurance pricing has not been
fully documented to date.

Among algorithmic models, GB is unique in the sense of achiev-
ing both predictive accuracy and model interpretation goals. The
later objective is particularly important in business environments,
where models must generally be approved by non-statistically
trained decision makers who need to understand how the output
from the ‘‘black-box’’ is being produced. In addition, this method
requires little data preprocessing and tuning of the parameters. It
is highly robust to less than clean data and can be applied to clas-
sification or regression problems from a variety of response distri-
butions. Complex interactions are modeled simply, missing values
in the predictors are managed almost without loss of information,

http://dx.doi.org/10.1016/j.eswa.2011.09.058
mailto:leo.guelman@rbc.com
http://dx.doi.org/10.1016/j.eswa.2011.09.058
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


3660 L. Guelman / Expert Systems with Applications 39 (2012) 3659–3667
and feature selection is performed as an integral part of the proce-
dure. These properties make this method a good candidate for
insurance loss cost modeling.

The objective of this paper is to present the theory of GB and its
application to the analysis of auto insurance loss cost modeling
using data from a major Canadian insurer. We first define the scope
of the predictive learning problem and the boosting approach to
solve it. The core of the paper follows, comprising a detailed
description of gradient boosting trees from the statistical learning
perspective. We next describe an application to the analysis of auto
insurance ‘‘at-fault’’ accident loss cost. A discussion is outlined at
the end.
2. Predictive learning and boosting

The predictive learning problem can be characterized by a vec-
tor of inputs or predictor variables x = {x1, . . . ,xp} and an output or
target variable y. In this application, the input variables are repre-
sented by a collection of quantitative and qualitative attributes of
the vehicle and the insured, and the output is the actual loss cost.

Given a collection of M instances {(yi,xi); i = 1, . . . ,M} of known
(y,x) values, the goal is to use this data to obtain and estimate of
the function that maps the input vector x into the values of the
output y. This function can then be used to make predictions on
instances where only the x values are observed. Formally, we wish
to learn a prediction function f̂ ðxÞ : x! y that minimizes the
expectation of some loss function L(y, f) over the joint distribution
of all (y,x)-values

f̂ ðxÞ ¼ argminf ðxÞEy;xLðy; f ðxÞÞ ð1Þ

Boosting methods are based on the intuitive idea that combin-
ing many ‘‘weak’’ rules to approximate (1) should result in
classification and regression models with improved predictive per-
formance compared to a single model. A weak rule is a learning
algorithm which performs only a little bit better than a coinflip.
The aim is to characterize ‘‘local rules’’ relating variables (e.g., ‘‘if
an insured characteristic A is present and B is absent, then a claim
has high probability of occurring’’). Although this rule alone would
not be strong enough to make accurate predictions on all insureds,
it is possible to combine many of those rules to produce a highly
accurate model. This idea, known as the ‘‘the strength of weak lear-
nability’’ (Schapire, 1990) was originated in the machine learning
community with the introduction of AdaBoost, which is described
in the next section.
3. AdaBoost

The AdaBoost is a popular boosting algorithm due to Freund and
Schapire (1996). Consider a classification problem with a binary
response variable coded as y 2 {�1,1} and classifier f̂ ðxÞ taking
one of those two values {�1,1}. The AdaBoost algorithm is outlined
below. In short, the algorithm generates a sequence of weak classi-
fiers induced on a distribution of weights over the training set. One
such weak classifier often used in AdaBoost is a single-split classi-
fication tree with only two terminal nodes. Initially, all observation
weights are set equally, but on each iteration, the training observa-
tions that were misclassified in the previous step receive more
weight in the next iteration. Thus, the algorithm is forced to focus
on observations that are difficult to correctly classify with each
successive iteration. The final classifier is a weighted majority vote
of the individual weak classifiers. The weight assigned to each
weak classifier gets larger as its weighted error rate measured on
the training set gets smaller.
Algorithm 1. AdaBoost

1: Initialize observation weights wi ¼ 1
M

2: for t = 1 to T do
3: Fit ft(x) as the weak classifier on the training data using wi

4: Compute the weighted error rate as errt ¼
Pm

i¼1
wi �Iðyi – f tðxiÞÞPm

i¼1
wi

5: Let at = log ((1 � errt)/errt)
6: Update wi wi.exp[at.I(yi – ft(xi))] scaled to sum to one "

i 2 {1, . . . ,M}
7: end for

8: Output f̂ ðxÞ ¼ sign
PT

t¼1at :f̂ tðxÞ
h i
The success of AdaBoost for classification problems was seen
as a mysterious phenomenon by the statistics community until
(Friedman, Hastie, & Tibshirani, 2000) showed the connection
between boosting and statistical concepts such as additive model-
ing and maximum-likelihood. Their main result is that it is possi-
ble to rederive AdaBoost as a method for fitting an additive model
in a forward stagewise manner. This gave significant understand-
ing of why this algorithm tends to outperform a single base mod-
el: by fitting an additive model of different and potentially simple
functions, it expands the class of functions that can be
approximated.
4. Additive models and boosting

Our discussion in this section will be focused on the regres-
sion problem, where the output y is quantitative and the objec-
tive is to estimate the mean E(yjx) = f(x). The standard linear
regression model assumes a linear form for this conditional
expectation

EðyjxÞ ¼ f ðxÞ ¼
Xp

j¼1

bjxj ð2Þ

An additive model extends the linear model by replacing the
linear component g ¼

Pp
j¼1bjxj with an additive predictor of the

form g ¼
Pp

j¼1fjðxjÞ. We assume

EðyjxÞ ¼ f ðxÞ ¼
Xp

j¼1

fjðxjÞ; ð3Þ

where f1(�), . . . , fp(�) are smooth functions. There is a separate
smooth function fj for each of the p input variables xj or, more gen-
erally, each component fj is a function of a prespecified subset of the
input variables. These functions are not assumed to have a paramet-
ric form, but instead they are estimated in a non-parametric
fashion.

This model can be extended by considering additive models
with functions ft(x), t = {1, . . . ,T} of potentially all the inputs vari-
ables. In this context

f ðxÞ ¼
XT

t¼1

ftðxÞ ¼
XT

t¼1

bthðx; atÞ; ð4Þ

where the functions h(x;at) are usually taken to be simple functions
characterized by a set of parameters a = {a1,a2, . . .} and a multiplier bt.
This form includes models such as neural networks, wavelets, multi-
variate adaptive regression splines and regression trees (Hastie,
Tibshirani, & Friedman, 2001). In a boosting context, bth(x;at)
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represents the ‘‘weak learner’’ and f(x) the weighted majority vote of
the individual weak learners.

Estimation of the parameters in (4) amounts to solving

min
fbt ;atgT

1

XM

i¼1

L yi;
XT

t¼1

bthðxi; atÞ
 !

; ð5Þ

where L(y, f(x)) is the chosen loss function (1) to define lack-of-fit. A
‘‘greedy’’ forward stepwise method solves (5) by sequentially fitting
a single weak learner and adding it to the expansion of prior fitted
terms. The corresponding solution values of each new fitted term is
not readjusted as new terms are added into the model. This is out-
lined in Algorithm 2.

Algorithm 2. Forward Stagewise Additive Modeling

1: Initialize f0(x) = 0
2: for t = 1 to T do
3: Obtain estimates bt and at by minimizingPM

i¼1Lðyi; ft�1ðxiÞ þ bhðxi; aÞÞ
4: Update ft(x) = ft�1(x) + bth(x;at)
5: end for

6: Output f̂ ðxÞ ¼ fTðxÞ

If squared-error is used as the loss function, line 3 simplifies to
Lðyi; ft�1ðxiÞ þ bhðxi; aÞÞ ¼ ðyi � ft�1ðxiÞ � bhðxi; aÞÞ2

¼ ðrit � bhðxi; aÞÞ2; ð6Þ

where rit is the residual of the ith observation at the current
iteration. Thus, for squared-error loss, the term bth(x;at) fitted to
the current residuals is added to the expansion in line 4. It is also
fairly easy to show (Hastie et al., 2001) that the AdaBoost algorithm
described in Section 3 is equivalent to forward stagewise modeling
based on an exponential loss function of the form
L(y, f(x)) = exp(�yf(x)).
5. Gradient boosting trees

Squared-error and exponential error are plausible loss functions
commonly used for regression and classification problems, respec-
tively. However, there may be situations in which other loss func-
tions are more appropriate. For instance, binomial deviance is far
more robust than exponential loss in noisy settings where the
Bayes error rate is not close to zero, or in situations where the tar-
get classes are mislabeled. Similarly, the performance of squared-
error significantly degrades for long-tailed error distributions or
the presence of ‘‘outliers’’ in the data. In such situations, other
functions such as absolute error or Huber loss are more
appropriate.

Under these alternative specifications for the loss function and
for a particular weak learner, the solution to line 3 in Algorithm
2 is difficult to obtain. The gradient boosting algorithm solves the
problem using a two-step procedure which can be applied to any
differentiable loss function. The first step estimates at by fitting a
weak learner h(x;a) to the negative gradient of the loss function
(i.e., the ‘‘pseudo-residuals’’) using least-squares. In the second
step, the optimal value of bt is determined given h(x;at). The pro-
cedure is shown in Algorithm 3.
Algorithm 3. Gradient Boosting

1: Initialize f0(x) to be a constant, f0ðxÞ ¼ argminb

PM
i¼1Lðyi; bÞ

2: for t = 1 to T do
3: Compute the negative gradient as the working

response

� �

ri ¼ �

@Lðyi; f ðxiÞÞ
@f ðxiÞ f ðxÞ¼ft�1ðxÞ

; i ¼ f1; . . . ;Mg
4: Fit a regression model to ri by least-squares using the
input xi and get the estimate at of bh(x;a)

5: Get the estimate bt by minimizing
L(yi, ft�1(xi) + bh(xi;at))

6: Update ft(x) = ft�1(x) + bth(x;at)
7: end for

8: Output f̂ ðxÞ ¼ fTðxÞ

For squared-error loss, the negative gradient in line 3 is just the
usual residuals, so in this case the algorithm is reduced to standard
least-squares boosting. With absolute error loss, the negative gra-
dient is the sign of the residuals. Least-squares is used in line 4
independently of the chosen loss function.

Although boosting is not restricted to trees, our work will focus
on the case in which the weak learners represent a ‘‘small’’ regres-
sion tree, since they were proven to be a convenient representation
for the weak learners h(x;a) in the context of boosting. In this spe-
cific case, the algorithm above is called gradient boosting trees and
the parameters at represent the split variables, their split values
and the fitted values at each terminal node of the tree. Henceforth
in this paper, the term ‘‘Gradient Boosting’’ will be used to denote
gradient boosting trees.

6. Injecting randomness and regularization

Two additional ingredients to the gradient boosting algorithm
were proposed by Friedman, namely regularization through
shrinkage of the contributed weak learners (Friedman, 2001) and
injecting randomness in the fitting process (Friedman, 2002).

The generalization performance of a statistical learning method
is related to its prediction capabilities on independent test data.
Fitting a model too closely to the train data can lead to poor gen-
eralization performance. Regularization methods are designed to
prevent ‘‘overfitting’’ by placing restrictions on the parameters of
the model. In the context of boosting, this translates into control-
ling the number of iterations T (i.e., trees) during the training pro-
cess. An independent test sample or cross-validation can be used to
select the optimal value of T. However, an alternative strategy
showed to provide better results, and relates to scaling the contri-
bution of each tree by a factor s 2 (0,1]. This implies changing line
6 in Algorithm 3 to

ftðxÞ ¼ ft�1ðxÞ þ s � bthðx; atÞ ð7Þ

The parameter s has the effect of retarding the learning rate of
the series, so the series has to be longer to compensate for the
shrinkage, but its accuracy is better. Lower values of s will produce
a larger value for T for the same test error. Empirically it has been
shown that small shrinkage factors (s < 0.1) yield dramatic
improvements over boosting series built with no shrinkage
(s = 1). The trade-off is that a small shrinkage factor requires a
higher number of iterations and computational time increases. A
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strategy for model selection often used is practice is to set the
value of s as small as possible (i.e. between 0.01 and 0.001) and
then choose T by early stopping.

The second modification introduced in the algorithm was to
incorporate randomness as an integral part of the fitting procedure.
This involves taking a simple random sample without replacement
of usually approximately 1/2 the size of the full training data set at
each iteration. This sample is then used to fit the weak learner (line
4 in Algorithm 3) and compute the model update for the current
iteration. As a result of this randomization procedure, the variance
of the individual weak learner estimates at each iteration
increases, but there is less correlation between these estimates at
different iterations. The net effect is a reduction in the variance
of the combined model. In addition, this randomization procedure
has the benefit of reducing the computational demand. For
instance, taking half-samples reduces computation by almost 50%.
7. Interpretation

Accuracy and interpretability are two fundamental objectives of
predictive learning. However, these objectives do not always coin-
cide. In contrast to other statistical learning methods providing
comparable accuracy (e.g., neural networks and support vector
machines), gradient boosting gives interpretable results. An impor-
tant measure often useful for interpretation is the relative influ-
ence of the input variables on the output. For a single decision
tree, (Brieman, Friedman, Olshen, & Stone, 1984) proposed the
following measure as an approximation of the relative influence
of a predictor xj

bI2
j ¼

X
all splits

on xj

m̂2
s ; ð8Þ

where m̂2
s is the empirical improvement in squared-error as a result

of using xj as a splitting variable at the non-terminal node s. For Gra-
dient Boosting, this relative influence measure is naturally extended
by averaging (8) over the collection of trees.

Another important interpretation component is given by a
visual representation of the partial dependence of the approxima-
tion f̂ ðxÞ on a subset x‘ of size ‘ < p of the input vector x. The depen-
dency of f̂ ðxÞ on the remaining predictors xc (i.e. x‘ [ xc = x) must
be conditioned out. This can be estimated based on the training
data by

f̂ ðx‘Þ ¼
1
M

XM

i¼1

f̂ ðx‘; xicÞ ð9Þ

Note that this method requires predicting the response over the
training sample for each set of the joint values of x‘, which can be
computationally very demanding. However, for regression trees, a
weighted transversal method (Friedman, 2001) can be used, from
which f̂ ðx‘Þ is computed using only the tree, without reference to
the data itself.
8. Application to auto insurance loss cost modeling

8.1. The data

The data used for this analysis were extracted from a large data-
base from a major Canadian insurer. It consists of policy and claim
information at the individual vehicle level. There is one observa-
tion for each period of time during which the vehicle was exposed
to the risk of having an at-fault collision accident. Mid-term
changes and policy cancellations would result in a corresponding
reduction in the exposure period.
The data set includes 426,838 earned exposures (measured in
vehicle-years) from Jan-06 to Jun-09, and 14,984 claims incurred
during the same period of time, with losses based on best reserve
estimates as of Dec-09. The input variables (for an overview, see
Table 1) were measured at the start of the exposure period, and
are represented by a collection of quantitative and qualitative attri-
butes of the vehicle and the insured. The output is the actual loss
cost, which is calculated as the ratio of the total amount of losses
to the earned exposure. In practice, the insurance legislation may
restrict the usage of certain input variables to calculate insurance
premiums. Although our analysis was developed assuming a free
rating regulatory environment, the techniques described here can
be applied independently of the limitations imposed by any spe-
cific legislation.

For statistical modeling purposes, we first partitioned the data
into train (70%) and test (30%) data sets. The train set was used
for model training and selection, and the test set to assess the pre-
dictive accuracy of the selected gradient boosting model against
the Generalized Linear Model. To ensure that the estimated perfor-
mance of the model, as measured on the test sample, is an accurate
approximation of the expected performance on future ‘‘unseen’’
cases, the inception date of policies in the test set is posterior to
the one of policies used to build and select the model.

Loss cost is usually broken down into two components: claim
frequency (calculated as the ratio of the number of claims to the
earned exposure) and claim severity (calculated as the ratio of the
total amount of losses to the number of claims). Some factors affect
claim frequency and claim severity differently, and thus we consid-
ered them separately. For the claim frequency model, the target
variable was coded as binary since only a few records had more
than one claim during a given exposure period. The exposure per-
iod was treated as an offset variable in the model (i.e., a variable
with a known parameter of 1).

The actual claim frequency measured on the entire sample is
3.51%. This represents an imbalanced or skewed class distribution
for the target variable, with one class represented by a large sam-
ple (i.e. the non-claimants) and the other represented by only a few
(i.e. the claimants). Classification of data with imbalanced class
distribution has posed a significant drawback for the performance
attainable by most standard classifier algorithms, which assume a
relatively balanced class distribution (Sun, Kamel, Wong, & Wang,
2007). These classifiers tend to output the simplest hypothesis
which best fits the data and, as a result, classification rules that
predict the small class tend to be fewer and weaker compared to
those that predict the majority class. This may hinder the detection
of claim predictors and eventually decrease the predictive accuracy
of the model. To address this issue, we re-balanced the class distri-
bution for the target in the frequency model by resampling the
data space. Specifically, we under-sampled instances from the
majority class to attain a 10% representation of claims in the train
sample. The test sample was not modified and thus contains the
original class distribution for the target. In econometrics, this sam-
ple scheme is known as choice-based or endogenous stratified sam-
pling (Green, 2000) and it is also popular in the computer science
community (Chan & Stolfo, 1998; Estabrooks & Japkowicz, 2004).
The ‘‘optimal’’ class distribution for the target variable based on
under-sampling is generally dependent on the specific data set
(Weiss & Provost, 2003), and it is usually considered as an addi-
tional tuning parameter to optimize based on the performance
measured on a validation sample.

The estimation of a classification model from a balanced sample
can be efficient but will overestimate the actual claim frequency.
An appropriate statistical method is required to correct this bias,
and several alternatives exist for that purpose. In this application,
we used the method of prior correction, which fundamentally
involves adjusting the predicted values based on the actual claim



Table 1
Overview of loss cost predictors.

Driver characteristics Accident/conviction history Policy characteristics Vehicle characteristics

DC1. Age of principal
operator

AC1. Number of chargeable accidents (last 1–3 years) PC1. Years since policy inception VC1. Vehicle make

DC2. Years licensed AC2. Number of chargeable accidents (last 4–6 years) PC2. Presence of multi-vehicle VC2. Vehicle purchased new or
used

DC3. Age licensed AC3. Number of non-chargeable accidents (last 1–3
years)

PC3. Collision deductible VC3. Vehicle leased

DC4. License class AC4. Number of non-chargeable accidents (last 4–6
years)

PC4. Billing type VC4. Horse power to weight ratio

DC5. Gender AC5. Number of driving convictions (last 1–3 years) PC5. Billing status VC5. Vehicle age
DC6. Marital status AC6. Prior examination costs from accident-benefit

claims
PC6. Rating territory VC6. Vehicle price

DC7. Prior facility
association

PC7. Presence of occasional driver under
25

DC8. Postal code risk score PC8. Presence of occasional driver over
25

DC9. Insurance lapses PC9. Group business
DC10. Insurance

suspensions
PC10. Business origin

PC11. Dwelling unit type
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frequency in the population. This correction is described for the
logit model in Ref. (King & Zeng, 2001), and the same method
has been successfully used in a boosting application to predict cus-
tomer churn (Lemmens & Croux, 2006).
8.2. Building the model

The first choice in building the model involves selecting an
appropriate loss function L(y, f(x)) as in (1). Squared-error loss,PM

i¼1ðyi � f ðxiÞÞ2, and Bernoulli deviance, �2
PM

i¼1ðyif ðxiÞ � logð1þ
expðf ðxiÞÞÞ, were used to define prediction error for the severity
and frequency models, respectively. Then, it is necessary to select
the shrinkage parameter s applied to each tree and the sub-sam-
pling rate as defined in Section 6. The former was set at the fixed
value of 0.001 and the later at 50%. Next, the the size of the individ-
ual trees S and the number of boosting iterations T (i.e., number of
trees) need to be selected. The size of the trees was selected by
sequentially increasing the interaction depth of the tree, starting
with an additive model (single-split regression trees), followed
by two-way interactions, and up to six-way interactions. This
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Fig. 1. The relation between train and cross validation error and the optimal
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of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
was done in turn for the frequency and severity models. For each
of these models, we run 20,000 boosting iterations using the train-
ing data set.

A drawback of the under-sampling scheme described in Section
8.1, is that we may risk losing information from the majority class
when being under-sampled. To maximize the usage of the informa-
tion available in the training data, the optimal value for the param-
eters S and T was chosen based on the smallest estimated
prediction error using a K-fold cross-validation procedure with
K = 10. This involves splitting the training data in K equal parts, fit-
ting the model to K � 1 parts of the data, and then calculating the
value for the prediction error on the kth part. This is done for
k = 1,2, . . . ,K and then the K estimated values for the prediction
error are averaged. Using a three-way interaction gave best results
in both frequency and severity models. Based on this level of inter-
action, Fig. 1 shows the train and cv-error as function of the num-
ber of iterations for the severity model. The optimal value of T was
set at the point for which the cv-error cease to decrease.

The test data set was not used for model selection purposes, but
to assess the generalization error of the final chosen model relative
to the Generalized Linear Model approach. The later model was
estimated based on the same training data and using Binomial/
Gamma distributions for the response variables in the Frequency/
Severity models, respectively.

8.3. Results

Fig. 2 displays the relative importance of the 10 most influential
predictor variables for the frequency (left) and severity (right) mod-
els. Since these measures are relative, a value of 100 was assigned
to the most important predictor and the others were scaled accord-
ingly. There is a clear differential effect between the models. For
instance, the number of years licensed of the principal operator of
the vehicle is the most relevant predictor in the frequency model,
while it is far less important in the severity model. Among the
other influential predictors in the frequency model, we find the
presence of an occasional driver under 25 years, the number of driving
convictions, and the age of the principal operator. For the severity
model, the vehicle age is the most influential predictor, followed
by the price of the vehicle and the horse power to weight ratio. Partial
dependence plots offer additional insights in the way these vari-
ables affect the dependent variable in each model. Fig. 3 shows
the partial dependence plots for the frequency model. The vertical
scale is in the log odds and the hash marks at the base of each plot
show the deciles of the distribution of the corresponding variable.
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Fig. 3. Partial dependence plots (frequency model).
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The partial dependence of each predictor accounts for the average
joint effect of the other predictors in the model.

Claim frequency has a nonmonotonic partial dependence on
years licensed. It decreases over the main body of the data and
increases nearly at the end. The partial dependence on age initially
decreases abruptly up to a value of approximately 30, followed by
a long plateau up to 70, when it steeply increases. The variables
vehicle age and postal code risk score have a roughly monotonically
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decreasing partial dependence. The age of the vehicle is widely
recognized as an important predictor in the frequency model
(Brockman & Wright, 1992), since it is believed to be negatively
associated with annual mileage. It is not a common practice to
use annual mileage directly as an input in the model, due to the
difficulty in obtaining a reliable estimate for this variable. Claim
frequency is also estimated to increase with the number of driving
convictions and it is higher for vehicles with an occasional driver
under 25 years of age.

Note that these plots are not necessarily smooth, since there is
no smoothness constraint imposed on the fitting procedure. This
is the consequence of using a tree-based model. If a smooth trend
is observed, this is result of the estimated nature of the depen-
dence of the predictors on the response and it is purely dictated
by the data.

Fig. 4 shows the partial dependence plots for the severity mod-
el. The nature of the dependence of vehicle age and price of the vehi-
cle is naturally due to the fact that newer and more expensive cars
would cost more to repair in the event of a collision. The shape of
these curves is fairly linear over the vast majority of the data. The
variable horse power to weight ratio measures the actual perfor-
mance of the vehicle’s engine. The upward trend observed in the
curve is anticipated, since drivers with high performance engines
will generally drive at a higher speed compared to those with
low performance engines. All the remaining variables have the
expected partial dependence effect on claim severity.

An interesting relationship is given in Fig. 5, which shows the
joint dependence between years licensed and horse power to weight
ratio on claim severity. There appears to be an interaction effect
between these two variables. Claim severity tends to be higher
for low values of years licensed, but this relation tends to be much
stronger for high values of horse power to weight ratio.

We next compare the predictive accuracy of Gradient Boosting
(GB) against the conventional Generalized Linear Model (GLM)
approach based on the test sample. This was done by calculating
the ratio of the rate we would charge based on the GB model
to the rate we would charge based on the GLM. Then we grouped
the observations into five fairly equally sized buckets ranked by
the ratio. Finally, for each bucket we calculated the GLM-loss ratio,
defined as the ratio of the actual losses to the GLM predicted loss
cost. Fig. 6 displays the results. Note that the GLM-loss ratio
increases whenever the GB model would suggest to charge a higher
rate relative to the GLM. The upward trend in the GLM-loss ratio
curve indicates the higher predictive performance of GB relative
to GLM.
9. Discussion

In this paper, we described the theory of Gradient Boosting (GB)
and its application to the analysis of auto insurance loss cost mod-
eling. GB was presented as an additive model that sequentially fits
a relatively simple function (weak learner) to the current residuals
by least-squares. The most important practical steps in building a
model using this methodology have been described. Estimating
loss cost involves solving regression and classification problems
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with several challenges. The large number of categorical and
numerical predictors, the presence of non-linearities in the data
and the complex interactions among the inputs is often the norm.
In addition, data might not be clean and/or contain missing values
for some predictors. GB fits very well this data structure. First,
based on the sample data used in this analysis, the level of accu-
racy in prediction was shown to be higher for GB relative to the
conventional Generalized Linear Model approach. This is not sur-
prising since GLMs are, in essence, relatively simple linear models
and thus they are constrained by the class of functions they can
approximate. Second, as opposed to other non-linear statistical
learning methods such as neural networks and support vector
machines, GB provides interpretable results via the relative influ-
ence of the input variables and their partial dependence plots. This
is a critical aspect to consider in a business environment, where
models usually must be approved by non-statistically trained deci-
sion makers who need to understand how the output from the
‘‘black-box’’ is being produced. Third, GB requires very little data
preprocessing which is one of the most time consuming activities
in a data mining project. Lastly, model selection is done as an
integral part of the GB procedure, and so it requires little ‘‘detec-
tive’’ work on the part of the analyst.

In short, Gradient Boosting is a good alternative method to Gen-
eralized Linear Models for building insurance loss cost models. The
free available package gbm implements gradient boosting methods
under the R environment for statistical computing (Ridgeway,
2007).
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