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Abstract
In this paper, we consider a generalized Liénard system

dx
=== _F
=90~ F),
dy x) 0.1
_—— - X ) .
dt &

where F' is continuous and differentiable on an open interval (b1, aj) with —oo < b < 0 < a; < +00. Assume that there exist a
andbwithb; <b<0<a<ajsuchthatxF(x) <Oashb <x <a,andxF(x) >0asa < x <ajorb] <x < b. Anew uniqueness
theorem of limit cycles for the Liénard system (0.1) is obtained. An example is given to show the application of the theorem.
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1. Introduction

The existence and number of limit cycles for planar systems are related to Hilbert 16th problem and self-sustaining
oscillatory problems in mathematical models. It is a challenging problem to find out conditions so as to guarantee the
uniqueness of limit cycles for planar systems. As one knows, there are some systems for which the uniqueness of limit
cycles has been extensively studied in the last century, such as Liénard system with the following form:

dx Fx)
= —y— F®),
dt Y
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% =—x, (1.1)
as well as the more general form

dx

7 =¢(y) — Fx),

dy

i —8(x), (1.2)

where the function g(x) is continuous and F(x) is continuously differentiable on an open interval (b1, a;), —00 <
b1 <0 < aj < 4o00. The function ¢ (y) is continuously differentiable on (—oo, +00). Moreover, it is always assumed
that

(A1) xg(x) >0forx #0.Let G(x) = f(f g(s)ds;
(A2) ¢(0)=0, ¢'(y) >0 for —o0o <y < +00. Let D(y) = foyci)(s)ds.

There have been various techniques for establishing the uniqueness of limit cycles for (1.1) and (1.2) (see [1,2,
8—17] and references therein). In these sufficient conditions, the following conditions are usually assumed.

(H1) There exist a and b, by <b <0 < a < aj such that F(b) = F(0) = F(a) =0.

xF(x)>0 ifa<x<ajandby <x <b,
(H2)

xF(x)<0 ifb<x<a.

Sansone and Conti in [10] obtained that if the hypotheses (H1) and (H2) hold, and if the derivative of F(x) with
respect to x satisfies F/(x) > 0 asa < x < aj and by < x < b, then for system (1.1) the number of limit cycles, which
enclose two points (a,0) and (b, 0) inside is unique. Recently, Carletti and Villari in [1] further gave the sufficient
conditions for uniqueness of limit cycle of (1.1). For system (1.2), in [11] we gave the conditions to guarantee that
a limit cycle encloses two points (a, 0) and (b, 0) inside, which generalized the conclusion of Sansone and Conti
in [10]. It is an interesting problem what conditions should add to guarantee the uniqueness of limit cycles for (1.2) if
the limit cycle encloses only one point of (a,0) and (b, 0). Zeng et al. in [12] and [13] studied this problem and used
the Filippov transformation z = G (x) to reduce system (1.2) to two equations

dz
d—=Fi(Z)—¢(y), (E:)
y
respectively, where F;(z) = F(x;(z)) € C10, z)), x; (z) is the inverse function of z = G (x) for (=1)t1x >0,i =1, 2,
z1 = G(ay) and z2 = G(by). In [13] (cf. [13, Theorem 1]), it has been proved that system (1.2) has at most one limit
cycle if besides (H1) and (H2), the following hypotheses hold

(H3) if G(b) > G(a) (G(b) < G(a)), then Fi(2)F{(2) (F2(z)F;(z), respectively) is nondecreasing (nonincreasing,
respectively) as z > G(a) (z > G(b), respectively);

(H4) if G(h) > G(a) (G(b) < G(a)), then F{(z) > Fz/(u) for any pair (z, u) satisfying G(a) <z <u (G(b) <u < z,
respectively) and Fi(z) = Fo(u) (F>(1) = F(z), respectively).

From the above sufficient conditions in [1,10,12] and [13], we can see that if limit cycles enclose both points (a, 0)
and (b, 0), then the monotonicity of F(x) on a; > x > a and b > x > by is sufficient to guarantee the uniqueness of
the limit cycles. However, if limit cycles enclose only one of the two points (a, 0) and (b, 0), then to guarantee the
uniqueness of the limit cycles, it needs more restrictions on the functions F(x) and G(x), such as assumptions (H3)
and (H4).

In this paper, we discuss further the uniqueness of limit cycles of (1.2) when the limit cycles enclose only one of
two points (a, 0) and (b, 0). We obtain a new sufficient criterion for the uniqueness of limit cycles of (1.2), which
is different from those sufficient conditions appeared in [2,9—15] and [16]. For simplicity of statement, we make the
following assumption on the derivative of F (x).
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Fig. 1. When G (b) > G(a), the vertical isocline and a closed orbit of system (E;).
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Fig. 2. When G (b) < G(a), the vertical isocline and a closed orbit of system (E;).

(HS) When b; < x < ay, f(x) def F’(x) = 0 has only two roots x; and x», x; > 0 and x; < 0. Moreover, z is a
unique positive root of F1(z) — F>(z) = 0, which implies that G (x;) < za.

Now we state a new uniqueness theorem as follows.

Theorem 1.1. Suppose that system (1.2) with (A1) and (A2) satisfies the hypotheses (H1), (H2), (HS), and its equiva-
lent Egs. (E;) satisfy one of the following conditions.

1) If G(b) > G(a) (which implies G(a) < zp < G(b)), then Fz’(u) > Fl’(z) for any pair (z,u) satisfying G(a) <
z<zp, 0<u <zand F1(2) = F2(u) (see Fig. 1).

(i) If G(a) > G(b) (which implies G(b) < za < G(a)), then F}(z) > F|(u) for any pair (z,u) satisfying G(b) <
z<2zp, O0<u<zand Fi(u) = Fy(z) (see Fig. 2).
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Then

(R1) system (1.2) has at most one limit cycle, and it is stable if it exists;
(R2) system (1.2) has a unique stable limit cycle if G(b1) = G(a;) = 400 and @ (£00) = F00.

2. Main results

In this section, we first give the proof of Theorem 1.1, then compare it with Theorem 1 in [13] and provide an
alternative statement of Theorem 1.1.

We now prove the conclusion (R1) of Theorem 1.1. Our main task is to prove the uniqueness of limit cycles of
(1.2) if it exists, which can be derived as follows: if any one closed orbit of system (1.2) is stable, then system (1.2)
has at most one limit cycle since adjacent closed orbits can not have the same stability. Hence, we will only discuss
the stability of closed orbits of (1.2).

Assume that L is a closed orbit of (1.2), then L = L1 U Ly, L; is an orbit of Eqgs. (E;), i = 1,2. And L (L2)
intersects the vertical isocline ¢ (y) = F1(z) (¢ (y) = F>(z), respectively) at A(za, ya) (B(zp, yB), respectively). It is
easy to see that y4 > yp. Let y;(z) and y;(z) represent a part of L;, which is located above and below of the vertical
isocline ¢ (y) = F;i(z), respectively (see Fig. 1 or Fig. 2). To determine the stability of L, we have to calculate the
integral of divergent of (1.2) along L,

%div(ll) dt = %—F’(x) dt.
L L
Utilizing the notations in [13], we denote
F!(2) F!(2)

oy def
V(F@.5@50) = o st s - F @

Hence, we have

f—F’(x)dr=—(/F{(z)dy—/Fz’(z)dy>
L

L Ly
=—( / V(Fi(@).y1(). 51(2) dz — / V(Fz(z),yz(z),yz(z))dz>, @.1)
0 0

where dt > 0 along the integration path and dy > 0 along the curves L and L.
To estimate the sign of the integral (2.1), we first introduce two lemmas. They can be found in [12] and [13]. For
convenience to read, we give the proof of Lemma 2.2

Lemma 2.1. Let 0 < ¢c <d < z4 (or zp). If F;(d) — Fi(z) 2 0 (or <0) for ¢ <z <d, then fcd V(F (), i(2),
yi(2))dz = 0 (or <0, respectively).

Lemma 2.2. Consider systems (E1) and (Ep), if there exist 0 < p1 <u < z1, 0 < p2 < z < 2o such that

(1) Fi(p1) = Fa(p2), Fi(z1) = F2(z2);
(2) F{(u) <0if p1 <u <z, and F)(z) <0if p» <z < 22;
(3) F{(u) < Fj(2) if F1(u) = F2(2).

Let y;(-) and y; (-) be solutions of (E;), i = 1,2, which satisfy the following inequalities:

p(yi(w) < Fi(w) <¢(y1(w), aspi<u<zi;
?(12(2)) < F2(2) < ¢(32(2)), as pr <z <z2;
yi(p1) 2 y2(p2) and yi(p1) < y2(p2).



D. Xiao, Z. Zhang / J. Math. Anal. Appl. 343 (2008) 299-309 303

Then there exist two functions Wa(z) and Wa () in the interval ( D2, 22) Such that

Wa(2) =51 (F (F2(2),  Wa@ =y (F ' (F2(2)),

and
21 22
/V(F1(M),y1(u),§1(bt))du>/V(Fz(Z),yz(z),iz(z))dz-
P P2

Proof. When p; <u < z; and py < z < 22, we let Fi(u) = F»(z), which define a transformation from variables u
into z. Consider Eq. (E1) with the following form:

dy 1

= (2.2)
du  Fi(u) —¢(y)

Then (2.2) can be transformed to
dy _ 1 Fy(2) (E3)

dz ~ F2(2) = () F{(F] (F2(2))

and solutions y; (#) and y;(u) of (2.2) are transformed to

Wa2) =51(F{ ' (F2(2)) and  Wa(2) =y (F] ' (F2(2)).
respectively, where W>(z) and W5 (z) are solutions of Eq. (E3).
It is clear that Wa(p2) = y1(p1) and Wa(p2) = y1(p1). From y1(p1) = y2(p2) and yi1(p1) < y2(p2), we have

Wa(p2) < y2(p2), Wa(p2) = 72(p2). (2.3)
F(2)
Fl(FT (R@)

1 - 1 F;(2)
P2 - ¢(02(@)  F2(2) —¢(2) F/(F7 (F2(2)
1 - 1 F}(2)
F(2) = ¢(02(@)  F2(2) — () F/(F; ' (F2(2))
Comparing Egs. (E) and (E3), and note the initial conditions (2.3), we obtain that

Wa(z) = 32(z) and Wa(z) < y2(2)

as z > p» by differential inequality theory.
Note that ¢’(y) > 0. Hence,

P(W2(2)) 2 6(572()),  ¢(W2(2)) < ¢(»2(2)),

Next we prove the inequality of integral. Since

and
F3(2) N F}(2) . F}(2) N Fj(2)
P —¢W2(2)  ¢(W(i)— Pk @ -9¢022)  ¢(:0) - @)

Therefore, we have

21 22

/V(Fl(u),yl(u),yl(u))du—/V(Fz(z),y2(z),y2(z))dz
P1 P2
22 22
=/V(Fz(z),Wz(z),Wz(z))dz—/V(Fz(z),yz(z),iz(z))dz>0.
P2 P2

The proof is completed. O
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Now we are in a position to prove the uniqueness of limit cycles if it exists. We first prove the case (ii) and divide
two cases of y4 to discuss.

M Ifyqs>0,then Fi(z4) — F1(z) 20as 0 <z <z4 and Fa(zp) — F2(2) <0 as 0 < z < zp. From Lemma 2.1,
we have

ZA ZB
/V(F1(z),y1 (2), y1(2)) dz —/V(Fz(z),yz(z),&z(z))dz > 0.
0 0

Hence, the integral of divergent of (1.2) along L is negative, which leads that the closed orbit L is stable. Therefore,
system (1.2) has at most one limit cycle.

(II) If y4 < 0, then we can take points D(zp, yp) and C(zc, y¢) in ¢(y) = F1(z) and ¢ (y) = F2(z), respectively,
such that F1(zp) = F>(z¢c) = F1(z4). Note that F1(z4) — F1(z) >20as 0 < zp <z < z4, F2(G(b)) — F2(z) <0 as
0<z<G() and Fr(zp) — F2(z) <0as 0 < z¢ <z < zp. From Lemma 2.1, we have

<A

f V(F1(2), 71(2), 51()) dz > 0,

<D
ZB

/ V(F2(2), y2(2), 2(2)) dz <0,

zc
G(b)

/ V(F2(2), y2(2), y2(2)) dz 0. (2.4)
0

On the other hand, F(0) = F>(G (b)) =0 and Fi(zp) = F2(z¢). From hypothesis (H5) and condition (ii) of Theo-
rem 1.1, and utilizing Lemma 2.2 we obtain

iD c
/V(Fl(z),yl (2), 51(z))dz — / V(F2(2), y2(2), 92(2)) dz > 0. (2.5)
0 G(b)

Summarizing (2.4) and (2.5), we obtain that

ZA ZB
/ V(Fi(2), y1(2), y1(2)) dz — / V(F2(2), y2(2), y2(2)) dz > 0.
0 0

Hence, the integral of divergent of (1.2) along L is negative, which implies that the closed orbit L is stable. Thus
system (1.2) has at most one limit cycle. We complete the proof of conclusion (R1) in Theorem 1.1 for case (ii).
Let y = —Y. Then system (E;) is transformed to

dz
= —Fi@) + (=), (F)
and the case (i) in Theorem 1.1 is transformed to the case (ii) for system (F;). The similar arguments can be applied
to the case. We can obtain the uniqueness of limit cycles in Theorem 1.1 for case (i). Therefore, we finish the proof of
conclusion (R1) of Theorem 1.1.

We next prove conclusion (R2) of Theorem 1.1. From conclusion (R1), we only need to prove the existence of limit
cycles for system (1.2) if we further assume that G(b1) = G(a;) = +o0 and @ (+00) = +00. The following lemma
implies the existence of limit cycles for system (1.2).

Lemma 2.3. Assume that system (1.2) with (A1) and (A2) satisfies the hypotheses (H1), (H2) and (HS). If G(by) =
G(a1) = +o00 and @ (£o0) = £00, then system (1.2) has at least a limit cycle.
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I y
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Q\\_//P

Fig. 3. The annular region of positive invariant set of system (1.2) and the vertical isocline ¢ (y) — F(x) =0.

Proof. Let

Vix,y) =Gx) + Py,
where G (x) = [, g(s)ds and @ (y) = [ ¢(s)ds. Then
dVvi(x,y)
— =g F ().
Taking 0 < r; < min{a, —b}, we have

dv(x,y)

>0, asV(x,y)=r.
dt (1.2)

Thus, the graph of V (x, y) = r; becomes an intra-boundary of an annular region and the unique equilibrium (0, 0) of
system (1.2) is unstable.

On the other hand, since @ (£00) = F-00, respectively, and G (b1) = G(a1) = 400, any trajectory of system (1.2)
in the region {(x, y): V(x,y) > rq} spirals as t — 4-00.

From (H2) and (HS5), there exists €g, 0 < €9 < 1 such that F(a +¢€9) =k1 >0, F(b—¢€g) =k <0, and F(x) > k;
asa+te<x<ajand F(x) <kpas by <x <b—¢p. Let

li: x=a+ ¢, bh: x=b—e¢.

Taking a point P(a + €g, yp) on line /1 with yy < 0, we consider that as time ¢ increases the trajectory I"(P,t) of
system (1.2) with the initial point P intersects /> at Q(b — €p, yp) and R(b — €, yR), respectively, and intersects [
again at S(a + €p, ys) and T (a + €gp, yr), respectively (see Fig. 3). We claim that yp < yr <0 as yg - —oo. Let

X

y
Vl(x,y)=/(¢(S)—kz)derfg(S)dS-

0 0

We consider the increment of the function V;(x, y) along the segment of trajectory PER\ST of system (1.2)

Wi P~k (2.6)
dy |12

dvi _ —8W(FK) k) (2.7
dx |12 ¢(y) — F(x) .
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Note that F(x) > kj asa+ €9 < x <aj and F(x) <kp as b; < x < b — ¢y. From (2.6), we have

vs
Vi(§) —vi(T) = /(F(X) — k) dy > (ki — k2)(ys — yr) > 0,
yr
Yo YR
Vi(Q) — Vi(R) =/(F(x) — ko) dy =/(k2 — F(x))dy > 0.
VR Yo

Since the functions g(x) and F(x) are bounded for x € (b — €, a + €p), for arbitrary small € > 0 there exists a
sufficiently large M > 0, when —yo > M,

A% .
—_— <
by (2.7). Hence,
|Vi(P) = Vi(Q)] < €la — b+ 2e), [Vi(R) — Vi(S)| < €(a — b+ 2¢p).

Note that

Vi(P) = Vi(T) =Vi(P) = ViI(Q) + ViI(Q) — VI(R) + VI(R) — Vi(S) + Vi(S) — Vi(T).
Thus,

1
Vi(P)—=Vi(T) > E(kl —k2)(ys —yr) >0,

which implies that yg < yr < 0 as —yy is sufficiently large.

Therefore, the closed curve by the segment of trajectory PgﬁT of system (1.2) and the segment 7 P on line /;
becomes an outer-boundary of an annular region (see Fig. 3). The annular region is a bounded positive invariant set for
system (1.2), which does not include any equilibria of system (1.2). Therefore, the existence of limit cycles follows di-
rectly from the Poincaré—Bendixson theorem. We finished the proof of the existence of limit cycle of system (1.2). O

Remark 2.1. Let us compare Theorem 1 in [13] with Theorem 1.1 here in case G (b) > G(a). Using the notations in
this paper, Theorem 1 in [13] can be stated as follows:

Theorem 1. (See [13].) Suppose that system (1.2) with (A1) and (A2) satisfies the hypotheses (H1)—(H4), then sys-
tem (1.2) has at most a limit cycle, and it is stable if it exists.

The differences between Theorem 1 in [13] and Theorem 1.1 here are as follows.

(1) When z > G(a), in Theorem 1, hypothesis (H3) required, that is, Fj(z) F|(z) is nondecreasing. However, in
Theorem 1.1, hypothesis (HS) is required, that is, F(z) is nondecreasing for z > G(a).

(2) Hypothesis (H4) in Theorem 1 requires that F|(z) > F,(u) if Fi(z) = F2(u) for G(a) < z < u. That implies that
they need to compare the slopes of F1(z) and F>(u) outside the interval (0, G (a)); but condition (i) in Theorem 1.1
here requires that F|(z) < Fj(u) if Fi(z) = F2(u) for 0 <u < z and G(a) < z < za. That implies that we need
to compare the slopes of Fi(z) and F,(u) inside the interval (0, z4). Hence, roughly speaking, our uniqueness
conditions of limit cycles are different from that in [13], and these conditions on the interval (0, G (b)) in case (i)
and on interval (0, G(a)) in case (ii) have strongly geometric intuition.

In general case, the condition (i) or (ii) in Theorem 1.1 is not easy to be verified since the inverse function of G (x)
is hardly expressed explicitly for some continuous functions g(x). Hence, in order to apply Theorem 1.1 more conve-
niently, one hopes to represent conditions in this theorem directly by means of the original functions of system (1.2).
We provide an alternative statement of conclusion (R1) of Theorem 1.1 as follows.
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Corollary 2.4. Assume that system (1.2) with (A1) and (A2) satisfies the hypotheses (H1), (H2) and (HS).

@) Iffb” g(x)dx =0, then system (1.2) has at most one limit cycle (cf. [11, Theorem 2.2]).
(ii) Ifflf g(x)dx #£ 0, then there exists only a pair of ag and by, by < by <0 < ap < ay such that fb‘;‘) gx)dx =0
and F (bg) = F(agp). System (1.2) has at most one limit cycle if one of the following conditions hold.
(i.1) If [, g(x)dx <0 (i.e. G(b) > G(a)), then g((g)) > g((;cl')) for any pair of (x1, x2) satisfying a < x1 < a,
bo < x3 <0and F(x1) = F(xp).
(i.2) If [, g(x)dx > 0 (ie. G(a) > G(b)), then L2 > L& for any pair of (x1,x2) satisfying 0 < x1 < ao,
bo < xp <band F(x1) = F(xp).

3. Example and discussion

The existence and uniqueness of limit cycle is one of the most delicate problem in studying of mathematical
models. There are various techniques to establish the uniqueness of limit cycles of ecological systems (cf. [3,6,7,11]
and references therein). It is the main technique to transform an ecological system into a generalized Liénard system.
For example, a general predator—prey system in [11] can be transferred into the generalized Liénard system (1.2) in
suitable region of phase plane. And the geometric shape of prey isocline of predator—prey systems can be kept in that
of F(x) = ¢(y) of the generalized Liénard system (1.2). Some researchers think that the geometric property of prey
isocline plays important role in understanding both the globally asymptotically stable of a unique equilibrium and the
uniqueness of limit cycles for predator—prey systems. Hwang in [4] showed that local asymptotic stability of a unique
positive equilibrium together with the existence of a concave down prey isocline implied that this equilibrium was
globally asymptotically stable for certain predator—prey systems. Kuang in [5] pointed out that Freeman conjectured
that the existence of a unique unstable equilibrium together with existence of humps of prey isocline implied the
existence and uniqueness of the limit cycle for predator—prey systems. The role of our main results (Theorem 1.1 or
Corollary 2.4) is to give information about the geometry of F'(x) = ¢ (y) to ensure existence and uniqueness of limit
cycles.

We now give an example to show the application of Corollary 2.4. In [7], Ruan and Xiao studied global dynamics
of a predator—prey system with nonmonotonic functional response

. X xy
x=rx|{l—— ) - ——,
K ¢+ x2

) ux
= —-D 3.1
y=y <c e ) (3.1
in the closed first quadrant of R?, where r,c, u, K and D are positive parameters. They gave the conditions that
system (3.1) has a unique limit cycle (cf. [7, Theorems 2.4-2.5]). However, there is a gap in the proof of Theorem 2.5.

We will point out it in the following discussion of the uniqueness of limit cycle for system (3.1).
It is clear that system (3.1) has a unique positive equilibrium (xp, y;) if

16
pLz > ?ch, x2 > K > x3, (3.2)
where
2 2
w—+/ > —4cD X1 5
x| = ) , Y1=F(I—E)(c+x1),
W+ u?—4cD? 21—/ 2 —4ceD?
Xy = , X3 = .
2D 2D

The nontrivial periodic orbits of system (3.1) must be in the domain E if it exists, here
Er={(x,y):0<x <K, 0<y<-+oo}.

To study the uniqueness of periodic orbits of system (3.1), we transfer system (3.1) in E into a Liénard system. Let
x—x1=—X,y—yi=vyi(e¥ —1)and xdt = (c + x*)dT. Then system (3.1) can be written as
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dX— Y)-F(X

=)~ F(X),

dy

o =8 (). (3:3)

where ¢(Y) = yi(e¥ — 1), F(X) = Z5(X? + (K — 3x)X + ¢ + 3x? — 2Kx), and g(X) = W here
x1— K <X <xjand —oco <Y < 4o00.
It is easy to check the following facts:
(al) Xg(X)>0for X € (xy —K 0)U (O x1), G(x1) = [;' g(s)ds =400 and G(x; — K) = (;C'*K g(s)ds =
D((K —x1)(x1 +2x2 — K) — 2x1x21n g) > 0.
(a2) ¢(0)=0,¢'(Y) > 0for —oo <Y < 400, and ¢p(—00) = —y; and ¢ (+00) = +00.

If inequalities (3.2) hold, then we have

K —3x; >0, ¢ +3x7 —2Kx; = x1(x2 +3x; — 2K) <0.

Let A = (K —3x1)% —4(c + 3)612 —2Kx1) = K? +2x1K — 3x12 — 4c. Hence, there exist ¢ and b, 0 < a < x; and
K — x1 < b < 0 such that

F(b)=F0)=F(a)=0,
where

a:—(K—3x1)+«/Z b_—(K—3x1)—«/Z
2 ’ o 2 '

f(X) def F’(X) = 0 has only two roots in the interval (x; — K x1), which implies that the prey isocline ¢ (y) = F (x)

of system (3.1) has only two humps in the range

E2={(x,y):x1—K<x<x1, —oo<y<+oo},

namely a local maximum and a local minimum. Therefore, F (X) satisfies hypotheses (H1), (H2) and (HS).

In the proof of Theorem 2.5 in [7], authors only proved the uniqueness of limit cycles of system (3.1) if the limit
cycles enclose two points (a, 0) and (b, 0) inside, and did not prove the uniqueness of limit cycles if the limit cycles
enclose only one point of (a, 0) and (b, 0) inside.

To apply Corollary 2.4 for system (3.1), we can modify Theorem 2.5 in [7] to the following conclusion.

Theorem 3.1. Suppose that p> > 13—6aD2 and x > K > x3. Then system (3.1) has at most one limit cycle in the
interior of the first quadrant if one of the following conditions holds.

() [ g(X)dX =0.

(i) If [} e(X)dX <0 (ie. G(b) > G(a), then L& > LEY for any pair (X1, X2) satisfying a < X1 < ag, by <

X> < 0and F(X1) = F(X3), where ag and by with x; — K < bg <0 < ag < x| are solutions offbi)o g(X)dXx =0
and F (bg) = F(ag).

(iii) Iffbag(X) dX >0 (i.e. G(a) > G(b)), then Jg‘(())f;; > é}:((;(ll)) for any pair (X1, X2) satisfying 0 < X1 < ag, by <

X> <band F(X1) = F(X»), where ag and by with x; — K < bg < 0 < ag < x| are solutions offb‘z)0 g(X)dXx =0
and F (bg) = F (ap).
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