
  Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

http://www.jstor.org

Mathematics in Warship Design 
Author(s): S. J. Palmer 
Source:   The Mathematical Gazette, Vol. 43, No. 346 (Dec., 1959), pp. 256-268
Published by:  Mathematical Association
Stable URL:  http://www.jstor.org/stable/3610652
Accessed: 28-11-2015 20:10 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 141.210.2.69 on Sat, 28 Nov 2015 20:10:50 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=mathas
http://www.jstor.org/stable/3610652
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


MATHEMATICS IN WARSHIP DESIGN 

BY S. J. PALMER 

Members of the Royal Corps of Naval Constructors are responsible 
for the design and construction of H.M. Ships, and one of the main 
features of their training is the study of mathematics. The aim of 
this article is to give the VIth form mathematics teacher an acquain- 
tance with the kind of mathematics used in ship design; he may then 
be able to encourage some of his pupils to consider the prospect 
of a career in the Royal Corps. Promising mathematicians with a 
strong practical bent can enter from school under a scheme advertised 
in this number of the Gazette. 

Now it is probably well known that a large warship is one of the 
most complex engineering projects to which man puts his hand; 
it must be able to propel itself through oceans at high speed, to 
withstand the stresses and motions imposed by the seas, to carry 
and operate the latest weapons and detection devices, to withstand 
attack from the enemy, and to house and feed its ship's company 
in reasonable comfort in all weather conditions between the Arctic 
and the Tropics. The design of such a ship poses a number of 
problems for the Constructor and his colleagues in the Royal 
Naval Scientific Service, problems as diverse as calculating the trunk 
sizes of complex ventilation systems or the thickness of shielding 
around nuclear reactors. In common with general practice in 
industry many of these questions can be solved satisfactorily by 
engineering research and experience, but the problems which are 
peculiar to ships and, in particular, to warships, usually cannot be 
dealt with in this way. The reason for this is that warships are 
big and expensive and it is not practicable to build and test proto- 
types; nevertheless no risks can be taken with their speed, stability, 
or structural strength and, since they must be at least as efficient 
as similar warships produced in other countries, there is no room for 
large factors of safety. Under these conditions the design can only 
be tackled by a logical, mathematical, approach. 

At the present time, however, mathematical theories still fall 
short of solving completely some of the more complex problems in 
ship hydrodynamics and ship structures, and the designer is 
compelled to check and adjust the results of his calculations by tests 
on scale models. The examples which follow illustrate some of these 
problems and the way in which experiments with small models 
either check or fill the gaps in theories which are still not completely 
satisfactory. 

The first four examples are concerned with ship hydrodynamics. 
The model tests are mainly carried out at the Admiralty Experiment 
Works near Gosport and the equipment is impressive: there are 
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MATHEMATICS IN WARSHIP DESIGN 

long tanks (the largest 900' long X 40' wide) in which ship models 
are propelled or towed at speeds up to 40 feet per second, water 
tunnels in which model propellers can be examined under working 
conditions in stroboscopic lighting, and a large manoeuvring basin 
in which models can be remotely controlled in complex wave systems. 
As with all scale model work great accuracy in workmanship and 
measurement is essential. 

1. Ship Resistance 
The resistance (R) of a ship depends on its dimensions (L) and 

speed (V), upon gravity, and upon the viscosity (p) and density (p) 
of the fluid in which it moves. From dimensional analysis 

R (VL V2\ 

(pg) V2L2 -f T/p' gL' 

That is, the non-dimensional resistance coefficient is a function of two 
variables, the first depending on viscosity (called skin friction), 
and the second depending on gravity (called the wavemaking 
resistance). 

When designing a ship's hull it is necessary to find the shape which 
will have the least resistance and to make an accurate estimate of 
this resistance. At the present time this is done by experiments with 
scale models and it is not possible to define the shape by a convenient 
mathematical expression. It is usually assumed (the Froude 
hypothesis) that skin friction and wavemaking resistance are 
separate components and that the total resistance is the sum of the 
two. Much of the theoretical work which has been done on skin 
friction has been published and need not concern us here, but the 
parallel work on wavemaking is not so well known. 

Careful observation of a ship or model moving at uniform speed 
in calm water reveals that abaft the bow, and enclosed within lines 
angled at about 30? to the centreline of the ship, there are two wave 
systems, one with its crests at about 60? to the centreline and the 
other at right angles to the centreline. Similar waves are generated 
at the stern, the bow and stern systems having a phase difference 
which depends on the length of the ship and its speed. The inter- 
ference of the two systems to produce the waves left behind the ship 
leads to a periodic variation of resistance with speed; if crests of the 
bow waves pitch into troughs of the stern waves then the resulting 
waves abaft the ship are small and the resistance is small and, 
conversely, if the crests coincide the resistance is high. If the speed 
of the ship is steadily increased the two wave systems will alternately 
fall into and out of phase and, since this affects the pressure distri- 
bution around the ship, the resistance fluctuates. 

Progress on the development of an adequate theory has been 
2 
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THE MATHEMATICAL GAIZETTEi 

continuous, if slow, since Michell published the fundamental theory 
in 1898, and reasonably accurate estimates of the wavemaking resis- 
tance of certain geometrical forms can now be made. These generally 
have been obtained by selecting complex variables, or distributions 
of sources and sinks, which will generate ship-like forms. For 
example, the source distribution for a very fine form with parabolic 
sections, extending over the central plane (y =0) between limits 
-a < x < a, and 0 < z < d, is given by 

box / z2\ 
7Ta2 d2/2 

where a = sources per unit area, 

c speed of body along Ox 

2a = length of body, 

2b maximum breadth of body, 

d = draught 

It is true that a great deal more must be done before we can 
calculate the wavemaking resistance of normal ship forms, but the 
solutions which have already been obtained have made a valuable 
contribution to understanding what happens and they have stimu- 
lated and clarified model research. 

2. Ship Propulsion 
All ships have to have a means of propulsion and the usual way is 

to use a screw propeller to convert the power of an engine into a 
driving force. This force is developed by setting water in motion 
backwards and, of course, the kinetic energy of this water is lost. 
If m is the mass of the water flowing through the propeller in unit 
time and v is the increase in the velocity of the water due to the 
propeller action, then the thrust is proportional to mv and the kinetic 
energy lost is proportional to mv2. It follows that to reduce the loss 
of energy v should be as small as possible, which, for a given thrust, 
can only be done by making m as large as possible, that is, by making 
the propeller as large as possible. This simple fact is often not 
appreciated by people who build model boats and then fit them with 
tiny, and therefore inefficient, propellers. 

The problem of representing the action of a screw propeller has 
claimed the attention of mathematicians since the beginning of this 
century and today rather complex mathematical models are used. 
The propeller blades are represented by line vortices having 
varying circulation along their length. This variation leads to the 
shedding of free vortex lines in a direction coinciding with the 
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lMATHEMATICS IN WARSHIP DESIGN 

resultant motion and the problem is to calculate the velocities 
induced by these vortex lines around the sections of the propeller 
blades. When this is done the lift and drag can be evaluated at 
each section and these can be integrated to give the thrust on the 
ship and the torque required from the engine. 

Even this fairly complex analysis is found to be inadequate for 
the broad bladed propellers used to propel ships, but the theory 
provides an indispensable guide to the effect of varying parameters 
such as the pitch and shape of the blades. 

Until a quantitatively more accurate theory is available the 
ship designer must continue to base his propeller designs on the 
results of model experiments, particularly as in these experiments 
he is also able to allow for the interaction between the hull and the 
screw. 

One might ask why, if experimental methods are satisfactory, 
should we continue to search for a mathematical solution? The 
answer is clear, the experimenter can measure the thrust, torque 
and efficiency of his models and compare one with another, but 
he is almost completely in the dark about why these results are 
obtained, and will remain so until the mathematician can produce 
an adequate theory. 

3. Ship Motions 
The prediction of the motion of a ship in rough seas and the effect 

of the shape of the ship on this motion are questions which are 
currently attracting a good deal of attention among ship designers 
of all nations. A warship should be able to maintain high speed and 
fire its missiles accurately in spite of bad weather, and a passenger 
ship should not be too uncomfortable even in the worst seas it is 
likely to meet. The first step is to formulate the equations of motion 
for a ship moving at steady speed through regular waves, that is, 
waves of sinusoidal form whose crests are straight and extend 
indefinitely in either direction. For example, the simple equations 
for pitch and heave may be written in the form 

az + bz + cz = Fei't 

AO + BO + CO = Meit 

where z is the vertical displacement, or heave, 
0 is the angle of pitch 

F is the heaving force imposed on the ship by the waves 
and M is the pitching moment imposed on the ship by the waves. 

In these equations only the real part of the right-hand side is to 
be taken. 

In fact cross-coupling occurs between pitch and heave and the 
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equations become more generally 

az + bz + cz + dO + e6 + fO Feeiwt 

AO + BO + CO + Ei + Fi + Gz Meiot 

The coefficients on the left-hand side of these equations can be 
regarded as constants and they can be calculated from the lines 
plan of the ship although, in practice, it is easier to evaluate them 
by model experiments. When they are known the motion of the 
ship in regular waves can be predicted with reasonable accuracy. 

It might appear that this prediction of motion in regular waves 
is still far removed from forecasting what happens to a ship in the 
violent and confused seas which are encountered in storms, and so 
it would be were it not for the oceanographers and mathematicians 
who have taken records of such seas and then, by statistical analysis, 
resolved them into a very large number of very small sine waves. 
This neat handling by mathematicians of one of Nature's most 
fearsome spectacles is a story in itself, but it is sufficient for our 
present purpose that the ship designer can be given a distribution 
of wave energy against frequency for the worst seas likely to be 
encountered in any area. From this he can calculate the motions of 
a ship in regular components of the confused sea and then obtain 
the total motion by adding together the individual responses. 

It would be wrong, however, to give the impression that this 
problem has been solved. What we can say is that we know how 
to approach it and, in time, when certain details of the theoretical 
work have been improved, we expect to be able to forecast from the 
lines plan of a new ship what its probable motion will be in typical 
rough weather conditions and, most important of all, how to 
modify the shape of the ship to reduce this motion. 

4. Submarine Control 
With the advent of nuclear propulsion and of guided missiles 

which can be launched from a submerged body, increasing attention 
is being given to the design of large, high speed submarines. 
One of the many problems is to predict the behaviour of such a 
submarine, weighing perhaps several thousand tons, when manouver- 
ing at high speed deeply submerged. 

The submarine moves in three dimensions under the action of 
weight, buoyancy, resistance, propeller thrust and the hydro- 
dynamic lifts and moments on the control surfaces (the rudders 
and hydroplanes). With certain assumptions, such as neglecting 
the compressibility of the hull, the equations of motion can be 
written down and expressions can be obtained for the stability of the 
motion in the vertical and horizontal planes. Thus the linear 
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MATHEMATICS IN WARSHIP DESIGN 

equations for the dynamic stability of the disturbed motion in the 
vertical plane of a submarine moving on a level path can be expressed 
as: 

aO + bB + c, =0 

eO + fO + gO + h,/ =0 

where: 0 = the angle of the submarine's axis to the horizontal 
= the angle of incidence of the submarine, i.e., the angle 

of the axis to the instantaneous direction of advance 
of its C.G. 

The coefficients represent either mass and inertia or hydro- 
dynamic derivatives determined by the way in which the hydro- 
dynamic force and moment on the submarine vary with incidence 
B and angular velocity 0. 

The equations of motion are thus simultaneous linear differential 
equations for f and 0, which can be solved in the usual way by the 
substitutions 

p= - epAt, 0 oceAt 

The elimination of 0Q and fl, between the two equations thus 
obtained leads to a cubic equation in A known as the stability cubic. 
If any of the roots of the stability cubic are real and positive, or 
complex with positive real parts, the disturbed motion will increase 
with time and so be unstable. By this means a criterion for dynamic 
stability is obtained and a method provided whereby the sizes of 
the control surfaces can be determined. 

So far it has not been possible to calculate the coefficients in 
these expressions but they can be measured by experiments on 
models rotating in a circular path. 

Examples 
The following examples are concerned with the design of warships' 

structures. Here again the Admiralty have impressive apparatus 
for testing scale models, but this time the models are of steel and 
aluminium structures and the laboratories are at the Naval Con- 
struction Research Establishment, near Rosyth. Of the many 
pieces of equipment perhaps the most imposing (it is the largest, 
of its kind, in the world) is a testing frame enclosing a volume 
69 ft. X 39 ft. X 33 ft. in which large scale models can be subjected 
to forces up to 2,000 tons along the axis with additional forces up 
to 500 tons in any direction. While the models are being tested 
strain gauges record the stresses at a large number of critical points. 
As always, an adequate theory is essential if the designer is to under- 
stand why the stress at any point is high and if he is to extrapolate 
the model results to the full scale with confidence. 
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5. Longitudinal Strength Calculation 
The structure of a warship must be adequate to withstand, without 

excessive stress or deflection, the forces imposed on it during service. 
When a ship moves among waves the distribution of buoyancy 
along the length is continuously varying, and this causes the ship 
to bend, either "hogging" or "sagging" according to its position 
relative to the wave crest. The purpose of the longitudinal strength 
calculation is to find the largest stresses which a ship is likely to 
experience as a result of these bending actions. If, in a proposed 
design, the calculated stresses are unacceptably high, then the 
scantlings of the structure must be increased and the calculation 
repeated until the required standard of strength is obtained. 

It has been shown by tests on ships at sea that when the hull 
bends the resulting distribution of stress is in accordance with the 
linear bending theory; that is, the longitudinal bending stress at 
any point in the cross-section of a ship is proportional to the distance 
of that point from the neutral axis of bending. It follows that the 
longitudinal bending stress f at a point distant y from the neutral 
axis can be calculated from the equation 

My 
f-M (1) 

in which M is the external bending moment acting on the ship, 
and I is the second moment of area about the neutral axis of the 
hull cross-section at the longitudinal position considered. The 
position of the neutral axis must satisfy the condition that 

y. A = 0 

where y is the distance of any element 6A from the neutral axis, 
the summation including all longitudinally continuous material 
in the cross-section. Having established the position of the neutral 
axis, the second moment of area I is then found from the sum- 
mation: 

I = 2 y . A. 

To calculate the bending stress from equation (1) it remains to 
find the bending moment M resulting from the distribution of 
weight and buoyancy along the length of the ship. For this the 
ship is assumed to be at rest with either the crest or trough of a 
wave amidships, the former giving rise to the "hogging" condition 
and the latter to the "sagging" condition. For the purpose of this 
standard calculation the wave length L is taken equal to the ship 
length, and the wave height h as 1/20th of the length. The profile 
of the wave surface is assumed to be a trochoid whose horizontal 
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MATHEMATICS IN WARSHIP DESIGN 

and vertical co-ordinates x and y are related by the equations 
LO h 

x2 +2svn 

h 
y == (1 -cos 0) 

A profile of this "standard" wave is then placed over a profile of the 
ship, and its position adjusted by trial and error until the buoyancy 
is equal to the weight of the ship and the centre of buoyancy is 
vertically below the centre of gravity of the ship. This meets the 
initial assumption that the ship is poised, in equilibrium, on the 
wave. The evaluation of the buoyancy and centre of buoyancy of 
the part of the ship beneath the surface of the wave is usually made 
by a mechanical integrator, the instrument being moved by hand 
around the drawing of the immersed sections of the ship. 

In this way a curve of buoyancy per unit length can be plotted. 
The difference between this and the curve of weight per unit length 
gives the net loading at each section of the ship. If the net load per 
foot run at any distance x from amidships is denoted by q, then the 
shearing force F and bending moment M acting on the ship at that 
point are 

x 

Jo 
F Jq. dx +1 

i- J q . dx . dx + Clx + C 

in which the constants of integration are such that the shear force 
and bending moment are zero at the ends of the ship. Integration 
of the load curve to obtain the shear force, and double integration 
to obtain the bending moment, may either be done numerically, 
using Simpson's or similar rules, or mechanically, using an integraph 
which automatically plots the integral of a curve when the pointer 
is moved along the curve. 

The stress distribution at any section of the ship can then be 
calculated from the shear force and bending moment at that section 
and the thickness of the structural members can be adjusted to 
bring these stresses to values which experience has shown to be 
suitable. 

6. Longitudinal Strength of Superstructures 
The longitudinal strength calculation, using the linear bending 

theory as described above, strictly applies only to the main hull 
girder of a ship up to the uppermost continuous deck. Wherever the 
longitudinal structure of the ship contains breaks or discontinuities 
the assumptions of the linear theory are no longer valid and a 
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THE MATHEMATICAL GAZETTE 

different approach is required to find the stresses in the discontinuous 
structure. The ship's superstructure is an important case in point. 
This will extend over only a part of the length of the ship and may 
thus be regarded as a short box structure rigidly attached to a 
longer beam which is itself subjected to known bending and shearing 
forces obtained from the weight and buoyancy curves as described 
above. The base of the superstructure is therefore forced, by its 
attachment to the hull, to bend and stretch; and the problem is to 
find the stresses in the superstructure resulting from these actions. 

It can be shown that when a flat panel of plating is subjected to 
forces applied in its own plane, the resulting stress distribution in 
the plate is governed by the equation 

a4 9 2a48 a4 

ax4 ax2 ay2 
+ 

-y4 
0 

in which x and y are orthogonal co-ordinate axes, and p is the Airy 
Stress Function. The direct stresses fx and fv and the shear stress 
fxy are related to the stress function ( by the equations 

a2( 
f$ ax2 

a29 
f~ ay2 > (2) 

x ax. ay 

Thus if, for a single deck superstructure, 91 denotes a stress function 
governing stress in the sides of the superstructure and c2 a stress 
function in the top of the superstructure, then both 91 and P2 must 
satisfy equation (1) and also the appropriate conditions of stress, 
strain or curvature at the edges of the panels. 

For this type of problem it is convenient to express the stress 
function in the form of an infinite series 

- = S(A cosh nky + B sinh nky + Cy cosh nky 
+ Dy sinh nky) cos nkx (3) 

in which n takes integral values and the summation includes as 
many terms as are required to express accurately in series form the 
external bending moment applied to the ship. Equation (3) satisfies 
equation (1), and hence it only remains to find the integration con- 
stants A, B, C and D in equation (3), to make T satisfy the necessary 
edge conditions for the separate plate panels forming the sides and 
top of the superstructure. Thus the stress function for the vertical 
sides of the superstructure must be such that at its lower edge the 
strains and curvatures conform to those in the hull; in this way the 
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interaction of hull and superstructure is taken into account. There 
are sufficient edge conditions to enable all the constants of integration 
to be determined, and from these the stress functions 99 are obtained. 
The stresses at any point in the superstructure are then found from 
equations (2). 

The mathematical procedure described above, in which a solution 
to the governing differing equation is found which satisfies the 
relevant boundary conditions, is typical of the technique used in 
solving many ships structural problems. A similar application of 
this method is described in the next section. 

7. Strength of Flat Grillages under Lateral Loading 
The structure of a warship is largely composed of panels of 

plating reinforced by stiffeners to withstand either axial or lateral 
loading. A plate panel reinforced by an orthogonal system of 
stiffeners is generally referred to as a plated grillage, and the calcu- 
lation of the strength and stiffness of grillages is thus of basic 
importance in warship structural design. A typical case occurs, for 
example, in the flight deck of an Aircraft Carrier. The deck has to 
be designed to withstand, without yielding or undue deflection, the 
loads which may occur due to aircraft taking-off, or landing. 
This particular design problem has stimulated considerable research 
into the strength of flat grillages under point loads, and techniques 
of elastic analysis have been developed for this problem which are 
equally applicable to grillages under uniform lateral pressure. 

It has been found that the lateral deflection w at any point 
(x, y) on a flat grillage under lateral pressure of intensity p is governed 
by the equation 

a4w a4w a4w 
A 

X-4 + Bax2 ay 
+ 

C-y a p 

in which A, B, and C are coefficients which depend on the flexural 
and torsional stiffnesses of the grillage and can be calculated from 
the dimensions and elastic properties of the plating and its stiffeners. 
The solution of the above equation generally follows similar lines 
to those outlined above for the superstructure calculation. A solution 
of the differential equation is found, and contains constants of 
integration which are then chosen to satisfy the conditions at the 
boundaries of the grillage. Thus if the stiffeners are effectively 
encastre at the edges of the grillage, that is, they do not deflect 
laterally or rotate at that edge, then the boundary conditions are 

w O 

aw 
x0 ox 
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at the edge considered. Such boundary conditions can always be 
written in terms of the deflection w or its derivatives, and these 
conditions enable constants of integration to be found. From the 
general expression for deflection so obtained, bending moments and 
hence stresses in the structure can be calculated, since these also can 
be written in terms of deflection derivatives and the flexural 
properties of the grillage. 

This differential equation solution of grillage problems is only 
useful where there are a large number of stiffening beams in both 
directions and where both structure and loading are regular. In 
many practical cases, however, the stiffening beams have, for other 
reasons, to be of differing sizes and are often irregularly spaced, and 
the solution by this method becomes prohibitively complex. As 
an alternative in such cases use is often made of the Energy Method 
which embodies the principle that if a system is in a position of 
stable equilibrium then its total energy is a minimum. Now the 
total energy of a laterally loaded grillage consists of two parts, the 
strain energy (V) of bending of the grillage, and the potential 
energy (W) of the load applied to the panel. The bending energy 
(V) can be expressed in terms of the known flexural properties of 
the grillage and the deflection w or its derivatives; and the potential 
energy W involves only the loading p and the deflection w. Thus, 
for example, the deflected surface of the grillage might be assumed 
in the form 

w = alF1 + a2F2 + a3F3 

in which F1, F2, and F3 are functions of the co-ordinates x and y, 
and al, a2, and a3 are constants yet to be determined. This assumed 
form of deflection should satisfy the boundary conditions for the 
grillage. Then the total energy 

u - + W 

can be expressed in terms of the known flexural properties, the 
loading, and the constants a1, a2, and a3 in the deflection expression. 
Since the total energy must be a minimum for equilibrium then 

au au au 
aa - aa2 

- 
aa3 - 

and these three equations enable al, a2, and a3 to be found, and 
hence the full expression for deflection determined. Bending 
moments and stresses are then calculated in the usual way from the 
deflection expression. It will be seen that the success of this method 
depends on choosing an assumed deflection form which closely 
approximates actual conditions. If this is done the results will be 
sufficiently accurate for design purposes. In this connection experi- 
mental evidence from models or full-scale structures is of great value 
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MATHEMATICS IN WARSHIP DESIGN 

in selecting deflection expressions for use with the energy method. 
In the past both methods of analysis described above have been 

widely used in the design of ship structural elements. The scope of 
both methods has hitherto been limited mainly by the amount of 
time and labour available for carrying out the necessary algebraic 
or arithmetical analysis. However, with the recent development of 
electronic computing, the scope of theoretical structural analysis 
will be greatly increased. Calculation of stresses in complex 
structures under irregular loading now becomes possible, and already 
computing programmes have been prepared to deal with a number 
of standard structural problems in warships. 

8. Submarine Pressure Hull 
The hull of a submarine must be able to withstand the pressure 

due to several hundred feet of water and this must be done with 
the minimum weight of structure so that as much weight as possible 
can be allowed for the armament, stores and machinery. Fortunately 
there are two reasons why the design of a submarine hull lends 
itself to precise mathematical treatment; one is that the loading 
at the maximum depth is known accurately and the other is that 
the section is circular. Basically the hull is a cylindrical shell 
strengthened by ring stiffeners and divided into compartments 
by bulkheads. The designer's job is to calculate the optimum size 
and spacing of the stiffeners and the thickness of the cylindrical 
plating. 

The structure may fail in several ways and for each possible 
method of collapse differential equations can be set up for the radial 
displacement of the cylinder. A typical equation is 

d4w hw p (1 [) 
dx4+ Ya2 IE 2J 

where w, h and a are the radial displacement, thickness and radius 
of the cylinder, I is the M.I. of the frame, x is distance measured 
along the axis, p is the pressure, E is Young's modulus, and /u is 
Poisson's ratio. 

The solution to this equation has four arbitrary constants which 
can be determined from the boundary conditions of slope, displace- 
ment, shear force, and curvature. The equation for w given by this 
solution can be successively differentiated to give bending moments 
and shearing forces, and from these the stresses can be calculated. 

The above, it must be admitted, is somewhat less sophisticated 
than the treatment which is found to be necessary for an accurate 
assessment of the stresses in the hull. This generally involves 
solutions to differential equations in the form of series and some 
experiment work to determine the effect of the interaction between 
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the different modes of failure. By such means it is possible to 
design a cylindrical hull which will withstand a given pressure and 
have the minimum weight. 

This, of course, is only the first stage of the investigation; many 
areas of the cylinder have to be pierced for hatches, pipes and valves, 
or joined to decks or machinery seats, and these drastically upset 
the stress pattern. The stress at each discontinuity has to be analysed 
by theory and experiment and this requires a concentrated effort 
by mathematicians and constructors which would, no doubt, 
surprise those who were not familiar with this subject. 

S. J. P. 
Admiralty Offices, Bath 

DIRICHLET 

By H. DAVENPORT 

This year has brought the centenary of Dirichlet's death (5 May 
1859), and it is fitting that we should recall some of his achievements 
and his part in the development of mathematics. 

Gustav Peter Lejeune Dirichlet was born on 13 February 1805, 
and waa the son of the postmaster at Diiren, near Cologne. Among 
the schools he attended was a Gymnasium at Cologne, where one of 
his teachers was the physicist Ohm. When the time came for 
University study in 1822, Dirichlet persuaded his parents to let 
him go to Paris, which was then the world centre of mathematics. 
Laplace and Legendre were still alive and active, Fourier was at 
the height of his career, with a group of brilliant young men round 
him, and Cauchy had already begun his massive development of 
the theory of functions. 

Dirichlet spent three years in Paris and profited greatly from 
them. Besides attending lectures, he devoted himself to reading and 
re-reading Gauss's Disquisitiones Arithmeticae. By long continued 
efforts he mastered it, and he was probably the first to do so, even 
though it had appeared more than 20 years earlier. The two great 
influences of the Paris period: his regular studies and his mastery 
of the Disquisitiones, show themselves throughout all his work. 

The first paper he published (on the equation x5 + y5 - z5) 
sufficed to establish Dirichlet's reputation, and brought him the 
friendship of Fourier and of Alexander von Humboldt, who exerted 
himself to further his career. Soon after he returned to Germany, 
Dirichlet was appointed Professor at Berlin, and stayed there 
until 1855 when he accepted the invitation to succeed Gauss at 
Gottingen. (His own successor in 1859 was Riemann.) Thus most 
of Dirichlet's work belongs to the Berlin period. Jacobi was also 
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