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MATHEMATICS IN WARSHIP DESIGN
By S. J. PALMER

Members of the Royal Corps of Naval Constructors are responsible
for the design and construction of H.M. Ships, and one of the main
features of their training is the study of mathematics. The aim of
this article is to give the VIth form mathematics teacher an acquain-
tance with the kind of mathematics used in ship design; he may then
be able to encourage some of his pupils to consider the prospect
of a career in the Royal Corps. Promising mathematicians with a
strong practical bent can enter from school under a scheme advertised
in this number of the Gazette.

Now it is probably well known that a large warship is one of the
most complex engineering projects to which man puts his hand;
it must be able to propel itself through oceans at high speed, to
withstand the stresses and motions imposed by the seas, to carry
and operate the latest weapons and detection devices, to withstand
attack from the enemy, and to house and feed its ship’s company
in reasonable comfort in all weather conditions between the Arctic
and the Tropics. The design of such a ship poses a number of
problems for the Constructor and his colleagues in the Royal
Naval Scientific Service, problems as diverse as calculating the trunk
sizes of complex ventilation systems or the thickness of shielding
around nuclear reactors. In common with general practice in
industry many of these questions can be solved satisfactorily by
engineering research and experience, but the problems which are
peculiar to ships and, in particular, to warships, usually cannot be
dealt with in this way. The reason for this is that warships are
big and expensive and it is not practicable to build and test proto-
types; nevertheless no risks can be taken with their speed, stability,
or structural strength and, since they must be at least as efficient
as similar warships produced in other countries, there is no room for
large factors of safety. Under these conditions the design can only
be tackled by a logical, mathematical, approach.

At the present time, however, mathematical theories still fall
short of solving completely some of the more complex problems in
ship hydrodynamics and ship structures, and the designer is
compelled to check and adjust the results of his calculations by tests
on scale models. The examples which follow illustrate some of these
problems and the way in which experiments with small models
either check or fill the gaps in theories which are still not completely
satisfactory.

The first four examples are concerned with ship hydrodynamics.
The model tests are mainly carried out at the Admiralty Experiment
Works near Gosport and the equipment is impressive: there are
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MATHEMATICS IN WARSHIP DESIGN 257

long tanks (the largest 900’ long X 40’ wide) in which ship models
are propelled or towed at speeds up to 40 feet per second, water
tunnels in which model propellers can be examined under working
conditions in stroboscopic lighting, and a large manoeuvring basin
in which models can be remotely controlled in complex wave systems.
As with all scale model work great accuracy in workmanship and
measurement is essential.

1. Ship Resistance

The resistance (R) of a ship depends on its dimensions (L) and
speed (V), upon gravity, and upon the viscosity (u) and density (p)
of the fluid in which it moves. From dimensional analysis

R (VL V2)
(plg) VAL " \ufp’ 9L
That is, the non-dimensional resistance coefficient is a function of two
variables, the first depending on viscosity (called skin friction),
and the second depending on gravity (called the wavemaking
resistance).

When designing a ship’s hull it is necessary to find the shape which
will have the least resistance and to make an accurate estimate of
this resistance. At the present time this is done by experiments with
scale models and it is not possible to define the shape by a convenient
mathematical expression. It is usually assumed (the Froude
hypothesis) that skin friction and wavemaking resistance are
separate components and that the total resistance is the sum of the
two. Much of the theoretical work which has been done on skin
friction has been published and need not concern us here, but the
parallel work on wavemaking is not so well known.

Careful observation of a ship or model moving at uniform speed
in calm water reveals that abaft the bow, and enclosed within lines
angled at about 30° to the centreline of the ship, there are two wave
systems, one with its crests at about 60° to the centreline and the
other at right angles to the centreline. Similar waves are generated
at the stern, the bow and stern systems having a phase difference
which depends on the length of the ship and its speed. The inter-
ference of the two systems to produce the waves left behind the ship
leads to a periodic variation of resistance with speed; if crests of the
bow waves pitch into troughs of the stern waves then the resulting
waves abaft the ship are small and the resistance is small and,
conversely, if the crests coincide the resistance is high. If the speed
of the ship is steadily increased the two wave systems will alternately
fall into and out of phase and, since this affects the pressure distri-
bution around the ship, the resistance fluctuates.

Progress on the development of an adequate theory has been

2
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258 THE MATHEMATICAL GAZETTE

continuous, if slow, since Michell published the fundamental theory
in 1898, and reasonably accurate estimates of the wavemaking resis-
tance of certain geometrical forms can now be made. These generally
have been obtained by selecting complex variables, or distributions
of sources and sinks, which will generate ship-like forms. For
example, the source distribution for a very fine form with parabolic
sections, extending over the central plane (y = 0) between limits
—a <Lz <<a,and 0 < 2 < d,is given by

_bex . 22
=\ T e

where ¢ = sources per unit area,
¢ = speed of body along 0x
2a = length of body,
2b = maximum breadth of body,
d = draught

It is true that a great deal more must be done before we can
calculate the wavemaking resistance of normal ship forms, but the
solutions which have already been obtained have made a valuable
contribution to understanding what happens and they have stimu-
lated and clarified model research.

2. Shtp Propulsion

All ships have to have a means of propulsion and the usual way is
to use a screw propeller to convert the power of an engine into a
driving force. This force is developed by setting water in motion
backwards and, of course, the kinetic energy of this water is lost.
If m is the mass of the water flowing through the propeller in unit
time and v is the increase in the velocity of the water due to the
propeller action, then the thrust is proportional to mv and the kinetic
energy lost is proportional to me2. It follows that to reduce the loss
of energy v should be as small as possible, which, for a given thrust,
can only be done by making m as large as possible, that is, by making
the propeller as large as possible. This simple fact is often not
appreciated by people who build model boats and then fit them with
tiny, and therefore inefficient, propellers.

The problem of representing the action of a screw propeller has
claimed the attention of mathematicians since the beginning of this
century and today rather complex mathematical models are used.
The propeller blades are represented by line vortices having
varying circulation along their length. This variation leads to the
shedding of free vortex lines in a direction coinciding with the
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resultant motion and the problem is to calculate the velocities
induced by these vortex lines around the sections of the propeller
blades. When this is done the lift and drag can be evaluated at
each section and these can be integrated to give the thrust on the
ship and the torque required from the engine.

Even this fairly complex analysis is found to be inadequate for
the broad bladed propellers used to propel ships, but the theory
provides an indispensable guide to the effect of varying parameters
such as the pitch and shape of the blades.

Until a quantitatively more accurate theory is available the
ship designer must continue to base his propeller designs on the
results of model experiments, particularly as in these experiments
he is also able to allow for the interaction between the hull and the
screw.

One might ask why, if experimental methods are satisfactory,
should we continue to search for a mathematical solution? The
answer is clear, the experimenter can measure the thrust, torque
and efficiency of his models and compare one with another, but
he is almost completely in the dark about why these results are
obtained, and will remain so until the mathematician can produce
an adequate theory.

3. Ship Motions

The prediction of the motion of a ship in rough seas and the effect
of the shape of the ship on this motion are questions which are
currently attracting a good deal of attention among ship designers
of all nations. A warship should be able to maintain high speed and
fire its missiles accurately in spite of bad weather, and a passenger
ship should not be too uncomfortable even in the worst seas it is
likely to meet. The first step is to formulate the equations of motion
for a ship moving at steady speed through regular waves, that is,
waves of sinusoidal form whose crests are straight and extend
indefinitely in either direction. For example, the simple equations
for pitch and heave may be written in the form

az + bz + cz = Feivt
Af + Bb + C0 = Meiot

where zis the vertical displacement, or heave,

0 is the angle of pitch

F is the heaving force imposed on the ship by the waves
and M is the pitching moment imposed on the ship by the waves.

In these equations only the real part of the right-hand side is to
be taken.
In fact cross-coupling occurs between pitch and heave and the
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equations become more generally
ai 4 bz + cz + db + ed + f0 = Feiot
A0 + B + CO + E: + Fi + Gz = Meit

The coefficients on the left-hand side of these equations can be
regarded as constants and they can be calculated from the lines
plan of the ship although, in practice, it is easier to evaluate them
by model experiments. When they are known the motion of the
ship in regular waves can be predicted with reasonable accuracy.

It might appear that this prediction of motion in regular waves
is still far removed from forecasting what happens to a ship in the
violent and confused seas which are encountered in storms, and so
it would be were it not for the oceanographers and mathematicians
who have taken records of such seas and then, by statistical analysis,
resolved them into a very large number of very small sine waves.
This neat handling by mathematicians of one of Nature’s most
fearsome spectacles is a story in itself, but it is sufficient for our
present purpose that the ship designer can be given a distribution
of wave energy against frequency for the worst seas likely to be
encountered in any area. From this he can calculate the motions of
a ship in regular components of the confused sea and then obtain
the total motion by adding together the individual responses.

It would be wrong, however, to give the impression that this
problem has been solved. What we can say is that we know how
to approach it and, in time, when certain details of the theoretical
work have been improved, we expect to be able to forecast from the
lines plan of a new ship what its probable motion will be in typical
rough weather conditions and, most important of all, how to
modify the shape of the ship to reduce this motion.

4. Submarine Control

With the advent of nuclear propulsion and of guided missiles
which can be launched from a submerged body, increasing attention
is being given to the design of large, high speed submarines.
One of the many problems is to predict the behaviour of such a
submarine, weighing perhaps several thousand tons, when manouver-
ing at high speed deeply submerged.

The submarine moves in three dimensions under the action of
weight, buoyancy, resistance, propeller thrust and the hydro-
dynamic lifts and moments on the control surfaces (the rudders
and hydroplanes). With certain assumptions, such as neglecting
the compressibility of the hull, the equations of motion can be
written down and expressions can be obtained for the stability of the
motion in the vertical and horizontal planes. Thus the linear
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equations for the dynamic stability of the disturbed motion in the
vertical plane of a submarine moving on a level path can be expressed
as:

ad+bf+cf=0
e +f0 4+ g6 +h8=0

where: § = the angle of the submarine’s axis to the horizontal
f = the angle of incidence of the submarine, i.e., the angle
of the axis to the instantaneous direction of advance
of its C.G.

The coefficients represent either mass and inertia or hydro-
dynamic derivatives determined by the way in which the hydro-
dynamic force and moment on the submarine vary with incidence
B and angular velocity 6.

The equations of motion are thus simultaneous linear differential
equations for § and 0, which can be solved in the usual way by the
substitutions

B= ﬂceh, 6= oceu

The elimination of 6, and S, between the two equations thus
obtained leads to a cubic equation in A known as the stability cubic.
If any of the roots of the stability cubic are real and positive, or
complex with positive real parts, the disturbed motion will increase
with time and so be unstable. By this means a criterion for dynamic
stability is obtained and a method provided whereby the sizes of
the control surfaces can be determined.

So far it has not been possible to calculate the coefficients in
these expressions but they can be measured by experiments on
models rotating in a circular path.

Examples

The following examples are concerned with the design of warships’
structures. Here again the Admiralty have impressive apparatus
for testing scale models, but this time the models are of steel and
aluminium structures and the laboratories are at the Naval Con-
struction Research Establishment, near Rosyth. Of the many
pieces of equipment perhaps the most imposing (it is the largest,
of its kind, in the world) is a testing frame enclosing a volume
69 ft. X 39 ft. X 33 ft. in which large scale models can be subjected
to forces up to 2,000 tons along the axis with additional forces up
to 500 tons in any direction. While the models are being tested
strain gauges record the stresses at a large number of critical points.
As always, an adequate theory is essential if the designer is to under-
stand why the stress at any point is high and if he is to extrapolate
the model results to the full scale with confidence.
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5. Longitudinal Strength Calculation

The structure of a warship must be adequate to withstand, without
excessive stress or deflection, the forces imposed on it during service.
When a ship moves among waves the distribution of buoyancy
along the length is continuously varying, and this causes the ship
to bend, either “hogging’ or “sagging’” according to its position
relative to the wave crest. The purpose of the longitudinal strength
calculation is to find the largest stresses which a ship is likely to
experience as a result of these bending actions. If, in a proposed
design, the calculated stresses are unacceptably high, then the
scantlings of the structure must be increased and the calculation
repeated until the required standard of strength is obtained.

It has been shown by tests on ships at sea that when the hull
bends the resulting distribution of stress is in accordance with the
linear bending theory; that is, the longitudinal bending stress at
any point in the cross-section of a ship is proportional to the distance
of that point from the neutral axis of bending. It follows that the
longitudinal bending stress f at a point distant y from the neutral
axis can be calculated from the equation

M
=% M

in which M is the external bending moment acting on the ship,
and I is the second moment of area about the neutral axis of the
hull cross-section at the longitudinal position considered. The
position of the neutral axis must satisfy the condition that

2y.04=0

where y is the distance of any element 04 from the neutral axis,
the summation including all longitudinally continuous material
in the cross-section. Having established the position of the neutral
axis, the second moment of area I is then found from the sum-
mation:

I =2y?. 64.

To calculate the bending stress from equation (1) it remains to
find the bending moment M resulting from the distribution of
weight and buoyancy along the length of the ship. For this the
ship is assumed to be at rest with either the crest or trough of a
wave amidships, the former giving rise to the “hogging” condition
and the latter to the “sagging’ condition. For the purpose of this
standard calculation the wave length L is taken equal to the ship
length, and the wave height % as 1/20th of the length. The profile
of the wave surface is assumed to be a trochoid whose horizontal
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and vertical co-ordinates z and y are related by the equations
Lo b, 0
T =% + g

= g (1 — cos 0)

A profile of this “‘standard’” wave is then placed over a profile of the
ship, and its position adjusted by trial and error until the buoyancy
is equal to the weight of the ship and the centre of buoyancy is
vertically below the centre of gravity of the ship. This meets the
initial assumption that the ship is poised, in equilibrium, on the
wave. The evaluation of the buoyancy and centre of buoyancy of
the part of the ship beneath the surface of the wave is usually made
by a mechanical integrator, the instrument being moved by hand
around the drawing of the immersed sections of the ship.

In this way a curve of buoyancy per unit length can be plotted.
The difference between this and the curve of weight per unit length
gives the net loading at each section of the ship. If the net load per
foot run at any distance x from amidships is denoted by ¢, then the
shearing force F and bending moment M acting on the ship at that
point are

T
F=Jq.dx—|—01
0

z [z
M:J‘J‘q.dx.dx—}—olx—{—()z
0Jo

in which the constants of integration are such that the shear force
and bending moment are zero at the ends of the ship. Integration
of the load curve to obtain the shear force, and double integration
to obtain the bending moment, may either be done numerically,
using Simpson’s or similar rules, or mechanically, using an integraph
which automatically plots the integral of a curve when the pointer
is moved along the curve.

The stress distribution at any section of the ship can then be
calculated from the shear force and bending moment at that section
and the thickness of the structural members can be adjusted to
bring these stresses to values which experience has shown to be
suitable.

6. Longitudinal Strength of Superstructures

The longitudinal strength calculation, using the linear bending
theory as described above, strictly applies only to the main hull
girder of a ship up to the uppermost continuous deck. Wherever the
longitudinal structure of the ship contains breaks or discontinuities
the assumptions of the linear theory are no longer valid and a
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different approach is required to find the stresses in the discontinuous
structure. The ship’s superstructure is an important case in point.
This will extend over only a part of the length of the ship and may
thus be regarded as a short box structure rigidly attached to a
longer beam which is itself subjected to known bending and shearing
forces obtained from the weight and buoyancy curves as described
above. The base of the superstructure is therefore forced, by its
attachment to the hull, to bend and stretch; and the problem is to
find the stresses in the superstructure resulting from these actions.

It can be shown that when a flat panel of plating is subjected to
forces applied in its own plane, the resulting stress distribution in
the plate is governed by the equation

o' 20% 0%
@ e Tyt
in which 2 and y are orthogonal co-ordinate axes, and ¢ is the Airy

Stress Function. The direct stresses f, and f, and the shear stress
fxy are related to the stress function ¢ by the equations

0 (1)

0%
o= Gt
a2
£, = 5?/_‘;’ , @)
0%p
fo =~ oy |

Thus if, for a single deck superstructure, ¢, denotes a stress function
governing stress in the sides of the superstructure and ¢, a stress
function in the top of the superstructure, then both ¢, and @, must
satisfy equation (1) and also the appropriate conditions of stress,
strain or curvature at the edges of the panels.

For this type of problem it is convenient to express the stress
function in the form of an infinite series

@ = X(4 cosh nky + B sinh nky + Cy cosh nky
+ Dy sinh nky) cos nkxz  (3)

in which n takes integral values and the summation includes as
many terms as are required to express accurately in series form the
external bending moment applied to the ship. Equation (3) satisfies
equation (1), and hence it only remains to find the integration con-
stants 4, B, C and D in equation (3), to make ¢ satisfy the necessary
edge conditions for the separate plate panels forming the sides and
top of the superstructure. Thus the stress function for the vertical
sides of the superstructure must be such that at its lower edge the
strains and curvatures conform to those in the hull; in this way the
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interaction of hull and superstructure is taken into account. There
are sufficient edge conditions to enable all the constants of integration
to be determined, and from these the stress functions ¢ are obtained.
The stresses at any point in the superstructure are then found from
equations (2).

The mathematical procedure described above, in which a solution
to the governing differing equation is found which satisfies the
relevant boundary conditions, is typical of the technique used in
solving many ships structural problems. A similar application of
this method is described in the next section.

7. Strength of Flat Grillages under Lateral Loading

The structure of a warship is largely composed of panels of
plating reinforced by stiffeners to withstand either axial or lateral
loading. A plate panel reinforced by an orthogonal system of
stiffeners is generally referred to as a plated grillage, and the calcu-
lation of the strength and stiffness of grillages is thus of basic
importance in warship structural design. A typical case occurs, for
example, in the flight deck of an Aircraft Carrier. The deck has to
be designed to withstand, without yielding or undue deflection, the
loads which may occur due to aircraft taking-off, or landing.
This particular design problem has stimulated considerable research
into the strength of flat grillages under point loads, and techniques
of elastic analysis have been developed for this problem which are
equally applicable to grillages under uniform lateral pressure.

It has been found that the lateral deflection w at any point
(, y) on a flat grillage under lateral pressure of intensity o is governed
by the equation

0w 0w o*w

in which 4, B, and C are coefficients which depend on the flexural
and torsional stiffnesses of the grillage and can be calculated from
the dimensions and elastic properties of the plating and its stiffeners.
The solution of the above equation generally follows similar lines
to those outlined above for the superstructure calculation. A solution
of the differential equation is found, and contains constants of
integration which are then chosen to satisfy the conditions at the
boundaries of the grillage. Thus if the stiffeners are effectively
encastré at the edges of the grillage, that is, they do not deflect
laterally or rotate at that edge, then the boundary conditions are

w=20
ow
Pl
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at the edge considered. Such boundary conditions can always be
written in terms of the deflection w or its derivatives, and these
conditions enable constants of integration to be found. From the
general expression for deflection so obtained, bending moments and
hence stresses in the structure can be calculated, since these also can
be written in terms of deflection derivatives and the flexural
properties of the grillage.

This differential equation solution of grillage problems is only
useful where there are a large number of stiffening beams in both
directions and where both structure and loading are regular. In
many practical cases, however, the stiffening beams have, for other
reasons, to be of differing sizes and are often irregularly spaced, and
the solution by this method becomes prohibitively complex. As
an alternative in such cases use is often made of the Energy Method
which embodies the principle that if a system is in a position of
stable equilibrium then its total energy is a minimum. Now the
total energy of a laterally loaded grillage consists of two parts, the
strain energy (V) of bending of the grillage, and the potential
energy (W) of the load applied to the panel. The bending energy
(V) can be expressed in terms of the known flexural properties of
the grillage and the deflection w or its derivatives; and the potential
energy W involves only the loading p and the deflection w. Thus,
for example, the deflected surface of the grillage might be assumed
in the form

w=a,F; + a,Fy + a;F,

in which F,, F,, and F, are functions of the co-ordinates = and y,
and a,, a,, and a, are constants yet to be determined. This assumed
form of deflection should satisfy the boundary conditions for the
grillage. Then the total energy

U=V +W

can be expressed in terms of the known flexural properties, the
loading, and the constants @;, a,, and a in the deflection expression.
Since the total energy must be a minimum for equilibrium then

ou oU oU 0

Oa,  Oay, Oas
and these three equations enable a;, a,, and a; to be found, and
hence the full expression for deflection determined. Bending
moments and stresses are then calculated in the usual way from the
deflection expression. It will be seen that the success of this method
depends on choosing an assumed deflection form which closely
approximates actual conditions. If this is done the results will be
sufficiently accurate for design purposes. In this connection experi-
mental evidence from models or full-scale structures is of great value
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in selecting deflection expressions for use with the energy method.

In the past both methods of analysis described above have been
widely used in the design of ship structural elements. The scope of
both methods has hitherto been limited mainly by the amount of
time and labour available for carrying out the necessary algebraic
or arithmetical analysis. However, with the recent development of
electronic computing, the scope of theoretical structural analysis
will be greatly increased. Calculation of stresses in complex
structures under irregular loading now becomes possible, and already
computing programmes have been prepared to deal with a number
of standard structural problems in warships.

8. Submarine Pressure Hull

The hull of a submarine must be able to withstand the pressure
due to several hundred feet of water and this must be done with
the minimum weight of structure so that as much weight as possible
can be allowed for the armament, stores and machinery. Fortunately
there are two reasons why the design of a submarine hull lends
itself to precise mathematical treatment; one is that the loading
at the maximum depth is known accurately and the other is that
the section is circular. Basically the hull is a cylindrical shell
strengthened by ring stiffeners and divided into compartments
by bulkheads. The designer’s job is to calculate the optimum size
and spacing of the stiffeners and the thickness of the cylindrical
plating.

The structure may fail in several ways and for each possible
method of collapse differential equations can be set up for the radial
displacement of the cylinder. A typical equation is

dw  hw p u
A T IR TIE (1”2)
where w, # and a are the radial displacement, thickness and radius
of the cylinder, I is the M.I. of the frame, z is distance measured
along the axis, p is the pressure, ¥ is Young’s modulus, and y is
Poisson’s ratio.

The solution to this equation has four arbitrary constants which
can be determined from the boundary conditions of slope, displace-
ment, shear force, and curvature. The equation for w given by this
solution can be successively differentiated to give bending moments
and shearing forces, and from these the stresses can be calculated.

The above, it must be admitted, is somewhat less sophisticated
than the treatment which is found to be necessary for an accurate
assessment of the stresses in the hull. This generally involves
solutions to differential equations in the form of series and some
experiment work to determine the effect of the interaction between
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the different modes of failure. By such means it is possible to
design a cylindrical hull which will withstand a given pressure and
have the minimum weight.

This, of course, is only the first stage of the investigation; many
areas of the eylinder have to be pierced for hatches, pipes and valves,
or joined to decks or machinery seats, and these drastically upset
the stress pattern. The stress at each discontinuity has to be analysed
by theory and experiment and this requires a concentrated effort
by mathematicians and constructors which would, no doubt,
surprise those who were not familiar with this subject.

S. J. P
Admiralty Offices, Bath

DIRICHLET

By H. DAVENPORT

This year has brought the centenary of Dirichlet’s death (5 May
1859), and it is fitting that we should recall some of his achievements
and his part in the development of mathematics.

Gustav Peter Lejeune Dirichlet was born on 13 February 1805,
and was the son of the postmaster at Diiren, near Cologne. Among
the schools he attended was a Gymnasium at Cologne, where one of
his teachers was the physicist Ohm. When the time came for
University study in 1822, Dirichlet persuaded his parents to let
him go to Paris, which was then the world centre of mathematies.
Laplace and Legendre were still alive and active, Fourier was at
the height of his career, with a group of brilliant young men round
him, and Cauchy had already begun his massive development of
the theory of functions.

Dirichlet spent three years in Paris and profited greatly from
them. Besides attending lectures, he devoted himself to reading and
re-reading Gauss’s Disquisitiones Arithmeticae. By long continued
efforts he mastered it, and he was probably the first to do so, even
though it had appeared more than 20 years earlier. The two great
influences of the Paris period: his regular studies and his mastery
of the Disquisitiones, show themselves throughout all his work.

The first paper he published (on the equation z® 4 y° = 2%)
sufficed to establish Dirichlet’s reputation, and brought him the
friendship of Fourier and of Alexander von Humboldt, who exerted
himself to further his career. Soon after he returned to Germany,
Dirichlet was appointed Professor at Berlin, and stayed there
until 1855 when he accepted the invitation to succeed Gauss at
Gottingen. (His own successor in 1859 was Riemann.) Thus most
of Dirichlet’s work belongs to the Berlin period. Jacobi was also
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