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tainability and continued economic development, the dependency on private vehicles
must be decreased by increasing public transportation usage. However, without knowing
the key factors that affect public transportation usage, developing strategies that effec-
tively improve public transportation usage is impossible. Therefore, this study respec-
tively applies global and local regression models to identify the key factors of usage
Tobit regression rates for 348 regions (township or districts) in Taiwan. The global regression model,
Geographically weighted regression the Tobit regression model (TRM), is used to estimate one set of parameters that are
Spatial autocorrelation associated with explanatory variables and explain regional differences in usage rates,
while the local regression model, geographically weighted regression (GWR), estimates
parameters differently depending on spatial correlations among neighbouring regions.
By referencing related studies, 32 potential explanatory variables in four categories,
social-economic, land use, public transportation, and private transportation, are chosen.
Model performance is compared in terms of mean absolute percentage error (MAPE)
and spatial autocorrelation coefficient (Moran’ I). Estimation results show that the
GWR model has better prediction accuracy and better accommodation of spatial autocor-
relation. Seven variables are significantly tested, and most have parameters that differ
across regions in Taiwan. Based on these findings, strategies are proposed that improve
public transportation usage.
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1. Introduction

Although travellers typically differ in their transportation choices, private transportation has the advantages of better
accessibility and convenience than public transportation, which have engendered rapid growth in the number of private
vehicles, increasing both traffic congestion and environmental pollution. Many governments worldwide have focused on
improving their public transportation services and restricting ownership and usage of private vehicles. However, public
transportation patronage in many developed countries with adequate public transportation systems remains low. Thus,
whether governments should develop their public transportation services has not been thoroughly explored. In literature,
two main approaches are applied to conduct this exploration: individual and collective approaches. The individual approach
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developed mode choice models based on data from a questionnaire survey of travellers. Covariates of travel time (e.g. walk-
ing time, waiting time, and on-board time) and travel cost (e.g. parking cost, fuel cost, and bus fare) of different transporta-
tion modes, along with demographics and trip characteristics of travellers, are commonly considered. Estimation results by
the individual approach provide insights into the effects of covariates on travellers’ mode choice behaviours, which is helpful
when designing public transportation systems. However, aggregation of individual mode choice behaviours to represent
regional usage rates usually leads to biased predictions due to small sample sizes or excessive sampling errors. In contrast,
the collective approach directly correlates ridership or usage rate of public transportation to potential covariates, which is
helpful for decisions about whether to invest in public transportation systems in specific regions in order to increase the
market share of public transportation, but individual preferences for public transportation systems are hard to be predicted
based on the collective models. Therefore, to support decisions about investing in and designing public transportation sys-
tems, these two approaches are necessary. The collective approach can investigate the necessity of public transportation
investment in various regions, while the individual approach can support decisions regarding the design of public trans-
portation systems. Although the individual approach has several advantages over the collective approach, especially at
the level of details in associating the mode choice changes with the improved service quality of public transportation, the
commonly adopted explanatory variables of the individual approach, such as travel time, waiting time, walking distance
of various transportation systems and social-demographics and trip characteristics of individual travellers, are rather expen-
sive to be collected for model estimation and prediction for a large-scale area. To assess governmental investment in public
transportation in various regions nationwide, this study adopts the collective approach to identify the key factors contribut-
ing to usage rate of public transportation systems.

To objectively review the benefit of investment in public transportation, a demand-side response should be evaluated sci-
entifically and systematically to assist decision-makers in fully utilizing limited resources towards policy objectives. This
information can also be used as feedback to amend short- and long-term strategies as well as avoid ineffective investments.
Previous studies on aggregate public transportation usage rate modelling were limited to large unit (e.g., countries or cities)
and thereby did not examine differences in inter-regional influential factors. Moreover, since the service level of transporta-
tion systems in neighbouring regions may be closely related (i.e. spatial autocorrelation), this study applies the geographi-
cally weighted regression (GWR) model to investigate the effects of key factors on public transportation usage rates locally
rather than globally. The GWR model allows estimated parameters to vary across regions to accommodate potential spatial
dependencies. Comparisons of model performance and estimation results with traditional global regression models are also
conducted. As the dependent variable in this study is a percentage, which is truncated and does not have a normal distribu-
tion, the Tobit regression model (TRM) is used.

The rest of this paper is organized as follows. Section 2 presents a brief review of prior research. Section 3 briefly intro-
duces the TRM and GWR models used in this paper along with performance indices for model comparisons. Section 4
addresses empirical data and their descriptive statistics. Section 5 presents estimation results along with implications of
the two models. Model comparisons are given in Section 6. Section 7 presents conclusions and suggestions for further
research.

2. Prior research

The models used to identify key factors contributing transit ridership and usage rate along with contributing factors con-
sidered are in previous studies are briefly reviewed.

2.1. Global and local regression models

Numerous studies have been conducted to examine the effects of key factors to transit ridership or usage rate globally
or locally. The global regression models generally treat each observation independently and estimate one set of parame-
ters to represent all observations. The commonly adopted models depend upon the dependent variables: transit ridership
(i.e. number of boarding) and public transportation usage rate. For transit ridership, multiple regression analysis (Cervero,
1996; Kuby et al., 2004; Taylor et al., 2009; Mulley and Tanner, 2009; Swimmer and Klein, 2010; Blainey, 2010; Cervero
et al., 2010; Souche, 2010) and simultaneous regression (Taylor et al., 2009; Swimmer and Klein, 2010) were commonly
adopted. For public transportation usage rate, various models were constructed, including multiple regression analysis
(Chow et al., 2006; Messenger and Ewing, 2007), simultaneous regression (Messenger and Ewing, 2007), the aggregate
logit model (Buehler, 2011; Coldren et al., 2003; Chen et al., 2009), and the Tobit regression model (Boame, 2004) and
SO on.

Fotheringham et al. (2000) noted that the global regression model only estimates a set of parameters for relationships
between an independent and dependent variables, and the estimated parameters do not vary with space therefore reflect
spatial characteristics. That is, the major drawback of the models is that any geographical variation in the relations between
variables is masked (Lloyd and Shuttleworth, 2005; Cardozo et al., 2012) by ignoring the existence of local variations due to
the spatial autocorrelation.

In contrast, the local models, such as spatial proximity regression, GWR, distance-decay weighted regression, hierar-
chical linear model, are recommended when spatial autocorrelation is present. Several studies have been conducted for
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modelling transit ridership and usage rate. For example, Blainey (2010), Blainey and Preston (2010), Gutiérrez et al.
(2011), Pulugurtha and Agurla (2012), Cardozo et al. (2012) used of above local models to examine the key factors affect-
ing number of passengers of public transportation at station level or at traffic analysis zone (TAZ) level locally. While
Kobayashi and Lane (2007) and Chow et al. (2006, 2010) investigated key factors to public transportation usage rate
locally. All these studies consistently show that the local models are preferred under the study area exhibiting spatial
autocorrelation.

2.2. Key factors to transit ridership or usage rate

A review of above studies show that the explanatory variables considered can be broadly divided into demographic and
socio-economic (e.g., population, employment, age group, and income level), land use (e.g. residential, industrial, commer-
cial, or mixed use), availability of private transport (e.g., car ownership, road length, fuel price, parking fee, parking space),
and accessibility to public transport (e.g., fare rate, station accessibility, service frequency, park and ride space, feeder
service).

Table 1 summarizes the key factors significantly tested in selected studies. As shown in Table 1, population and route
(public transportation) are two key factors confirmed by the largest number of the selected studies (9 out of 16), followed
by income and accessibility (public transportation stations) (7 out of 16), and next followed by accessibility (traffic analysis
zone, TAZ), car ownership, and frequency (public transportation) (6 out of 16), suggesting that a TAZ with a highly populated
density, low income, low accessibility, low car ownership, high-quality public transportation service (high route density,
high service frequency, high station accessibility) exhibits high public transportation patronage.

3. Method

This paper aims to develop a model of public transportation usage rate and to examine the effect of potential covariates.
Two methods, TRM and GWR, are developed for comparisons and briefly introduced below.

3.1. Tobit regression model (TRM)

TRM allows us to incorporate the value bounded dependent variable while usage rate of public transportation is con-
strained to fall between zero and one. The structure model of the TRM is (Greene, 2003):

Yi =Xif +¢& (1)

where & ~ N(0, 62). N(0,6?) is a normal distribution with mean of 0 and variance of ¢2. y" is a latent variable that is observed

for values greater than 0 and censored at 0. The observed y is defined by the following measurement equation:
yif y»>0

L= 2

Vi { 0ify <0 @

The maximum likelihood estimation method is used to estimate the TRM. The log-likelihood function for the TRM is:

lnL:i{di(—ln6+ln¢<y"_Txiﬂ>)}+(l—dl-)ln (1_(13(’%)) 3)
i=1

where N is the sample size. d; is an indicator variable that equals 1 if y; > 0 and 0, otherwise. ¢(-) is a probability density func-
tion of the standard normal distribution. @(-) is a cumulated density function of the standard normal distribution. Eq. (3) is
made up of two parts. The first part corresponds to the classical regression for uncensored observations, while the second
part corresponds to the relevant probabilities that an observation is censored.

3.2. Geographically weighted regression (GWR)

The GWR estimates the parameter for each location (u;, ;) using a weighted least squares method, as shown in the fol-
lowing equation (Fotheringham and Charlton, 1998):

p
Vi = Boti, v) + Y Buc(thi, vi)Xix + &. (4)
P

The weight matrix is a diagonal matrix, and each element on the primary diagonal line represents a function of the location i.
The weight matrix is expressed as W(i), and according to the principle of weighted least squares method, the original param-

eter at location i is estimated by B(i) = (i, Bi1- - - » ﬁ,-p)T as:

Bli) = XTW()X] XTW(i)Y (5)



Table 1

Significant factors to public transportation patronage of selected studies.

Studies Target Significant factors
variable
Socio-economic Land use Private transportation Public transportation
Ridership Usage Population High- F Low- L Income Residential Commercial Industrial Land Urban Accessibility Car Fuel/  Parking Road One- Routes Frequency Accessibility Feeder Fare Park&ride Terminal/
rate educated  with kinds income rate area area area use area/ ownership Parking space length way service rate space transfer
population households mix  structure cost street stations
Cervero (1996) / v v v v v v
Kuby et al. v v v v v v v
(2004)
Chow et al. N v Vv v v v v v
(2006)
Kobayashi and v N v v v v v
Lane
(2007)
Messenger and v v v v v v v v
Ewing
(2007)
Chen et al. v v v v v v v v v v
(2009)
Tayloretal. v/ v v v v v v v v
(2009)
Sun et al. v v v v
(2009)
Blainey (2010) v v v v v
Blainey and v v v v v v v
Preston
(2010)
Cerveroetal. v v v v v
(2010)
Souche (2010) / v v v v v v v
Swimmer and  / v v v v v v v v
Klein
(2010)
Gutiérrez et al. / v N v v
(2011)
Cardozo etal. / v
(2012)
Pulugurtha and / v v v v v v v
Agurla
(2012)
Total 12 4 12 1 1 4 2 7 5 2 1 1 3 6 6 4 2 1 9 6 7 4 4 3 4
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where
wi (i) 1T X1 - Xp Vi
) Wa (i) . . . ) T X2 - Xp Y2
W(i) = . = diag[w, (i) wy(i) - wa(D]X=1| ~ |,¥Y=
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The weight function wj(i) using weighted least square method is the spatial analysis function for different conditions at each
data point. i is the regression point for the parameters at any location. When the data point j is closer to i, the impact is
enhanced. For example, in the global regression model, if the distance between data point j and regression point i is within
a given radius d, the weight function wj(i) =1 (i.e., in this model, the data point weights are identical). Otherwise, wj(i) =0,
but this will generate a non-continuous spatial weights problem. Based on the above principles, there are several weight
functions options. Two functions, Gaussian and bi-square, are commonly adopted, which can be respectively expressed as:

wj(i) = exp [—(dg/b)z],jzl,l...,n (6)
@]?
Wj(i): |: _b%:| 71fdij<b,j:‘l,2,...,n (7)

0if dy > b

where dj; is the distance between regression point i and data point j and b is bandwidth. When b is fixed and the data point j
is distal to regression point i, the weight is closer to 0. For the bi-square function, if the distance between two locations is
larger than the preset bandwidth, the weight is 0. In this study, for parameter estimation of large or coastal areas, there are
less than 30 weighted samples (i.e. neighbouring regions); therefore, this weight function was excluded from this study.

Fotheringham et al. (2000) noted that GWR parameters can be estimated with different bandwidths. b is generated
through cross-validation (CV), including the least squares method followed by minimisation, as shown in the following
equation:

2

V=3 i~y ®
i=1

where y;(b) is the optimal value for y; and represents the observed value when the regression point i is excluded during
calibration; therefore, when b is very small, the model only calibrates the proximal samples other than i. Thus, when the
CV value is minimal, b indicates the required bandwidth.

To estimate GWR parameters requires selection of a spatial weight function and bandwidth. The results from GWR are
sensitive to the bandwidth of the given weight function (Fotheringham et al., 2002). Based on the data point, bandwidth
may be constant (fixed kernel) or variable (adaptive kernel). Fixed-kernel bandwidth is used for a large sample size to
demonstrate that the impact is greater for proximal points but the distance value is smaller (or near 0), which is of the same
as the global regression model. However, if the sample size is small, then the adaptive-kernel is adopted, and thus, band-
width is a variable. When the regression points are densely populated, the ever-changing kernel can be used to discern
the optimal spatial bandwidth and produce a small bandwidth. Therefore, the primary difference between the two kernels
is sample size (Fotheringham et al., 2002). In this study, there were 348 samples, and the distance matrix between the sam-
ples was large; therefore, a fixed-kernel bandwidth was adopted.

3.3. Model performance

Mean absolute percentage error (MAPE) and corrected MAPE were used to compare the accuracy between global and local
regression models and discern the optimal model. MAPE is a relative value and is not influenced by actual and estimated
values; thus, it can objectively reflect the difference between actual and estimated values. A smaller MAPE entails that
the model’s estimation is more accurate, as shown in the following equation:

MAPE — %ZM % 100% (9)
i=1 i

1

where y;: the actual value of dependent variables, that is, the usage rate of public transportation. y;: the estimated value of y;
(i=1, 2,...,n). n: the number of samples.

The corrected MAPE generates more accurate differences between the actual and estimated values when it can represent
the sample group (i.e., the average actual values for the samples in the group). It represents the accuracy for this group more
effectively and can solve the equation when the actual value of y; is 0 using the original MAPE, as shown in the following
equation:
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n — /\.
Corrected MAPE = 1ZM x 100% (10)
n=y

where y: the average of all y;, that is,y =13 y,To test the spatial autocorrelation of the original data and residuals of the
estimated models, Moran’s [ is used which can be expressed as:

n Z?:lZ?:]Wij(yi -y -

I= - — (11)
Z?:lz;:lwi] i Wi — J’)z
where wy: the weight between observations i and j.
-1
ED =gy (12)
2 _3n+3)W; — nW, + 3Wq]} — K[(n? — n)W; — 2nW, + 6W?
Var(l) = n[(n> —3n+ 3)W; — nW, + 3Wo|} — K((n* — mW; — 2nW, + 6W¢)] E(1)2 (13)
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n no oA
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Thus, the standardized I is Z(I)

4. Data
4.1. Data collection

Taiwan has 22 counties/cities, each of which has various townships/districts, such that Taiwan has a total of 368 town-
ships/districts. To ensure that the transportation conditions in each study area are homogeneous, detailed zones, i.e., town-
ships/districts, were used. Additionally, since collecting complete data is difficult for townships on offshore islands, only 348
inland townships/districts were the samples.

Corresponding variable data were primarily from Statistics Department and Directorate General of Highways of the
Ministry of Transportation and Communications (MOTC), and the Statistics Department of the Ministry of the Interior
(MOI). Dependent variables used in the models, usage rates for public transportation, cars, and motorcycles, were obtained
via a telephone survey by the Statistics Department of the MOTC during October 12 to December 30, 2010. This survey used a
systematic sampling technique based on the population in each area. In total, 12,120 questionnaires were valid.
Demographic data were from the census conducted by the Department of Household Registration of the MOI on January
5, 2011. Census data included household and family data; personal data; economic, cultural, educational, and fertility data;
as well as family and marital status. The population was stratified based on gender and age group as well as township/dis-
trict. Land use data were collected from the Construction and Planning Agency of MOI. Moreover, operational data for inter-
city and city buses were obtained from geographic information system (GIS) graphics and tables provided by the Directorate
General of Highways of MOTC and the transportation bureaus of local governments.

The public primarily used motorised transportation, including cars, motorcycles, and public transportation. Therefore, the
usage rate for public transportation was adversely affected by that for cars and motorcycles, and the usage rate for each
transportation mode was also impacted by internal and external factors. Public transportation usage was the dependent vari-
able. Table 2 defines the explanatory variables and their expected effects on public transportation usage.

4.2. Descriptive statistics

Many studies have demonstrated that population density influences transportation mode choice. Messenger and Ewing
(2007) noted that the relationship between population density and choice of public transportation is not direct, but it is an
important factor and often used as an indicator when determining whether public transportation expansion is needed. A
remote area is defined by the MOI as “a township where population density is lower than one fifth of the national average
population density.” Therefore, this classifies the townships into five groups based on population density vs. national pop-
ulation density: remote, rural, suburban, urban, and downtown.

Table 3 shows the distribution of the public transportation usage rate for each group, including the number of townships,
maximum, minimum, average, and standard deviation. The highest average public transportation usage rate was downtown
(0.150). The lowest average usage rate was in the suburban (0.081), suggesting that as urbanisation increases, public trans-
portation usage rate increases. However, the public transportation usage rate was generally low.

Fig. 1 lists the average usage rate for each transportation mode in each area. Average motorcycle usage rate was highest
for all areas, followed by average car usage rate. Average public transportation usage rate was lowest. As mention, the usage
rate of public transportation was highest in the downtown areas, followed by that in the remote area, likely because
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Table 2

Definitions of explanatory variables and their expected effects to public transportation usage rate.
Variables Expected sign Unit
Socio-economic
Population density + Person/km?
Number of households + Household
Percentage of minors + Percentage
Percentage of elders + Percentage
Percentage of handicappers + Percentage
Number of low-income households + Household
Number of employed people + Person
Percentage of employed people in primary and secondary industrial sectors Undecided Percentage
Percentage of employed people in tertiary industrial sectors Undecided Percentage
Number of collegiate students Undecided Person
Average income - NT $1000
Land use
Residential area + ha
Commercial area Undecided ha
Industrial area Undecided ha
Private transportation
Car ownership rate - Rate
Motorcycle ownership rate - Rate
Road length - km
Public transportation
Number of intercity bus routes + Route
Total length of intercity bus routes + km
Average daily frequency of intercity bus routes + Frequency
Average bus age of intercity bus routes + Year
Number of city bus routes + Route
Total length of city bus routes + km
Average daily frequency of city bus routes + Frequency
Average bus age of city bus routes + Year
Number of mass rapid transit (MRT) routes + Route
Total length of MRT routes + km
Average daily frequency of MRT routes + Frequency
Number of MRT stations + Station
Distance to the nearest interchange + km
Distance to the nearest rail station - km
Distance to the nearest high-speed rail station - km
Distance to the nearest domestic airport - km

Note: “+” indicates an expected positive effect; “~” indicates an expected negative effect.

Table 3

Public transportation usage rates of five groups.
Group Number Min Max Ave SD
Group 1: Remote 62 0.000 0.302 0.095 0.074
Group 2: Rural 72 0.000 0.293 0.084 0.059
Group 3: Suburban 72 0.000 0.375 0.081 0.066
Group 4: Urban 71 0.000 0.485 0.082 0.091
Group 5: Downtown 71 0.012 0.480 0.150 0.134

Note: Number: number of townships/districts. Max: maximum usage rate. Min: minimum usage rate. Ave: average usage rate. SD: standard deviation of

usage rate.
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Fig. 1. Average usage rates of transportation modes in each group.
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downtown areas have better public transportation services and stricter regulations on the usage of private vehicles than
other areas. However, those in remote areas may be “captive” riders due to their social, economic or physical disadvantages,
and thereby rely on public transportation.

5. Results

The parameters estimated by the global model (i.e., TRM) are identical for each area; while the parameters estimated by
the local model (i.e., GWR) varied among regions. Linear and logarithmic forms of the three models were also developed, but
only the forms with the better performance are reported for brevity. The R software was used to estimate two models.

5.1. TRM

Downtown (Group 5) is the basis for comparisons in this study; four dummy variables (Table 4) are included in the TRM
model to explore differences in influential factors among the groups. Significance level () was set at 0.05. The dummy vari-
ables used to indicate the group of regions is useful to examine the spatial heterogeneity among regions by introducing inter-
action terms. If the absolute t-value was <1.645, the variable did not reach significance and was excluded. Linear and
logarithmic functions were used and compared in the models. The estimation results are as follows.

This study used the three major explanatory variables categories and the dependent variable (public transportation usage
rate) for estimation with the TRM model. Estimation results show that for the linear and logarithmic forms, respectively, R4
was 0.566 and 0.289, respectively, and Akaike’s information criterion (AIC) values were —1929.94 and —56.46, respectively.
Both indicators show that the linear performs better than the logarithmic form.

Table 5 shows estimation results by the linear TRM. The F value was 27.645; thus, the null hypothesis (Hp) was rejected,
indicating that at least one coefficient was significantly different from 0. The estimation results also suggest that the number
of low-income households, average daily service frequency of intercity bus routes, and number of city bus routes were pos-
itively correlated, while percentage of minors, average city bus age, motorcycle ownership rate, and road length were neg-
atively correlated. When data from downtown areas were compared, significant differences were identified in percentage of
minors, number of city bus routes and average city bus age in a remote area, as were the number of low-income households
in a rural area, number of city bus routes in a suburban area, and number of low-income households in an urban area.

5.2. GWR

In contrast to estimations using global models, local models represent each local area. Notably, GWR may explain the
impact of characteristics from each dataset on the use rate for various transportation modes after geographic coordinates
from each dataset are converted into X/Y coordinates. Moreover, the GWR can clearly discern the level of impact of the char-
acteristic variables in each area on the public transportation usage rate. For subsequent analyses, GWR was used to analyse
the relationship between characteristic variables and public transportation usage rate.

First, the spatial bandwidth for GWR must be determined to identify the number of spatial units necessary in the sur-
rounding weighted kernel. In this study, the geometric centre of each township (county and city) was the kernel, and sam-
ples in each space were geographically weighted for GWR descriptive statistics and regression analysis. In total, 348 data
points (samples) were used. The public transportation usage rate was a dependent variable. To compare the GWR results
with those by global linear regression model, significant variables from global linear regression were adopted as explanatory
variables for GWR.

Given that the sample size was large (N = 348), this study adopted a fixed kernel bandwidth to reflect the impact of dis-
tance between the regression point and a data point. A minimal coefficient of variation (CV) value was applied to determine
the required bandwidth for the minimum CV value. The minimum CV value was estimated at 1.089, and the corresponding
bandwidth was 25.238 km as shown in Fig. 2; the weight value for significant impact was discerned from samples within a
distance of 25.238 km from the kernel of each dataset.

Using descriptive statistics from R statistical software, original data were input and each regression point was a kernel to
generate different weights according to the distance between data points and the kernel. Using GWR, each sample was
weighted to estimate the parameters for each area. Therefore, each estimated dataset from each sample and each variable

Table 4

Dummy variables.
Group D D, Ds Dy
Group 1: Remote 1 0 0 0
Group 2: Rural 0 1 0 0
Group 3: Suburban 0 0 1 0
Group 4: Urban 0 0 0 1
Group 5: Downtown 0 0 0 0
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Table 5

Estimated TRM parameters.
Variable Coefficient t-Value p-Value
Constant 0.282 5.968 0.000
Socio-economic
Percentage of minors —0.445 —2.669 0.008
Number of low-income households 0.005 3.450 0.001
Public transportation
Average daily frequency of intercity bus routes 0.010 5272 0.000
Number of city bus routes 0.015 7.925 0.000
Average age of city buses —0.004 —2.669 0.007
Private transportation
Motorcycle ownership rate -0.149 -5.970 0.000
Road length —-0.032 -5.927 0.000
Dummy
D, 0.072 1.087 0.278
D, 0.059 2.692 0.007
D5 0.029 1.832 0.068
Dy 0.003 0.193 0.847
Interaction terms
Percentage of minors x D, 0.472 1.942 0.053
Number of city bus routes x D, -0.110 -2.212 0.028
Average age of city buses x D, —0.009 —2.047 0.041
Number of low-income households x D, -0.015 -1.917 0.056
Number of city bus routes x D3 0.041 2.254 0.025
Number of low-income households x D4 0.008 2.351 0.019
F-value 27.645
Raaf® 0.566
AIC —1929.94

1.5
1.4 e

Ll /

11 \v/

0 Sb 160 léO 260 ZéO 360
Bandwidth (km)

CV Score

Fig. 2. Schematic diagram of spatial bandwidth.

had a weighted average and weighted standard deviation (SD). Because the sample size was too large, Tables 6 and 7 show
values as min, max, median, and mean.

For the estimation results from the parameters, each dataset had coefficient values and t-values. In total, 348 estimation
results were obtained. The tables would be excessively large if the estimation results for each dataset were shown. Therefore,
Tables 8 and 9 show the coefficient and min value, first quartile value, median, mean, third quartile value and maximum
t-value for each explanatory variable.

Based on the estimated GWR model, the effect of explanatory variables on public transportation usage rate can be spa-
tially investigated as shown in Figs. 3-9. The estimated parameters of the GWR model vary across regions, indicating that
each parameter included local characteristics, and therefore, an analysis of model performance through estimation could
be a reference for government and public transportation operators, and GWR could be a better choice to analyse the key fac-
tors influencing public transportation use in the future. For percentage of minors, Fig. 3(a) and (b) show the distributions of
estimated parameters and t-values across regions in Taiwan, respectively. The effect of percentage of minors is most signif-
icant in northern (especially Taipei Metropolitan City), mid-eastern and southern areas (Fig. 3(b)). The significant positive
correlations that existed between percentage of minors and public transportation usage rate were primarily distributed in
the eastern area, suggesting that minors in this area had weak transportation autonomy and thus relied on public transporta-
tion. Bus frequency could be increased during rush hour or a dynamic information system could be created to reduce uncer-
tainties of this population group when waiting for public transportation. Significant negative correlations for public
transportation were primarily distributed in the north central area and were increasingly strong moving northward. We
speculate that this is due to the daily life in the north, where parents prefer transporting children on their own rather than
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Table 6

Descriptive statistics for the GWR averages.
Variable Min Median Ave Max
Public transportation usage rate 0.016 0.068 0.099 0.338
Percentage of minors 0.157 0.199 0.202 0.274
Number of low-income households 25.210 225.660 324.590 1133.310
Average daily frequency of intercity bus routes 3.300 18.960 22.810 57.830
Number of city bus routes 0.000 1.710 11.911 78.825
Average age of city buses 4,725 11.701 10.384 13.000
Motorcycle ownership rate 0.438 0.662 0.661 0.846
Road length 26.510 116.310 119.260 225.240

Table 7

Descriptive statistics for the GWR SDs.
Variable Min Median Ave Max
Public transportation usage rate 0.004 0.038 0.048 0.137
Percentage of minors 0.011 0.026 0.026 0.057
Number of low-income households 2.828 172.008 264.914 847.114
Average daily frequency of intercity bus routes 0.326 10.511 13.423 46.802
Number of city bus routes 0.000 3.596 11.822 57.253
Average age of city buses 0.000 1.598 1.578 4,199
Motorcycle ownership rate 0.017 0.058 0.092 0.329
Road length 9.570 65.690 67.100 156.800

Table 8

Estimated GWR coefficients.
Variable Min First quartile Median Ave Third quartile Max
Constant —0.336 0.063 0.158 0.173 0.273 0.549
Percentage of minors -1.475 —0.578 -0.254 —0.332 —0.030 1.185
Number of low-income households -0.024 —0.002 0.001 —0.001 0.002 0.011
Average daily frequency of intercity bus routes -0.013 —-0.001 0.003 0.004 0.009 0.034
Number of city bus routes —0.005 0.002 0.011 0.009 0.013 0.099
Average age of city buses —0.007 —0.002 0.0002 —0.001 0.001 0.013
Motorcycle ownership rate —0.345 -0.057 -0.021 -0.010 0.023 0.465
Road length —0.009 —0.003 —0.001 —0.002 —0.001 0.002

Table 9

Estimated GWR t-values.
Variable Min First quartile Median Ave Third quartile Max
Constant -1.348 0.877 1.467 2.693 2.937 10.290
Percentage of minors —6.586 -2.105 -1.061 -1.475 -0.133 2.333
Number of low-income households -1.770 -0.333 0.220 0.213 1.086 2.710
Average daily frequency of intercity bus routes —0.818 -0.373 0.448 1.037 1.895 6.374
Number of city bus routes -0.401 0.256 1.284 2.301 4,181 8.337
Average age of city buses —3.967 -0.678 0.038 —0.281 0.357 1.714
Motorcycle ownership rate —5.168 -0.720 -0.325 —0.380 0.332 2.234
Road length -6.913 -1.931 -1.023 -1.495 —0.546 0.461

let children walk to school in heavy traffic, resulting in a negative correlation between percentage of minors and public
transportation usage rate. The safety of taking local public transportation should be enhanced to ensure parents that their
children are safe in urban environments.

Significant positive correlations that exist for the number of low-income households and public transportation usage rate
are primarily in the south and centre of the northern region. Low-income households in these areas cannot likely afford pri-
vate transportation, and thus use public transportation. Significant negative correlations between public transportation
usage and number of low-income households were primarily in the central mountainous area. Given the convenience and
overall lower travel cost (time and fuel price) of motorcycles when compared with that of public transportation (ticket price)
and the insufficient public transportation service in the area, people from lower-income households prefer motorcycles to
public transportation, resulting in low public transportation usage rates. Regardless of whether low-income households
use public transportation, ticket subsidies for this group could increase their use of public transportation.
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Fig. 3. Spatial distribution of estimated coefficients and t-values of percentage of minors.
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Fig. 4. Spatial distribution of estimated coefficients and t-values of number of low-income households.
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Fig. 5. Spatial distribution of estimated coefficients and t-values of average daily frequency of intercity bus routes.
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Fig. 6. Spatial distribution of estimated coefficients and t-values of number of city bus routes.
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Fig. 8. Spatial distribution of estimated coefficients and t-values of motorcycle ownership rate.
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Fig. 9. Spatial distribution of estimated coefficients and t-values of road length.

Significant positive correlations between average daily frequency of intercity bus routes and public transportation usage
rate were primarily in the north. Public bus routes cover counties and cities and are important to residents who live near
administrative boundaries or commute across counties and cities. Daily frequency affects passenger waiting time and is
especially important to commuting. Therefore, daily frequency could be increased to increase the public transportation
usage rate.

Significant positive correlations between the number of city bus routes and the public transportation usage rate were pri-
marily in the north central area, which has many city buses. As expected, city bus routes primarily serve city residents. The
number of routes is an effective indicator of coverage density for a road network. By increasing the number of routes, the
access time/distance to bus stations or stops could be minimized. Therefore, the number of city bus routes could be increased
and thereby increase the public transportation usage rate.

Significant negative correlations between average age of city buses and public transportation usage rate were primarily in
the north, suggesting that in the north, which has a sufficient supply of city buses, requirements for public transportation
services are also high. Therefore, replacing buses in urban areas could improve service quality.

These improvement strategies for public transportation service-related factors may not be appropriate for suburbans
with low population densities. Because the number of residents who use public transportation in these areas is low, the pub-
lic transportation network has few routes, and some rural areas may lack any public transportation service. However,
because para-transit has the advantages of low volume and route flexibility, transportation-related departments should
set para-transit-related regulations to supplement inadequate public transportation in remote areas.

Significant negative correlations between motorcycle ownership rate and public transportation usage rate were primarily
in the north, demonstrating that the motorcycle ownership rate is high in this area. Moreover, motorcycles are very conve-
nient and cost little to operate; thus, they are the preferred mode of transportation. Therefore, the cost of motorcycle own-
ership could be increased or the number of motorcycles in each household could be restricted to affect a shift towards public
transportation usage.

Significant negative correlations between road length and public transportation usage rate were primarily in remote
mountainous areas. Because public transportation is less accessible than private transportation, longer road length suggests
greater accessibility to roads in this area, which would increase the public preference for private transportation, further
decreasing the public transportation usage rate. Therefore, to simultaneously meet local transportation demands and build
roads, public transportation service routes could be increased or para-transit could be provided to enhance public trans-
portation (the-last-mile) service, increasing accessibility to public transportation and thereby attracting users.
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6. Comparisons

The overall explanatory power of each model illustrated the extent to which the model could explain dependent vari-
ables, primarily public transportation usage rate. Table 10 compares the explanatory power and Moran'’s I test of the global
and local regression models. Comparison results show that the explanatory power of the local regression model was signif-
icantly higher than that of the global regression model, which is consistent with findings in previous studies (e.g. Chow et al.,
2006, 2010; Gutiérrez et al., 2011; Cardozo et al,, 2012; Pulugurtha and Agurla, 2012). The R? and R, are largely improved
from 0.588 and 0.566 to 0.771 and 0.767. Additionally, analysis of the residuals shows better results (closer to the expected
value) in the GWR model than in the TRM model. The Moran’s I test also supports that the GWR model successfully accom-
modates spatial autocorrelation, but obviously the TRM model fails to do so.

The R? explanatory power of GWR for each area ranged from 12.54% (minimum) to 86.43% (maximum) as shown in
Fig. 10. Explanatory power increased from southwest to northeast Taiwan and increased slightly from southwest to south-
east Taiwan. It should be noted that although the overall explanatory power of GWR has been largely improved, there are
still more than half of the regions with R? less than 0.37. How to further improve the goodness of fit of GWR in these regions
remains a further study.

Table 10

Comparisons of explanatory power and spatial autocorrelation.
Goodness of fit TRM GWR
R? 0.588 0.771
Rag? 0.566 0.767
Spatial autocorrelation
Moran’s I 0.2919934 -0.0111799
Expectation —0.0028818 —0.0028818
Variance 0.0010593 0.0010570
Z-score 9.060 —0.255
p-Value <2.2e-16 0.799

—1 0.875

- 0.725

- 0.575

0.425

0.275

0.125

Fig. 10. Spatial distribution of the determination coefficient (R?) in each region.
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Table 11
Comparisons of model prediction accuracy.
Group TRM GWR
MAPE Corrected MAPE MAPE Corrected MAPE
1 126.61 49.93 79.01 35.97
2 72.39 45.12 59.11 40.01
3 70.64 45.51 69.83 37.41
4 106.86 53.41 72.00 39.20
5 78.12 36.85 38.30 20.49
All 89.89 44.84 63.26 32.64

The MAPE and Corrected MAPE were applied to compare the accuracy of the TRM and GWR in predicting the public trans-
portation usage rates of various groups as shown in Table 11. As shown in Table 11, GWR performs better than the TRM
model with lower MAPE and Corrected MAPE values of all groups. The order of accuracy for each group varied with the dif-
ferent models, but the Corrected MAPE was significantly lower than the MAPE. The denominator of the corrected MAPE (Eq.

(9)) was the average of all actual values, and therefore the difference between |y, — y | and y was smaller than |y; — y | and y;
i i

from the original MAPE. The Corrected MAPE shows that the accuracy for downtown is the highest, suggesting that isomor-
phism downtown is great. Additionally, analysis of the sample and groups show that the GWR has the highest accuracy.

7. Conclusions

To better understand the key factors to public transportation use, this study respectively applies global (TRM) and local
(GWR) regression models to identify the key factors to the public transportation usage rates of a total of 348 regions (town-
ship or districts) in Taiwan. In terms of corrected MAPE and Moran'’s I, GWR model performs better than TRM model, sug-
gesting the superior of the local model under the existence of spatial autocorrelation. According to the estimation results of
GWR, seven variables are significantly tested, and most have parameters that differ across regions in Taiwan. For example,
the percentage of minors, the most significantly tested variable, has a negative effect on public transportation usage rate on
the north-western part of Taiwan where is highly populated, but show a positive effect on public transportation usage rate
on southern and eastern parts of Taiwan which are considered as remote areas, suggesting the tendency of spatial clustering
effect. With the introduction of interaction terms, TRM can also show similar results with GWR model that the percentage of
minors has a positive effect on public transportation usage rate in remote areas (with the lowest population density), but
shows a negative effect in other areas. Anyhow, the introduction of interaction terms requires of subjective judgement
and trial-and-error efforts, the local models having higher flexibility in parameters estimation are recommended for the
cases with existence of spatial autocorrelation. Based on these findings, strategies that increase public transportation use
are then proposed.

In this study, variables of the original linear model were maintained in GWR for comparison purposes. Future studies can
alter the variables or increase the variety of variables. Additionally, it should be noted that although the overall explanatory
power of GWR has been largely improved, there are still more than half of the regions with R? less than 0.37. How to further
improve the goodness of fit of GWR in these regions deserves a further study. For data collection, difficulty in gathering infor-
mation on private transportation-related variables and personal data, such as travel time and cost, may decrease the
explanatory power of models. To periodically collect data of these variables for policy analysis is essential. To account for
the competition among transportation modes, the GWR-based simultaneous equation model and aggregate logit model
for simultaneously modelling usage rates of all modes can be developed. Meanwhile, the mixed GWR model, a semi-local
approach, which is able to estimate both global and local parameters can be adopted, so some coefficients with small vari-
ation over space are kept constant over all study areas. Last but not least, GWR, a geospatial statistical analysis, differs from
general statistical analysis wherein panel data are used to estimate weights. The variables used herein were cross-sectional
data, which are appropriate for GWR. In future studies, data for related variables can be tracked continuously, and other
weighting methods can be incorporated into the model for comparison by GWR.
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