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A B S T R A C T   

Neurodegenerative diseases (NDDs) such as amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and 
Parkinson’s disease (PD) can manifest themselves anatomically by degeneration in the brain as well as motor 
symptoms. The motor symptoms can affect walking dynamics in a disease-specific fashion; characteristically they 
disrupt gait. As the severity of the disease increases, walking ability deteriorates. We examined the effect of NDDs 
such as ALS, HD, and PD on gait and developed a convolutional long short-term memory (ConvLSTM) and three- 
dimensional convolutional learning network (3D CNN)-based approach to detecting neurodegenerative condi
tions and predicting disease severity.   

1. Introduction 

Neurodegenerative diseases (NDDs) are characterized by the 
degeneration of nerve cells in the substantia nigra, which is responsible 
for dopamine secretion in the brain. This degeneration affects dopamine 
production, resulting in movement disorders. In amyotrophic lateral 
sclerosis (ALS), Huntington’s disease (HD), and Parkinson’s disease 
(PD)—the major NDDs—involuntary movements occur due to the 
degeneration but manifest themselves in different ways. In PD, the most 
common movement-related clinical findings are bradykinesia, rigidity, 
resting tremor, postural instability, and difficulty in walking. In HD, the 
characteristic clinical findings include chorea, stumbling and clumsi
ness, and difficulty in movement. Muscle atrophy is typical of ALS, but 
muscle cramps and twitches may also make walking difficult [1–5]. 
Walking ability varies according to disease severity with all three 
conditions. 

Examining the gait characteristics of patients is useful in diagnosing 
NDDs and estimating the severity of disease in a given patient. Correct 
detection of NDDs is the most important criterion for patients to access 
the right treatments, drugs, and care. Furthermore, the treatment of 
motor symptoms must be adjusted according to the severity of the dis
ease. Over- or underdosing leads to incomplete suppression of the motor 
symptoms. Additionally, it changes their presentation, sometimes 
leading to misdiagnoses that seriously reduce patients’ quality of life. 
Artificial intelligence-based models using gait data can aid in disease 

detection and prediction of disease severity. Some such models have 
been developed [6–11], but most are based on the processing and 
manipulation of one-dimensional gait data for disease detection 
[12–15]. 

Zeng et al. [12] introduced a new method for classifying NDDs: a 
deterministic learning theory using gait dynamics. Using a supercentral 
pattern generator model, a time series of swing and stance intervals of 
left and right feet were used to model the gait dynamics of patients with 
NDDs and healthy control subjects. The gait dynamics underlying the 
gait patterns were approximated by radial fundamental function (RBF) 
neural networks. 

Daliri [13] developed an automated diagnostic system using gait 
dynamics. A feature selection strategy based on a genetic algorithm was 
used to select for important diagnostic features of NDDs. The selected 
features were classified using a boost vector machine into two groups: 
features characteristic of healthy people and those typical of patients 
with NDDs. It has been stated that the double support interval is the most 
important gait parameter in the diagnosis of NDDs. 

Baratin et al. [14], proposed an automatic classification scheme for 
NDDs in which gait features were integrated into a wavelet space by 
using wavelet transform. The wavelet features were classified using the 
support vector machine method. The authors showed that asymmetry 
between gait features could be used for the detection of NDDs. 

Gupta et al. [15] developed an efficient classification method using a 
new set of gait features for gait intervals identified using auto- 
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correlation and cross-correlation features. Mutual information (MI) 
analysis was used, and 500 features were generated for the classification 
phase. A rule-based classifier technique based on a single decision-tree 
classifier was used to classify NDDs. 

A handful of researchers have attempted to predict disease severity 
in Parkinson’s disease [16–19]. Besides these, a few studies have 
investigated deep learning-based methods for the diagnosis of NDDs 
[20–22]. 

Zhao et al. [20] proposed a two-layer long short-term memory 
(LSTM) deep learning method for the detection of NDDs using walking 
data obtained by force-sensitive sensors. The model was based on the 
detection of ALS, HD, PD diseases using attributes of walking dynamics. 
To provide sufficient foot-changing knowledge, blocks of twenty sam
ples were used for the experiments. 

Lin et al. [21] sought a machine-learning solution to detecting NDDs 
such as ALS, HD and PD. They used blocks containing ten samples of 
walking dynamics obtained by force-sensitive sensors. Each block had 
an overlap of two-thirds of the block size. This increased the number of 
blocks to avoid missing any walking patterns. The blocks were converted 
into 2D with the recurrence plot technique, and PCA was used for 
feature enhancement. The features extracted were used to feed the 
AlexNet CNN deep learning algorithm, and the NDDs were classified. 

Paragliola and Coronato [22] took a deep learning approach to the 
detection of NDDs, focusing on whole gait dynamic data rather than a 
block-based pattern recognition process. They clustered all the data 
obtained from each patient. Since the number of samples was different 
for each person, the data set of the subject with the maximum number of 
samples (310) was taken as the basis. Clusters with fewer instances were 
extended to 310 samples by applying zero padding to ensure proper 
operation of the long short-term memory (LSTM) and convolutional 
neural network (CNN) deep learning methods. 

Thus, a limited number of deep learning-based studies [20–22] have 
addressed NDD detection, but with a focus on grouping samples. There 
have been no attempts to predict disease severity in NDDs nor to detect 
disease and predict severity simultaneously. In this study, we trans
formed one-dimensional gait features collected by ground reaction force 
(GRF) sensors into two and three dimensions to feed convolutional long 
short-term memory (ConvLSTM) and three-dimensional convolutional 
neural network (3D CNN) models and used the models to study classi
fication and regression problems (disease detection and disease-severity 
prediction, respectively) in NDDs. With these methods, a single sample 
of gait dynamics was sufficient to detect disease and estimate its 
severity. 

2. Methods 

2.1. General overview 

We studied disease detection and disease severity prediction prob
lems in NDDs by applying ConvLSTM and 3D CNN deep learning 
methods to one-dimensional gait data. The one-dimensional gait data 
was converted to QR codes to give it a two-dimensional structure, 
making possible the use of a ConvLSTM model. Three-dimensional 
tensors were extracted using ConvLSTM, and a 3D CNN model was fed 
with these tensors. For disease detection, which is a classification 
problem, 5 different subproblems were created (Table 1). Since a 

disease-specific system is used to grade severity for each disease, three 
different subproblems were created, with data belonging only to the 
disease and its control group (Table 2). 

To apply ConvLSTM, which takes 2-dimensional data as input, one- 
dimensional gait data was represented in two dimensions by trans
forming the data into QR codes. Each sample obtained from the original 
GRF sensor data was converted into QR codes sequentially (Fig. 1). 
Python was used for this conversion, choosing QR version 10 and me
dium error correction capability (Table 3). 

In artificial intelligence, disease detection in NDDs is a classification 
problem, and the prediction of disease severity is a regression problem. 
We sought solutions for these problems using deep learning models. 
ConvLSTM was used for two purposes: as a decision-maker for the 
classification and regression problems and as an extractor to output 
three-dimensional data. ConvLSTM, by its nature, takes 2-dimensional 
data as input and extracts 3-dimensional tensors as output; these ten
sors are ideal for 3D CNN use. Through 3D CNN, the gait features con
verted into tensors were used to find solutions for the both classification 
and regression problems. Fig. 2 summarizes the use of ConvLSTM and 
3D CNN. 

2.2. Convolutional LSTM 

ConvLSTM blends the LSTM and CNN approaches [26]. In essence, 
ConvLSTM takes advantage of the sequential data approach of the LSTM 
method and the pattern detection feature of CNNs. ConvLSTM departs 
from the basic CNN + LSTM strategy in that the convolution structures 
are extended both to the input-to-state transition and the transitions 
from state to state [27]. 

The ConvLSTM architecture designed for this study works with 100 
× 100 QR codes. Each of the 100 × 100 single-channel QR codes in the 
QR data set was transformed into a 10 × 10 feature map. Starting with 
an initial ConvLSTM layer, 64 feature maps were obtained without 
distorting the original dimensions given as input. After that, this feature 
map, which had a shape of 64 × 100 × 100, was decreased to 64 × 33 ×
33 by max pooling. This 64 × 33 × 33 feature map was first decreased 
with a ConvLSTM layer to 64 × 31 × 31 and then to 64 × 10 × 10 with a 
max-pooling layer. At this point, the architecture had 2 separate dense 
layers containing 6400 units and N units. The N value was 2 or 4 
depending on the number of classes in the classification problem, and 1 
was used in the regression problem. The ‘mini-batch’ dimension was 64, 
the learning rate was 0.01, and the optimizer was “Adam,” and 30 
epochs were run. 

2.3. 3D CNN 

To improve performance in both the classification and regression 
tasks, a 3D CNN was fed with the outputs of ConvLSTM. ConvLSTM 
generates a tensor that has a 3D cell shape as output. When provided as 
input to the 3D CNN structure, those 3D tensors match perfectly. 

The 3D convolutional layer was added to the ConvLSTM architecture 
just before the flatten layer. For the hyperparameters of the 3D con
volutional layer, we selected a kernel size of 32, a filter size of (1,3,3), 
and “same” as the padding. These hyperparameters do not change the 
feature map dimensions output by the ConvLSTM architecture. The 
hyperparameters and working logic used in the other stages were the 
same as those used in the ConvLSTM architecture. 

Table 1 
Classification subproblems.  

Subproblem Explanation 

NDD Each disease and control group are located 
NDD vs Control All diseases are grouped under a single label against control group 
ALS vs Control Only ALS patients are classified against the control group 
HD vs Control Only Huntington patients are classified against the control group 
PD vs Control Only Parkinson’s patients are classified against the control group  

Table 2 
Regression subproblems.  

Subproblem Explanation Severity Evaluation Scale 

ALS & Control Only ALS patients and control group Duration [23] 
HD & Control Only HD patients and control group UHDRS-TFC [24] 
PD & Control Only PD patients and control group Hoehn & Yahr [25]  
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2.4. Performance Evaluation 

All of the experiments conducted were carried out using the k-fold 
cross-validation technique, in which the data set is divided into k equal 
parts with randomly determined samples. While one part is used for 
testing, the remaining parts are used for training. This process continues 
until each part has been used for testing, so that every part (and there
fore every sample) is used for both testing and training [28]. The K value 
for this study was 10. 

In order to measure the performance of the classification and 
regression experiments, accuracy, F1 score, precision, and recall metrics 
were used for the classification tasks [28]. For the regression tasks, the 
correlation coefficient (R), coefficient of determination (R2), mean ab
solute error (MAE), median absolute error (MedAE), root mean squared 
error (MSE), and root mean squared error (RMSE) metrics were used 
[29]. 

The accuracy-of-classification metric measures how often the model 
classifies a sample correctly. Accuracy is the number of correctly pre
dicted samples out of all the samples. As shown in equation (1), accuracy 
can be described as the number of true positives and true negatives 
divided by the number of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). 

Accuracy =
TP + TN

TP + TN + FP + FN
(1) 

To fully assess the effectiveness of a model, precision and recall 
metrics should be included in addition to accuracy. These metrics are 

even more important for imbalanced data sets. 
Precision can be expressed as the ratio of the true positives to all the 

positives (TP and FP), as shown in equation (2). 

Precision =
TP

TP + FP
(2) 

Recall can be described as a ratio of the true positives to the true 
positives plus false negatives, as shown in equation (3). It expresses the 
likelihood of the model identifying true positives. 

Recall =
TP

TP + FN
(3) 

F1 score is a metric used to measure the relationship (balance) be
tween score precision and recall. Along with accuracy, it is often a good 
performance measure for imbalanced data sets. F1 score, which is 
mathematically defined as the harmonic mean of precision and recall, 
can be formulated as in equation (4). 

F1 = 2*
Precision*Recall

Precision + Recall
(4) 

The correlation coefficient (R) is the most commonly used metric for 
regression problems. It is used to identify a relationship between two 
values, such as predicted and actual. R can range between − 1 and 1. The 
value 0 indicates an absence of correlation, 1 a perfect positive corre
lation, and − 1 a perfect negative correlation. 

R =
Sap

SaSp
(5) 

Sap =

∑n
i=1

(ai − a)(pi − p)
n− 1 , Sa =

∑n
i=1

(ai − a)2

n− 1 , Sp =

∑n
i=1

(p− p)2

n− 1 , a = 1
n
∑n

i=1ai, p =
1
n
∑n

i=1pi. where a represents actual value and p stands for predicted 
value. 

The coefficient of determination (R2) is a metric used to describe how 
much variability a vector can have, based on its relationship to another 
factor. The coefficient of determination, commonly known as goodness 
of fit, takes values between 0 and 1. A value of 1 signifies a perfect fit, 
and 0 indicates that there is no fit. The formula for the coefficient of 
determination is shown in equation (6). 

R2(a, p) = 1 −
∑n

i=1(ai − pi)
2

∑n
i=1(ai − a)2 (6) 

Mean absolute error (MAE) is the measure of the difference between 
two continuous variables. MAE is the average vertical distance between 

Fig. 1. The QR conversion.  

Table 3 
Gait features.  

Index Feature 

1 Left Stride Interval (sec) 
2 Right Stride Interval (sec) 
3 Left Swing Interval (sec) 
4 Right Swing Interval (sec) 
5 Left Swing Interval (% of stride) 
6 Right Swing Interval (% of stride) 
7 Left Stance Interval (sec) 
8 Right Stance Interval (sec) 
9 Left Stance Interval (% of stride) 
10 Right Stance Interval (% of stride) 
11 Double Support Interval (sec) 
12 Double Support Interval (% of stride)  
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each actual value and the line that best fits the data. It is a linear score 
that measures the average magnitude of errors in a range of estimates 
without considering their direction. All individual errors are weighted 
equally on the mean. Equation (7) is the formula for the MAE. 

MAE =
1
n

∑n

i=1
|ai − pi| (7) 

Median absolute error (MedAE) is a regression metric that minimizes 
the distortions caused by excessive and potentially erroneous outliers. 
MedAE is found by taking the median value of the absolute difference of 
all of the actual values and the values predicted by the model corre
sponding to the actual values. Its formula is given in equation (8). 

MedAE = median(|ai − pi|, ..., |an − pn|) (8) 

The mean square error (MSE) indicates how close a regression curve 
is to a set of points. It measures the performance of a machine learning 
mode. The predictor is always positive, and predictors with an MSE 
value close to zero perform better. Errors are squared before averaging, 
which imposes a high penalty on significant errors [30]. Eq. (9) shows 
the formula for the MSE. 

MSE =
1
n
∑n

i=1
(ai − pi)2 (9) 

The root mean square error (RMSE) is a quadratic metric that mea
sures the magnitude of the error. It is often used to find the distance 
between predicted and actual values. It indicates that how dense that 
data is around the line that best fits the data. The formula for the RMSE is 
shown in equation (10). 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE2

√
(10)  

3. Materials 

The data set used to test the methods proposed in this study was 
published by Hausdorff et al. [31–32] and has been made available on an 
open access basis by PhysioNet. There are 15,092 samples in this data set 
from 64 subjects: 13 patients with ALS, 20 patients with HD, 15 patients 
with PD, and 16 healthy individuals (controls). Each sample contains 12 
gait characteristics (i.e., features) as well as timestamp information 
extracted from the raw data collected by GRF sensors. For this study, the 
timestamp information was removed, and experiments were carried out 
using the 12 gait features (Table 1). The gait features are illustrated in 
Fig. 3. 

4. Results 

Classification experiments were conducted for the five subproblems 
listed in Table 1, taking the diseases and their respective control groups 
one by one. For the regression experiments, solutions were sought for 
the three subproblems listed in Table 2. 

Table 4 shows the classification results obtained with ConvLSTM. In 
the NDD subproblem, containing four different classes, the accuracy, F1 
score, precision, and recall values were 0.8944, 0.8945, 0.8946, and 
0.8933, respectively. In the NDD versus control subproblem, these 
values were 0.9633, 0.9532, 0.9561, and 0.9605, respectively. When the 
subproblems that featured a single disease and a control group were 
examined, the accuracy, F1 score, precision, and recall values for ALS 
patients, compared with controls, were 0.9768, 0.9755, 0.9762, and 
0.9747, respectively. They were 0.9469, 0.9465, 0.9466, and 0.9463, for 
patients with HD, compared with controls, and 0.9505, 0.9552, 0.9513, 
and 0.9512, respectively, for patients with PD, compared with controls. 

Table 5 provides the regression results obtained with ConvLSTM. The 
measured R, R2, MAE, MedAE, MSE, and RMSE values for the ALS and 
controls subproblem were 0.9394, 0.8824, 2.4636, 1.3506, 20.6687, 

Fig. 2. Use of ConvLSTM and 3D CNN.  
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and 4.5462, respectively. These values were 0.9008, 0.8115, 1.1256, 
0.6362, 3.7619, and 1.9395, respectively, for the HD and controls sub
problem and 0.9202, 0.8267, 0.3419, 0.1991, 0.3417, and 0.5845, 
respectively for the PDN and controls subproblem. 

Table 6 shows the classification results obtained with the 3D CNN 
that was fed by ConvLSTM. The accuracy, F1 score, precision and recall 
values obtained for the NDD subproblem were 0.8605, 0.8608, 0.8623, 
and 0.8579, respectively. These values were 0.9573, 0.9456, 0.9472, 
and 0.9442, respectively, for the patients with NDD compared with 
controls. When the subproblems that compared a single disease and a 
control group were examined, accuracy, F1 score, precision, and recall 
values were 0.9768, 0.9755, 0.9256, and 0.9751, respectively, for the 
ALS patients compared with the controls. They were 0.9291, 0.9235, 

0.929, and 0.9281, respectively, for the HD patients compared with the 
controls, and 0.9404, 0.9401, 0.9406, and 0.9397, respectively, for the 
patients with PD, compared with the controls. 

Table 7 shows the regression results obtained with the 3D CNN that 
was fed by ConvLSTM. The R, R2, MAE, MedAE, MSE, and RMSE values 
for the ALS and control subproblem were 0.9431, 0.8895, 2.5548, 
1.5456, 19.4201, and 4.4068, respectively. They were 0.9042, 0.8175, 
1.193, 0.6667, 3.6404, and 1.9079, respectively, for the HD and control 
subproblem and 0.9214, 0.849, 0.3542, 0.2228, 0.3365, and 0.58, 
respectively, for the PD and control subproblem. 

For the NDD detection (classification) problem, a comparison of the 
proposed study with previous studies on the same data set is given in 
Table 8. The studies differed in their classifiers, feature dimensions, and 
feature extraction and assessment techniques. The machine-learning 
classifiers included deterministic learning theory, support vector ma
chines, and decision trees, and the deep-learning classifiers were 2D and 
3D CNN, LSTM, and ConvLSTM. In the machine-learning models, one- 
dimensional features were extracted using a RBF, a genetic algorithm, 
a discrete wavelet transform, and MI-based selection. In the deep- 
learning models, two-dimensional features were extracted using sam
ple blocking, recurrence plots, and sample clustering. Three approaches 
were used for assessment: 10-fold cross-validation (10-fold CV), leave- 
one-out-cross-validation (LOOCV), and the split method (in which a 
certain proportion of the data set is reserved for training and the rest of 
the set is used for testing). Our method differed from other deep learning 
approaches in that we obtained 2D features from a single sample using 
QR code transformation. Then we extracted 3D tensors by using 
ConvLSTM fed with the QR codes. We sought a three-dimensional so
lution using the 3D tensors. 

The multiclass NDD classification problem, in which all of the dis
eases and control groups were present, has been addressed only once 
before [23], with an accuracy of 0.61. We obtained an accuracy value of 

Fig. 3. The Gait Cycle.  

Table 4 
Classification results obtained with ConvLSTM.   

Accuracy F1 Score Precision Recall 

NDD  0.8944  0.8945  0.8946  0.8933 
NDD vs Control  0.9633  0.9532  0.9561  0.9605 
ALS vs Control  0.9768  0.9755  0.9762  0.9747 
HD vs Control  0.9469  0.9465  0.9466  0.9463 
PD vs Control  0.9505  0.9552  0.9513  0.9512  

Table 5 
Regression results obtained with ConvLSTM.   

R R2 MAE MedAE MSE RMSE 

ALS & Control  0.9394  0.8824  2.4636  1.3506  20.6687  4.5462 
HD & Control  0.9008  0.8115  1.1256  0.6362  3.7619  1.9395 
PD & Control  0.9202  0.8267  0.3419  0.1991  0.3417  0.5845  

Table 6 
Classification results obtained with 3D CNN fed by ConvLSTM.   

Accuracy F1 Score Precision Recall 

NDD  0.8605  0.8608  0.8623  0.8579 
NDD vs Control  0.9573  0.9456  0.9472  0.9442 
ALS vs Control  0.9768  0.9755  0.9256  0.9751 
HD vs Control  0.9291  0.9235  0.929  0.9281 
PD vs Control  0.9404  0.9401  0.9406  0.9397  

Table 7 
Regression results obtained with 3D CNN fed by ConvLSTM.   

R R2 MAE MedAE MSE RMSE 

ALS & Control  0.9431  0.8895  2.5548  1.5456  19.4201  4.4068 
HD & Control  0.9042  0.8175  1.193  0.6667  3.6404  1.9079 
PD & Control  0.9214  0.849  0.3542  0.2228  0.3365  0.58  
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0.8944 using our ConvLSTM approach and a value of 0.8605 using our 
3D CNN approach. For the NDD versus control subproblem, the accuracy 
of machine learning methods working on 1D data varied between 
0.8040 and 0.9375, and deep learning methods using multiple 2D 
samples had accuracy values between 0.8600 and 0.9893. In contrast, 
we obtained an accuracy of 0.9633 with ConvLSTM and 0.9573 with 3D 
CNN for this subproblem. For the ALS versus control subproblem, the 
machine learning methods had accuracy values between 0.8620 and 
0.9620 and the values for the deep learning methods were between 0.9 
and 1.0. Our accuracy values were 0.9768 and 0.9573 with ConvLSTM 
and 3D CNN, respectively. In the HD versus control subproblem, the 
accuracy values obtained with the machine learning methods varied 
between 0.8333 and 0.9028; with the deep learning methods, the min
imum accuracy value was 0.8200 and the maximum was 0.9498. For this 
subproblem, our accuracy values were 0.9469 with ConvLSTM and 

0.9291 with 3D CNN. Finally, for the PD versus control subproblem, 
accuracy was between 0.8710 and 0.9710 with the machine learning 
methods and between 0.9421 and 0.9680 with the deep learning 
methods. With our proposed ConvLSTM method, we achieved an accu
racy value of 0.9505; the accuracy of 3D CNN was 0.9404. 

5. Discussion 

When the results in Tables 4 and 7 are examined, it can be observed 
that the ConvLSTM model performs better than the 3D CNN model for 
the disease detection and severity prediction problems. ConvLSTM 
inherently takes advantage of CNN’s pattern capturing and LSTM’s 
sequential data approach. It can extract important features from the data 
as CNN does and, like LTSM, make predictions for current data based on 
previous predictions. Since gait is an ongoing action, previous samples 

Table 8 
A comparison of the proposed study with previous studies using the same data set.   

Classifier Feature Extraction Feature 
Dimension 

Assessment 
Technique 

Accuracy 

Zeng et. al. [12] Deterministic Learning 
Theory 

Radial Basis Function 1D 10-fold CV NDD = NA 
NDD vs Control =
0.9375 
ALS vs Control = 0.8966 
HD vs Control = 0.8333 
PD vs Control = 0.9710 

Daliri et al. [13] Support Vector Machine Genetic Algorithm 1D %50 Train %50 Test NDD = NA 
NDD vs Control =
0.9063 
ALS vs Control = 0.9679 
HD vs Control = 0.9028 
PD vs Control = 0.8933 

Baratin et al. [14] Support Vector Machine Discrete Wavelet Transform 1D %85 Train %15 Test NDD = NA 
NDD vs Control =
0.8040 
ALS vs Control = 0.8620 
HD vs Control 0.8610 
PD vs Control = 0.8710 

Gupta et al. [15] Decision Tree Mutual Information 1D LOOCV NDD = NA 
NDD vs Control =
0.8750 
ALS vs Control = 0.9620 
HD vs Control = 0.8850 
PD vs Control = 0.9230 

Zhao et al. [20] Dual channel LSTM Sample Blocking 2D LOOCV NDD = NA 
NDD vs Control =
0.9504 
ALS vs Control = 0.9725 
HD vs Control = 0.9225 
PD vs Control = 0.9680 

Lin et al. [21] CNN Recurrence Plot 2D LOOCV NDD = NA 
NDD vs Control =
0.9893 
ALS vs Control = 0.1000 
HD vs Control = 0.9498 
PD vs Control = 0.9421 

Paragliola and Coronato [23] LSTM & CNN Sample Clustering 2D %80 Train %20 Test NDD = 0.6100 
NDD vs Control =
0.8600 
ALS vs Control = 0.9000 
HD vs Control = 0.8200 
PD vs Control = 0.95 

Our Proposed ConvLSTM 
Approach 

ConvLSTM QR transform 2D 10-fold CV NDD = 0.8944 
NDD vs Control =
0.9633 
ALS vs Control = 0.9768 
HD vs Control = 0.9469 
PD vs Control = 0.9505 

Our Proposed 3D CNN Approach 3D CNN Extract 3D tensors with 
ConvLSTM 

3D 10-fold CV NDD = 0.8605 
NDD vs Control =
0.9573 
ALS vs Control = 0.9768 
HD vs Control = 0.9291 
PD vs Control = 0.9404  
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of gait act on the current sample. In earlier studies, multiple samples 
were grouped into blocks to capture the ongoing action. The ConvLSTM 
method proposed in this study captures ongoing actions with a single 
sample by taking advantage of LSTM’s sequential data approach. The 
main reason why the classification and regression performance of the 3D 
CNN method is lower than the ConvLSTM approach is that it cannot fully 
process the information that it is fed by the tensors obtained using the 
extractor feature of ConvLSTM. 

When the results of the disease-detection classification problem were 
analyzed, ConvLSTM performed as well as 3D CNN in the ALS versus 
control subproblem and surpassed 3D CNN in all other subproblems. The 
reason why 3D CNN was as accurate as ConvLSTM in the ALS versus 
control subproblem may be because motor symptoms are more severe in 
ALS patients than PD and HD patients. Because the severe motor 
symptoms will affect the gait dynamics of patients with ALS, they are 
easier to identify with 3D CNN. 

In the disease-severity prediction regression problem, the results 
achieved with ConvLSTM and 3D CNN were similar overall, and the 
ideal model changed based on the performance metric that was used. 
Since the regression problem was more difficult than the classification 
problem, the advantage of ConvLSTM decreased in this part of the study. 
ConvLSTM stood out in the average error criteria, including MAE and 
MedAE, and 3D CNN was superior in criteria without outlier tolerance, 
such as MSE and RMSE. ConvLSTM can be used when the mean error 
must be minimized (e.g., for the disease-severity estimation regression 
problem), and 3D CNN can be used in cases where it is desirable to 
minimize outliers. The greater impact of ALS, compared with HD and 
PD, on motor functions, may have increased the regression performance 
in the ALS and control subset. The Total Functional Capacity domain of 
the Unified Huntington’s Disease Rating Scale (UHDRS-TFC), which was 
used to evaluate the patients in the HD and control subproblem, gives 
the highest score to healthy individuals and the lowest to patients with 
the most severe symptoms, unlike the scales used to assess patients with 
the other two diseases. Unlike the walking difficulties experienced by 
patients with ALS and PD, those characteristic of HD patients may not be 
observed at all times. The defining gait characteristic of HD is a sudden 
and slow motion twitching due to excessive bending of the knee and 
lifting of the leg. As this occurs sporadically, it may have affected the 
regression success in the HD and control subproblem. 

The models used for both the disease-detection classification prob
lem and the disease-severity estimation regression problem produced 
similar results. This can be explained by the saturation of the data set. 
The difference between the two models may be greater when addressing 
different problems and using different data sets. We predict that using 
3D CNN fed by ConvLSTM for classification problems and ConvLSTM for 
regression problems will yield better performance results. 

Since there are no comparable studies of the disease-severity esti
mation (regression) problem, only the results obtained for the classifi
cation problem could be compared with those of previous studies 
(Table 8). Because the studies differ in their sample numbers, feature 
dimensions, and assessment techniques, it is difficult to make direct 
comparisons. Nevertheless, both of the methods we tested provided 
above average performance compared with previous studies. This in
dicates that they may be sufficient for disease detection and estimation 
of disease severity using a single gait dynamics sample. 

6. Conclusion 

NDDs manifest themselves through the degeneration of nerve cells. 
Due to this degeneration, movement disorders may occur. They can be 
continuous, and they tend to increase during different activities. The 
different NDDs have different effects on gait. In addition, patients with 
more severe disease have more severe and frequent abnormal and 
involuntary movements when walking. 

With advances in the field of artificial intelligence, many clinical 
decision-support systems have been developed. Obtaining data with 

sensors has become easier as the sensors have become smaller and 
consume less energy. This has led to the development of artificial 
intelligence-based approaches to the detection of NDDs and disease- 
severity prediction using gait dynamics data obtained from GRF sen
sors. Because of the dynamics of gait and the structure of the sensors, the 
data obtained are one-dimensional. Hence, these studies generally use 
machine learning for feature extraction and/or manipulation. Instead, 
we employed a ConvLSTM model, which combines the advantages of 
LSTM, a deep-learning model that is highly successful at handling time- 
series data, and a CNN, a deep-learning model that captures patterns in 
the data it receives as input. Both a multiclass problem (the NDD sub
problem) and binary classification problems (NDD versus control, ALS 
versus control, HD versus control, and PD versus control), were solved 
using the proposed ConvLSTM method. In addition, the prediction 
performance achieved in regression subproblems (ALS and control, HD 
and control, and PD and control) was satisfactory and correlated with 
the classification performance. Although the classification and regres
sion results obtained with 3D CNN did not surpass those obtained with 
ConvLSTM, 3D CNN has a disadvantage: it lacks the ability to use in
formation that it has acquired from previous data. 

The QR code technique that transforms unidimensional data into two 
dimensions can be used together with a 2D CNN deep-learning 
approach, which has advantages in pattern capture and feature 
learning, in future studies to detect NDDs and predict disease severity. 
Furthermore, we expect that the proposed QR code representation 
technique will be applicable to other research topics. In theory, all one- 
dimensional samples could be represented in 2 dimensions using the QR 
code technique. Therefore, two-dimensional techniques such as 2D CNN 
and ConvLSTM could be applied to that data. Moreover, all two- 
dimensional data can be converted into three-dimensional tensors 
using the extraction feature of ConvLSTM and, thus, can be processed 
with 3D CNN. 

For detection of NDDs and prediction of their severities utilizing the 
motor symptoms, different data other than gait can also be used. In this 
context, as stated in study by Nishad et al. [33], signals from muscles can 
be considered in future studies to detect diseases and determine the 
severity of diseases. 
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