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Neurodegenerative diseases (NDDs) such as amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and
Parkinson’s disease (PD) can manifest themselves anatomically by degeneration in the brain as well as motor
symptoms. The motor symptoms can affect walking dynamics in a disease-specific fashion; characteristically they
disrupt gait. As the severity of the disease increases, walking ability deteriorates. We examined the effect of NDDs
such as ALS, HD, and PD on gait and developed a convolutional long short-term memory (ConvLSTM) and three-

dimensional convolutional learning network (3D CNN)-based approach to detecting neurodegenerative condi-
tions and predicting disease severity.

1. Introduction

Neurodegenerative diseases (NDDs) are characterized by the
degeneration of nerve cells in the substantia nigra, which is responsible
for dopamine secretion in the brain. This degeneration affects dopamine
production, resulting in movement disorders. In amyotrophic lateral
sclerosis (ALS), Huntington’s disease (HD), and Parkinson’s disease
(PD)—the major NDDs—involuntary movements occur due to the
degeneration but manifest themselves in different ways. In PD, the most
common movement-related clinical findings are bradykinesia, rigidity,
resting tremor, postural instability, and difficulty in walking. In HD, the
characteristic clinical findings include chorea, stumbling and clumsi-
ness, and difficulty in movement. Muscle atrophy is typical of ALS, but
muscle cramps and twitches may also make walking difficult [1-5].
Walking ability varies according to disease severity with all three
conditions.

Examining the gait characteristics of patients is useful in diagnosing
NDDs and estimating the severity of disease in a given patient. Correct
detection of NDDs is the most important criterion for patients to access
the right treatments, drugs, and care. Furthermore, the treatment of
motor symptoms must be adjusted according to the severity of the dis-
ease. Over- or underdosing leads to incomplete suppression of the motor
symptoms. Additionally, it changes their presentation, sometimes
leading to misdiagnoses that seriously reduce patients’ quality of life.
Artificial intelligence-based models using gait data can aid in disease
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detection and prediction of disease severity. Some such models have
been developed [6-11], but most are based on the processing and
manipulation of one-dimensional gait data for disease detection
[12-15].

Zeng et al. [12] introduced a new method for classifying NDDs: a
deterministic learning theory using gait dynamics. Using a supercentral
pattern generator model, a time series of swing and stance intervals of
left and right feet were used to model the gait dynamics of patients with
NDDs and healthy control subjects. The gait dynamics underlying the
gait patterns were approximated by radial fundamental function (RBF)
neural networks.

Daliri [13] developed an automated diagnostic system using gait
dynamics. A feature selection strategy based on a genetic algorithm was
used to select for important diagnostic features of NDDs. The selected
features were classified using a boost vector machine into two groups:
features characteristic of healthy people and those typical of patients
with NDDs. It has been stated that the double support interval is the most
important gait parameter in the diagnosis of NDDs.

Baratin et al. [14], proposed an automatic classification scheme for
NDDs in which gait features were integrated into a wavelet space by
using wavelet transform. The wavelet features were classified using the
support vector machine method. The authors showed that asymmetry
between gait features could be used for the detection of NDDs.

Gupta et al. [15] developed an efficient classification method using a
new set of gait features for gait intervals identified using auto-
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correlation and cross-correlation features. Mutual information (MI)
analysis was used, and 500 features were generated for the classification
phase. A rule-based classifier technique based on a single decision-tree
classifier was used to classify NDDs.

A handful of researchers have attempted to predict disease severity
in Parkinson’s disease [16-19]. Besides these, a few studies have
investigated deep learning-based methods for the diagnosis of NDDs
[20-22].

Zhao et al. [20] proposed a two-layer long short-term memory
(LSTM) deep learning method for the detection of NDDs using walking
data obtained by force-sensitive sensors. The model was based on the
detection of ALS, HD, PD diseases using attributes of walking dynamics.
To provide sufficient foot-changing knowledge, blocks of twenty sam-
ples were used for the experiments.

Lin et al. [21] sought a machine-learning solution to detecting NDDs
such as ALS, HD and PD. They used blocks containing ten samples of
walking dynamics obtained by force-sensitive sensors. Each block had
an overlap of two-thirds of the block size. This increased the number of
blocks to avoid missing any walking patterns. The blocks were converted
into 2D with the recurrence plot technique, and PCA was used for
feature enhancement. The features extracted were used to feed the
AlexNet CNN deep learning algorithm, and the NDDs were classified.

Paragliola and Coronato [22] took a deep learning approach to the
detection of NDDs, focusing on whole gait dynamic data rather than a
block-based pattern recognition process. They clustered all the data
obtained from each patient. Since the number of samples was different
for each person, the data set of the subject with the maximum number of
samples (310) was taken as the basis. Clusters with fewer instances were
extended to 310 samples by applying zero padding to ensure proper
operation of the long short-term memory (LSTM) and convolutional
neural network (CNN) deep learning methods.

Thus, a limited number of deep learning-based studies [20-22] have
addressed NDD detection, but with a focus on grouping samples. There
have been no attempts to predict disease severity in NDDs nor to detect
disease and predict severity simultaneously. In this study, we trans-
formed one-dimensional gait features collected by ground reaction force
(GRF) sensors into two and three dimensions to feed convolutional long
short-term memory (ConvLSTM) and three-dimensional convolutional
neural network (3D CNN) models and used the models to study classi-
fication and regression problems (disease detection and disease-severity
prediction, respectively) in NDDs. With these methods, a single sample
of gait dynamics was sufficient to detect disease and estimate its
severity.

2. Methods
2.1. General overview

We studied disease detection and disease severity prediction prob-
lems in NDDs by applying ConvLSTM and 3D CNN deep learning
methods to one-dimensional gait data. The one-dimensional gait data
was converted to QR codes to give it a two-dimensional structure,
making possible the use of a ConvLSTM model. Three-dimensional
tensors were extracted using ConvLSTM, and a 3D CNN model was fed
with these tensors. For disease detection, which is a classification
problem, 5 different subproblems were created (Table 1). Since a

Table 1
Classification subproblems.
Subproblem Explanation
NDD Each disease and control group are located

NDD vs Control
ALS vs Control
HD vs Control
PD vs Control

All diseases are grouped under a single label against control group
Only ALS patients are classified against the control group

Only Huntington patients are classified against the control group
Only Parkinson’s patients are classified against the control group
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disease-specific system is used to grade severity for each disease, three
different subproblems were created, with data belonging only to the
disease and its control group (Table 2).

To apply ConvLSTM, which takes 2-dimensional data as input, one-
dimensional gait data was represented in two dimensions by trans-
forming the data into QR codes. Each sample obtained from the original
GRF sensor data was converted into QR codes sequentially (Fig. 1).
Python was used for this conversion, choosing QR version 10 and me-
dium error correction capability (Table 3).

In artificial intelligence, disease detection in NDDs is a classification
problem, and the prediction of disease severity is a regression problem.
We sought solutions for these problems using deep learning models.
ConvLSTM was used for two purposes: as a decision-maker for the
classification and regression problems and as an extractor to output
three-dimensional data. ConvLSTM, by its nature, takes 2-dimensional
data as input and extracts 3-dimensional tensors as output; these ten-
sors are ideal for 3D CNN use. Through 3D CNN, the gait features con-
verted into tensors were used to find solutions for the both classification
and regression problems. Fig. 2 summarizes the use of ConvLSTM and
3D CNN.

2.2. Convolutional LSTM

ConvLSTM blends the LSTM and CNN approaches [26]. In essence,
ConvLSTM takes advantage of the sequential data approach of the LSTM
method and the pattern detection feature of CNNs. ConvLSTM departs
from the basic CNN + LSTM strategy in that the convolution structures
are extended both to the input-to-state transition and the transitions
from state to state [27].

The ConvLSTM architecture designed for this study works with 100
% 100 QR codes. Each of the 100 x 100 single-channel QR codes in the
QR data set was transformed into a 10 x 10 feature map. Starting with
an initial ConvLSTM layer, 64 feature maps were obtained without
distorting the original dimensions given as input. After that, this feature
map, which had a shape of 64 x 100 x 100, was decreased to 64 x 33 x
33 by max pooling. This 64 x 33 x 33 feature map was first decreased
with a ConvLSTM layer to 64 x 31 x 31 and then to 64 x 10 x 10 with a
max-pooling layer. At this point, the architecture had 2 separate dense
layers containing 6400 units and N units. The N value was 2 or 4
depending on the number of classes in the classification problem, and 1
was used in the regression problem. The ‘mini-batch’ dimension was 64,
the learning rate was 0.01, and the optimizer was “Adam,” and 30
epochs were run.

2.3. 3D CNN

To improve performance in both the classification and regression
tasks, a 3D CNN was fed with the outputs of ConvLSTM. ConvLSTM
generates a tensor that has a 3D cell shape as output. When provided as
input to the 3D CNN structure, those 3D tensors match perfectly.

The 3D convolutional layer was added to the ConvLSTM architecture
just before the flatten layer. For the hyperparameters of the 3D con-
volutional layer, we selected a kernel size of 32, a filter size of (1,3,3),
and “same” as the padding. These hyperparameters do not change the
feature map dimensions output by the ConvLSTM architecture. The
hyperparameters and working logic used in the other stages were the
same as those used in the ConvLSTM architecture.

Table 2
Regression subproblems.

Subproblem Explanation Severity Evaluation Scale

ALS & Control
HD & Control
PD & Control

Duration [23]
UHDRS-TFC [24]
Hoehn & Yahr [25]

Only ALS patients and control group
Only HD patients and control group
Only PD patients and control group
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QR Dataset

L1708 1.2300 3567 30.77 29.00 .8100 733 69.23 71.080 .4533 3
2133 1.2867 3833 31.87 31.77 267 33 68.13 68.23 .4433 3
2167 1.2100 3667 31.78 30.30 .8300 0.8433 68.22 69.70 4633 3
1.3067 1.2300 0.4333 0.4000 33.16 32.52 0.8733 0.8300 66.84 67.48 0.4733 3
1.1867 1.2933 0.4267 0.3967 35.96 30.67 0.7600 0.8967 64.84 69.33 0.3633 30.
1.3000 1.1967 0.4467 0.3867 34.36 32.31 0.8533 0.8100 65.64 67.69 0.4667 35.
1.2567 1.2867 0.4300 0.3900 34.22 30.31 0.8267 0.8967 65.78 69.69 0.4367 34.
1.4000 1.2667 0.4800 0.3900 34.29 30.79 0.9200 0.8767 65.71 69.21 0.5300 37.
1.4400 1.4767 ©.4800 ©.4200 33.33 28.44 ,0.9600 1.8567 66.67 71.56 ©.5400 37.
1.3467 1.4300 0.4100 0.4067 30.45 28.44 0.9367 1.8233 69.55 71.56 ©0.5300 39.
.
.
Fig. 1. The QR conversion.
even more important for imbalanced data sets.
Tal?le 3 Precision can be expressed as the ratio of the true positives to all the
Gait features. o . .
positives (TP and FP), as shown in equation (2).
Index Feature
. TP
1 Left Stride Interval (sec) Precision = m 2
2 Right Stride Interval (sec)
3 Left Swing Interval (sec) Recall can be described as a ratio of the true positives to the true
4 Right Swing Interval (sec) positives plus false negatives, as shown in equation (3). It expresses the
5 Left Swing Interval (% of stride) . . . ip . e
6 Right Swing Interval (% of stride) likelihood of the model identifying true positives.
7 Left Stance Interval (sec) TP
8 Right Stance Interval (sec) Recall = ———— 3)
9 Left Stance Interval (% of stride) TP +FN
10 Right Stance Interval (% of stride) F; score is a metric used to measure the relationship (balance) be-
11 Double Support Interval (sec) .. d 1L Al ith it is oft d
1o Double Support Interval (% of stride) tween score precision and recall. Along with accuracy, it is often a goo

2.4. Performance Evaluation

All of the experiments conducted were carried out using the k-fold
cross-validation technique, in which the data set is divided into k equal
parts with randomly determined samples. While one part is used for
testing, the remaining parts are used for training. This process continues
until each part has been used for testing, so that every part (and there-
fore every sample) is used for both testing and training [28]. The K value
for this study was 10.

In order to measure the performance of the classification and
regression experiments, accuracy, F; score, precision, and recall metrics
were used for the classification tasks [28]. For the regression tasks, the
correlation coefficient (R), coefficient of determination (R%), mean ab-
solute error (MAE), median absolute error (MedAE), root mean squared
error (MSE), and root mean squared error (RMSE) metrics were used
[29].

The accuracy-of-classification metric measures how often the model
classifies a sample correctly. Accuracy is the number of correctly pre-
dicted samples out of all the samples. As shown in equation (1), accuracy
can be described as the number of true positives and true negatives
divided by the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

TP + TN

Accuracy = ——— -
CUTaY = TP L TN + FP+ FN

(€Y

To fully assess the effectiveness of a model, precision and recall
metrics should be included in addition to accuracy. These metrics are

performance measure for imbalanced data sets. F; score, which is
mathematically defined as the harmonic mean of precision and recall,
can be formulated as in equation (4).

.. Precision*Recall

Fi=2 &)

Precision + Recall

The correlation coefficient (R) is the most commonly used metric for
regression problems. It is used to identify a relationship between two
values, such as predicted and actual. R can range between —1 and 1. The
value 0 indicates an absence of correlation, 1 a perfect positive corre-
lation, and —1 a perfect negative correlation.

Sa
R =% 5
5.5, 5)
" (@-0)(pi—p) " (a-a? L P _
Sap = ZFI 1 > Sa = Zx’,:,l ) Sp = 217"171 , a4 = %Z?:] a;,p =

Iy pi. where a represents actual value and p stands for predicted
value.

The coefficient of determination (R?) is a metric used to describe how
much variability a vector can have, based on its relationship to another
factor. The coefficient of determination, commonly known as goodness
of fit, takes values between 0 and 1. A value of 1 signifies a perfect fit,
and 0 indicates that there is no fit. The formula for the coefficient of
determination is shown in equation (6).

i@ — Pi)z
Eos DA L 6
Yii(a—a)

Mean absolute error (MAE) is the measure of the difference between
two continuous variables. MAE is the average vertical distance between

R(a,p) =1~—
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Fig. 2. Use of ConvLSTM and 3D CNN.

each actual value and the line that best fits the data. It is a linear score
that measures the average magnitude of errors in a range of estimates
without considering their direction. All individual errors are weighted
equally on the mean. Equation (7) is the formula for the MAE.

n

1
MAE = N ; la; — pil @
Median absolute error (MedAE) is a regression metric that minimizes
the distortions caused by excessive and potentially erroneous outliers.
MedAE is found by taking the median value of the absolute difference of
all of the actual values and the values predicted by the model corre-
sponding to the actual values. Its formula is given in equation (8).

las — pal) ®)

The mean square error (MSE) indicates how close a regression curve
is to a set of points. It measures the performance of a machine learning
mode. The predictor is always positive, and predictors with an MSE
value close to zero perform better. Errors are squared before averaging,
which imposes a high penalty on significant errors [30]. Eq. (9) shows
the formula for the MSE.

MedAE = median(|a; — pil, ...,

n

1
MSE = ;(ai —p)2 9)
The root mean square error (RMSE) is a quadratic metric that mea-
sures the magnitude of the error. It is often used to find the distance
between predicted and actual values. It indicates that how dense that
data is around the line that best fits the data. The formula for the RMSE is
shown in equation (10).

RMSE = v/MSE (10)

3. Materials

The data set used to test the methods proposed in this study was
published by Hausdorff et al. [31-32] and has been made available on an
open access basis by PhysioNet. There are 15,092 samples in this data set
from 64 subjects: 13 patients with ALS, 20 patients with HD, 15 patients
with PD, and 16 healthy individuals (controls). Each sample contains 12
gait characteristics (i.e., features) as well as timestamp information
extracted from the raw data collected by GRF sensors. For this study, the
timestamp information was removed, and experiments were carried out
using the 12 gait features (Table 1). The gait features are illustrated in
Fig. 3.

4. Results

Classification experiments were conducted for the five subproblems
listed in Table 1, taking the diseases and their respective control groups
one by one. For the regression experiments, solutions were sought for
the three subproblems listed in Table 2.

Table 4 shows the classification results obtained with ConvLSTM. In
the NDD subproblem, containing four different classes, the accuracy, F1
score, precision, and recall values were 0.8944, 0.8945, 0.8946, and
0.8933, respectively. In the NDD versus control subproblem, these
values were 0.9633, 0.9532, 0.9561, and 0.9605, respectively. When the
subproblems that featured a single disease and a control group were
examined, the accuracy, F1 score, precision, and recall values for ALS
patients, compared with controls, were 0.9768, 0.9755, 0.9762, and
0.9747, respectively. They were 0.9469, 0.9465, 0.9466, and 0.9463, for
patients with HD, compared with controls, and 0.9505, 0.9552, 0.9513,
and 0.9512, respectively, for patients with PD, compared with controls.

Table 5 provides the regression results obtained with ConvLSTM. The
measured R, R%, MAE, MedAE, MSE, and RMSE values for the ALS and
controls subproblem were 0.9394, 0.8824, 2.4636, 1.3506, 20.6687,
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Fig. 3. The Gait Cycle.

Table 4
Classification results obtained with ConvLSTM.
Accuracy F; Score Precision Recall

NDD 0.8944 0.8945 0.8946 0.8933
NDD vs Control 0.9633 0.9532 0.9561 0.9605
ALS vs Control 0.9768 0.9755 0.9762 0.9747
HD vs Control 0.9469 0.9465 0.9466 0.9463
PD vs Control 0.9505 0.9552 0.9513 0.9512

Table 5

Regression results obtained with ConvLSTM.

R R? MAE MedAE  MSE RMSE

ALS & Control 0.9394 0.8824 2.4636 1.3506 20.6687 4.5462
HD & Control 0.9008 0.8115 1.1256 0.6362 3.7619 1.9395
PD & Control 0.9202 0.8267 0.3419 0.1991 0.3417 0.5845

and 4.5462, respectively. These values were 0.9008, 0.8115, 1.1256,
0.6362, 3.7619, and 1.9395, respectively, for the HD and controls sub-
problem and 0.9202, 0.8267, 0.3419, 0.1991, 0.3417, and 0.5845,
respectively for the PDN and controls subproblem.

Table 6 shows the classification results obtained with the 3D CNN
that was fed by ConvLSTM. The accuracy, F; score, precision and recall
values obtained for the NDD subproblem were 0.8605, 0.8608, 0.8623,
and 0.8579, respectively. These values were 0.9573, 0.9456, 0.9472,
and 0.9442, respectively, for the patients with NDD compared with
controls. When the subproblems that compared a single disease and a
control group were examined, accuracy, F; score, precision, and recall
values were 0.9768, 0.9755, 0.9256, and 0.9751, respectively, for the
ALS patients compared with the controls. They were 0.9291, 0.9235,

Table 6
Classification results obtained with 3D CNN fed by ConvLSTM.
Accuracy F; Score Precision Recall
NDD 0.8605 0.8608 0.8623 0.8579
NDD vs Control 0.9573 0.9456 0.9472 0.9442
ALS vs Control 0.9768 0.9755 0.9256 0.9751
HD vs Control 0.9291 0.9235 0.929 0.9281
PD vs Control 0.9404 0.9401 0.9406 0.9397

0.929, and 0.9281, respectively, for the HD patients compared with the
controls, and 0.9404, 0.9401, 0.9406, and 0.9397, respectively, for the
patients with PD, compared with the controls.

Table 7 shows the regression results obtained with the 3D CNN that
was fed by ConvLSTM. The R, R?, MAE, MedAE, MSE, and RMSE values
for the ALS and control subproblem were 0.9431, 0.8895, 2.5548,
1.5456, 19.4201, and 4.4068, respectively. They were 0.9042, 0.8175,
1.193, 0.6667, 3.6404, and 1.9079, respectively, for the HD and control
subproblem and 0.9214, 0.849, 0.3542, 0.2228, 0.3365, and 0.58,
respectively, for the PD and control subproblem.

For the NDD detection (classification) problem, a comparison of the
proposed study with previous studies on the same data set is given in
Table 8. The studies differed in their classifiers, feature dimensions, and
feature extraction and assessment techniques. The machine-learning
classifiers included deterministic learning theory, support vector ma-
chines, and decision trees, and the deep-learning classifiers were 2D and
3D CNN, LSTM, and ConvLSTM. In the machine-learning models, one-
dimensional features were extracted using a RBF, a genetic algorithm,
a discrete wavelet transform, and Ml-based selection. In the deep-
learning models, two-dimensional features were extracted using sam-
ple blocking, recurrence plots, and sample clustering. Three approaches
were used for assessment: 10-fold cross-validation (10-fold CV), leave-
one-out-cross-validation (LOOCV), and the split method (in which a
certain proportion of the data set is reserved for training and the rest of
the set is used for testing). Our method differed from other deep learning
approaches in that we obtained 2D features from a single sample using
QR code transformation. Then we extracted 3D tensors by using
ConvLSTM fed with the QR codes. We sought a three-dimensional so-
lution using the 3D tensors.

The multiclass NDD classification problem, in which all of the dis-
eases and control groups were present, has been addressed only once
before [23], with an accuracy of 0.61. We obtained an accuracy value of

Table 7
Regression results obtained with 3D CNN fed by ConvLSTM.
R R? MAE MedAE  MSE RMSE
ALS & Control 0.9431 0.8895 2.5548 1.5456 19.4201 4.4068
HD & Control 0.9042 0.8175 1.193 0.6667 3.6404 1.9079
PD & Control 0.9214 0.849 0.3542 0.2228 0.3365 0.58




C.B. Erdas et al.

Biomedical Signal Processing and Control 70 (2021) 103069

Table 8
A comparison of the proposed study with previous studies using the same data set.
Classifier Feature Extraction Feature Assessment Accuracy
Dimension Technique
Zeng et. al. [12] Deterministic Learning Radial Basis Function 1D 10-fold CV NDD = NA
Theory NDD vs Control =
0.9375
ALS vs Control = 0.8966
HD vs Control = 0.8333
PD vs Control = 0.9710
Daliri et al. [13] Support Vector Machine Genetic Algorithm 1D %350 Train %50 Test NDD = NA
NDD vs Control =
0.9063
ALS vs Control = 0.9679
HD vs Control = 0.9028
PD vs Control = 0.8933
Baratin et al. [14] Support Vector Machine Discrete Wavelet Transform 1D %85 Train %15 Test NDD = NA
NDD vs Control =
0.8040
ALS vs Control = 0.8620
HD vs Control 0.8610
PD vs Control = 0.8710
Gupta et al. [15] Decision Tree Mutual Information 1D LOOCV NDD = NA
NDD vs Control =
0.8750
ALS vs Control = 0.9620
HD vs Control = 0.8850
PD vs Control = 0.9230
Zhao et al. [20] Dual channel LSTM Sample Blocking 2D LOOCV NDD = NA
NDD vs Control =
0.9504
ALS vs Control = 0.9725
HD vs Control = 0.9225
PD vs Control = 0.9680
Lin et al. [21] CNN Recurrence Plot 2D LOOCV NDD = NA
NDD vs Control =
0.9893
ALS vs Control = 0.1000
HD vs Control = 0.9498
PD vs Control = 0.9421
Paragliola and Coronato [23] LSTM & CNN Sample Clustering 2D %380 Train %20 Test NDD = 0.6100
NDD vs Control =
0.8600
ALS vs Control = 0.9000
HD vs Control = 0.8200
PD vs Control = 0.95
Our Proposed ConvLSTM ConvLSTM QR transform 2D 10-fold CV NDD = 0.8944
Approach NDD vs Control =
0.9633
ALS vs Control = 0.9768
HD vs Control = 0.9469
PD vs Control = 0.9505
Our Proposed 3D CNN Approach 3D CNN Extract 3D tensors with 3D 10-fold CV NDD = 0.8605
ConvLSTM NDD vs Control =
0.9573

ALS vs Control = 0.9768
HD vs Control = 0.9291
PD vs Control = 0.9404

0.8944 using our ConvLSTM approach and a value of 0.8605 using our
3D CNN approach. For the NDD versus control subproblem, the accuracy
of machine learning methods working on 1D data varied between
0.8040 and 0.9375, and deep learning methods using multiple 2D
samples had accuracy values between 0.8600 and 0.9893. In contrast,
we obtained an accuracy of 0.9633 with ConvLSTM and 0.9573 with 3D
CNN for this subproblem. For the ALS versus control subproblem, the
machine learning methods had accuracy values between 0.8620 and
0.9620 and the values for the deep learning methods were between 0.9
and 1.0. Our accuracy values were 0.9768 and 0.9573 with ConvLSTM
and 3D CNN, respectively. In the HD versus control subproblem, the
accuracy values obtained with the machine learning methods varied
between 0.8333 and 0.9028; with the deep learning methods, the min-
imum accuracy value was 0.8200 and the maximum was 0.9498. For this
subproblem, our accuracy values were 0.9469 with ConvLSTM and

0.9291 with 3D CNN. Finally, for the PD versus control subproblem,
accuracy was between 0.8710 and 0.9710 with the machine learning
methods and between 0.9421 and 0.9680 with the deep learning
methods. With our proposed ConvLSTM method, we achieved an accu-
racy value of 0.9505; the accuracy of 3D CNN was 0.9404.

5. Discussion

When the results in Tables 4 and 7 are examined, it can be observed
that the ConvLSTM model performs better than the 3D CNN model for
the disease detection and severity prediction problems. ConvLSTM
inherently takes advantage of CNN’s pattern capturing and LSTM’s
sequential data approach. It can extract important features from the data
as CNN does and, like LTSM, make predictions for current data based on
previous predictions. Since gait is an ongoing action, previous samples
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of gait act on the current sample. In earlier studies, multiple samples
were grouped into blocks to capture the ongoing action. The ConvLSTM
method proposed in this study captures ongoing actions with a single
sample by taking advantage of LSTM’s sequential data approach. The
main reason why the classification and regression performance of the 3D
CNN method is lower than the ConvLSTM approach is that it cannot fully
process the information that it is fed by the tensors obtained using the
extractor feature of ConvLSTM.

When the results of the disease-detection classification problem were
analyzed, ConvLSTM performed as well as 3D CNN in the ALS versus
control subproblem and surpassed 3D CNN in all other subproblems. The
reason why 3D CNN was as accurate as ConvLSTM in the ALS versus
control subproblem may be because motor symptoms are more severe in
ALS patients than PD and HD patients. Because the severe motor
symptoms will affect the gait dynamics of patients with ALS, they are
easier to identify with 3D CNN.

In the disease-severity prediction regression problem, the results
achieved with ConvLSTM and 3D CNN were similar overall, and the
ideal model changed based on the performance metric that was used.
Since the regression problem was more difficult than the classification
problem, the advantage of ConvLSTM decreased in this part of the study.
ConvLSTM stood out in the average error criteria, including MAE and
MedAE, and 3D CNN was superior in criteria without outlier tolerance,
such as MSE and RMSE. ConvLSTM can be used when the mean error
must be minimized (e.g., for the disease-severity estimation regression
problem), and 3D CNN can be used in cases where it is desirable to
minimize outliers. The greater impact of ALS, compared with HD and
PD, on motor functions, may have increased the regression performance
in the ALS and control subset. The Total Functional Capacity domain of
the Unified Huntington’s Disease Rating Scale (UHDRS-TFC), which was
used to evaluate the patients in the HD and control subproblem, gives
the highest score to healthy individuals and the lowest to patients with
the most severe symptoms, unlike the scales used to assess patients with
the other two diseases. Unlike the walking difficulties experienced by
patients with ALS and PD, those characteristic of HD patients may not be
observed at all times. The defining gait characteristic of HD is a sudden
and slow motion twitching due to excessive bending of the knee and
lifting of the leg. As this occurs sporadically, it may have affected the
regression success in the HD and control subproblem.

The models used for both the disease-detection classification prob-
lem and the disease-severity estimation regression problem produced
similar results. This can be explained by the saturation of the data set.
The difference between the two models may be greater when addressing
different problems and using different data sets. We predict that using
3D CNN fed by ConvLSTM for classification problems and ConvLSTM for
regression problems will yield better performance results.

Since there are no comparable studies of the disease-severity esti-
mation (regression) problem, only the results obtained for the classifi-
cation problem could be compared with those of previous studies
(Table 8). Because the studies differ in their sample numbers, feature
dimensions, and assessment techniques, it is difficult to make direct
comparisons. Nevertheless, both of the methods we tested provided
above average performance compared with previous studies. This in-
dicates that they may be sufficient for disease detection and estimation
of disease severity using a single gait dynamics sample.

6. Conclusion

NDDs manifest themselves through the degeneration of nerve cells.
Due to this degeneration, movement disorders may occur. They can be
continuous, and they tend to increase during different activities. The
different NDDs have different effects on gait. In addition, patients with
more severe disease have more severe and frequent abnormal and
involuntary movements when walking.

With advances in the field of artificial intelligence, many clinical
decision-support systems have been developed. Obtaining data with
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sensors has become easier as the sensors have become smaller and
consume less energy. This has led to the development of artificial
intelligence-based approaches to the detection of NDDs and disease-
severity prediction using gait dynamics data obtained from GRF sen-
sors. Because of the dynamics of gait and the structure of the sensors, the
data obtained are one-dimensional. Hence, these studies generally use
machine learning for feature extraction and/or manipulation. Instead,
we employed a ConvLSTM model, which combines the advantages of
LSTM, a deep-learning model that is highly successful at handling time-
series data, and a CNN, a deep-learning model that captures patterns in
the data it receives as input. Both a multiclass problem (the NDD sub-
problem) and binary classification problems (NDD versus control, ALS
versus control, HD versus control, and PD versus control), were solved
using the proposed ConvLSTM method. In addition, the prediction
performance achieved in regression subproblems (ALS and control, HD
and control, and PD and control) was satisfactory and correlated with
the classification performance. Although the classification and regres-
sion results obtained with 3D CNN did not surpass those obtained with
ConvLSTM, 3D CNN has a disadvantage: it lacks the ability to use in-
formation that it has acquired from previous data.

The QR code technique that transforms unidimensional data into two
dimensions can be used together with a 2D CNN deep-learning
approach, which has advantages in pattern capture and feature
learning, in future studies to detect NDDs and predict disease severity.
Furthermore, we expect that the proposed QR code representation
technique will be applicable to other research topics. In theory, all one-
dimensional samples could be represented in 2 dimensions using the QR
code technique. Therefore, two-dimensional techniques such as 2D CNN
and ConvLSTM could be applied to that data. Moreover, all two-
dimensional data can be converted into three-dimensional tensors
using the extraction feature of ConvLSTM and, thus, can be processed
with 3D CNN.

For detection of NDDs and prediction of their severities utilizing the
motor symptoms, different data other than gait can also be used. In this
context, as stated in study by Nishad et al. [33], signals from muscles can
be considered in future studies to detect diseases and determine the
severity of diseases.
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