
Artificial Intelligence In Medicine 117 (2021) 102081

Available online 30 April 2021
0933-3657/© 2021 Elsevier B.V. All rights reserved.

Review 

Artificial intelligence in neurodegenerative diseases: A review of available 
tools with a focus on machine learning techniques 
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A B S T R A C T   

Neurodegenerative diseases have shown an increasing incidence in the older population in recent years. A sig
nificant amount of research has been conducted to characterize these diseases. Computational methods, and 
particularly machine learning techniques, are now very useful tools in helping and improving the diagnosis as 
well as the disease monitoring process. In this paper, we provide an in-depth review on existing computational 
approaches used in the whole neurodegenerative spectrum, namely for Alzheimer’s, Parkinson’s, and Hun
tington’s Diseases, Amyotrophic Lateral Sclerosis, and Multiple System Atrophy. We propose a taxonomy of the 
specific clinical features, and of the existing computational methods. We provide a detailed analysis of the 
various modalities and decision systems employed for each disease. We identify and present the sleep disorders 
which are present in various diseases and which represent an important asset for onset detection. We overview 
the existing data set resources and evaluation metrics. Finally, we identify current remaining open challenges 
and discuss future perspectives.   

1. Introduction 

Neurodegenerative diseases are a class of neurological disorders 
where neurons from the central nervous system die or are damaged 
causing severe disabilities, and eventually death. They are typically 
encountered in old age. However, disease onset might appear earlier. In 
the past years, their incidence increased significantly and it is expected 
that the increase will continue, as the world’s population ages [1]. 
Neurodegenerative diseases are problematic and can become a burden 
since their cause is unknown and no cure has been discovered. Treat
ments are currently targeting the alleviation of symptoms. Due to recent 
advances in artificial intelligence, a significant help can come from the 
computational approaches targeting diagnosis and monitoring, e.g., 
detection of disease onset, characterization of the disease, improvement of the 
differential diagnosis, quantification of the disease progression, tracking of 
the medication effects. These tasks can be automated or at least improved 
with the help of machine learning algorithms. 

Scope and target of this work. In this context, the present study pro
poses an in-depth, large scale, analysis of the existing artificial intelli
gence capabilities in support of the diagnosis and analysis of the main 
neurodegenerative diseases. Although a large number of 

neurodegenerative diseases can be defined [2], we target the ones with 
the highest prevalence and representative of the neurodegenerative 
spectrum, namely: Alzheimer’s Disease, Parkinson’s Disease, Hunting
ton’s Disease, Multiple System Atrophy, and Amyotrophic Lateral Scle
rosis. To retrieve the existing literature, a total of 46 keywords were 
used, ranging from “neurodegenerative medical devices”, “handwriting 
Parkinson detection”,“Huntington disease machine learning” to “Alzheimer 
brain imaging machine learning”. These included combinations of the 
disease names, symptoms and analysis methods. The publications were 
selected based on the relevance attributed by the scholar.google search 
engine, focusing on the most impacting and recent publications. All 
articles that did not include computational methods or the target key
words were excluded. A summary of the article pool is presented in 
Fig. 1. Overall, we reviewed more than 450 articles. As the graph shows, 
there is an increasing interest for this topic, which is triggered not only 
by recent advances in deep learning but also by the promising results 
achieved so far. Other review works on specific neurodegenerative dis
eases or specific symptoms are also available. Our study goes beyond 
prior works by providing a general view of existing capabilities in the 
field rather than focusing on particular disease cases. For the 
completeness of our work, the reader is referred to existing reviews of 
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the literature each time a relevant study is available. 
Overview of our contributions. The main contributions of this study can 

be summarized with the following: (i) we provide a global review on 
existing computational approaches used in the whole neurodegenerative 
spectrum, (ii) we identify and synthesize a general taxonomy of 
neurodegenerative disorders, (iii) after analyzing current trends, we 
propose a taxonomy for computational approaches, (iv) we provide a 
detailed analysis of the various modalities and decision systems 
employed for each disease, (v) we identify and present the sleep disor
ders which are present in various diseases and which represent an 
important asset for onset detection, (vi) we identify and present the most 
prominent datasets available for building computational systems 
together with the evaluation methodologies, and finally (vii) we identify 
the main capabilities as well as the remaining open questions to be 
solved by upcoming developments. 

Previous resources. Several previous reviews on similar topics have 
been identified. For Alzheimer’s disease, the reader is referred to: Laske 
et al. [3] for a review on the different methods available for diagnosing 
AD, Cassani et al. [4] for a review on differentiating stages of AD pro
gression using resting-state-EEG, Bhat et al. [5] presents the recent 
research performed on automated EEG based diagnosis of AD, Maestu 
et al. [6] for a review on MEG and EEG biomarkers for AD, Zhang et al. 
[7] for a review on methods for identifying MCI and AD, the conversion 
from MCI and the progression of AD, Alberdi et al. [8] for a review on 
methods for monitoring AD in an unobtrusive way, Pellegrini et al. [9] 
for a review on machine learning techniques used in neuroimaging for 
dementia and MCI, Davatzikos [10] for a brief overview of machine 
learning in neuroimaging. For Parkinson’s disease, the reader is referred 
to: Keijsers et al. [11] for a review on the use of wearable movement 
sensors for PD detection and severity prediction, van Rooden et al. [12] 
for a review of identification of PD’s subtypes via cluster analysis, 
Ahlrichs and Lawo [13] for a review of machine learning approaches for 
recognizing PD motor symptoms, Stenis et al. [14] for a review of 
wearable accelerometry-based technology for PD rehabilitation pur
poses, Pasluosta et al. [15] for a review of existing wearable technolo
gies and the Internet-of-Things concept in support of PD diagnostics and 
treatment, Kubota et al. [16] for a nontechnical tutorial review of 
relevant machine learning algorithms for large-scale wearable sensor 
data in PD, Cummins et al. [17] for a review of speech analysis for health 
in general that includes also dysarthic PD speech, and Impedovo and 
Pirlo [18] for a review of dynamic handwriting analysis via pattern 
recognition for the assessment of neurodegenerative diseases, including 
PD. In contrast to previous work, apart from presenting the latest 
methods, we focus on a more general perspective, addressing all mo
dalities and computational approaches in an interconnected way, while 
investigating the current capabilities of the algorithms. For Hunting
ton’s disease, there are currently no review publications with a specific 
focus on the technical aspects of diagnosis or monitoring. Several 

publications provide an overview of the methods available for analysis 
and detection of different gait abnormalities in either neurological or 
human movement disorders, including HD: Orru et al. [19] provides a 
review of the different uses of SVM for the identification of imaging 
biomarkers for neurological diseases in MRI, PET or DTI scans, Fig
ueiredo et al. [20] investigates also the use of SVM, but for identifying 
gait patterns in human motor disorders, Moon et al. [21] provides a 
systematic overview of evidence for gait variability in neurodegenera
tive diseases such as: AD, ALS, HD and PD. For the Amyotrophic Lateral 
Sclerosis, there is a relative sparsity in computational methods devel
oped and we have identified a single overview providing information on 
dysarthia in ALS. Tomik and Guiloff [22] analyze both clinical symp
toms and the technical methods used for the differential diagnosis based 
on acoustic features. The current work goes beyond these aspects for a 
more updated and broader analysis. For Multiple System Atrophy, there 
are currently no prior literature reviews on the computational tech
niques used in its monitoring and diagnosis. This holds also for REM 
sleep behavior disorder where no overview articles dealing with the 
computational approaches are available. For restless legs syndrome and 
periodic limb movement, a systematic review was published by Plante 
[23] on the use of leg actigraphy for periodic limb movements. In 
contrast, the current study reviews up-to-date current technology and 
broader implications on the study of neurodegeneration. 

Abbreviations. Throughout the entire paper we will use the following 
abbreviations (by alphabetic order): AD — Alzheimer’s disease, ANN — 
artificial neural network, ALS — amyotrophic lateral sclerosis, AUC — Area 
under the curve B — bradykinesia, CNN — convolutional neural networks, 
CNS — central nervous system, CV — cross-validation D — dyskinesia, DBS 
— deep brain stimulation, DCNN — deep convolutional neural networks, 
DLB — dementia with Lewy bodies, DNN — dynamic neural networks, DTI 
— diffusion tensor imaging, ECG — electrocardiogram, EEG — electroen
cephalogram, EMG — electromyography, EOG — electrooculogram, ERP — 
event related potentials, FoG — freezing of gait, H&Y — Hoehn and Yahr 
Scale, HC — healthy controls, HD — Huntington’s disease, HMM — hidden 
Markov models, ICA — independent component analysis, kNN — k-nearest 
neighbors, LASSO — least absolute shrinkage and selection operator, LDA — 
linear discriminant analysis, LOO — leave one out, LSTM — long short term 
memory, MCI — mild cognitive impairment, MRI — magnetic resonance 
imaging, MSA — multiple system atrophy, PCA — principal component 
analysis, PD — Parkinson’s disease, PET — positron emission tomography, 
PNN — probabilistic neural network, PSP — progressive supranuclear palsy, 
PSG — polysomnography, REM — rapid eye movement, RBD — REM sleep 
behavior disorder, RF — random forest, RLS — restless legs syndrome, ROC 
— receiver operating characteristic, SPET — single photon emission tomog
raphy, SVM — support vector machine, SVR — support vector regression, T 
— tremor, UPDRS — Unified Parkinson’s Disease Rating Scale. 

The remainder of this article is organized as follows. Section 2 pre
sents the relevant definitions and proposes a taxonomy for this review, 

Fig. 1. Number of considered publications for this review distributed over the publication years.  
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from both the medical and computational point of view. Further on, 
each subsequent section deals with the computational approaches 
encountered for specific neurodegenerative diseases representating a 
specific category of neurodegeneration. Section 3 looks into Alzheimer’s 
disease. Section 4 reviews Parkinson’s disease. Section 5 analyses 
Huntington’s disease. Sections 6 and 7 deal with amyotrophic lateral 
sclerosis and multiple system atrophy respectively. Section 8 reviews the 
techniques used for detecting and monitoring sleep disorders encoun
tered in multiple neurodegenerative disorders. Section 9 provides a 
summary of the datasets and evaluation methods used in testing the 
majority of the computational approaches presented. Section 10 con
cludes the review and identifies gaps and future challenges for the field. 

2. Definitions and taxonomy 

In this section, we propose a taxonomy for the existing computa
tional approaches for neurodegenerative diseases, both from the medi
cal and computational perspectives. Section 2.1 defines the prominent 
neurodegenerative disorders along with their symptoms. Section 2.2 
discusses the various theories adopted in the literature for the catego
rization of neurodegeneration and proposes a taxonomy. Section 2.3 
defines a taxonomy for the computational approaches highlighting their 
purpose, the monitored disease and clinical features, along with the data 
modality used for analysis and diagnosis. Neurodegenerative diseases 
can be regarded as a class of neurological disorders that imply the pro
gressive loss of neurons or subsets of neurons from specific functional- 
anatomical areas of the CNS [24,2]. We exclude here the neurological 
diseases caused by traumas at the level of the CNS. As neuro
degeneration can affect many types of neurons and functional areas, 
their symptomatology is diverse and many different diseases can be 
defined. Their classification is however controversial as a significant 
number of symptoms overlap. 

2.1. Definitions 

Alzheimer’s disease is a progressive age-related neurodegenerative 
disease characterized by the accumulation of amyloid plaques (beta- 
amyloid protein mixture), neurofibrillary tangles (clumps of tau proteins) 
and a severe loss of connections between neurons responsible for memory 
and learning [25]. Symptoms appear initially as mild memory impair
ments which can also be confounded with age related memory losses. 
These progress into severe memory impairments leading up to person
ality changes, language difficulties, motor difficulties, delusions and 
hallucinations [26]. Diagnostic criteria include the presence of AD 
biomarkers assessed through MRI or PET images along with an assess
ment of dementia symptoms and the degree of cognitive impairment 
[27]. 

Dementia with Lewy bodies is caused by the accumulation of Lewy 
bodies (clusters of alpha-synuclein protein) inside the nuclei of neurons 
from the cerebral cortex and basal ganglia [25]. Since both neurons 
involved with memory function and motor control are affected, the 
clinical symptoms of DLB are very similar to the dementia symptoms of 
AD and the abnormal movements encountered in PD. 

Parkinson’s disease is a motor disorder characterized by the loss of 
dopamine producing neurons through the accumulation of alpha- 
synuclein proteins. The main clinical characteristics include resting 
tremor, bradykinesia (a slowing of movements), muscle rigidity, gait 
and postural disturbances, sleep disorders, tiny handwriting and diffi
culties when speaking or swallowing [25,26]. A cure for the disease has 
not been discovered and current treatments focus on alleviating the 
symptoms, either through medication, physical therapy or deep brain 
stimulation. Two severity rating scales are used predominantly in 
medical practice: Movement Disorder Society — Unified Parkinson’s Dis
ease Rating Scale (MDS-UPDRS) [28] — rating based on behavior and 
mood, activities of daily living, motor tasks and therapy effect; Hoehn 
and Yahr Scale [29] — rating based exclusively on gait and posture 

impairments. 
Multiple system atrophy is a progressive neurodegenerative dis

ease that affects multiple areas of the brain and spinal cord responsible 
with the coordination of the autonomic nervous system [25,26]. As DLB 
and PD, it is also linked to the accumulation of alpha-synuclein but in this 
case in the glia cells. Symptoms include bradykinesia, impaired speech, 
orthostatic hypotension, bladder control problems, abnormal sweating 
and sleep disorders. 

Amyotrophic lateral sclerosis is a progressive neurodegenerative 
disease that affects motor neurons. Muscles begin to atrophy as their 
control is no longer possible. The incipient phases of ALS usually affect 
the limbs and symptoms rapidly progress to other parts of the body. In 
the final phase of the disease, the muscles controlling the respiratory 
system begin to weaken. Death usually occurs within 3–5 years from 
disease onset due to respiratory failure. The most relevant clinical fea
tures include: severe motor impairments, muscle twitches, speech im
pairments, difficulties swallowing [25,26]. 

Huntington’s disease is an inherited progressive neurodegenerative 
disease characterized by a mutation in the huntingtin gene that causes 
motor neurons controlling voluntary movements to die [25,2]. The 
symptoms include chorea (uncontrolled movements), abnormal body 
postures, speech impairments, changes in behavior, emotion, judgment 
and cognition. Death occurs in 10 to 30 years after disease onset. The 
diagnosis is based on genetic testing and neuroimaging techniques. 

2.2. Taxonomy of neurodegenerative diseases 

When placing a diagnosis, medical professionals take into account 
the predominant clinical symptomatology, the topography of the 
neurodegenerative lesion or a combination of the two. The clinical 
manifestations are a consequence of the specific neurons and system 
areas that are affected [2,30]. For instance, dementia and altered 
high-order brain functions are linked to the anatomical regions that 
include the hippocampus, entorhinal cortex, limbic system and neocortical 
areas. Movement disorders are associated with the damage brought to 
the basal ganglia, thalamus, brainstem nuclei, cerebellar cortex and nuclei, 
motor cortical areas and lower motor neurons of the spinal cord. At their 
incipient manifestation, combinations of these symptoms can be 
observed in several diseases [30]. 

It is not yet known what causes or triggers neurodegeneration, while 
the disease characteristics sometimes overlap and their progression is 
difficult to predict. In recent years, the traditional method of classifying 
neurodegenerative diseases based on symptomatology revealed diffi
culties in the diagnostic process of neurodegeneration, and as a conse
quence, in finding adequate treatment courses [31,2]. These difficulties 
stem from the extent of simultaneous occurrence of both clinical and 
neuropathological features defined for separate disorders in one indi
vidual at the same time. Armstrong [31] described three models to 
approach the classification of neurodegenerative diseases: a discrete 
model, an overlap model and a continuum model. The discrete model im
plies discrete diseases with little overlap of the clinical and neuropath
ological features. An overlap model implies a certain degree of overlay 
in the disease features, while in a continuum model the high degree of 
overlay of the features can be regarded as a continuous variation of 
features from one disease to another. Fig. 2 presents the overlap of four 
different clinical feature categories in between the selected diseases: 
sleep disorders, cognitive and behavioral changes, speech impairments and 
motor impairments. These can further be broken down into other specific 
disorders. RBD and RLS appear in diseases that seem to be characterized 
by alpha-synuclein depositions: DLB, PD and MSA. AD also presents 
symptoms related to sleep disorders, but in this case they are related to 
alterations in the sleep/wake cycle of the patient. Cognitive and 
behavioral changes as an effect of the disease are mostly encountered in 
dementing disorders such as AD or DLB, but also appear in HD, a disease 
predominantly characterized by motor dysfunctions. The most relevant 
cognitive impairments include memory loss and problems with 
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perception. Psychological changes due to neurodegenerative diseases 
include personality changes (in AD), depression and anxiety (in DLB) 
and mood changes (in HD). Clinical features related to speech impair
ments can be regarded as modifications in the lexical content and those 
related to vocalization. The lexical content of speech is altered in the 
case of dementing diseases (AD and DLB), while vocalization is different 
for diseases that are governed by motor dysfunctions. Motor impair
ments are present in parkinsonism syndromes. Hence bradykinesia, 
posture and balance dysfunction along with facial muscle rigidity are 
clinical features of DLB, PD and MSA. HD also presents motor impair
ments but unlike parkinsonism diseases, it presents hyperkinesia char
acterized by chorea and tremor. 

The nosological approach used by medical professionals to diagnose 
their patients involves an analysis of the main clinical symptoms along 
with imaging the lesions, if possible. Computational approaches can be 
used as an aid in the diagnosis and monitoring of these diseases by 
tracking different classes of symptoms. They can be used either for 
disease identification or for monitoring the progression and evaluating 
different treatment courses, either through medical follow-ups or 
remote tracking. Hence, in our taxonomy we approach a classification of 
neurodegenerative diseases based on the clinical symptomatology. A symp
tomatology which can also be tracked for following progression and for 
disease identification. Following the study of Kovacs [30], we propose 
three categorizations for neurodegenerative disorders based on their 
predominant clinical characteristics: dementia, abnormal movements and 
the combination of the two. The disorders characterized by abnormal 
movements can be further subdivided into hypokinetic and hyperkinetic. 
In hypokinetic diseases, movements are slowed or diminished, whereas 
in hyperkinetic disorders, uncontrolled movements appear. The taxon
omy is provided in Table 1 (the sources for the prevalence data are the 
following articles [32–34] and online documents1). The list of diseases is 
not exhaustive, but provides a complete overview from the perspective 
of existing computational approaches. The prevalence of these disorders 
is increasing and it is estimated that the number of patients will double 
by 2050 [1], along with the increase in the older population. Details on 
the prevalence of each disease is available in Table 1. As 

neurodegeneration is a process affecting mostly individuals older than 
60 years, most data is reported in literature with respect to the elder 
population. Significant variations are reported between different areas 
of the globe, with a slightly higher prevalence in low and middle income 
countries. Out of all neurodegenerative diseases, the dementing ones 
have the highest prevalence, with AD taking the leading role. 

Based on the proposed taxonomy, we have selected several diseases 
that we considered representative for each disease category. For the 
dementing disorders, we have chosen to focus on Alzheimer’s disease 
due to its slightly higher prevalence compared to other diseases in this 
group (0.6% see Table 1). Although fronto-temporal dementia is the 
second most encountered dementing disorder, we do not focus on this 
disorder as most of the symptoms overlap with AD. Some aspects of the 
differential diagnosis between AD and FTD are covered in Section 3. 
From the motor hypokinetic disorders, Parkinson’s disease has the 
highest prevalence (0.2% see Table 1) and was included in this survey. 
Although MSA and ALS (with prevalence of 0.003% and 0.006%, 
respectively see Table 1) are also hypokinetic disorders, we have 
decided to include them in this survey due to the paucity of studies using 
machine learning techniques. As they present similar symptoms to PD, 
aspects on their differential diagnosis is also included. Huntington’s 
disease was chosen as a representative of the motor hyperkinetic dis
orders group as it has the highest prevalence compared to similar dis
eases (0.004% see Table 1). 

2.3. Taxonomy of computational approaches 

Having analyzed the medical perspectives of neurodegeneration and 
identified the prominent diseases, we now focus on the existing 
computational approaches that come in support of the diagnosis, 
monitoring and improvement of the patient’s life. As previously 
mentioned, we shall focus on a symptomatology-based analysis. Table 2 
illustrates the proposed taxonomy of existing approaches. We propose a 
classification based on: clinical symptomatology and the disease they 
characterize or detect, basic modality used as input in the computation 
and their goal. The symptomatology is divided into five main categories: 
(1) Sleep disorders — which can be further subdivided into several dis
orders. REM sleep behavior disorder (RBD) and restless leg syndrome 
(RLS) (see Section 8). (2) Speech impairments — are observed in both 
dementing and motor debilitating neurodegenerative diseases, however 
their manifestation is different. In dementing disorders, the lexical 
content of the speech is altered. In motor disorders, the muscles con
troling speech production are affected and thus vocalization impair
ments are present. (3) Motor impairments — the most visible effect of 

Fig. 2. Overview of the different clinical features of the most prominent neurodegenerative diseases.  

1 https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf, 
https://www.alzheimer-europe.org/Dementia/Other-forms-of- 

dementia/Neurodegenerative-diseases, https://emedicine.medscape. 
com/article/1151013-overview, https://www.karger.com/Article/FullText/ 
443738, https://www.valueinhealthjournal.com/article/S1098-3015(18) 
31696-6/fulltext. 
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motor impairments is the effect they have on limb muscle control. Thus 
problems with gait, tremor and posture are very often encountered. 
Other symptoms include reduced facial expressions and modifications in 
handwriting (see Sections 4, 5 and 7). (4) Biomarkers — the identifica
tion of specific protein depositions in specific anatomical locations by 
analyzing medical images can define disease biomarkers. Modalities 
such as EEG, EMG or eye movements can also be used as modalities to 
extract disease biomarkers. 

Computational approaches can also be divided based on the disease 
they are applied to. Here we chose to look only at representative cate
gories of neurodegeneration as presented in Section 2.2. AD is repre
sentative for dementing diseases. Frontotemporal dementia was not 
considered in this review as it is similar in symptoms to AD, while having 
a lower incidence rate. PD, MSA, ALS and HD are all predominantly 
motor disorders. Computational methods are highly dependent on the 
type of data used as input, especially when looking at feature extraction. 

The sensor modality used for characterizing a disease depends on the 
type of symptoms analyzed. Hence sleep disorders are usually charac
terized by PSG and actigraphy based recordings. Speech impairments 
are analyzed through voice recordings of participants performing 
different tasks, while motor impairments through a variety of sensors 
that measure movement in controlled and uncontrolled settings, e.g., 
accelerometers, EMG, videos. The purposes of using computational 
methods in helping patients suffering from neurodegenerative disorders 
is many fold. They can aid in the diagnostic by providing symptom 
characterization and help in identifying the exact disease. They can also 
be used for providing an objective monitoring method of disease pro
gression. As the exact classification of neurodegenerative diseases is 
difficult when symptoms overlap, automatic methods of identifying 
small symptomatological differences are desired. A promising use of 
computational methods is the forecasting of events related to disease 
symptoms or even the identification and classification of the disease 

Table 1 
Taxonomy of nerodegenerative diseases: classification based on symptoms, specific disease examples, affected areas, prevalence (* percent normalized to 100,000 
people), clinical symptoms indicative of the overlap between diseases, and prevalence of sources cited in this article.  

Class Disease Lesion topography Prevalence* Main clinical symptoms #Articles 

Dementing Alzheimer’s Disease Cerebral cortex, 
Hippocampus, Basal nucleus 
of Meynert 

0.6%[ 
2015] 

Personality changes, cognitive and memory impairments, 
delusions, hallucinations 

135   

Frontotemporal 
Dementia 

Frontal and temporal lobes 
of the cerebral cortex 

0.02%[ 
2013] 

Altered personality, apathy, disinhibition, impaired 
memory, planning, attention, perception 

NA 

Dementing and abnormal 
movements 

Lewy Body Dementia Cerebral cortex, Basal 
ganglia 

0.002%[ 
2016] 

Cognitive impairments, delusions, depression, anxiety, 
rigidity, mask-like face 

NA   

Corticobasal 
Degeneration 

Cerebral cortex, Basal 
ganglia 

0.006%[ 
2013] 

Language impairment, muscle twitches, abnormal posture NA 

Abnormal 
movements 

Hypokinetic Parkinson’s Disease Basal ganglia 0.2%[ 
2017] 

Slowing of voluntary movements, muscle rigidity, resting 
tremor, difficulty speaking, gait and postural disturbances, 
tiny handwriting, sleep disorders 

259   

Olivoponto 
cerebellar atrophy 

Cerebellum, Pons, Inferior 
olives 

0.005% Ataxia, tremor, rigidity, sleep disorders, depression, 
tremor 

NA   

Progressive 
Supranuclear Palsy 

Cerebral Nuclei 0.006%[ 
2013] 

Loss of balance, difficulty moving eyes, slowing of 
movement, slurred speech, personality changes 

NA   

Multiple System 
Atrophy 

Several areas of the brain 
and spinal cord 

0.003%[ 
2013] 

Low blood pressure when standing up, abnormal breathing 
during sleep, difficulty urinating, abnormal sweating, 
slowness of movement, impaired speech 

6   

Amyotrophic Lateral 
Sclerosis 

Spinal cord 0.006%[ 
2013] 

Weakening of the muscles, sleep disorders, involuntary 
uncontrolled sighing, problems swallowing 

15  

Hyperkinetic Huntington’s 
Disease 

Basal ganglia (caudate 
nucleus, corpus striatum) 

0.004% Uncontrolled movements, abnormal body posture, changes 
in behavior and cognition 

50   

Essential Tremor Basal ganglia 0.003% Tremor of the hand, head, arms, voice, tongue, legs NA  

Table 2 
Taxonomy of computational approaches: clinical features or disease they deal with, diseases sharing these features, used sensor modalities and purpose of the approach 
(PD — Parkinson’s disease, DLB — dementia with Lewy bodies, MSA — multiple system atrophy, AD — Alzheimer’s disease, ALS — amyotrophic lateral sclerosis, HD 
— Huntington’s disease).  

Clinical feature Disease(s) Sensor modality Purpose 

Sleep disorders REM sleep behavior disorder PD, DLB, MSA Polysomnography, actigraphy, EEG, EMG Diagnosis  
Restless leg syndrome and periodic 
limb movement 

PD, DLB, MSA Polysomnography, actigraphy, EMG Diagnosis  

Disturbed sleep/wake cycle AD Polysomnography, actigraphy Progression monitoring 
Speech 

impairments 
Lexical content AD Voice Diagnosis, progression monitoring  

Vocalization AD, DLB, MSA, PD Voice Diagnosis, classification, progression 
monitoring 

Motor 
impairments 

Gait, freezing of gait, posture PD, DLB, MSA, 
ALS, HD 

Accelerometers, gyroscopes, force sensors, 
EMG, video 

Diagnosis, classification, progression 
monitoring, disease identification  

Tremor PD, DLB, MSA, 
ALS, HD 

Accelerometers, gyroscopes, EMG, actigraphy Diagnosis, classification, progression 
monitoring  

Facial expressions PD, DLB, MSA Video, EMG Diagnosis, disease identification  
Bradykinesia PD Accelerometer, gyroscopes Diagnosis, disease identification  
Handwriting PD Images of handwriting, writing kinematics, 

EMG, accelerometer 
Diagnosis, disease identification 

Biomarkers Imaging AD, DLB, PD, MSA, 
ALS, HD 

MRI, PET, SPECT, DTI Diagnosis, classification, progression, 
monitoring  

Other biomarkers AD, DLB, PD, MSA, 
ALS, HD 

EEG, eye movement tracking, EMG, genetic 
information, proteomics 

Diagnosis, classification, progression, 
monitoring  
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prior to the clinical onset. The neurodegenerative process can sometimes 
start years before symptoms are observed. 

3. Alzheimer’s disease 

In this section, we present a review of the most widely used 
computational approaches in the diagnosis and monitoring of Alz
heimer’s disease (reported metrics are presented in Section 9.4). Most 
studies included in the review focus on the differentiation between AD 
and healthy controls (baseline participants, usually age-matched), AD 
and its prodromal state mild cognitive impairment (MCI) or the differ
ential diagnostic between AD and other forms of dementia. There is also 
significant interest in monitoring the disease progression by determining 
several levels of severity or trying to predict the conversion from MCI to 
AD. 

3.1. Biomarkers 

3.1.1. Use of brain imaging 
Alzheimer’s disease is linked to the accumulation of alpha-synuclein 

in the brain tissue. This accumulation can be tracked and studied 
through different neuroimaging techniques. Currently, neuroimaging 
methods are the most accurate option for providing an AD diagnosis 
while the patient is still alive. The golden standard for a precise AD 
diagnosis remains the autopsy. Since AD is the most prevalent type of 
neurodegenerative disease, its characteristics as revealed by neuro
imaging have been extensively studied resulting in a high availability of 
large datasets. Topics addressed in literature include: (i) the detection of 
AD patients from HC [35–37], (ii) measuring disease severity [38], (iii) 
helping with the differential diagnostic from different types of dementia 
[39,40] and, the most addressed topic, (iv) differentiating between MCI, 
AD and HC along with the prediction of conversion from MCI to AD. 

Detection of AD patients. Several recent studies have addressed the 
problem of differentiating between AD and HC by using deep learning 
techniques previously developed for other image processing problems. 
Islam and Zhang [36] compare the deep convolutional neural network 
Inception V5 model with the GoogleNet on MRI data from the OASIS 
dataset containing 100 AD patients and 300 HC. Using a 5-fold cross 
validation, an accuracy of 73.75% was obtained. Katako et al. [35] work 
on FDG-PET data from the ADNI database using an SVM classification 
algorithm in a 10-fold cross-validation. A sensitivity of 84% and a 
specificity of 95% is obtained for differentiating between AD and HC. 
Sarraf and Tofighi [37] use LeNet-5 resulting in an accuracy of 96.85% 
for AD vs. HC differentiation. 

Measuring AD severity. The severity of AD can also be classified 
through neuroimaging data. Mahmood and Ghimire [38] use MRI data 
from a total of 687 AD patients from the OASIS dataset. These are 
classified into the following classes: no dementia, very mild AD, mild AD 
and moderate AD with an overall accuracy of approximately 90%. 

Differential diagnostic. Differentiating between AD and Fronto- 
temporal dementia based only on symptoms can be problematic. 
Davatzikos et al. [39] use voxel based and high dimensional pattern 
classification features extracted from grey and white matter regions of 
brain MRI. By using an SVM classifier with a leave-one-out cross-
validation, the proposed algorithm can distinguish between AD and FTD 
with an accuracy of 84.3%. The difficulty in placing a correct AD 
diagnosis is valid also for other dementing disorders. The correlation 
between the golden standard test for AD diagnosis, the autopsy, and the 
data collected from MRI and neurophysiological tests several years prior 
to death, has been studied by Kautzky et al. [41]. A classification model 
was built on the collected data using the labels placed after autopsy. A 
random forest model was created in a 5-fold cross-validation scenario 
and resulted in an accuracy of only 62%. 

Differentiating between AD and MCI. In some patients, mild 
cognitive impairment is a prodromal symptom of Alzheimer’s disease. 
The differences in the brains of MCI and AD patients along with the 

conversion of MCI into AD has been extensively studied using brain 
imaging technology. Most studies make use of MRI data [42–46]. Some 
works study the differences between MCI and AD patients by combining 
multiple imaging technologies such as MRI and PET [47] or FDG-PET 
[48] or MRI and DTI [49]. Biomarkers for the conversion are proposed 
by extracting voxel-based features [42], morphometric and volumetric 
features [50]. Classification is performed using a variety of well-known 
algorithms adapted from other applications. In the early work of Plant 
et al. [42], brain changes appearing in MCI as predictors of AD are 
characterized by voxel based features. These features are used together 
with an SVM classifier allowing a differentiation of MCI from AD with an 
accuracy of 97.48%. An SVM classifier is also used by Salvatore et al. 
[43] to differentiate between MRI images obtained from MCI patients 
that converted to AD and MCI patients that did not convert. Using a 
nested cross-validation the accuracy was of 66%. Yan et al. [49] fuses 
MRI and DTI information for the differentiation between subjective 
cognitive decline, mild cognitive impairment and Alzheimer’s disease. 
The result of an SVM classification is an accuracy of 98.58% for AD vs. 
HC, of 97.76% for MCI vs. HC and of 80.24% for subjective cognitive 
decline vs. MCI. 

Deep neural networks have been gaining popularity in the field of 
imaging classification. Naturally, some of the methods have been 
adopted in the problem of AD vs. MCI classification based on brain 
imaging. Ahmed et al. [46] use a 3D convolutional autoencoder network 
for AD vs. MCI vs. HC classification based on anatomical features. The 
training set consisted of 210 patients from the ADNI dataset, while the 
test set was a selection of 30 patients from the CADDementia dataset. 
The result was a sensitivity of 100%, 80% and 47% for AD, MCI and HC 
classes respectively. Jabason et al. [45] have also used deep autoen
coders for feature selection. With a 5-fold cross validation used on data 
from the ADNI dataset the accuracy, sensitivity and specificity obtained 
was of 98.55%, 98.79% and 99.31% respectively. 

3.1.2. Use of EEG 
As Alzheimer implies a severe loss of neuronal connections, changes 

can also be observed on the recorded EEG of AD patients. When 
compared to healthy controls, EEG signals recorded from AD patients 
show a slowing down of the characteristic EEG frequency bands and a 
decrease in complexity due to the diminished neuronal synchronization 
and of different types of oscillations [51]. Due to the non-invasive nature 
of the recording, EEG is a good candidate for the extraction of AD bio
markers. EEG based biomarkers have been used in literature to: (i) 
automatically classify AD patients and HC [51–53], (ii) to provide help 
in the differential diagnostic between AD and other types of dementia 
[54,55], (iii) to automatically distinguish between Mild-Cognitive 
Impairment (MCI) and different stages of AD [53,56]. 

Classification of AD patients. Most work conducted on the auto
matic detection of AD vs. HC is focused on extracting computational 
biomarkers based on the slowing down of EEG frequencies and the 
reduction in signal complexity. Trambaiolli et al. [52] takes advantage 
of the slowing down of EEG activity by extracting spectral and coherence 
features from EEG data and using them as input to an SVM classifier. 
Feature selection techniques are used to increase the performance on a 
dataset of 22AD and 12HC with a leave-one-out validation method. The 
classification accuracy was of 91.8%. Automated EEG based AD classi
fication with a low-density EEG montage has been proposed by Cassani 
et al. [51]. Using only seven EEG channels, the data was pre-processed 
using ICA and wavelet decomposition for artifact removal. Several 
groups of features were extracted: spectral, coherence and amplitude 
modulation features. These were employed in a 10-fold cross validation 
framework for an SVM classified. The performance of the model was 
evaluated using accuracy, sensitivity and specificity (77.3%, 79.2%, 
75.2% respectively). 

Differential diagnosis. Placing a diagnosis of Alzheimer is not always 
easy as the symptoms most often overlap with other types of dementia. 
Several studies have proposed solutions for helping the differential 
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diagnosis. Dauwan et al. [54] use quantitative EEG features combined 
with clinical and neurophysiological information, visual EEG and cere
brosinal fluid diagnostic information for creating a model that differ
entiates between DLB and AD. The proposed model uses a random forest 
classifier and was tested on 66DLB, 66AD and 66HC subjects. An accu
racy of 87% was obtained for the differential diagnostic problem. The 
differentiation between PD related dementias and AD is studied by 
Jeong et al. [55] using an LDA classifier on features extracted from 
wavelet energy and coherence. The differentiation between conditions 
was obtained with an accuracy of 79.18% revealing significant differ
ences in the beta and gamma bands. 

Differentiating MCI from AD. The majority of studies extracting AD 
biomarkers from EEG, use resting-state EEG recordings of different 
lengths. Mamani et al. [53] proposed an event related potential (ERP) 
based study using an N-back memory task for obtaining AD and MCI 
biomarkers. A statistical analysis showed a significant difference be
tween AD, MCI and HC on EEG channels recorded over the 
fronto-centro-parietal part. The problem of classifying HC, MCI and AD 
subjects has been addressed by McBride et al. [56] based on Sugihara 
causality. The three class problem has been solved using an SVM clas
sifier in a leave-one-out scenario using a small database of 15HC, 16MCI 
and 17AD. The best accuracy was of 95.8%. 

3.2. Speech analysis 

The effects of Alzheimer’s related dementia can also be observed in 
the speech of patients. Unlike in the case of Parkinson’s, where muscles 
controlling the production of speech are affected, Alzheimer’s disease 
affects the content of the speech of AD patients. The majority of studies 
analyzing the speech of AD patients focus on features related to the se
mantics of the spoken communication. Topics of interest include: (i) the 
automatic differentiation between AD and HC [57–59], and (ii) the 
detection of the prodromal stage of MCI and its different intermediate 
stages [60,61]. 

Differentiating between AD and HC. A method for the automatic 
detection of AD subjects using the semantic content of speech was 
proposed by Fraser et al. [58]. A total of 370 features were extracted 
from the DementiaBank database using as input the syntactic 
complexity, the grammatical constituents, the psycholinguistics (fre
quency of certain words), vocabulary richness and repetitiveness but 
also features derived from the acoustic properties of speech. By using a 
multi-linear regression in a 10 fold cross-validation scenario a maximum 
average accuracy of 81.92% was obtained. König et al. [57] looked at 
semantic fluency in 93 AD and MCI patients vs. 24 HC using an SVM 
classifier with a leave-one-out approach. The result was an accuracy of 
93.9%. López-de Ipiña et al. [62] aimed at extracting biomarkers of AD 
from speech, both from spontaneous speech as well as analyzing the 
emotional response from acoustic features. The best classification ac
curacy was of a 97.7% using an SVM classifier that had as input 
emotional features as well. 

Detection of prodromal AD from MCI. Automatically identifying 
patients suffering from mild cognitive impairments can be useful for the 
prediction of conversion to AD. In this case the semantic features of 
speech can also be of help. In the work of König et al. [60], the 
distinction between MCI, AD and HC is studied through the extraction of 
semantic, vocal and statistical features from a short vocal task. Using 
random sub-sampling for data balancing and an SVM classifier, HC are 
distinguished from MCI subjects with 79% accuracy. Satt et al. [63] 
employs data regularization techniques to overcome data sparseness 
from a small database of 15HC, 23MCI and 26 AD subjects. Semantic, 
vocal and acoustic features are used with a Naive Bayes classifier. The 
differentiation between MCI and HC reaches an accuracy of 80% while 
MCI and AD reaches 87%. 

3.3. Eye movement analysis 

Detecting patients in the mild cognitive impairment state that could 
convert to AD is useful for early treatment intervention and better dis
ease management. Existing methods make use of the different eye 
movement patterns resulting as a reaction to different visual stimuli. 
Pavisics et al. [64] use eye tracking related features, e.g., number of 
saccades, wave jerks, maximum fixation duration, to distinguish be
tween AD and HC. By employing a Hidden Markov Model an accuracy of 
95% is obtained. Eye tracking was also used by Parsons et al. [65] to 
distinguish between AD and posterior cortical atrophy. Using a Hidden 
Markov Model (HMM) to model movements in gaze location, a differ
entiation accuracy of 95.5% is obtained. Alzheimer’s disease leads to 
severe cognitive impairments and the emotional toll it takes on the pa
tients should not be ignored when proposing different treatment cour
ses. Chung et al. [66] analyzes visual scanning behavior to automatically 
detect apathy in AD patients. Two separate LSTM cells are used to model 
visual scanning behavior during emotional and non-emotional stimuli 
presentation. The output of the recursive neural network is fed into a 
logistic regression classifier with an outcome of 74% AUROC within a 
hold out validation. 

3.4. Gene analysis 

The development of Alzheimer’s disease in some individuals has also 
been linked to a certain genetic predisposition. The human genome 
contains a high amount of data unique for each individual. Computa
tional methods, more specifically machine learning tools, have proved to 
be extremely useful in mapping this information and determining spe
cific genetic links to diseases. AD is no exception and several works focus 
on identifying genes or gene interactions related to AD development. For 
instance, Park et al. [67] studied the genetic interactions that could be 
correlated to AD. The input data was fed into a Random Forest classifier 
to detect HC and AD related information. An accuracy of 90.2% was 
obtained. Huang et al. [68] aimed at identifying genes highly correlated 
to Alzheimer’s disease from the whole genome. Genes were labeled as 
AD and non-AD related. By extracting several genome related features, 
an SVM classifier with a radial basis kernel was used. The receiver 
operating characteristic was of 84.56%. Xu et al. [69] also uses protein 
sequence information with an SVM classifier, resulting in an accuracy of 
85.7% in predicting AD. 

3.5. Multimodal features 

Alzheimer’s disease, along with all the other neurodegenerative 
diseases, is a complex disorder that affects many facets of the normal 
functioning of a patient. Using one type of modality as input for 
analyzing the disease might in some cases be sufficient but in most cases 
is not enough for an adequate diagnosis. Therefore, some researchers 
focused on harvesting information from complementary sources. For 
instance, Alvarez et al. [70] proposed the ICT4LIFE platform to monitor 
the behavior of AD. For a more accurate disease classification, infor
mation is obtained from multiple sources including electronic health 
records, body sensors and Kinect sensors. Several features are extracted 
and a sparse autoencoder is used for optimizing feature selection. The 
result is classified with a logistic regression with an accuracy, precision 
and recall of 98.4%, 98.7% and 98.3% respectively. Colloby et al. [71] 
used a combination between EEG and MRI data to distinguish between 
AD and DLB. Using a SVM classifier, it achieves an accuracy of 90%. The 
fusion of different technologies has also been investigated in this case. 
Fraser et al. [72] combined eye movement analysis with speech features 
in a logistic regression model. Using the two types of features an accu
racy of 86% was obtained for classifying MCI and HC subjects. Grassi 
et al. [73] looks at the conversion of MCI to AD within a 3 year time 
frame using sociodemographic characteristics, clinical and neurophysi
ological test scores. With a SVM classifier, an AUC of 0.962 is obtained. 
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3.6. Summary 

Alzheimer’s disease symptoms and progression can be investigated 
and tracked through diverse methods. In this section, we have covered 
some of the topics that use computational methods in the study of Alz
heimer’s disease. With specific regard to machine learning techniques, 
these can be applied on problems with a diverse scope, ranging from AD 
detection to differential diagnosis and predicting disease progression. A 
selection of some of the most relevant machine learning research works 
on AD presented in this review is summarized in Table 3. The infor
mation contains details on the purpose of the study, the sensor modality, 
the type of classifier used and the best performance obtained. 

4. Parkinson’s diseases 

Parkinson’s disease is the second most encountered neurodegener
ative disease and we consider it to be representative for hypokinetic 
diseases with similar symptoms. PD and other hypokinetic diseases are 
characterized by bradykinesia, muscle rigidity and freezing of movements. 
As the disease progresses, different impairments related to difficulties in 
muscle control can be seen in patients. Most computational methods 
focus on, either detecting PD vs. healthy control subjects, or on mapping 
the differently computed features to diseases measurement severity 
scales, such as UPDRS or H&Y. PD subtype classification is also of 
interest. 

4.1. Motor symptoms monitoring 

The most predominant symptoms that affect PD patients are the 
motor disabilities. Depending on the symptoms monitored and the final 
goal of the research, different recording and processing methodologies 
are used. As motor symptoms are some of the most encountered prob
lems in PD, an abundance of studies are available on the topic. 
Computational methods developed for the analysis of PD motor symp
toms aim at discriminating between PD and HC [74] but also at 

objectively quantifying the severity of the disease though comparisons 
to the UPDRS and H&Y scales [75–77]. Another application is the 
monitoring of the on/off medication states of patients [78]. Analyzing 
the severity of motor disability with respect to the time passed from the 
last medication intake, one can suggest adjustments to the treatment 
scheme. 

4.1.1. Gait and posture 
Most studies looking at the gait and posture of PD patients focus on 

distinguishing or characterizing different signals collected for patients 
with respect to HC. 

Recording methods. The dynamics of gait are, in the majority of 
cases, characterized using wearable accelerometer sensors placed at 
different locations on the body, e.g., ankles [79], waist, wrist [80]. In 
this type of analysis, video recordings annotated by specialists are 
considered the golden standard [80]. Another approach for monitoring 
problems with gait is through force sensors placed under the foot [76,74]. 
This technology is particularly advantageous as sensors can easily be 
placed inside the shoe with no significant inconvenience to the user. 
EMG signals can also be used for abnormal gait detection, however these 
are more cumbersome to record and integrate in wearable technologies. 
Kugler et al. [81] used EMG sensors on the lower limb muscles for 
proposing objective measures of evaluating gait in standard tests. 
Impaired balance is also studied, for instance Stack et al. [80] use in
ertial sensors. Protocols for recording involve mostly walking for a 
specific distance or standard gait tests used by medical professionals. 

Classification techniques. Most analysis performed focus on 
extracting time and frequency domain features for disease state classi
fication. Statistical, entropy and energy features are predominantly 
extracted from the time domain signals. In the frequency domain, the 
predominant frequency is characterized along with the phase and the 
energy content. Asuroglu et al. [76] introduce a locally weighted 
Random Forest classification for estimating the severity of PD in com
parison to the UPDRS scale, using eight force sensors. Alam et al. [74] 
add swing and stride time along with statistical time domain features as 
input to an SVM cubic kernel classifier which distinguishes between PD 
and HC with an accuracy of 93.6%. Three different studies amounting a 
total of 93 PD and 73 HC subjects with ground reaction force recordings 
[82] were used by Zhao et al. [83] for implementing a two-channel 
model combining LSTM and CNN. 

4.1.2. Bradykinesia 
Studies focusing exclusively on the analysis of bradykinesia in PD 

patients estimate the severity of the symptoms based on accelerometer and 
gyroscope sensors placed on different locations of the body [84,85]. For 
instance, Martinez-Manzanera et al. [85] use a Shimmer platform con
taining accelerometers, gyroscopes and magnetic sensors to record data 
from 25 PD and 10 HC subjects while performing a series of standardized 
motor tasks. The obtained signals were fused and features were 
computed both in time and frequency domain. After applying a t-test 
based forward selection wrapper for feature reduction, the remaining 
features were fed into an SVM classifier. The best results were obtained 
using a combination of seven features and resulted in error rates as low 
as 9.3–9.8%. Samà et al. [84] use a support vector regression for clas
sifying symptom severity for a smaller database containing 12 PD pa
tients with an accuracy for bradykinesia detection of 90%. 

4.1.3. Freezing of gait 
Akinesia occurs in some PD patients with a frequency dependent on 

the severity of the disease. It is possible to provide support to those 
suffering from a freezing of gait episode to surpass the moment [86]. 
Hence many studies focus on the detection of such episodes. For reha
bilitation purposes, the detection should provide good performance in 
uncontrolled environments with as little intrusion as possible. Most of 
the studies focus on the detection of freezing of gait episodes using in
ertial sensor based wearable technologies. These include accelerometers 

Table 3 
Overview of the most relevant research works using machine learning in 
handling Alzheimer’s disease that were presented in this work. Brief details are 
provided on the dataset size and content, classification techniques and evalua
tion methods.  

Purpose Modality Dataset Classifier Eval Acc Ref. 

AD vs. 
HC 

MRI 100AD, 
300HC 

InceptionV5, 
GoogleNet 

5fold 
CV 

73.75% [36] 

AD vs. 
HC 

MRI 28AD, 
15HC 

LeNet-5 Hold 
out 

96.85% [37] 

AD vs. 
HC 

Eye 
tracking 

26AD, 
21HC 

HMM CV 95.5% [65] 

AD vs. 
HC 

EEG 22AD, 
12HC 

SVM LOO 91.8% [52] 

AD vs. 
HC 
MCI 
vs. HC 

MRI, DTI 28AD, 
45MCI, 
38AD 

SVM CV 98.58% 
97.76% 

[49] 

AD vs. 
MCI 

EEG 17AD, 
16MCI 

SVM LOO 95.8% [56] 

AD vs. 
MCI 

Speech 26AD, 
23MCI 

SVM LOO 93.9% [57] 

preAD 
vs. 
MCI 

Speech 26AD, 
23MCI 

Naive Bayes – 80% [63] 

MCI vs. 
HC 

Eye 
tracking, 
speech 

27MCI, 
30HC 

Logistic 
regression 

LOO 86% [72] 

AD vs. 
DLB 

EEG 66AD, 
66DLB 

RF – 87% [54] 

AD vs. 
DLB 

EEG, MRI 30AD, 
21DLB 

SVM – 90% [71] 

AD vs. 
FTD 

MRI 37AD, 
12FTD 

SVM LOO 84.3% [39]  
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and gyroscopes [87] placed on the waist [88], thigh [86] or wrist [89]. 
Gait specific features are extracted from the time domain, e.g., statistical 
measures [89,90], step and stride time and length [91], and frequency 
domain, e.g., freezing index [86], power in different frequency bands 
[89]. Good results were obtained in several studies using the SVM 
classifier [88,91]. Deep learning models are also investigated. Camps 
et al. [87] used a six layer convolutional network for FoG detection on 
21 PD patients. The deep learning framework achieved 90% for the 
geometric mean between sensitivity and specificity. Since smartphones 
already incorporate these recording modalities and are ubiquitously 
available, their performance in this circumstance has also been evalu
ated by some studies [90]. EEG signals have also been used by Hando
joseno et al. [92] for FoG onset detection. Their dynamics were analyzed 
with wavelet transform based entropy measures and a back propagation 
neural network classification. 

4.1.4. Tremor 
A characterization of disease severity or of treatment efficiency can 

also be provided by the assessment of tremor severity. A convenient 
method of assessing tremor is through the analysis of signals obtained 
from accelerometers incorporated in wearable technology. Rigas et al. 
[93] propose the use of Hidden Markov Models on accelerometer signals 
obtained from different parts of the body of 18 PD and 5 HC subjects in 
different resting conditions. Tremor severity was assessed with an ac
curacy of 87%. Kostikis et al. [94] use a smartphone for training ma
chine learning algorithms to distinguish the severity of parkinsonian 
tremor on a database of 25 PD and 20 HC participants. A bagged 
ensemble of decision trees provided the best results with 82% of the 
patients being classified correctly. 

4.1.5. Dyskinesia 
A side-effect of levodopa medication used for alleviating PD symp

toms is the appearance of uncontrolled movements. The severity of the 
unwanted effects of medication can also be tracked. Chelar et al. [95] 
use magnetic motion trackers to quantify the complexity of involuntary 
movements present in 10 dyskinetic PD, 10 non-diskinetic PD and 10 HC 
participants with the help of multiscale entropy. Automatic recognition 
of dyskinetic episodes was performed using multilayer perceptrons. In
ertial sensors are a more natural choice for dyskinesia assessment. Tsi
pouras et al. [96] used accelerometers and gyroscopes placed at the 
wrists, legs, chest and waist on a similar sample size to automatically 
recognize dyskinetic patients using an artificial neural network with one 
hidden layer and time and spectral features as input. The result was an 
average classification accuracy of 84.3%. 

4.1.6. Multiple-symptoms — “on/off” state detection 
The approaches presented above tackle the detection and charac

terization of only one specific PD motor symptom at a time. However, 
patients most often experience a combination of motor symptoms at a 
time. Tracking a combination of the symptoms in different environments 
and with different medication intake can be problematic. 

Controlled environment — on/off detection. For an accurate 
assessment of the patient’s state and of the disease progression, as many 
motor aspects as possible should be considered in more complex sys
tems. In the early work of Patel et al. [77], the Shimmer platform was 
used with accelerometers placed on both lower and upper limbs to 
classify the severity of tremor, bradykinesia and dyskinesia. Standard
ized motor tasks were performed according to the motor section of the 
UPDRS. A total of 31 feature combinations were extracted and fed into 
seven SVM classifiers with different kernels. The lowest mean estimation 
error was of 1.2%. 

Ambulatory setting — on/off detection. Salarian et al. [97] use a 
miniature gyroscope placed on the upper limbs for estimating tremor 
and bradykinesia but this time in an ambulatory setting. The algorithm 
made use of spectrum analysis for tremor detection and the Hilbert 
transform for bradykinesia estimation. The tremor detection showed an 

overall sensitivity and specificity of 99.5% and 94.2% respectively. Cole 
et al. [98] tested several dynamical machine learning techniques. Dy
namic support vector machines and Hidden Markov Models had both 
error rates below 10%. In general, focus is placed on the development of 
unobtrusive systems for monitoring in uncontrolled environments. An 
important achievement is the REMPARK system that was designed for 
long term home monitoring of PD patients. It comprises accelerometers 
and gyroscope sensors placed on the wrist and waist of the patients. 
Bayés et al. [78] validate REMPARK in detecting on-off states of 41 PD 
patients with 97% sensitivity and 88% specificity. 

Monitoring of deep brain stimulation effects. Another lead is to es
timate the effects of DBS treatments. The work of Zwartjes et al. [75] 
investigates the daily activities of 6 PD and 7 HC patients and extracts 
information for quantification of tremor and bradykinesia. After 
applying a Decision Trees based activity recognition algorithm, features 
are extracted for characterization of rest and kinetic tremor, bradyki
nesia and hypokinesia and threshold-based algorithms are applied. Ki
netic tremor was identified with an accuracy of 78.7% during sitting and 
81.7% during standing. Angeles et al. [99] evaluated rigidity, tremor 
and bradykinesia with the goal of DBS treatment optimization. 7 PD 
subjects performed specific motor tasks with 3D accelerometer, gyro
scope and magnetometer sensors placed on the most affected hand. 
Several classification algorithms were used to achieve an average ac
curacy of 90.9%. 

4.2. Speech monitoring 

As PD causes the loss of neurons in the basal ganglia, the muscles 
involved in the production of speech are also affected by the same 
symptoms as the other motor muscles, i.e., rigidity, hypokinesia, and 
tremor. This causes a great majority of PD patients to have dysarthic, 
abnormal speech [100]. Although the difficulties in speech production 
can be regarded as another motor symptom, we have decided to describe 
the computational approaches used on abnormal PD speech separately 
due to the abundance of literature and the different sensor modalities 
that are used as input. Dysarthic speech can be characterized by several 
particular dysfunctions caused by the loss of proper motor control. In the 
case of PD these include: dysphonia, imprecise articulation, dysprosody 
and speech volume intensity fluctuations. 

Applications. Most of the studies focus on the detection of PD pa
tients from the general healthy population [101–104]. Other studies 
focus on the differential diagnosis between PD, MSA and PSP [105], on 
progression monitoring [106] and severity monitoring [90]. Another 
promissing application for speech in PD analysis is the detection of PD in 
an incipient stage, before a clinical diagnostic is placed [104,107]. Harel 
et al. [108] analyze speech of two English speaking PD patients and two 
age-matched healthy controls retrospectively and concluded that some 
of the frequency content analyzed was relevant for the early identifi
cation of PD. 

Features used. When tackling dysarthic PD speech, statistical fea
tures are extracted from the time domain and specific frequency features 
are explored. There is a high number of proposed features as the field of 
general speech processing is well developed. The type of features 
selected depend on the type of problem studied, i.e., phonation, artic
ulation, rhythm or volume. Time domain features include: duration of 
pause intervals, rate of speech timing, change in interval length, period 
of onset of vocalization, vowel keeping time, descripive statistical 
measures [109–111]. Frequency features are also diverse and some of 
the most relevant are: main frequency of vocal cord vibration or pitch, 
jitter, shimmer, noise-to-harmonics ratios, formant frequencies, vowel 
space area, pitch and amplitude perturbation quotient, Mel Frequency 
Cepstrum Coefficients [102,110–112]. 

Classification algorithms. For all classification problems tackling PD 
speech, i.e., PD vs. HC, differential diagnosis or severity monitoring, the 
most used classification algorithm is SVM [102,110,112]. The early 
work of Little et al. [102] used a SVM model with a Gaussian Radial 
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Basis Kernel function and resulted in an accuracy for PD identification 
from speech of 91.4%. Orozco et al. [110] distinguished between 
Spanish speaking PD patients and HC using a SVM with a soft margin 
and Gaussian kernel in a 10-fold cross validation strategy resulting also 
in a high accuracy of 91.3%. However, there are other relevant ap
proaches. For instance, Mekyska et al. [106] use a Random Forest 
classifier for PD severity assessment on a database with 84 PD and 49 HC 
patients. A sensitivity of 92.86% was obtained. The early work of Das 
[113] compares Neural Networks with Decision Trees and regression 
algorithms. The neural network provided the best result, with an accu
racy of 92.9%. 

Real-life recordings. The majority of the studies looking at dysarthic 
PD speech focus on ideal voice recording conditions. However, PD 
detection algorithms should be sufficiently robust for real-life, noisy 
scenarios. Applications in early detection of PD would be most efficient 
in population screening scenarios. Vásquez-Correa et al. [103] analyze 
the effect of different noise conditions, e.g., saturation, dynamic 
compression, additive white Gaussian noise and different kinds of 
environmental noise. Results show that different background environ
mental noises have a high impact on the classification results. Another 
method of continuously assessing the condition of PD patients is through 
the use of a mobile phone, either in a test application or through 
recording of phone conversations or via the cellular network. Rusz et al. 
[111] evaluates the use of smartphone speech recordings for early PD 
detection. The system was tested on 50 patients suffering from RBD and 
promising alterations in the speech pattern of prodromal PD subjects 
was obtained. The distinction between HC and RBD patients was ob
tained with an AUC of 0.69, a sensitivity of 69.8% and a specificity of 
64.7%. 

4.3. Handwriting analysis 

The analysis of handwriting has proven effective in the diagnosis and 
progression monitoring of PD patients [18]. Handwriting is a complex 
activity involving both cognitive and motor functions. As the disease 
progresses and affects the brain centers responsible for its motor aspects, 
several abnormal characteristics of the handwriting activity can be 
observed. Micrographia, a reduction in the size of written text, is very 
often present in patients with PD. Bradykinesia and tremor also affect 
the ability of controlling the motions involved in writing. Such anom
alies can be monitored either through static and/or dynamic approaches. 

Static approaches. Refer to the graphical feature analysis of written 
text. The graphical characteristics are used to analyze the extent of 
micrographia and the randomness of strokes generated by tremor 
related movements. Typical metrics include changes in size of written 
characters, height of loop patterns, area of text blocks, pixel density 
variations based on ink content [114], density and height ratios, spiral 
precision index [115]. Besides providing an estimate of disease severity, 
these types of studies also allow for longitudinal tracking of PD pro
gression and the identification of prodromal symptoms. For instance, 
Zhi et al. [114] explores the potential of using static analysis on his
torical signature based writing samples in the study of disease progres
sion for 10 PD patients. 

Dynamic approaches. Look at the kinematics of handwriting. In this 
case, symptoms related to bradykinesia, tremor and rigidity are assessed 
by also analyzing the on-surface and in-air movements associated with 
writing. Dynamic methods make use of digital tablets, smart pens with 
axial pressure of ink and tri-axial accelerometers [116] and EMG [115]. 
Depending on the modality of recording, different features are extracted. 
Digital tablets can usually record the point of contact (x and y directions) 
and pressure information. Several kinematic features are extracted 
including: speed of writing, changes in acceleration and velocity, 
writing duration and length, jerk, stroke length, descriptive statistical 
measures [117], the rate of pressure change with respect to time [118]. 
Smart pens in combination with digital tablets allow for additional 
tracking of in-air movements [116,119]. Bradykinesia is assessed by 

calculating the movement time and velocity, whereas tremor by 
analyzing the frequency content of the pen tip trajectory during rest. The 
use of EMG was explored by Loconsole et al. [115] and specific signal 
features are extracted: root mean square, mean absolute value, zero 
crossings of the EMG signal. 

Classification algorithms. Machine learning algorithms are used for 
classification of the PD or HC states. Drotár et al. [118] use SVM in 
several handwriting classification tasks. This classification method ob
tained an accuracy of 81.3% on the kinematic and pressure features 
database PaHaW, composed of 37 PD patients and 38 HC [118]. 
Loconsole et al. [115] observed that SVM outperforms artificial neural 
networks with and without PCA based feature reduction on a smaller 
EMG database. Deep learning methods were also used by Pereira et al. 
[116]. The authors developed a convolutional neural network for 
handwritten dynamics differentiation on the HandPD dataset comprised 
of 74 PD and 18 HC. 

4.4. Face video analysis 

In the process of PD neurodegeneration, neurons from the basal 
ganglia start dying leading to dysfunctions in the neuronal circuits 
controlling facial muscles. As a result, some PD patients suffer from 
hypomimia, a reduction in the facial muscle movements (facial brady
kinesia). Hypomimia in Parkinson’s disease is quite a recent research 
topic and efforts are being made to better characterize these movement 
deficits. Gunnery et al. [120] used videos of participants mentioning 
pleasant activities to map spontaneous facial expressions in PD. The 
analysis was performed by extracting facial action units and character
izing features such as onset, offset and apex. Similarly, Livingstone et al. 
[121] used EMG to study facial muscle reaction during presentations of 
calm, happy, sad, angry and fearful emotions. Hypomimia was observed 
with a reduction in EMG amplitudes and delayed onset in the muscles 
controlling smiling. The video based analysis of facial expressions in PD 
patients relies on the general knowledge available for video facial 
emotion recognition and focuses on distinguishing healthy controls from 
diseased individuals. Bandini et al. [122] used a Multi-class SVM to train 
a facial expression recognition model from benchmarked databases. The 
test dataset comprised videos from both PD and HC. The performance of 
the model is proposed as an indication of hypomimia effects. 

4.5. Brain imaging 

Some of the most common Parkinson’s disease biomarkers are the 
changes observed in brain tissue through non-invasive imaging tech
niques. The identification and characterization of such biomarkers is 
important for placing an initial diagnostic and following disease pro
gression. Perhaps the most relevant application is the use of brain im
aging biomarkers for the differential diagnostic between PD and other 
neurodegenerative diseases with similar early symptomatology. Unlike 
the case of Alzheimer’s disease, where brain imaging biomarkers have 
been extensively studied through computational approaches and spe
cifically machine learning techniques [123], the automatic analysis of 
PD biomarkers is at an incipient stage. 

Topics addressed. Brain imaging biomarkers are identified and 
characterized through the automatic analysis of MRI, SPECT or PET 
images with the purpose of differentiating between PD and HC 
[124–128], but also between PD and other neurodegenerative diseases 
(e.g., MSA [129,130], PSP [131]). Haller et al. [124] use MRI diffusion 
tensor imaging with specific features extracted for the classification of 
PD vs. HC. For the early stage differentiation of PD from HC, MSA and 
PSP, Marquand et al. [130] studied the extraction of different anatom
ical features from the whole brain and a subcortical motor network with 
its component regions. 

Features. The feature extraction process focuses not only on the type 
of information that could result in PD biomarkers, but also on the brain 
location from where they are extracted [125,126]. As PD affects 
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different regions of the brain throughout different stages of progression, 
selecting the most probable brain area where the disease might manifest 
is relevant especially in early detection and differential diagnosis. Peng 
et al. [126] determined that the best classification results were obtained 
from the frontal, parietal, limbic and temporal lobes and the central 
region. With regard to the type of features, these can be voxel based 
morphometric features or low level features related to the volume of 
grey matter, white matter and cerebral spinal fluid, but also high level 
features that represent the structural connectivity [126]. Singh and 
Samavedham [128] proposed an unsupervised feature extraction 
method in combination with a least square SVM. PD data was distin
guished from HC data with a 99% accuracy in a hold out validation 
procedure. 

Classification algorithms. The most used algorithm for all the clas
sification problems is SVM with different implementations [131,125, 
126]. Adeli et al. [125] obtained the best performance with a LDA 
classifier in combination with a joint feature sample selection for PD 
detection on the PPMI database. Hirschauer et al. [127] build an 
enhanced probabilistic neural network (EPNN) with four layers for 
classifying PD patients with respect to HC. The use of EPNN resulted in a 
classification accuracy of 92%. 

4.6. Multimedia approaches 

The symptoms affecting PD patients can be diverse and monitoring 
only one of them might be insufficient for providing a good estimate of 
the disease progression. Using multiple modalities for assessing the pa
tient’s state could be beneficial. These can also be integrated in the day 
to day activities of the patient, not only to monitor the disease progress, 
but also the effectiveness of the treatment and adherence to medication. 

Mobile applications. The HopkinsPD is an application proposed by 
Zhan et al. [132] that aims to remotely monitor PD symptoms through a 
smartphone platform. Five symptom types are analyzed: voice 
dysphonia, postural instability while standing up, gait — bradykinesia, 
reduced dexterity and rest tremor. Data is collected from the phone 
microphone, accelerometer sensor, push of a button and different 
self-evaluation questionnaires. The study was deployed worldwide 
through a mobile application and recorded data from 221 PD and 105 
HC. An accuracy of 71% was reached. A similar approach was imple
mented by Neto et al. [133] by using iPhone sensor data for medication 
response detection. The best performing classification algorithm on the 
specific features extracted were tree based tests, including random for
est. In the work of Adams [134], keystrokes recorded with the App-Tappy 
application were used for classifying early PD and HC. The features 
extracted included hold time, statistic measures, latency measures and 
statistics on latency. Several machine learning algorithms were tested. 

Other smartphone applications focus on assessing dexterity of PD 
patients [135,136]. Aghanavesi et al. [136] used a smartphone to track 
how subjects performed tapping and spiral drawing tests. Several fea
tures were extracted and pre-processed using PCA. The best result for 
predicting PD symptom severity was obtained using a SVM classifier 
which resulted in a high correlation with the UPDRS ratings of each 
participant. 

Speech and writing. Afonso et al. [137] have used deep learning 
methods for assessing PD based on voice analysis and dynamic tech
niques for writing assessment. A deep optimum-path forest clustering 
technique was used on 31 PD and 35 HC performing hand movements 
and drawing with a biometric pen incorporating a michrophone, finger 
grip, axial pressure of ink, tilt and acceleration. In the work of 
Vasquez-Correa et al. [138], speech, handwriting and gait signals are 
analyzed in a database containing 44 PD patients and 40 HC. A CNN is 
used for the multimodal analysis of PD patient data. The features ob
tained from the last hidden layer of the CNN are placed into a subject 
specific feature vector and fed to an SVM classifier. 

4.7. Summary 

An abundance of literature is available on the characterization of PD 
motor symptoms with computational approaches. The most focus is in 
the area of altered movement patterns. Speech disorders caused by PD 
have also been often investigated as speech is easy to record and the field 
of voice analysis has significant history. A summary of the most prom
inent works using machine learning for PD characterization presented in 
this literature review is available in Table 4. 

5. Huntington’s diseases 

This section presents a review of the prominent computational ap
proaches used in the diagnosis and monitoring of Huntington’s disease. 
Its prevalence is significantly lower than in the case of AD and PD. As a 
consequence, the amount of studies conducted with the purpose of 
developing computational approaches for its monitoring and diagnosis 
is significantly smaller. The gait of HD patients is characterized by un
controlled, hyperkinetic movements such as chorea and dyskinesia. 
Automatic monitoring of motor symptoms can be useful in analyzing 
disease progression. 

5.1. Gait abnormalities 

Classification of HD. The gait of HD patients presents significant 
differences from that of HC and these differences are still a subject of 
research. In the study presented by Pyo et al. [139], the step length, 
stride length and base support and their corresponding coefficients of 
variation of HD patients proved to be increased when compared to HC. 
Mirek et al. [140] used magnetic trackers to calculate the gait cycles. 
Results show the HD patients present insufficient flexion in the plantar 
and knee joints and excessive flexion of the hip when compared to 
normal gait parameters. Automated classification of HD gait signals has 
also been investigated. Manini et al. [141] uses inertial sensors attached 
to the ankles and the lumbar region to record stance and swing in 10 HD 
patients rated according to the UHDRS scale (Unified Huntington’s 
Disease Rating Scale — clinical assessment of HD severity), 10 
post-stroke patients and 10 HC. A HMM was trained in a supervised way 
to recognize the foot strike and toe off events with a delay of 20 ms. 

Differential diagnosis. Mann et al. [142] also used a magnetic 
tracker for analyzing the motion of arms of PD and HD subjects. The 
movements caused by the two neurological disorders and recorded with 
the magnetic trackers were characterized by their amplitude, frequency, 
dispersion, entropy and other statistical features. By studying the subtle 
differences in abnormal movements, a more accurate initial diagnosis 
can be provided. For instance, Dinesh et al. [143] place a wearable 
sensor (BioStampRC) on the arms and legs of 10 PD, 10 HC and 15 HC 
for motion characterization in a simple walking test. The signals recor
ded included 3D accelerometers, ECG and EMG. The features extracted 
showed a good visual discrimination between the three conditions. 

5.2. Speech impairments 

Basal ganglia neurodegeneration leads to motor impairments which 
might affect the muscles involved in speech production. Different dis
eases might cause different types of abnormalities in muscle control and 
hence in the produced speech. Differentiation between HD and other 
neurodegenerative diseases such as PD, MSA and PSP, based on voice 
recordings, was proposed by Rusz et al. [144]. Repetitions of the ‘pa’ 
syllable where characterized by features representing rhythm instability 
and acceleration through the detection of syllable onset. The accuracy of 
the syllable onset detector was of 99.6% and the visual observation of 
the features showed discrimination power between syndromes. Novotný 
et al. [145] characterized PD and HD dysarthia by also looking at syl
lable onset in ‘pa-ta-ka’ repetitions using the Hilbert transform. The 
accuracy of PD syllable onset detection was of 90%, while for HD it was 
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80%. 

5.3. Biomarkers 

5.3.1. Brain Imaging 
Brain imaging is considered one of the most reliable methods used 

for confirming a HD diagnosis. Several works have focused on the 
development of (i) MRI biomarkers for the characterization of HD and 
their presence (ii) prior to disease onset. 

Classification of HD. Rizk-Jackson et al. [146] uses a database of 
MRIs of 39 HD and 25 HC patients to extract region-based and 
voxel-based features from white and grey matter. Using an LDA classifier 
a balanced accuracy of 76% was obtained for differentiating HD and HC. 

Pre-onset HD detection. Although HD is a genetic disease and car
riers of the huntingtin gene are already aware they will develop the 
disease, the exact onset is not yet predictable. Several studies have tried 
to identify pre-HD signs through brain imaging biomarkers several years 
prior to disease onset. For HD carriers, an MRI scan is typically taken 
every 2 years. In practice, that is not always the case. Eirola et al. [147] 
propose an extreme learning machine with a hidden layer of 1000 
neurons for predicting the onset of HD 10 years in advance. The output 
result showed an accuracy of 80–90% over the entire 10 year period. In 
the Predict-HD study, the MRI scans from a total of 95 preHD subjects 
and 95 HC subjects were used for predicting HD several years before 
onset. Information was extracted from the gray matter of several regions 
of interest and fed to a multivariate SVM. By selecting the region of 
interest, an accuracy of 83% was obtained. The performance of the 
classification of the preHD subjects increased as time to onset decreased. 
Mason et al. [148] used the Track HD consortium data with MRI scans 
from 19 preHD and 21 HC subjects to extract both structural and con
nectivity measures. Using a linear support vector machine preHD was 
identified 5 years prior to disease onset and a maximum accuracy of 88% 
was obtained. DTI was also used by Georgiou-Karistianis et al. [149] in 
obtaining biomarkers for the preHD vs. HC discrimination. Different 
tests were performed for extracting features either from the whole brain 
or from specific regions. A quadratic discriminant analysis showed a 
good discrimination power for the volumetric reduction and increased 
fractional anisotropy in the basal ganglia up to 15 years prior to onset. 

5.3.2. EEG signal 
As Huntington’s disease also implies cognitive and psychological 

impairments, changes in the activity of the brain might also be observed 
in the EEG measurements. Tommaso et al. [150] analyzed recordings 
from 13 HD in order to extract possible EEG biomarkers. Features 
extracted from the Fourier transform of EEG signals were fed into an 
artificial neural network classifier which correctly predicted 11 out of 13 
subjects as containing the HD gene. Odish et al. [151] went further to 
create an EEG index on 2 seconds Fourier transformed data. The pro
posed method was tested by selecting the adequate features through 

PCA and training an SVM model. The classification was tested on 26 HD 
gene carriers and 25 HC resulting in an accuracy of 83%. 

5.4. Summary 

As Huntington’s disease is less prevalent in the population and has a 
strong genetic correlation, fewer research works investigating HD were 
found when compared to publications investigating AD or PD. Machine 
learning techniques are used in the study of HD to bring more clarity on 
the onset of the disease. A summary of the most prominent works pre
sented in this work using machine learning for HD is available in 
Table 5. 

6. Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis is a severe motor neurodegenerative 
disease with a rapid progression and a low prevalance when compared 
to other neurodegenerative diseases. Studies that rely on computational 
approaches focus mostly on providing an aid to ALS diagnosis, most 
frequently looking at a better differentiation from other neurodegener
ative diseases at incipient phases with predominant motor abnormalities 
such as PD, HD or MSA. 

6.1. Gait abnormalities 

Characterization of gait in neurodegenerative diseases, particularly 
in ALS, HD and PD, has been performed by Hausdorff et al. [152] by 
recording the magnitude, duration of stride-to-stride fluctuations and 
perturbations in the fluctuations dynamics by using force sensors placed 
on the feet of the subjects. The gait of ALS patients was less steady and 
more temporarily disorganized. No other studies using other databases 
(private or public) characterizing gait dynamics of ALS patients were 
found by the authors. Using the neurodegenerative diseases gait dy
namics database, Dutta et al. [153] automatically identified the different 
disorders from healthy controls using several features extracted from a 
cross-correlogram with an Elman’s recurrent neural network with one 
hidden layer. The result for binary classification (ALS vs. HC) was in the 
range of 90.6% to 97.8% average accuracy. Xia et al. [154] used the 
Teager Energy Operator to extract features for an SVM classifier. The 
proposed method resulted in an accuracy of 92.86%. 

6.2. Speech impairments 

The muscles involving speech production are also affected in 
amyotrophic lateral sclerosis. ALS speech abnormalities were investi
gated by Yunusova et al. [155] through features as articulatory rate, 
duration of speech and pauses. The aim of the study was to evaluate the 
effect on speech of diseases predominantly characterized by motor 
deficits and those with a predominant cognitive deficit. In this case, 

Table 4 
Overview of the most relevant research works using machine learning in handling Parkinson’s disease that were presented in this work. Brief details are provided on 
the dataset size and content, classification techniques and evaluation methods.  

Purpose Modality Dataset Classifier Eval Acc Ref. 

PD vs. HC Ground reaction force 29PD, 18HC SVM LOO 93.6% [74] 
PD vs. HC Ground reaction force 93PD, 73HC LSTM, CNN Hold out 98.7% [83] 
PD vs. HC Speech data 50PD, 50HC SVM 10fold CV 91.3% [110] 
PD vs. HC Handwriting dynamics 37PD, 38HC SVM 10fold CV 81.3% [118] 
PD vs. HC Handwriting dynamics 74PD, 18HC CNN Hold out 95% [116] 
PD vs. HC MRI 518PD, 245HC SVM CV 99% [128] 
PD vs. HC MRI 200PD, 375HC EPNN Hold out 92% [127] 
PD vs. HC Speech data, handwritten dynamics, gait signals 44PD, 41HC CNN, SVM Hold out 97.6% [138] 
Symptom severity Accelerometer 12PD SVM LOO 90% [84] 
Severity of tremor Accelerometer 18PD, 5HC HMM LOO 82% [93] 
Detect FoG Inertial sensors 21PD CNN Hold out 90% [87] 
Detect dyskinesia Accelerometer 5HC, 14PD with D, 10PD ANN LOO 84.3% [96] 
Medication effect Speech data, accelerometer, push of a button, questionnaires 221PC, 105HC RF 10fold CV 71% [132]  
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significant statistical differences were observed between features 
extracted from the speech of ALS subjects when compared to the speech 
of fronto-temporal dementia. Wang et al. [156] investigated the possi
bilities of automatically detecting ALS from speech. The proposed 
method used both acoustic information and articulatory movement 
data. The movement data was recorded with electromagnetic articulo
graph sensors attached to the tongue and lips of the participant. Features 
were extracted from both signal sources and two classifiers were 
compared: SVM and a DNN. The SVM was able to classify ALS speech 
with an accuracy of 80.91% using both acoustic and movement data. 
The DNN resulted in 91.74% accuracy only using acoustic data in a 
4-fold cross-validation scenario. 

6.3. Video analysis 

For the purposes of early diagnosis and tracking of ALS, Bandini et al. 
[157] investigated the use of kinematic features extracted from videos of 
the face while ALS and HC subjects were performing both speech and 
non-speech tasks. As ALS affects all motor neurons, the muscles of the 
face are also impaired. Using a logistic regression classifier, an overall 
accuracy of 88.9% was obtained when discriminating between ALS and 
HC. 

6.4. Biomarkers 

6.4.1. Brain imaging 
It is used in ALS to investigate its causes and progression. Fekete et al. 

[158] used MRI brain scans from 40 ALS and 30 HC subjects to propose 
an ALS biomarker based on the organization of brain networks at a 
functional level. Features were extracted from the 0.03–0.06 Hz band 
using a typical image processing chain: motion correction was applied, 
followed by a normalization to the MNI (Montreal Neurological Insti
tute) space and the use of masks for CSF (cerebrospinal fluid) and white 
matter extraction. For the classification task, an SVM with a recursive 
kernel elimination was used leading to an accuracy, sensitivity and 
specificity of 87%, 88% and 88%, respectively. A method for predicting 
the survival in ALS patients was proposed by van der Burgh et al. [159]. 
Both MRI and clinical characteristics were studied on 135 ALS patients 
classified as short, medium or long-term survivors. A deep neural 
network was used for prediction, leading to an accuracy of 84.4%. 

6.4.2. EMG signal 
As motor muscles are significantly affected in ALS, using non- 

invasive EMG measurements for ALS diagnosis could be a cost effec
tive option for an initial diagnosis. Zhang et al. [160] investigated 
several statistical features extracted from the EMG of ALS patients and 
HC subjects. These were used with an LDA classifier. The classification 
provided a sensitivity of 90% and a specificity of 100% for differenti
ating ALS and HC subjects from EMG data. 

6.5. Summary 

The characterization of ALS through computational methods is 
limited in the available literature. The study of the disease through 
machine learning techniques is still at an early stage. Most research 

works focus on identifying ALS patients from HC. A summary of the 
research works using machine learning on ALS that are available in this 
literature review are presented in Table 6. 

7. Multiple system atrophy 

Multiple system atrophy is a severe neurodegenerative disease that 
progresses rapidly after onset. Its prevalence is small and as a conse
quence the number of studies using computational approaches for its 
characterization is small. Most of these studies focus on providing better 
methods of diagnosis in the incipient stages of the disease when the 
symptoms are confusing. MSA bares the closest resemblance to Parkin
son’s disease, especially the parkinsonian version of MSA (MSA-P). 
Computational approaches can help in its better diagnosis by analyzing 
imaging biomarkers, evaluating speech alterations and analysis of pro
teomics data. 

7.1. Biomarkers 

According to Duchesne et al. [129], the distinction of Parkinson’s 
disease and parkinsonian plus syndromes presents an initial error rate of 
up to 35%. Brain imaging is generally useful in providing more insights 
into the correct diagnosis. Developing biomarkers for automatic detec
tion has been studied by Duchesne et al. [129] on MRI data from MSA 
and PD patients. After image pre-processing, the tissue composition and 
deformations from the hind brain were evaluated for their discrimina
tive power. A model created on these features with an SVM least square 
optimization algorithm provided an accuracy, specificity and sensitivity 
of 91%, 88% and 93% respectively. Similarly, in the study of Marquand 
et al. [130] the midbrain was the anatomical region with most 
discriminative power for the selection of nerodegenerative biomarkers. 
The MRI images were collected from PSP, PD and MSA patients. An SVM 
model was created, leading to an accuracy of 91.7% for MSA detection. 

7.2. Speech impairments 

Due to the degeneration of neurons in the basal ganglia, control of 
the muscles producing speech might be affected in MSA, particularly in 
the parkinsonian variant of the disease. MSA-P presents similar symp
toms to PD. The study of Eun et al. [161] analyzes the differences in 
speech patterns between the two diseases. Subjects suffering from 
MSA-P showed more speech impairments than those with PD, reflected 
in the voice pitch, prolonged pause time and reduced speech rate. 
Soli-Soler et al. [162] proposed an analysis of the fundamental fre
quency of snoring for the identification of MSA patients. Although a 
slightly different approach than that of Eun et al. [161], the method 
analyzes the sounds produced by the same muscles affected by 
neurodegeneration. 

7.3. Summary 

Very few studies looking at MSA with computational approaches 
were found. Machine learning techniques are used to help in the dif
ferential diagnosis between MSA and other similar motor disorders. A 
summary of the studies using machine learning for MSA from this 

Table 5 
Overview of the most relevant research works using machine learning in handling Huntington’s disease that were described in this work. Brief details are provided on 
the dataset size and content, classification techniques and evaluation methods.  

Purpose Modality Dataset Classifier Eval Acc Ref. 

HD vs. HC EEG 26HD, 25HC SVM 10fold CV 83% [151] 
HD vs. HC MRI 39HD, 25HC LDA 4fold CV 76% [146] 
HD onset MRI 1370HD ANN Hold out 90% [147] 
HD onset MRI 19preHD, 21HC SVM LOO 88% [148] 
Discriminate stance and swing Inertial sensors 10HD, 10HC HMM – 20 ms error [141]  
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literature review is available in Table 7. 

8. Sleep disorders present in various diseases 

This section presents an overview of studies analyzing abnormal 
sleep behaviors manifested in several neurodegenerative diseases. More 
specifically, we investigate the use of computational approaches used 
for: REM sleep behavior disorder and Periodic Leg Movements (with or 
without restless legs syndrome). These symptoms are presented sepa
rately as they are present in multiple diseases characterized by alpha- 
synucleinopathies such as PD, MSA or DLB [163] and have similar 
clinical characteristics throughout all diseases. RBD and PLM have been 
until recently characterized as separate disorders. In recent years, the 
link with neurodegeneration has been firmly established. RBD is now 
considered as part of alpha-synucleinopathic degeneration and its 
appearance years prior to the disease onset is a prodromal symptom 
[164]. 

8.1. REM sleep behavior disorder 

Rapid eye movement sleep behavior disorder is characterized by the 
enactment of dreams and unusual motor behavior during REM sleep, 
more precisely REM sleep without atonia (RSWA). The prevalance of 
RBD differs per type of neurodegenerative disorder. In MSA and DLB, 
more than 80% of patients develop RBD. For PD, the number of patients 
who present RBD symptoms is lower. Computational methods are used 
both for the characterization of RBD from polysomnographic recordings 
but also for the automatic detection of the abnormal recordings related 
to RBD. 

Characterization of RBD. In recent years, changes in EEG activity in 
individuals with RBD have been identified. Brazete et al. [165] have 
showed that RBD is linked to a slowing down of EEG activity during 
wakefulness, with delta and theta bands presenting higher spectral 
powers in RBD patients vs. HC. Ruffini et al. [166] also investigated EEG 
complexity during awake EEG recordings using Lempel-Ziv-Welch 
Compression Spectrograms and entropy measures. RBD is present in 
the prodromal phases of multiple neurodegenerative diseases. Berrada 
et al. [167] attempted to differentiate between RBD patients who later 
on develop DLB and patients who develop PD from polysomnographic 
recordings and data extracted from clinical, neurological and neuro
physiological exams. By applying an alternating decision tree, the al
gorithm was able to automatically differentiate only between RBD and 
HC subjects, with no significant results on the DLB or PD conversion. 

Automatic detection. The automatic detection of RBD patients from 
HC subjects is of interest for the reduction in time required for placing a 
diagnostic. Several threshold EMG based methods have been proposed 
[168,169]. Cesari et al. [169] compare several available threshold-based 
methods. The Frandsen Index method outperformed the others with 
average sensitivity values of 90% for RBD patient detection. Kempfner 
et al. [170] proposed an RBD detection method based on the entire 
polysomnographic recording. Subject specific features were extracted 
from all signals and were used as input to an SVM classifier. The area 
under the curve in a leave-one-out testing scenario was of 0.988 when 
using all signals and 0.981 when using only EMG activity. Ruffini et al. 
[171] proposed an automatic detection method for RBD based on awake 
EEG recordings. Two classification algorithms were proposed and 
compared: a DCNN with a 5-layer architecture and a Recurrent Neural 
Network with three stacked LSTM cells. The DCNN provided the best 
results with a classification accuracy of 80% between RBD patients and 
HC in a leave-one-out validation scenario. 

8.2. Restless legs syndrome and periodic limb movement 

Periodic limb movements appear in patients with and without rest
less leg syndrome and are characterized by uncontrolled limb move
ments that occur during sleep [172]. RLS and PLM are present in 
movement related neurodegenerative disorders. The highest prevalence 
is in PD patients. Due to a paucity of studies, it is difficult to establish the 
prevalence of these movement disorders in other neurodegenerative 
diseases. Their presence has been observed also in MSA, PSP and HD 
[172]. Similar to RBD, the majority of studies including computational 
methods focus on the characterization of RLS and PLM or on their 
automatic detection either from polysomnographic or actigraphy 
recordings. 

Characterization. The characterization of PLM through EMG re
cordings during sleep is still a topic of investigation. Different states of 
RLS and PLM were investigated by Ferri et al. [173] by introducing a 
periodicity index and using Markov chains for the characterization of 
the structure of leg movement sequences. Ferrillo et al. [174] investi
gated the awakenings and EEG arousal prior and after PLM events. By 
analyzing the content of EEG signals through the wavelet transform and 
extracting the heart rate from cardiac signals, a significant increase in 
the heart rate and delta activity power was observed 3–4 s prior to PLM 
onset. Similarly, Sieminski et al. [175] looked at the spectral powers of 
the alpha, beta and delta bands of the EEG and found an arousal after 
PLM activity was detected. 

Automatic detection. The automatic detection of PLM events could 
reduce the time required for manual polysomnographic annotations. 
Tkach et al. [176] investigated the stability of time-domain features 
extracted from EMGs recorded from several muscles during PLM for 
their automatic detection. Using several statistical features and a linear 
discriminant analysis classifier, an improvement of 16% was obtained 
by feature and recording site selection. On the other side, Umut and 
Çentik [177] investigated the automatic detection of PLM using all PSG 
signals except EMG. A combination of Haar wavelet decomposition and 
Discrete Fourier Transform was used to extract the power from the delta, 
theta, alpha and beta EEG frequency bands. A kNN classifier used in a 

Table 6 
Overview of the most relevant research works using machine learning in handling ALS that were presented in this work. Brief details are provided on the dataset size 
and content, classification techniques and evaluation methods.  

Purpose Modality Dataset Classifier Eval Acc Ref. 

ALS vs. HC Force sensors 13ALS, 16HC RNN Hold out 97.8% [153] 
ALS vs. HC Force sensors 13ALS, 16HC SVM LOO 92.86% [154] 
ALS vs. HC Speech data, articulatory movement data 11ALS, 11HC DNN LOO 91.74% [156] 
ALS vs. HC Video data 10ALS Regression LOO 88.9% [157] 
ALS vs. HC MRI 40ALS, 30HC SVM LOO 87% [158] 
ALS vs. HC EMG 10ALS, 11HC LDA LOO 90% sensitivity [160] 
Survival of patients MRI 135ALS DNN Hold out 84.4% [159]  

Table 7 
Overview of the most relevant research works using machine learning in 
handling ALS. Brief details are provided on the dataset size and content, clas
sification techniques and evaluation methods.  

Purpose Modality Dataset Classifier Eval Acc Ref. 

MSA vs. PD MRI 16PSP or 
MSA, 16PD 

SVM LOO 91% [129] 

MSA vs. PD, 
PSP 

MRI 12PSP, 14PD, 
19MSA 

SVM LOO 91.7% [130]  
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10-fold cross validation scheme provided the highest accuracy of 
91.87% for the detection of PLM events. The use of limb actigraphy 
might be a good alternative to PSG for classifying sleep disorders. 
Several commercial actigraphy devices are already available and have 
been tested for their utility in PLM detection. These include PAM-RL 
[178], the CE marked actigraphy device KickStrip [179] and Respir
onics Actigraphy [180]. 

8.3. Summary 

Most literature available for sleep disorders related to neuro
degeneration, such as PLM or RBD, propose different methods for their 
characterization. A few studies use machine learning for their automatic 
detection from regular sleep or for differentiating patients from HC. The 
studies presented in this literature review using machine learning for 
sleep disorders are summarized in Table 8. 

9. Overview of the common processing steps 

After reviewing the relevant literature for the various neurodegen
erative disseases, in this section, we identify and analyze the common 
processing steps employed by the computational algorithms and ma
chine learning techniques. These are depicted in Fig. 3. We propose a 
view that divides the classification process into six blocks. Neurode
generative diseases and their symptoms are diverse and so the types of 
datasets available for different classification problems are varied. 
However, regardless of the data types, similar steps follow in case of 
classification problems. The raw data can be directly fed into the clas
sification algorithm or several pre-processing steps are applied prior to 
classification. In some cases, the data might be pre-processed which can 
imply filtering, normalization or dimensionality reduction. For some 
studies, different types of features are extracted and further selected 
based on specific relevance measures. Regardless of the type of pre- 
processing applied, a classification algorithm is applied and the result 
is evaluated. 

We detail these aspects in the following: a summary of the datasets 
available for training computational methods (see Section 9.1), an 
overview of the pre-processing, feature extraction and feature selection 
methods (see section 9.2), an analysis of the classification algorithms 
(see section 9.3) and evaluation methods (see section 9.4 found in this 
literature review. 

9.1. Datasets 

The spectrum of neurodegenerative disorders affects patients in 
different ways resulting in a variety of symptoms. The type of signals, 
protocols and information required to accurately diagnose or monitor 
these diseases are diverse. Therefore the datasets found in the literature 
proposing computational approaches show a mixture of recorded data, 
protocol for recording and size. The chosen protocol depends on the end 
goal of the study, e.g., to aid in the diagnosis of the disease, to monitor 
progression, to help in the differential diagnosis, to detect prodromal 
stages of the disease etc. Most of the times, the data collected is disease 

specific and cannot be used for other diseases as it was not collected with 
a protocol developed for that purpose. 

A high number of studies record specific datasets for their chosen 
topic of study such as a small variation in symptoms or different sensor 
recording modalities. Therefore the amount of data collected is most of 
the times small, from a few participants. The majority of the datasets 
used are small (67.5 %), with less than 50 participants per class. These 
datasets tend to be private and target specific diseases or symptoms. 
Medium sized datasets (between 50 and 100 participants per class) make 
up 14.41% of the datasets considered in this study and large datasets 
(with more than 100 participants per class) make up 18.07%. Large and 
medium size datasets are predominant in all diseases in topics such as 
Speech processing, Brain Image analysis, Classification of Tests and 
Medical Records or Genetic information. Big sized datasets are generally 
collected in consortium or projects spanning multiple years. The ma
jority of large datasets are made available to the research community 
free of charge creating the opportunity for more researchers to work on 
the development of adequate solutions. In Table 9, an overview of the 
most relevant datasets is provided along with details on their content, 
availability and size. 

9.2. Pre-processing, feature extraction and selection 

In some of the studies, when predicting a certain condition or using 
computational approaches for placing a diagnostic, features are 
extracted from the raw data recorded and fed into a classification al
gorithm. These features are diverse and are strongly dependent on the 
type of input data. Prior to using features as input to a classifier, it might 
be useful to select relevant features or to project these into a more 
representative space while reducing the dataset dimensions. 

When looking at feature selection, most of the studies make use of 
statistical measures for eliminating correlated features which add no or 
little additional information to the dataset. Statistical methods include 
computing correlation coefficients, t-tests, Whitney U-tests, Kruskal 
Wallis tests or mutual information [61] [194]. Other methods are based 
on entropy or information gain [195]. 

More complex feature selection techniques such as forward feature 
selection are also used. This technique adds features one by one as input 
to the classifier and selects the ones that improve the classification 
performance [74][196]. It is not recommended for high volume data
sets. Other methods for feature selection use regression techniques such 
as LASSO (least absolute shrinkage and selection operator) or the feature 
importance computed using the Random Forest algorithm [112]. Tsanas 
et al. [112] also uses the RELIEF feature selection algorithm that also 
considers the interaction between the different features. 

Dimensionality reduction is also employed in some of the studies as a 
pre-processing step. The most popular methods are factor analysis [58], 
principal component analysis [129,151], independent component 
analysis [197] and autoencoders [70,45]. Besides reducing the dimen
sion of the input data set, the information is projected in different di
mensions that might enhance the classification performance. 

9.3. Classification algorithms 

The problems approached can be binary, such as looking at whether 
a disease is present or not, or divided into multiple classes, when 
differentiating between different diseases or different stages of pro
gression of a disease. The methods used for classifying the targeted states 
can be as simple as using threshold-based algorithms or imply the use of 
advanced machine learning methods. 

Out of the studies considered in this review approximately 64% use 
machine learning algorithms. Fig. 4 provides an overview of the types of 
algorithms used in classification problems. A typical processing chain 
involves the pre-processing of raw signals followed by feature extraction 
and classification. Most proposed methods make use of supervised 
learning techniques where a labeled training set is presented to the 

Table 8 
Overview of the most relevant research works using machine learning in 
handling sleep disorders associated to neurodegenerative diseases. Brief details 
are provided on the dataset size and content, classification techniques and 
evaluation methods.  

Purpose Modality Dataset Classifier Eval Acc Ref. 

RBD vs. 
HC 

PSG 16RBD, 
16HC 

SVM LOO AUC 
0.988 

[170] 

RBD vs. 
HC 

EEG 121RBD, 
91HC 

DCNN LOO 80% [171] 

Detect 
PLM 

PSG 153PLM kNN 10fold 
CV 

91.87% [177]  
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classifier for building a model. Such techniques include linear regres
sion, Naive Bayes, SVM, k-NN, random forests, decision trees, LDA. By 
far the most used classifier in all researched diseases is SVM. The 
popularity of SVM can also be explained by the problems tackled: a big 
majority of the studies look at identifying between patients and healthy 
controls and so handling binary classification problems. Shallow and 
deep neural networks have also been used, but they are not as popular as 
the more conventional algorithms enumerated before. Some studies use 
different combinations and variations of MLP, CNN, DNN, ANN. Other 
types of classification algorithms look into more elaborated network 
architectures such as EasyMKLFS, Extreme Learning, Probabilistic 
Neural Networks, Gaussian Neural Networks and Deep Belief Networks. 
Unsupervised learning was also attempted in more recent years via 
autoencoder networks. Deep neural networks have been more 
commonly used in studies using images as input for analysis, and are 
gaining more and more traction nowadays. 

9.4. Evaluation metrics 

We overview the common practices for assessing the performance of 
the computational systems. This brings into discussion the way the data 
is used for training the systems and the metrics employed for assessing 
the actual performance. 

9.4.1. Data splitting 
Although the commonly employed practices for training and vali

dating the systems are the ones used in machine learning, there are some 
adaptations to the specificity of the data. We overview here the common 
practices: k-fold cross-validation — It tests the performance of the model 
on different unseen portions of the same type of data. The entire avail
able data set is split intro k-folds of equal size. From this division, k-1 
folds are used for the training and the kth fold for testing. Besides 
providing an indication of how the model would react to unseen data, it 

Fig. 3. Overview of the general steps used in different classification problems for neurodgenerative diseases.  

Table 9 
Selection of the most relevant datasets found in literature.  

Name Disease Year Avail. Purpose Data type Size 

ADNI [181] AD 2004–2016 Open Detection of AD and 
pre-AD; monitoring of 
progression 

clinical, genetic, MRI, PET, 
biomarkers 

ADNI1 — 200 HC, 400 MCI, 200 AD; ADNI-GO 
— 200 early MCI; ADNI2 — 150 HC, 100 early 
MCI, 100 late MCI, 150 late mild MCI, 150 AD; 
ADNI3 — 133 HC 

AZTIAHO [62] AD 2013 Closed Speech biomarkers for 
AD 

Speech data 50 HC, 20 AD 

CADDementia [182] AD 2015 Open Detection of HC, MCI 
and AD 

MRI data 384 Recordings 

Daphnet [86] PD 2008 Open Freezing of gait Accelerometer data 10 subjects 
DementiaBank [183] AD 1987–2019 Open Speech biomarkers of 

dementia 
Speech data 167 AD and 97 HC 

Gait in 
Neurodegenerative 
Disease [82] 

PD, HD, 
ALS 

2000 Open Gait dynamics and 
response to medication 

Force sensor recordings 15 PD, 20 HD, 13 ALS, and 16 HC 

Gait in Aging and 
Disease [82] 

PD 1997 Open Gait in PD Force sensor recordings 5 PD, 5 old, and 5 HC 

Gait in Parkinson’s 
Disease [184] 

PD 2005 Open Gait in PD Force sensor recordings 93 PD, 73 HC 

Oxford PD Detection  
[102] 

PD 2009 Open dysphonia in PD Speech data 23 PD, 8 HC 

OASIS [185] AD 2007–2010 Open Detection of AD MRI, PET OASIS1, 416, ASIS2, 150, and OASIS3, 1098 
subjects 

PaHaW [186] PD 2016 Open Archiedian spiral 
drawings and 
handwriting for PD 

Pressure, xy-coordinates, tilt, 
elevation, and in-air/on-air surface 
status  

37 PD, 38 HC 

PC-GITA [101] PD 2014 Closed Speech in PD Speech data 50 PD, 50 HC 
PD Speech [187] PD 2014 Open Speech in PD Speech data 20 PD, 20 HC 
PD spiral drawings  

[188] 
PD 2013 Open Drawings in PD Digital tablet parameters 62 PD, 15 HC 

PDMultiMC [189] PD 2017 Closed Handwriting, speech 
and eye movements in 
PD 

Speech, digital tablet parameters 16 PD, 16 HC 

PPMI [190] PD 2002 Open Biomarkers for PD Brain images, clinical data, biological 
samples 

432 PD, 196 HC, 64 early-PD, 65 RBD 

Predict HD [191] HD 2008 Closed HD detection 
correlated to genetic 
data 

Genetic data, cognitive assessment, 
tapping test, verbal learning/memory 
task, odour recognition, MRI 

438 pre-HD 

Track HD [192] HD 2008–2014 Closed HD detection 
correlated to genetic 
data 

Genetic data, MRI, clinical, cognitive, 
quantitative motor, oculomotor and 
neuropsychiatric assessments 

366 participants 

Tickle-Degen [193] PD 2010 Closed Quality of life in PD Video recordings 117 PD  
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can also be useful when handling large amounts of data as the data is fed 
into the training and test phases in folds and not through large blocks; 
leave-one out — It is typically used with small datasets when using k-fold 
cross-validation would significantly reduce the amount of data available 
for training. In this case, the data from one subject is kept for testing, 
while the rest of the subjects are used for training. The testing and 
training sets are rotated until all subjects have been used for testing. 
Another variation of the leave-one-out validation is the leave-one-record 
out, where instead of using subjects, only one record (unit of the data 
set) is used for testing while the others are used in training. This tech
nique is more resource consuming than k-fold cross-validation and is 
generally not recommended for large datasets; hold out — Part of the 
data set is kept for training while the other for testing. A typical division 
would be 80% training and 20% testing, but variations exist. By dividing 
the data set, this validation allows the evaluation of performance on 
completely unseen data. However, the single division into test and train 
sets can lead to a local optimum result, which would not generalize well 
to a real-world scenario. 

9.4.2. Metrics 
Among the exiting metrics employed in machine learning and in

formation retrieval, some are more predominantly found when dealing 
with data from neurodegenerative diseases. We present here the most 
prevalent ones: accuracy — represents the ratio between the total 
number of correct predictions and the total number of predictions. It 
does not provide insights into the rate of true positive and true negative 
predictions while also ignoring per-class performance evaluation. An 
algorithm for differentiation between different diseases can have a high 
predictive power for one disease and an extremely low one for a 
different diseases. However, the overall accuracy would be at an 
acceptable level; specificity (true negative rate) — represents the number 
of true negatives from the total number of predictions that are correctly 
identified; sensitivity (recall or true positive rate) — represents the 
number of true positives over the total number of predictions. It gives an 
indication of how well the algorithm detects specific classes; Area Under 
the Curve (AUC) — it is a method suitable for evaluating multi-class 
problems. It estimates the area under the receiver operating character
istic curve (ROC) which relates the true positive to the true negative 
rates at different settings of the classifier; F1-Score — represents a har
monic mean between precision (positive predictive value) and recall 
(probability of detection); Cohen’s Kappa coefficient — is a statistical 
method that is typically used to quantify inter-rater agreement. The 
Kappa coefficient is computed between test labels and the predicted 
values obtained as output from the classification; Correlation coefficient 

— provides a measure of the strength of similarity between the predic
tion result and the desired output. 

10. Conclusions and future challenges 

In this review, we provided an overview of the general trends in 
employing computational approaches for the monitoring and diagnosis 
of neurodegenerative diseases. We have focused our efforts on five 
neurodegenerative diseases representative for the entire spectrum of 
neurodegeneration: AD, PD, HD, MSA and ALS. Neurodegenerative 
diseases have been extensively studied in recent years with the help of 
computational approaches, especially via traditional machine learning 
or deep learning networks. Diseases that present a higher occurrence 
rate, such as Alzheimer’s and Parkinson’s disease, are more often 
investigated. The higher economic burden imposed by more prevalent 
diseases has pushed for faster results and led to more solutions for 
automatic diagnostic and health assessment systems. Many solutions 
propose methods that incorporate classification algorithms. 

10.1. Current state of research 

Datasets and evaluation. Many small, closed datasets tailored to 
specific diseases and symptoms are used in the existing research. Sur
prisingly, larger datasets are mostly public. However, the available an
notated data is not yet capable of coping with the actual requirements of 
deep neural networks, to allow maximum performance. Another aspect 
is the large variation in proposed evaluation techniques and metrics, 
which makes results difficult to compare, even on the same data set. 
Usually, the same data set is used for training and testing with different 
data folds. Testing on different collections than the ones used for 
learning is not as common. There is no consensus on evaluation metrics. 
Confusion matrices are rarely used even when dealing with multi-class 
problems. Disease specific scales are used as a golden standard only 
for PD, e.g., UPDRS and H&Y, but similar scales are rarely used as a 
reference for the other neurodegenerative diseases. 

Challenges in computational approaches. Most computational 
methods proposed for the study of neurodegenerative diseases make use 
of shallow networks and handcrafted features. Deep learning networks 
along with the extraction of features in an unsupervised manner might 
improve the performance of classification solutions. Since for some 
diseases and symptoms the data used for classification and study is 
scarce, generative adversial networks can be used to generate more 
datasets. Transfer learning techniques can also be considered when 
studying different diseases with similar symptomatology. For instance, if 

Fig. 4. Overview of the employed classification algorithms (as analyzed in this review) represented on a per disease basis. The most encountered algorithms include: 
Th-b — threshold based, LR — linear regression, NB — Naive Bayes, SVM — support vector machines, kNN — k-nearest neighbors, RF — random forests, DT — 
decision trees, LDA — linear discriminant analysis, MLP — multilayer perceptron, CNN — convolutional neural networks, ANN — artificial neural networks. 
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a large data set for RBD or PLM recorded from PD patients is available, 
an algorithm can be developed and transfered to ALS or MSA sleep 
studies. The same could be applied for gait or speech abnormality 
detection. 

10.2. Directions for development 

Possible research directions. The authors have identified some areas 
that might be worth investigating: (i) sleep in AD — can show the effect 
of medication on the lifestyle of the patient; (ii) differential diagnosis 
based on speech — speech analysis for motor diseases such as PD, HD, 
MSA and ALS, lexical analysis for AD and other dementias. Using speech 
for differential diagnosis can be advantageous as microphones are 
available in many consumer devices; (iii) use of EEG — biomarkers can 
be developed for all neurodegenerative diseases. As EEG technology is 
non-invasive and less expensive than brain imaging, it can bring ad
vantages and simplify the diagnostic process. Wearable EEG headsets 
can open even more possibilities in the diagnosis of neurodegenerative 
diseases; (iv) memory testing applications — differentiate between AD or 
other dementing diseases and MCI. Memory tests are currently delivered 
by medical professionals. By developing applications that focus on the 
ease of use, the diagnostic process can be simplified and made more 
accessible, while at the same time allowing for disease tracking; (v) dual 
tasking — early onset detection and tracking of dementing and mixed 
neurodegenerative disorders. By developing tasks that monitor both the 
cognitive ability and the motor functions of a patient, the progress of 
disease and risk for further injury can be determined. Dual tasks can be 
designed with the purpose of measuring the cognitive reserve of a pa
tient. The concept of cognitive reserve is related to the ability of the 
brain to re-purpose its networks to counter the effects of neuro
degeneration. In recent research, the presence of a higher cognitive 
reserve is indicative of a delayed disease onset or milder symptoms 
[198]. 

Applications. Few real-life available applications have been identi
fied by the authors. Usability and adoption by the users was not detailed. 
Most of the identified applications were developed for PD. These make 
use of wearable inertial sensors or smartphones. The development is 
generally limited to one particular disease. As the classification of 
neurodegenerative diseases is discrete, based on clinical symptoms, the 
initial diagnosis is difficult as symptoms overlap. As the cause of the 
disease is not yet known and they cannot yet be treated, disease man
agement focuses on managing the symptoms. An integrative approach 
looking at neurodegeneration as a continuum could take information 
from multiple sources (gait, voice, sleep, EEG, brain imaging, etc.). This 
would provide a global view on the disease. Thus allowing a better 
analysis of the symptoms and a subsequent better treatment manage
ment. It might also improve the initial diagnosis. The prediction of 
disease appearance and onset can also be improved by further devel
oping techniques such as EEG biomarker extraction or sleep character
ization. Although brain imaging is a powerful tool in disease diagnosis 
and monitoring, it is expensive, not easily accessible and might be 
difficult to use once the disease has advanced significantly. By providing 
more ubiquitous technologies for tracking, such as wearables, the pro
gression and response to medication might be better observed. 
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[52] Trambaiolli LR, Spolaôr N, Lorena AC, Anghinah R, Sato JR. Feature selection 
before EEG classification supports the diagnosis of Alzheimer’s disease. Clin 
Neurophysiol 2017;128:2058–67. https://doi.org/10.1016/j.clinph.2017.06.251. 

[53] Mamani GQ, Fraga FJ, Tavares G, Johns E, Phillips ND. EEG-based biomarkers on 
working memory tasks for early diagnosis of Alzheimer’s disease and mild 

cognitive impairment. 2017 IEEE healthcare innovations and point of care 
technologies, HI-POCT 2017 2017-December 2017:237–40. https://doi.org/ 
10.1109/HIC.2017.8227628. 

[54] Dauwan M, van der Zande JJ, van Dellen E, Sommer IE, Scheltens P, Lemstra AW, 
et al. Random forest to differentiate dementia with Lewy bodies from Alzheimer’s 
disease. Alzheimer’s Dementia: Diagn Assess Dis Monit 2016;4:99–106. https:// 
doi.org/10.1016/j.dadm.2016.07.003. 

[55] Jeong DH, Kim YD, Song IU, Chung YA, Jeong J. Wavelet energy and wavelet 
coherence as eeg biomarkers for the diagnosis of Parkinson’s disease-related 
dementia and Alzheimer’s disease. Entropy 2016;18:1–17. https://doi.org/ 
10.3390/e18010008. 

[56] McBride JC, Zhao X, Munro NB, Jicha GA, Schmitt FA, Kryscio RJ, et al. Sugihara 
causality analysis of scalp EEG for detection of early Alzheimer’s disease. 
NeuroImage: Clin 2015;7:258–65. https://doi.org/10.1016/j.nicl.2014.12.005. 
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Effect of acoustic conditions on algorithms to detect Parkinson’s disease from 
speech. ICASSP, IEEE international conference on acoustics, speech and signal 
processing – proceedings 2017:5065–9. https://doi.org/10.1109/ 
ICASSP.2017.7953121. 

[104] Rusz J, Cmejla R, Ruzickova H, Ruzicka E. Quantitative acoustic measurements 
for characterization of speech and voice disorders in early untreated Parkinson’s 
disease. J Acoust Soc Am 2011;129:350–67. https://doi.org/10.1121/1.3514381. 

[105] Tykalova T, Rusz J, Klempir J, Cmejla R, Ruzicka E. Distinct patterns of imprecise 
consonant articulation among Parkinson’s disease, progressive supranuclear palsy 
and multiple system atrophy. Brain Lang 2017;165:1–9. https://doi.org/10.1016/ 
j.bandl.2016.11.005. 

[106] Mekyska J, Janousova E, Gomez-Vilda P, Smekal Z, Rektorova I, Eliasova I, et al. 
Robust and complex approach of pathological speech signal analysis. 
Neurocomputing 2015;167:94–111. https://doi.org/10.1016/j. 
neucom.2015.02.085. 
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[129] Duchesne S, Rolland Y, Vérin M. Automated computer differential classification in 
parkinsonian syndromes via pattern analysis on MRI. Acad Radiol 2009;16: 
61–70. https://doi.org/10.1016/j.acra.2008.05.024. 

[130] Marquand AF, Filippone M, Ashburner J, Girolami M, Mourao-Miranda J, 
Barker GJ, et al. Automated, high accuracy classification of parkinsonian 
disorders: a pattern recognition approach. PLOS ONE 2013;8:1–10. https://doi. 
org/10.1371/journal.pone.0069237. 

[131] Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, et al. 
Machine learning on brain MRI data for differential diagnosis of Parkinson’s 
disease and progressive supranuclear palsy. J Neurosci Methods 2014;222:230–7. 
https://doi.org/10.1016/j.jneumeth.2013.11.016. 

[132] Zhan A, Little MA, Harris DA, Abiola SO, Dorsey ER, Saria S, et al. High frequency 
remote monitoring of parkinson’s disease via smartphone: platform overview and 
medication response detection. 2016. p. 1–12. arXiv:1601.00960. 

[133] Neto EC, Bot BM, Perumal T, Omberg L, Guinney J, Kellen M, et al. Personalized 
hypothesis tests for detecting medication response in Parkinson disease patients 
using iPhone sensor data. Biocomputing 2016;2016:273–84. https://doi.org/ 
10.1142/97898147494110026. 

[134] Adams WR. High-accuracy detection of early Parkinson’s disease using multiple 
characteristics of finger movement while typing. PLOS ONE 2017;12:1–20. 

[135] Sadikov A, Groznik V, Zabkar J, Mozina M, Georgiev D, Pirlosek Z, et al. 
Parkinson check smart phone App. Front Artif Intell Appl 2014;263:1213–4. 

[136] Aghanavesi S, Nyholm D, Senek M, Bergquist F, Memedi M. A smartphone-based 
system to quantify dexterity in Parkinson’s disease patients. Informatics Med 
Unlocked 2017;9:11–7. https://doi.org/10.1016/j.imu.2017.05.005. 

[137] Afonso LCS, Pereira CR, Weber SAT, Hook C, Papa JP. Parkinson’s disease 
identification through deep optimum-path forest clustering. Proceedings – 30th 
conference on graphics, patterns and images, SIBGRAPI 2017 2017:163–9. 
https://doi.org/10.1109/SIBGRAPI.2017.28. 

[138] Vasquez-Correa JC, Arias-Vergara T, Orozco-Arroyave JR, Eskofier BM, 
Klucken J, Noth E. Multimodal assessment of Parkinson’s disease: a deep learning 
approach. IEEE J Biomed Health Informatics 2018;2194:1–12. https://doi.org/ 
10.1109/JBHI.2018.2866873. 

[139] Pyo SJ, Kim H, Kim IS, Park Y-m, Kim M-j, Lee HM, et al. Quantitative gait 
analysis in patients with Huntington’s disease. J Mov Disord 2017;10:140–4. 

[140] Mirek E, Filip M, Chwała W, Banaszkiewicz K. Three-dimensional trunk and lower 
limbs characteristics during gait in patients with Huntington’s disease. Front 
Neurosci 2017;11:1–7. https://doi.org/10.3389/fnins.2017.00566. 

[141] Mannini A, Trojaniello D, Croce UD, Sabatini AM. Hidden Markov model-based 
strategy for gait segmentation using inertial sensors: application to elderly, 
hemiparetic patients and Huntington’s disease patients. 2015. p. 5179–82. 

[142] Mann RK, Edwards R, Zhou J, Fenney A, Jog M, Duval C. Comparing movement 
patterns associated with Huntington’s chorea and Parkinson’s dyskinesia. Exp 
Brain Res 2012;218:639–54. 

[143] Dinesh K, Xiong M, Adams J, Dorsey R, Sharma G. Signal analysis for detecting 
motor symptoms in Parkinson’s and Huntington’s disease using multiple body- 
affixed sensors: a pilot study. 2016 IEEE Western New York image and signal 
processing workshop (WNYISPW) 2016:1–5. https://doi.org/10.1109/ 
WNYIPW.2016.7904834. 

[144] Rusz J, Hlavnicka J, Cmejla R, Ruzicka E. Automatic evaluation of speech rhythm 
instability and acceleration in dysarthrias associated with basal. Front Bioeng 
Biotechnol 2015;3:1–11. https://doi.org/10.3389/fbioe.2015.00104. 
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[171] Ruffini G, Castellano M, Ibañez D, Dubreuil L. Deep learning with EEG 
spectrograms in rapid eye movement behavior disorder. 2018. 
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