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ABSTRACT

Neurodegenerative diseases have shown an increasing incidence in the older population in recent years. A sig-
nificant amount of research has been conducted to characterize these diseases. Computational methods, and
particularly machine learning techniques, are now very useful tools in helping and improving the diagnosis as
well as the disease monitoring process. In this paper, we provide an in-depth review on existing computational
approaches used in the whole neurodegenerative spectrum, namely for Alzheimer’s, Parkinson’s, and Hun-
tington’s Diseases, Amyotrophic Lateral Sclerosis, and Multiple System Atrophy. We propose a taxonomy of the
specific clinical features, and of the existing computational methods. We provide a detailed analysis of the
various modalities and decision systems employed for each disease. We identify and present the sleep disorders
which are present in various diseases and which represent an important asset for onset detection. We overview
the existing data set resources and evaluation metrics. Finally, we identify current remaining open challenges
and discuss future perspectives.

1. Introduction

Neurodegenerative diseases are a class of neurological disorders
where neurons from the central nervous system die or are damaged
causing severe disabilities, and eventually death. They are typically
encountered in old age. However, disease onset might appear earlier. In
the past years, their incidence increased significantly and it is expected
that the increase will continue, as the world’s population ages [1].
Neurodegenerative diseases are problematic and can become a burden
since their cause is unknown and no cure has been discovered. Treat-
ments are currently targeting the alleviation of symptoms. Due to recent
advances in artificial intelligence, a significant help can come from the
computational approaches targeting diagnosis and monitoring, e.g.,
detection of disease onset, characterization of the disease, improvement of the
differential diagnosis, quantification of the disease progression, tracking of
the medication effects. These tasks can be automated or at least improved
with the help of machine learning algorithms.

Scope and target of this work. In this context, the present study pro-
poses an in-depth, large scale, analysis of the existing artificial intelli-
gence capabilities in support of the diagnosis and analysis of the main
neurodegenerative  diseases. Although a large number of
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neurodegenerative diseases can be defined [2], we target the ones with
the highest prevalence and representative of the neurodegenerative
spectrum, namely: Alzheimer’s Disease, Parkinson’s Disease, Hunting-
ton’s Disease, Multiple System Atrophy, and Amyotrophic Lateral Scle-
rosis. To retrieve the existing literature, a total of 46 keywords were
used, ranging from “neurodegenerative medical devices”, “handwriting
Parkinson detection”, “Huntington disease machine learning” to “Alzheimer
brain imaging machine learning”. These included combinations of the
disease names, symptoms and analysis methods. The publications were
selected based on the relevance attributed by the scholar.google search
engine, focusing on the most impacting and recent publications. All
articles that did not include computational methods or the target key-
words were excluded. A summary of the article pool is presented in
Fig. 1. Overall, we reviewed more than 450 articles. As the graph shows,
there is an increasing interest for this topic, which is triggered not only
by recent advances in deep learning but also by the promising results
achieved so far. Other review works on specific neurodegenerative dis-
eases or specific symptoms are also available. Our study goes beyond
prior works by providing a general view of existing capabilities in the
field rather than focusing on particular disease cases. For the
completeness of our work, the reader is referred to existing reviews of
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the literature each time a relevant study is available.

Overview of our contributions. The main contributions of this study can
be summarized with the following: (i) we provide a global review on
existing computational approaches used in the whole neurodegenerative
spectrum, (ii) we identify and synthesize a general taxonomy of
neurodegenerative disorders, (iii) after analyzing current trends, we
propose a taxonomy for computational approaches, (iv) we provide a
detailed analysis of the various modalities and decision systems
employed for each disease, (v) we identify and present the sleep disor-
ders which are present in various diseases and which represent an
important asset for onset detection, (vi) we identify and present the most
prominent datasets available for building computational systems
together with the evaluation methodologies, and finally (vii) we identify
the main capabilities as well as the remaining open questions to be
solved by upcoming developments.

Previous resources. Several previous reviews on similar topics have
been identified. For Alzheimer’s disease, the reader is referred to: Laske
et al. [3] for a review on the different methods available for diagnosing
AD, Cassani et al. [4] for a review on differentiating stages of AD pro-
gression using resting-state-EEG, Bhat et al. [5] presents the recent
research performed on automated EEG based diagnosis of AD, Maestu
et al. [6] for a review on MEG and EEG biomarkers for AD, Zhang et al.
[7] for a review on methods for identifying MCI and AD, the conversion
from MCI and the progression of AD, Alberdi et al. [8] for a review on
methods for monitoring AD in an unobtrusive way, Pellegrini et al. [9]
for a review on machine learning techniques used in neuroimaging for
dementia and MCI, Davatzikos [10] for a brief overview of machine
learning in neuroimaging. For Parkinson’s disease, the reader is referred
to: Keijsers et al. [11] for a review on the use of wearable movement
sensors for PD detection and severity prediction, van Rooden et al. [12]
for a review of identification of PD’s subtypes via cluster analysis,
Ahlrichs and Lawo [13] for a review of machine learning approaches for
recognizing PD motor symptoms, Stenis et al. [14] for a review of
wearable accelerometry-based technology for PD rehabilitation pur-
poses, Pasluosta et al. [15] for a review of existing wearable technolo-
gies and the Internet-of-Things concept in support of PD diagnostics and
treatment, Kubota et al. [16] for a nontechnical tutorial review of
relevant machine learning algorithms for large-scale wearable sensor
data in PD, Cummins et al. [17] for a review of speech analysis for health
in general that includes also dysarthic PD speech, and Impedovo and
Pirlo [18] for a review of dynamic handwriting analysis via pattern
recognition for the assessment of neurodegenerative diseases, including
PD. In contrast to previous work, apart from presenting the latest
methods, we focus on a more general perspective, addressing all mo-
dalities and computational approaches in an interconnected way, while
investigating the current capabilities of the algorithms. For Hunting-
ton’s disease, there are currently no review publications with a specific
focus on the technical aspects of diagnosis or monitoring. Several
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publications provide an overview of the methods available for analysis
and detection of different gait abnormalities in either neurological or
human movement disorders, including HD: Orru et al. [19] provides a
review of the different uses of SVM for the identification of imaging
biomarkers for neurological diseases in MRI, PET or DTI scans, Fig-
ueiredo et al. [20] investigates also the use of SVM, but for identifying
gait patterns in human motor disorders, Moon et al. [21] provides a
systematic overview of evidence for gait variability in neurodegenera-
tive diseases such as: AD, ALS, HD and PD. For the Amyotrophic Lateral
Sclerosis, there is a relative sparsity in computational methods devel-
oped and we have identified a single overview providing information on
dysarthia in ALS. Tomik and Guiloff [22] analyze both clinical symp-
toms and the technical methods used for the differential diagnosis based
on acoustic features. The current work goes beyond these aspects for a
more updated and broader analysis. For Multiple System Atrophy, there
are currently no prior literature reviews on the computational tech-
niques used in its monitoring and diagnosis. This holds also for REM
sleep behavior disorder where no overview articles dealing with the
computational approaches are available. For restless legs syndrome and
periodic limb movement, a systematic review was published by Plante
[23] on the use of leg actigraphy for periodic limb movements. In
contrast, the current study reviews up-to-date current technology and
broader implications on the study of neurodegeneration.

Abbreviations. Throughout the entire paper we will use the following
abbreviations (by alphabetic order): AD — Alzheimer’s disease, ANN —
artificial neural network, ALS — amyotrophic lateral sclerosis, AUC — Area
under the curve B — bradykinesia, CNN — convolutional neural networks,
CNS — central nervous system, CV — cross-validation D — dyskinesia, DBS
— deep brain stimulation, DCNN — deep convolutional neural networks,
DLB — dementia with Lewy bodies, DNN — dynamic neural networks, DTI
— diffusion tensor imaging, ECG — electrocardiogram, EEG — electroen-
cephalogram, EMG — electromyography, EOG — electrooculogram, ERP —
event related potentials, FoG — freezing of gait, H&Y — Hoehn and Yahr
Scale, HC — healthy controls, HD — Huntington’s disease, HMM — hidden
Markov models, ICA — independent component analysis, KNN — k-nearest
neighbors, LASSO — least absolute shrinkage and selection operator, LDA —
linear discriminant analysis, LOO — leave one out, LSTM — long short term
memory, MCI — mild cognitive impairment, MRI — magnetic resonance
imaging, MSA — multiple system atrophy, PCA — principal component
analysis, PD — Parkinson’s disease, PET — positron emission tomography,
PNN — probabilistic neural network, PSP — progressive supranuclear palsy,
PSG — polysomnography, REM — rapid eye movement, RBD — REM sleep
behavior disorder, RF — random forest, RLS — restless legs syndrome, ROC
— receiver operating characteristic, SPET — single photon emission tomog-
raphy, SVM — support vector machine, SVR — support vector regression, T
— tremor, UPDRS — Unified Parkinson’s Disease Rating Scale.

The remainder of this article is organized as follows. Section 2 pre-
sents the relevant definitions and proposes a taxonomy for this review,
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Fig. 1. Number of considered publications for this review distributed over the publication years.
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from both the medical and computational point of view. Further on,
each subsequent section deals with the computational approaches
encountered for specific neurodegenerative diseases representating a
specific category of neurodegeneration. Section 3 looks into Alzheimer’s
disease. Section 4 reviews Parkinson’s disease. Section 5 analyses
Huntington’s disease. Sections 6 and 7 deal with amyotrophic lateral
sclerosis and multiple system atrophy respectively. Section 8 reviews the
techniques used for detecting and monitoring sleep disorders encoun-
tered in multiple neurodegenerative disorders. Section 9 provides a
summary of the datasets and evaluation methods used in testing the
majority of the computational approaches presented. Section 10 con-
cludes the review and identifies gaps and future challenges for the field.

2. Definitions and taxonomy

In this section, we propose a taxonomy for the existing computa-
tional approaches for neurodegenerative diseases, both from the medi-
cal and computational perspectives. Section 2.1 defines the prominent
neurodegenerative disorders along with their symptoms. Section 2.2
discusses the various theories adopted in the literature for the catego-
rization of neurodegeneration and proposes a taxonomy. Section 2.3
defines a taxonomy for the computational approaches highlighting their
purpose, the monitored disease and clinical features, along with the data
modality used for analysis and diagnosis. Neurodegenerative diseases
can be regarded as a class of neurological disorders that imply the pro-
gressive loss of neurons or subsets of neurons from specific functional-
anatomical areas of the CNS [24,2]. We exclude here the neurological
diseases caused by traumas at the level of the CNS. As neuro-
degeneration can affect many types of neurons and functional areas,
their symptomatology is diverse and many different diseases can be
defined. Their classification is however controversial as a significant
number of symptoms overlap.

2.1. Definitions

Alzheimer’s disease is a progressive age-related neurodegenerative
disease characterized by the accumulation of amyloid plaques (beta-
amyloid protein mixture), neurofibrillary tangles (clumps of tau proteins)
and a severe loss of connections between neurons responsible for memory
and learning [25]. Symptoms appear initially as mild memory impair-
ments which can also be confounded with age related memory losses.
These progress into severe memory impairments leading up to person-
ality changes, language difficulties, motor difficulties, delusions and
hallucinations [26]. Diagnostic criteria include the presence of AD
biomarkers assessed through MRI or PET images along with an assess-
ment of dementia symptoms and the degree of cognitive impairment
[27].

Dementia with Lewy bodies is caused by the accumulation of Lewy
bodies (clusters of alpha-synuclein protein) inside the nuclei of neurons
from the cerebral cortex and basal ganglia [25]. Since both neurons
involved with memory function and motor control are affected, the
clinical symptoms of DLB are very similar to the dementia symptoms of
AD and the abnormal movements encountered in PD.

Parkinson’s disease is a motor disorder characterized by the loss of
dopamine producing neurons through the accumulation of alpha-
synuclein proteins. The main clinical characteristics include resting
tremor, bradykinesia (a slowing of movements), muscle rigidity, gait
and postural disturbances, sleep disorders, tiny handwriting and diffi-
culties when speaking or swallowing [25,26]. A cure for the disease has
not been discovered and current treatments focus on alleviating the
symptoms, either through medication, physical therapy or deep brain
stimulation. Two severity rating scales are used predominantly in
medical practice: Movement Disorder Society — Unified Parkinson’s Dis-
ease Rating Scale (MDS-UPDRS) [28] — rating based on behavior and
mood, activities of daily living, motor tasks and therapy effect; Hoehn
and Yahr Scale [29] — rating based exclusively on gait and posture
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impairments.

Multiple system atrophy is a progressive neurodegenerative dis-
ease that affects multiple areas of the brain and spinal cord responsible
with the coordination of the autonomic nervous system [25,26]. As DLB
and PD, it is also linked to the accumulation of alpha-synuclein but in this
case in the glia cells. Symptoms include bradykinesia, impaired speech,
orthostatic hypotension, bladder control problems, abnormal sweating
and sleep disorders.

Amyotrophic lateral sclerosis is a progressive neurodegenerative
disease that affects motor neurons. Muscles begin to atrophy as their
control is no longer possible. The incipient phases of ALS usually affect
the limbs and symptoms rapidly progress to other parts of the body. In
the final phase of the disease, the muscles controlling the respiratory
system begin to weaken. Death usually occurs within 3-5 years from
disease onset due to respiratory failure. The most relevant clinical fea-
tures include: severe motor impairments, muscle twitches, speech im-
pairments, difficulties swallowing [25,26].

Huntington’s disease is an inherited progressive neurodegenerative
disease characterized by a mutation in the huntingtin gene that causes
motor neurons controlling voluntary movements to die [25,2]. The
symptoms include chorea (uncontrolled movements), abnormal body
postures, speech impairments, changes in behavior, emotion, judgment
and cognition. Death occurs in 10 to 30 years after disease onset. The
diagnosis is based on genetic testing and neuroimaging techniques.

2.2. Taxonomy of neurodegenerative diseases

When placing a diagnosis, medical professionals take into account
the predominant clinical symptomatology, the topography of the
neurodegenerative lesion or a combination of the two. The clinical
manifestations are a consequence of the specific neurons and system
areas that are affected [2,30]. For instance, dementia and altered
high-order brain functions are linked to the anatomical regions that
include the hippocampus, entorhinal cortex, limbic system and neocortical
areas. Movement disorders are associated with the damage brought to
the basal ganglia, thalamus, brainstem nuclei, cerebellar cortex and nuclei,
motor cortical areas and lower motor neurons of the spinal cord. At their
incipient manifestation, combinations of these symptoms can be
observed in several diseases [30].

It is not yet known what causes or triggers neurodegeneration, while
the disease characteristics sometimes overlap and their progression is
difficult to predict. In recent years, the traditional method of classifying
neurodegenerative diseases based on symptomatology revealed diffi-
culties in the diagnostic process of neurodegeneration, and as a conse-
quence, in finding adequate treatment courses [31,2]. These difficulties
stem from the extent of simultaneous occurrence of both clinical and
neuropathological features defined for separate disorders in one indi-
vidual at the same time. Armstrong [31] described three models to
approach the classification of neurodegenerative diseases: a discrete
model, an overlap model and a continuum model. The discrete model im-
plies discrete diseases with little overlap of the clinical and neuropath-
ological features. An overlap model implies a certain degree of overlay
in the disease features, while in a continuum model the high degree of
overlay of the features can be regarded as a continuous variation of
features from one disease to another. Fig. 2 presents the overlap of four
different clinical feature categories in between the selected diseases:
sleep disorders, cognitive and behavioral changes, speech impairments and
motor impairments. These can further be broken down into other specific
disorders. RBD and RLS appear in diseases that seem to be characterized
by alpha-synuclein depositions: DLB, PD and MSA. AD also presents
symptoms related to sleep disorders, but in this case they are related to
alterations in the sleep/wake cycle of the patient. Cognitive and
behavioral changes as an effect of the disease are mostly encountered in
dementing disorders such as AD or DLB, but also appear in HD, a disease
predominantly characterized by motor dysfunctions. The most relevant
cognitive impairments include memory loss and problems with
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Fig. 2. Overview of the different clinical features of the most prominent neurodegenerative diseases.

perception. Psychological changes due to neurodegenerative diseases
include personality changes (in AD), depression and anxiety (in DLB)
and mood changes (in HD). Clinical features related to speech impair-
ments can be regarded as modifications in the lexical content and those
related to vocalization. The lexical content of speech is altered in the
case of dementing diseases (AD and DLB), while vocalization is different
for diseases that are governed by motor dysfunctions. Motor impair-
ments are present in parkinsonism syndromes. Hence bradykinesia,
posture and balance dysfunction along with facial muscle rigidity are
clinical features of DLB, PD and MSA. HD also presents motor impair-
ments but unlike parkinsonism diseases, it presents hyperkinesia char-
acterized by chorea and tremor.

The nosological approach used by medical professionals to diagnose
their patients involves an analysis of the main clinical symptoms along
with imaging the lesions, if possible. Computational approaches can be
used as an aid in the diagnosis and monitoring of these diseases by
tracking different classes of symptoms. They can be used either for
disease identification or for monitoring the progression and evaluating
different treatment courses, either through medical follow-ups or
remote tracking. Hence, in our taxonomy we approach a classification of
neurodegenerative diseases based on the clinical symptomatology. A symp-
tomatology which can also be tracked for following progression and for
disease identification. Following the study of Kovacs [30], we propose
three categorizations for neurodegenerative disorders based on their
predominant clinical characteristics: dementia, abnormal movements and
the combination of the two. The disorders characterized by abnormal
movements can be further subdivided into hypokinetic and hyperkinetic.
In hypokinetic diseases, movements are slowed or diminished, whereas
in hyperkinetic disorders, uncontrolled movements appear. The taxon-
omy is provided in Table 1 (the sources for the prevalence data are the
following articles [32-34] and online documents'). The list of diseases is
not exhaustive, but provides a complete overview from the perspective
of existing computational approaches. The prevalence of these disorders
is increasing and it is estimated that the number of patients will double
by 2050 [1], along with the increase in the older population. Details on
the prevalence of each disease is available in Table 1. As

1 https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf,
https://www.alzheimer-europe.org/Dementia/Other-forms-of-
dementia/Neurodegenerative-diseases, https://emedicine.medscape.
com/article/1151013-overview,  https://www.karger.com/Article/FullText/
443738, https://www.valueinhealthjournal.com/article/S1098-3015(18)
31696-6/fulltext.

neurodegeneration is a process affecting mostly individuals older than
60 years, most data is reported in literature with respect to the elder
population. Significant variations are reported between different areas
of the globe, with a slightly higher prevalence in low and middle income
countries. Out of all neurodegenerative diseases, the dementing ones
have the highest prevalence, with AD taking the leading role.

Based on the proposed taxonomy, we have selected several diseases
that we considered representative for each disease category. For the
dementing disorders, we have chosen to focus on Alzheimer’s disease
due to its slightly higher prevalence compared to other diseases in this
group (0.6% see Table 1). Although fronto-temporal dementia is the
second most encountered dementing disorder, we do not focus on this
disorder as most of the symptoms overlap with AD. Some aspects of the
differential diagnosis between AD and FTD are covered in Section 3.
From the motor hypokinetic disorders, Parkinson’s disease has the
highest prevalence (0.2% see Table 1) and was included in this survey.
Although MSA and ALS (with prevalence of 0.003% and 0.006%,
respectively see Table 1) are also hypokinetic disorders, we have
decided to include them in this survey due to the paucity of studies using
machine learning techniques. As they present similar symptoms to PD,
aspects on their differential diagnosis is also included. Huntington’s
disease was chosen as a representative of the motor hyperkinetic dis-
orders group as it has the highest prevalence compared to similar dis-
eases (0.004% see Table 1).

2.3. Taxonomy of computational approaches

Having analyzed the medical perspectives of neurodegeneration and
identified the prominent diseases, we now focus on the existing
computational approaches that come in support of the diagnosis,
monitoring and improvement of the patient’s life. As previously
mentioned, we shall focus on a symptomatology-based analysis. Table 2
illustrates the proposed taxonomy of existing approaches. We propose a
classification based on: clinical symptomatology and the disease they
characterize or detect, basic modality used as input in the computation
and their goal. The symptomatology is divided into five main categories:
(1) Sleep disorders — which can be further subdivided into several dis-
orders. REM sleep behavior disorder (RBD) and restless leg syndrome
(RLS) (see Section 8). (2) Speech impairments — are observed in both
dementing and motor debilitating neurodegenerative diseases, however
their manifestation is different. In dementing disorders, the lexical
content of the speech is altered. In motor disorders, the muscles con-
troling speech production are affected and thus vocalization impair-
ments are present. (3) Motor impairments — the most visible effect of
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Table 1
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Taxonomy of nerodegenerative diseases: classification based on symptoms, specific disease examples, affected areas, prevalence (* percent normalized to 100,000
people), clinical symptoms indicative of the overlap between diseases, and prevalence of sources cited in this article.

Class Disease Lesion topography Prevalence*  Main clinical symptoms #Articles
Dementing Alzheimer’s Disease Cerebral cortex, 0.6%[ Personality changes, cognitive and memory impairments, 135
Hippocampus, Basal nucleus  2015] delusions, hallucinations
of Meynert
Frontotemporal Frontal and temporal lobes 0.02%[ Altered personality, apathy, disinhibition, impaired NA
Dementia of the cerebral cortex 2013] memory, planning, attention, perception
Dementing and abnormal Lewy Body Dementia Cerebral cortex, Basal 0.002%[ Cognitive impairments, delusions, depression, anxiety, NA
movements ganglia 2016] rigidity, mask-like face
Corticobasal Cerebral cortex, Basal 0.006%[ Language impairment, muscle twitches, abnormal posture =~ NA
Degeneration ganglia 2013]
Abnormal Hypokinetic Parkinson’s Disease Basal ganglia 0.2%[ Slowing of voluntary movements, muscle rigidity, resting 259
movements 2017] tremor, difficulty speaking, gait and postural disturbances,
tiny handwriting, sleep disorders
Olivoponto Cerebellum, Pons, Inferior 0.005% Ataxia, tremor, rigidity, sleep disorders, depression, NA
cerebellar atrophy olives tremor
Progressive Cerebral Nuclei 0.006%[ Loss of balance, difficulty moving eyes, slowing of NA
Supranuclear Palsy 2013] movement, slurred speech, personality changes
Multiple System Several areas of the brain 0.003%[ Low blood pressure when standing up, abnormal breathing 6
Atrophy and spinal cord 2013] during sleep, difficulty urinating, abnormal sweating,
slowness of movement, impaired speech
Amyotrophic Lateral Spinal cord 0.006%[ Weakening of the muscles, sleep disorders, involuntary 15
Sclerosis 2013] uncontrolled sighing, problems swallowing
Hyperkinetic =~ Huntington’s Basal ganglia (caudate 0.004% Uncontrolled movements, abnormal body posture, changes 50
Disease nucleus, corpus striatum) in behavior and cognition
Essential Tremor Basal ganglia 0.003% Tremor of the hand, head, arms, voice, tongue, legs NA
Table 2

Taxonomy of computational approaches: clinical features or disease they deal with, diseases sharing these features, used sensor modalities and purpose of the approach
(PD — Parkinson’s disease, DLB — dementia with Lewy bodies, MSA — multiple system atrophy, AD — Alzheimer’s disease, ALS — amyotrophic lateral sclerosis, HD

— Huntington’s disease).

Clinical feature Disease(s) Sensor modality Purpose
Sleep disorders REM sleep behavior disorder PD, DLB, MSA Polysomnography, actigraphy, EEG, EMG Diagnosis
Restless leg syndrome and periodic ~ PD, DLB, MSA Polysomnography, actigraphy, EMG Diagnosis
limb movement
Disturbed sleep/wake cycle AD Polysomnography, actigraphy Progression monitoring
Speech Lexical content AD Voice Diagnosis, progression monitoring
impairments
Vocalization AD, DLB, MSA, PD Voice Diagnosis, classification, progression
monitoring
Motor Gait, freezing of gait, posture PD, DLB, MSA, Accelerometers, gyroscopes, force sensors, Diagnosis, classification, progression
impairments ALS, HD EMG, video monitoring, disease identification
Tremor PD, DLB, MSA, Accelerometers, gyroscopes, EMG, actigraphy Diagnosis, classification, progression
ALS, HD monitoring
Facial expressions PD, DLB, MSA Video, EMG Diagnosis, disease identification
Bradykinesia PD Accelerometer, gyroscopes Diagnosis, disease identification
Handwriting PD Images of handwriting, writing kinematics, Diagnosis, disease identification
EMG, accelerometer
Biomarkers Imaging AD, DLB, PD, MSA, MRI, PET, SPECT, DTI Diagnosis, classification, progression,

Other biomarkers

ALS, HD
AD, DLB, PD, MSA,

EEG, eye movement tracking, EMG, genetic

monitoring

Diagnosis, classification, progression,

ALS, HD

information, proteomics

monitoring

motor impairments is the effect they have on limb muscle control. Thus
problems with gait, tremor and posture are very often encountered.
Other symptoms include reduced facial expressions and modifications in
handwriting (see Sections 4, 5 and 7). (4) Biomarkers — the identifica-
tion of specific protein depositions in specific anatomical locations by
analyzing medical images can define disease biomarkers. Modalities
such as EEG, EMG or eye movements can also be used as modalities to
extract disease biomarkers.

Computational approaches can also be divided based on the disease
they are applied to. Here we chose to look only at representative cate-
gories of neurodegeneration as presented in Section 2.2. AD is repre-
sentative for dementing diseases. Frontotemporal dementia was not
considered in this review as it is similar in symptoms to AD, while having
a lower incidence rate. PD, MSA, ALS and HD are all predominantly
motor disorders. Computational methods are highly dependent on the
type of data used as input, especially when looking at feature extraction.

The sensor modality used for characterizing a disease depends on the
type of symptoms analyzed. Hence sleep disorders are usually charac-
terized by PSG and actigraphy based recordings. Speech impairments
are analyzed through voice recordings of participants performing
different tasks, while motor impairments through a variety of sensors
that measure movement in controlled and uncontrolled settings, e.g.,
accelerometers, EMG, videos. The purposes of using computational
methods in helping patients suffering from neurodegenerative disorders
is many fold. They can aid in the diagnostic by providing symptom
characterization and help in identifying the exact disease. They can also
be used for providing an objective monitoring method of disease pro-
gression. As the exact classification of neurodegenerative diseases is
difficult when symptoms overlap, automatic methods of identifying
small symptomatological differences are desired. A promising use of
computational methods is the forecasting of events related to disease
symptoms or even the identification and classification of the disease
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prior to the clinical onset. The neurodegenerative process can sometimes
start years before symptoms are observed.

3. Alzheimer’s disease

In this section, we present a review of the most widely used
computational approaches in the diagnosis and monitoring of Alz-
heimer’s disease (reported metrics are presented in Section 9.4). Most
studies included in the review focus on the differentiation between AD
and healthy controls (baseline participants, usually age-matched), AD
and its prodromal state mild cognitive impairment (MCI) or the differ-
ential diagnostic between AD and other forms of dementia. There is also
significant interest in monitoring the disease progression by determining
several levels of severity or trying to predict the conversion from MCI to
AD.

3.1. Biomarkers

3.1.1. Use of brain imaging

Alzheimer’s disease is linked to the accumulation of alpha-synuclein
in the brain tissue. This accumulation can be tracked and studied
through different neuroimaging techniques. Currently, neuroimaging
methods are the most accurate option for providing an AD diagnosis
while the patient is still alive. The golden standard for a precise AD
diagnosis remains the autopsy. Since AD is the most prevalent type of
neurodegenerative disease, its characteristics as revealed by neuro-
imaging have been extensively studied resulting in a high availability of
large datasets. Topics addressed in literature include: (i) the detection of
AD patients from HC [35-37], (ii) measuring disease severity [38], (iii)
helping with the differential diagnostic from different types of dementia
[39,40] and, the most addressed topic, (iv) differentiating between MCI,
AD and HC along with the prediction of conversion from MCI to AD.

Detection of AD patients. Several recent studies have addressed the
problem of differentiating between AD and HC by using deep learning
techniques previously developed for other image processing problems.
Islam and Zhang [36] compare the deep convolutional neural network
Inception V5 model with the GoogleNet on MRI data from the OASIS
dataset containing 100 AD patients and 300 HC. Using a 5-fold cross
validation, an accuracy of 73.75% was obtained. Katako et al. [35] work
on FDG-PET data from the ADNI database using an SVM classification
algorithm in a 10-fold cross-validation. A sensitivity of 84% and a
specificity of 95% is obtained for differentiating between AD and HC.
Sarraf and Tofighi [37] use LeNet-5 resulting in an accuracy of 96.85%
for AD vs. HC differentiation.

Measuring AD severity. The severity of AD can also be classified
through neuroimaging data. Mahmood and Ghimire [38] use MRI data
from a total of 687 AD patients from the OASIS dataset. These are
classified into the following classes: no dementia, very mild AD, mild AD
and moderate AD with an overall accuracy of approximately 90%.

Differential diagnostic. Differentiating between AD and Fronto-
temporal dementia based only on symptoms can be problematic.
Davatzikos et al. [39] use voxel based and high dimensional pattern
classification features extracted from grey and white matter regions of
brain MRI. By using an SVM classifier with a leave-one-out cross--
validation, the proposed algorithm can distinguish between AD and FTD
with an accuracy of 84.3%. The difficulty in placing a correct AD
diagnosis is valid also for other dementing disorders. The correlation
between the golden standard test for AD diagnosis, the autopsy, and the
data collected from MRI and neurophysiological tests several years prior
to death, has been studied by Kautzky et al. [41]. A classification model
was built on the collected data using the labels placed after autopsy. A
random forest model was created in a 5-fold cross-validation scenario
and resulted in an accuracy of only 62%.

Differentiating between AD and MCI. In some patients, mild
cognitive impairment is a prodromal symptom of Alzheimer’s disease.
The differences in the brains of MCI and AD patients along with the
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conversion of MCI into AD has been extensively studied using brain
imaging technology. Most studies make use of MRI data [42-46]. Some
works study the differences between MCI and AD patients by combining
multiple imaging technologies such as MRI and PET [47] or FDG-PET
[48] or MRI and DTI [49]. Biomarkers for the conversion are proposed
by extracting voxel-based features [42], morphometric and volumetric
features [50]. Classification is performed using a variety of well-known
algorithms adapted from other applications. In the early work of Plant
et al. [42], brain changes appearing in MCI as predictors of AD are
characterized by voxel based features. These features are used together
with an SVM classifier allowing a differentiation of MCI from AD with an
accuracy of 97.48%. An SVM classifier is also used by Salvatore et al.
[43] to differentiate between MRI images obtained from MCI patients
that converted to AD and MCI patients that did not convert. Using a
nested cross-validation the accuracy was of 66%. Yan et al. [49] fuses
MRI and DTI information for the differentiation between subjective
cognitive decline, mild cognitive impairment and Alzheimer’s disease.
The result of an SVM classification is an accuracy of 98.58% for AD vs.
HC, of 97.76% for MCI vs. HC and of 80.24% for subjective cognitive
decline vs. MCIL.

Deep neural networks have been gaining popularity in the field of
imaging classification. Naturally, some of the methods have been
adopted in the problem of AD vs. MCI classification based on brain
imaging. Ahmed et al. [46] use a 3D convolutional autoencoder network
for AD vs. MCI vs. HC classification based on anatomical features. The
training set consisted of 210 patients from the ADNI dataset, while the
test set was a selection of 30 patients from the CADDementia dataset.
The result was a sensitivity of 100%, 80% and 47% for AD, MCI and HC
classes respectively. Jabason et al. [45] have also used deep autoen-
coders for feature selection. With a 5-fold cross validation used on data
from the ADNI dataset the accuracy, sensitivity and specificity obtained
was of 98.55%, 98.79% and 99.31% respectively.

3.1.2. Use of EEG

As Alzheimer implies a severe loss of neuronal connections, changes
can also be observed on the recorded EEG of AD patients. When
compared to healthy controls, EEG signals recorded from AD patients
show a slowing down of the characteristic EEG frequency bands and a
decrease in complexity due to the diminished neuronal synchronization
and of different types of oscillations [51]. Due to the non-invasive nature
of the recording, EEG is a good candidate for the extraction of AD bio-
markers. EEG based biomarkers have been used in literature to: (i)
automatically classify AD patients and HC [51-53], (ii) to provide help
in the differential diagnostic between AD and other types of dementia
[54,55], (iii) to automatically distinguish between Mild-Cognitive
Impairment (MCI) and different stages of AD [53,56].

Classification of AD patients. Most work conducted on the auto-
matic detection of AD vs. HC is focused on extracting computational
biomarkers based on the slowing down of EEG frequencies and the
reduction in signal complexity. Trambaiolli et al. [52] takes advantage
of the slowing down of EEG activity by extracting spectral and coherence
features from EEG data and using them as input to an SVM classifier.
Feature selection techniques are used to increase the performance on a
dataset of 22AD and 12HC with a leave-one-out validation method. The
classification accuracy was of 91.8%. Automated EEG based AD classi-
fication with a low-density EEG montage has been proposed by Cassani
et al. [51]. Using only seven EEG channels, the data was pre-processed
using ICA and wavelet decomposition for artifact removal. Several
groups of features were extracted: spectral, coherence and amplitude
modulation features. These were employed in a 10-fold cross validation
framework for an SVM classified. The performance of the model was
evaluated using accuracy, sensitivity and specificity (77.3%, 79.2%,
75.2% respectively).

Differential diagnosis. Placing a diagnosis of Alzheimer is not always
easy as the symptoms most often overlap with other types of dementia.
Several studies have proposed solutions for helping the differential
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diagnosis. Dauwan et al. [54] use quantitative EEG features combined
with clinical and neurophysiological information, visual EEG and cere-
brosinal fluid diagnostic information for creating a model that differ-
entiates between DLB and AD. The proposed model uses a random forest
classifier and was tested on 66DLB, 66AD and 66HC subjects. An accu-
racy of 87% was obtained for the differential diagnostic problem. The
differentiation between PD related dementias and AD is studied by
Jeong et al. [55] using an LDA classifier on features extracted from
wavelet energy and coherence. The differentiation between conditions
was obtained with an accuracy of 79.18% revealing significant differ-
ences in the beta and gamma bands.

Differentiating MCI from AD. The majority of studies extracting AD
biomarkers from EEG, use resting-state EEG recordings of different
lengths. Mamani et al. [53] proposed an event related potential (ERP)
based study using an N-back memory task for obtaining AD and MCI
biomarkers. A statistical analysis showed a significant difference be-
tween AD, MCI and HC on EEG channels recorded over the
fronto-centro-parietal part. The problem of classifying HC, MCI and AD
subjects has been addressed by McBride et al. [56] based on Sugihara
causality. The three class problem has been solved using an SVM clas-
sifier in a leave-one-out scenario using a small database of 15HC, 16MCI
and 17AD. The best accuracy was of 95.8%.

3.2. Speech analysis

The effects of Alzheimer’s related dementia can also be observed in
the speech of patients. Unlike in the case of Parkinson’s, where muscles
controlling the production of speech are affected, Alzheimer’s disease
affects the content of the speech of AD patients. The majority of studies
analyzing the speech of AD patients focus on features related to the se-
mantics of the spoken communication. Topics of interest include: (i) the
automatic differentiation between AD and HC [57-59], and (ii) the
detection of the prodromal stage of MCI and its different intermediate
stages [60,61].

Differentiating between AD and HC. A method for the automatic
detection of AD subjects using the semantic content of speech was
proposed by Fraser et al. [58]. A total of 370 features were extracted
from the DementiaBank database using as input the syntactic
complexity, the grammatical constituents, the psycholinguistics (fre-
quency of certain words), vocabulary richness and repetitiveness but
also features derived from the acoustic properties of speech. By using a
multi-linear regression in a 10 fold cross-validation scenario a maximum
average accuracy of 81.92% was obtained. Konig et al. [57] looked at
semantic fluency in 93 AD and MCI patients vs. 24 HC using an SVM
classifier with a leave-one-out approach. The result was an accuracy of
93.9%. Lopez-de Ipina et al. [62] aimed at extracting biomarkers of AD
from speech, both from spontaneous speech as well as analyzing the
emotional response from acoustic features. The best classification ac-
curacy was of a 97.7% using an SVM classifier that had as input
emotional features as well.

Detection of prodromal AD from MCI. Automatically identifying
patients suffering from mild cognitive impairments can be useful for the
prediction of conversion to AD. In this case the semantic features of
speech can also be of help. In the work of Konig et al. [60], the
distinction between MCI, AD and HC is studied through the extraction of
semantic, vocal and statistical features from a short vocal task. Using
random sub-sampling for data balancing and an SVM classifier, HC are
distinguished from MCI subjects with 79% accuracy. Satt et al. [63]
employs data regularization techniques to overcome data sparseness
from a small database of 15HC, 23MCI and 26 AD subjects. Semantic,
vocal and acoustic features are used with a Naive Bayes classifier. The
differentiation between MCI and HC reaches an accuracy of 80% while
MCI and AD reaches 87%.
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3.3. Eye movement analysis

Detecting patients in the mild cognitive impairment state that could
convert to AD is useful for early treatment intervention and better dis-
ease management. Existing methods make use of the different eye
movement patterns resulting as a reaction to different visual stimuli.
Pavisics et al. [64] use eye tracking related features, e.g., number of
saccades, wave jerks, maximum fixation duration, to distinguish be-
tween AD and HC. By employing a Hidden Markov Model an accuracy of
95% is obtained. Eye tracking was also used by Parsons et al. [65] to
distinguish between AD and posterior cortical atrophy. Using a Hidden
Markov Model (HMM) to model movements in gaze location, a differ-
entiation accuracy of 95.5% is obtained. Alzheimer’s disease leads to
severe cognitive impairments and the emotional toll it takes on the pa-
tients should not be ignored when proposing different treatment cour-
ses. Chung et al. [66] analyzes visual scanning behavior to automatically
detect apathy in AD patients. Two separate LSTM cells are used to model
visual scanning behavior during emotional and non-emotional stimuli
presentation. The output of the recursive neural network is fed into a
logistic regression classifier with an outcome of 74% AUROC within a
hold out validation.

3.4. Gene analysis

The development of Alzheimer’s disease in some individuals has also
been linked to a certain genetic predisposition. The human genome
contains a high amount of data unique for each individual. Computa-
tional methods, more specifically machine learning tools, have proved to
be extremely useful in mapping this information and determining spe-
cific genetic links to diseases. AD is no exception and several works focus
on identifying genes or gene interactions related to AD development. For
instance, Park et al. [67] studied the genetic interactions that could be
correlated to AD. The input data was fed into a Random Forest classifier
to detect HC and AD related information. An accuracy of 90.2% was
obtained. Huang et al. [68] aimed at identifying genes highly correlated
to Alzheimer’s disease from the whole genome. Genes were labeled as
AD and non-AD related. By extracting several genome related features,
an SVM classifier with a radial basis kernel was used. The receiver
operating characteristic was of 84.56%. Xu et al. [69] also uses protein
sequence information with an SVM classifier, resulting in an accuracy of
85.7% in predicting AD.

3.5. Multimodal features

Alzheimer’s disease, along with all the other neurodegenerative
diseases, is a complex disorder that affects many facets of the normal
functioning of a patient. Using one type of modality as input for
analyzing the disease might in some cases be sufficient but in most cases
is not enough for an adequate diagnosis. Therefore, some researchers
focused on harvesting information from complementary sources. For
instance, Alvarez et al. [70] proposed the ICT4LIFE platform to monitor
the behavior of AD. For a more accurate disease classification, infor-
mation is obtained from multiple sources including electronic health
records, body sensors and Kinect sensors. Several features are extracted
and a sparse autoencoder is used for optimizing feature selection. The
result is classified with a logistic regression with an accuracy, precision
and recall of 98.4%, 98.7% and 98.3% respectively. Colloby et al. [71]
used a combination between EEG and MRI data to distinguish between
AD and DLB. Using a SVM classifier, it achieves an accuracy of 90%. The
fusion of different technologies has also been investigated in this case.
Fraser et al. [72] combined eye movement analysis with speech features
in a logistic regression model. Using the two types of features an accu-
racy of 86% was obtained for classifying MCI and HC subjects. Grassi
et al. [73] looks at the conversion of MCI to AD within a 3 year time
frame using sociodemographic characteristics, clinical and neurophysi-
ological test scores. With a SVM classifier, an AUC of 0.962 is obtained.
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3.6. Summary

Alzheimer’s disease symptoms and progression can be investigated
and tracked through diverse methods. In this section, we have covered
some of the topics that use computational methods in the study of Alz-
heimer’s disease. With specific regard to machine learning techniques,
these can be applied on problems with a diverse scope, ranging from AD
detection to differential diagnosis and predicting disease progression. A
selection of some of the most relevant machine learning research works
on AD presented in this review is summarized in Table 3. The infor-
mation contains details on the purpose of the study, the sensor modality,
the type of classifier used and the best performance obtained.

4. Parkinson’s diseases

Parkinson’s disease is the second most encountered neurodegener-
ative disease and we consider it to be representative for hypokinetic
diseases with similar symptoms. PD and other hypokinetic diseases are
characterized by bradykinesia, muscle rigidity and freezing of movements.
As the disease progresses, different impairments related to difficulties in
muscle control can be seen in patients. Most computational methods
focus on, either detecting PD vs. healthy control subjects, or on mapping
the differently computed features to diseases measurement severity
scales, such as UPDRS or H&Y. PD subtype classification is also of
interest.

4.1. Motor symptoms monitoring

The most predominant symptoms that affect PD patients are the
motor disabilities. Depending on the symptoms monitored and the final
goal of the research, different recording and processing methodologies
are used. As motor symptoms are some of the most encountered prob-
lems in PD, an abundance of studies are available on the topic.
Computational methods developed for the analysis of PD motor symp-
toms aim at discriminating between PD and HC [74] but also at

Table 3

Overview of the most relevant research works using machine learning in
handling Alzheimer’s disease that were presented in this work. Brief details are
provided on the dataset size and content, classification techniques and evalua-
tion methods.

Purpose Modality Dataset Classifier Eval Acc Ref.

AD vs. MRI 100AD, InceptionVs5, 5fold 73.75% [36]
HC 300HC GoogleNet Ccv

AD vs. MRI 28AD, LeNet-5 Hold 96.85% [37]
HC 15HC out

AD vs. Eye 26AD, HMM Ccv 95.5% [65]
HC tracking 21HC

AD vs. EEG 22AD, SVM LOO 91.8% [52]
HC 12HC

AD vs. MRI, DTI 28AD, SVM cv 98.58% [49]
HC 45MCI, 97.76%
MCI 38AD
vs. HC

AD vs. EEG 17AD, SVM LOO 95.8% [56]
MCI 16MCI

AD vs. Speech 26AD, SVM LOO 93.9% [57]
MCI 23MCI

preAD Speech 26AD, Naive Bayes - 80% [63]
VvS. 23MCI
MCI

MCI vs. Eye 27MCI, Logistic LOO 86% [72]
HC tracking, 30HC regression

speech

AD vs. EEG 66AD, RF - 87% [54]
DLB 66DLB

AD vs. EEG, MRI 30AD, SVM - 90% [71]
DLB 21DLB

AD vs. MRI 37AD, SVM LOO 84.3% [39]
FTD 12FTD
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objectively quantifying the severity of the disease though comparisons
to the UPDRS and H&Y scales [75-77]. Another application is the
monitoring of the on/off medication states of patients [78]. Analyzing
the severity of motor disability with respect to the time passed from the
last medication intake, one can suggest adjustments to the treatment
scheme.

4.1.1. Gait and posture

Most studies looking at the gait and posture of PD patients focus on
distinguishing or characterizing different signals collected for patients
with respect to HC.

Recording methods. The dynamics of gait are, in the majority of
cases, characterized using wearable accelerometer sensors placed at
different locations on the body, e.g., ankles [79], waist, wrist [80]. In
this type of analysis, video recordings annotated by specialists are
considered the golden standard [80]. Another approach for monitoring
problems with gait is through force sensors placed under the foot [76,74].
This technology is particularly advantageous as sensors can easily be
placed inside the shoe with no significant inconvenience to the user.
EMG signals can also be used for abnormal gait detection, however these
are more cumbersome to record and integrate in wearable technologies.
Kugler et al. [81] used EMG sensors on the lower limb muscles for
proposing objective measures of evaluating gait in standard tests.
Impaired balance is also studied, for instance Stack et al. [80] use in-
ertial sensors. Protocols for recording involve mostly walking for a
specific distance or standard gait tests used by medical professionals.

Classification techniques. Most analysis performed focus on
extracting time and frequency domain features for disease state classi-
fication. Statistical, entropy and energy features are predominantly
extracted from the time domain signals. In the frequency domain, the
predominant frequency is characterized along with the phase and the
energy content. Asuroglu et al. [76] introduce a locally weighted
Random Forest classification for estimating the severity of PD in com-
parison to the UPDRS scale, using eight force sensors. Alam et al. [74]
add swing and stride time along with statistical time domain features as
input to an SVM cubic kernel classifier which distinguishes between PD
and HC with an accuracy of 93.6%. Three different studies amounting a
total of 93 PD and 73 HC subjects with ground reaction force recordings
[82] were used by Zhao et al. [83] for implementing a two-channel
model combining LSTM and CNN.

4.1.2. Bradykinesia

Studies focusing exclusively on the analysis of bradykinesia in PD
patients estimate the severity of the symptoms based on accelerometer and
gyroscope sensors placed on different locations of the body [84,85]. For
instance, Martinez-Manzanera et al. [85] use a Shimmer platform con-
taining accelerometers, gyroscopes and magnetic sensors to record data
from 25 PD and 10 HC subjects while performing a series of standardized
motor tasks. The obtained signals were fused and features were
computed both in time and frequency domain. After applying a t-test
based forward selection wrapper for feature reduction, the remaining
features were fed into an SVM classifier. The best results were obtained
using a combination of seven features and resulted in error rates as low
as 9.3-9.8%. Sama et al. [84] use a support vector regression for clas-
sifying symptom severity for a smaller database containing 12 PD pa-
tients with an accuracy for bradykinesia detection of 90%.

4.1.3. Freezing of gait

Akinesia occurs in some PD patients with a frequency dependent on
the severity of the disease. It is possible to provide support to those
suffering from a freezing of gait episode to surpass the moment [86].
Hence many studies focus on the detection of such episodes. For reha-
bilitation purposes, the detection should provide good performance in
uncontrolled environments with as little intrusion as possible. Most of
the studies focus on the detection of freezing of gait episodes using in-
ertial sensor based wearable technologies. These include accelerometers
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and gyroscopes [87] placed on the waist [88], thigh [86] or wrist [89].
Gait specific features are extracted from the time domain, e.g., statistical
measures [89,90], step and stride time and length [91], and frequency
domain, e.g., freezing index [86], power in different frequency bands
[89]. Good results were obtained in several studies using the SVM
classifier [88,91]. Deep learning models are also investigated. Camps
et al. [87] used a six layer convolutional network for FoG detection on
21 PD patients. The deep learning framework achieved 90% for the
geometric mean between sensitivity and specificity. Since smartphones
already incorporate these recording modalities and are ubiquitously
available, their performance in this circumstance has also been evalu-
ated by some studies [90]. EEG signals have also been used by Hando-
joseno et al. [92] for FoG onset detection. Their dynamics were analyzed
with wavelet transform based entropy measures and a back propagation
neural network classification.

4.1.4. Tremor

A characterization of disease severity or of treatment efficiency can
also be provided by the assessment of tremor severity. A convenient
method of assessing tremor is through the analysis of signals obtained
from accelerometers incorporated in wearable technology. Rigas et al.
[93] propose the use of Hidden Markov Models on accelerometer signals
obtained from different parts of the body of 18 PD and 5 HC subjects in
different resting conditions. Tremor severity was assessed with an ac-
curacy of 87%. Kostikis et al. [94] use a smartphone for training ma-
chine learning algorithms to distinguish the severity of parkinsonian
tremor on a database of 25 PD and 20 HC participants. A bagged
ensemble of decision trees provided the best results with 82% of the
patients being classified correctly.

4.1.5. Dyskinesia

A side-effect of levodopa medication used for alleviating PD symp-
toms is the appearance of uncontrolled movements. The severity of the
unwanted effects of medication can also be tracked. Chelar et al. [95]
use magnetic motion trackers to quantify the complexity of involuntary
movements present in 10 dyskinetic PD, 10 non-diskinetic PD and 10 HC
participants with the help of multiscale entropy. Automatic recognition
of dyskinetic episodes was performed using multilayer perceptrons. In-
ertial sensors are a more natural choice for dyskinesia assessment. Tsi-
pouras et al. [96] used accelerometers and gyroscopes placed at the
wrists, legs, chest and waist on a similar sample size to automatically
recognize dyskinetic patients using an artificial neural network with one
hidden layer and time and spectral features as input. The result was an
average classification accuracy of 84.3%.

4.1.6. Multiple-symptoms — “on/off” state detection

The approaches presented above tackle the detection and charac-
terization of only one specific PD motor symptom at a time. However,
patients most often experience a combination of motor symptoms at a
time. Tracking a combination of the symptoms in different environments
and with different medication intake can be problematic.

Controlled environment — on/off detection. For an accurate
assessment of the patient’s state and of the disease progression, as many
motor aspects as possible should be considered in more complex sys-
tems. In the early work of Patel et al. [77], the Shimmer platform was
used with accelerometers placed on both lower and upper limbs to
classify the severity of tremor, bradykinesia and dyskinesia. Standard-
ized motor tasks were performed according to the motor section of the
UPDRS. A total of 31 feature combinations were extracted and fed into
seven SVM classifiers with different kernels. The lowest mean estimation
error was of 1.2%.

Ambulatory setting — on/off detection. Salarian et al. [97] use a
miniature gyroscope placed on the upper limbs for estimating tremor
and bradykinesia but this time in an ambulatory setting. The algorithm
made use of spectrum analysis for tremor detection and the Hilbert
transform for bradykinesia estimation. The tremor detection showed an
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overall sensitivity and specificity of 99.5% and 94.2% respectively. Cole
et al. [98] tested several dynamical machine learning techniques. Dy-
namic support vector machines and Hidden Markov Models had both
error rates below 10%. In general, focus is placed on the development of
unobtrusive systems for monitoring in uncontrolled environments. An
important achievement is the REMPARK system that was designed for
long term home monitoring of PD patients. It comprises accelerometers
and gyroscope sensors placed on the wrist and waist of the patients.
Bayés et al. [78] validate REMPARK in detecting on-off states of 41 PD
patients with 97% sensitivity and 88% specificity.

Monitoring of deep brain stimulation effects. Another lead is to es-
timate the effects of DBS treatments. The work of Zwartjes et al. [75]
investigates the daily activities of 6 PD and 7 HC patients and extracts
information for quantification of tremor and bradykinesia. After
applying a Decision Trees based activity recognition algorithm, features
are extracted for characterization of rest and kinetic tremor, bradyki-
nesia and hypokinesia and threshold-based algorithms are applied. Ki-
netic tremor was identified with an accuracy of 78.7% during sitting and
81.7% during standing. Angeles et al. [99] evaluated rigidity, tremor
and bradykinesia with the goal of DBS treatment optimization. 7 PD
subjects performed specific motor tasks with 3D accelerometer, gyro-
scope and magnetometer sensors placed on the most affected hand.
Several classification algorithms were used to achieve an average ac-
curacy of 90.9%.

4.2. Speech monitoring

As PD causes the loss of neurons in the basal ganglia, the muscles
involved in the production of speech are also affected by the same
symptoms as the other motor muscles, i.e., rigidity, hypokinesia, and
tremor. This causes a great majority of PD patients to have dysarthic,
abnormal speech [100]. Although the difficulties in speech production
can be regarded as another motor symptom, we have decided to describe
the computational approaches used on abnormal PD speech separately
due to the abundance of literature and the different sensor modalities
that are used as input. Dysarthic speech can be characterized by several
particular dysfunctions caused by the loss of proper motor control. In the
case of PD these include: dysphonia, imprecise articulation, dysprosody
and speech volume intensity fluctuations.

Applications. Most of the studies focus on the detection of PD pa-
tients from the general healthy population [101-104]. Other studies
focus on the differential diagnosis between PD, MSA and PSP [105], on
progression monitoring [106] and severity monitoring [90]. Another
promissing application for speech in PD analysis is the detection of PD in
an incipient stage, before a clinical diagnostic is placed [104,107]. Harel
et al. [108] analyze speech of two English speaking PD patients and two
age-matched healthy controls retrospectively and concluded that some
of the frequency content analyzed was relevant for the early identifi-
cation of PD.

Features used. When tackling dysarthic PD speech, statistical fea-
tures are extracted from the time domain and specific frequency features
are explored. There is a high number of proposed features as the field of
general speech processing is well developed. The type of features
selected depend on the type of problem studied, i.e., phonation, artic-
ulation, rhythm or volume. Time domain features include: duration of
pause intervals, rate of speech timing, change in interval length, period
of onset of vocalization, vowel keeping time, descripive statistical
measures [109-111]. Frequency features are also diverse and some of
the most relevant are: main frequency of vocal cord vibration or pitch,
jitter, shimmer, noise-to-harmonics ratios, formant frequencies, vowel
space area, pitch and amplitude perturbation quotient, Mel Frequency
Cepstrum Coefficients [102,110-112].

Classification algorithms. For all classification problems tackling PD
speech, i.e., PD vs. HC, differential diagnosis or severity monitoring, the
most used classification algorithm is SVM [102,110,112]. The early
work of Little et al. [102] used a SVM model with a Gaussian Radial
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Basis Kernel function and resulted in an accuracy for PD identification
from speech of 91.4%. Orozco et al. [110] distinguished between
Spanish speaking PD patients and HC using a SVM with a soft margin
and Gaussian kernel in a 10-fold cross validation strategy resulting also
in a high accuracy of 91.3%. However, there are other relevant ap-
proaches. For instance, Mekyska et al. [106] use a Random Forest
classifier for PD severity assessment on a database with 84 PD and 49 HC
patients. A sensitivity of 92.86% was obtained. The early work of Das
[113] compares Neural Networks with Decision Trees and regression
algorithms. The neural network provided the best result, with an accu-
racy of 92.9%.

Real-life recordings. The majority of the studies looking at dysarthic
PD speech focus on ideal voice recording conditions. However, PD
detection algorithms should be sufficiently robust for real-life, noisy
scenarios. Applications in early detection of PD would be most efficient
in population screening scenarios. Vasquez-Correa et al. [103] analyze
the effect of different noise conditions, e.g., saturation, dynamic
compression, additive white Gaussian noise and different kinds of
environmental noise. Results show that different background environ-
mental noises have a high impact on the classification results. Another
method of continuously assessing the condition of PD patients is through
the use of a mobile phone, either in a test application or through
recording of phone conversations or via the cellular network. Rusz et al.
[111] evaluates the use of smartphone speech recordings for early PD
detection. The system was tested on 50 patients suffering from RBD and
promising alterations in the speech pattern of prodromal PD subjects
was obtained. The distinction between HC and RBD patients was ob-
tained with an AUC of 0.69, a sensitivity of 69.8% and a specificity of
64.7%.

4.3. Handwriting analysis

The analysis of handwriting has proven effective in the diagnosis and
progression monitoring of PD patients [18]. Handwriting is a complex
activity involving both cognitive and motor functions. As the disease
progresses and affects the brain centers responsible for its motor aspects,
several abnormal characteristics of the handwriting activity can be
observed. Micrographia, a reduction in the size of written text, is very
often present in patients with PD. Bradykinesia and tremor also affect
the ability of controlling the motions involved in writing. Such anom-
alies can be monitored either through static and/or dynamic approaches.

Static approaches. Refer to the graphical feature analysis of written
text. The graphical characteristics are used to analyze the extent of
micrographia and the randomness of strokes generated by tremor
related movements. Typical metrics include changes in size of written
characters, height of loop patterns, area of text blocks, pixel density
variations based on ink content [114], density and height ratios, spiral
precision index [115]. Besides providing an estimate of disease severity,
these types of studies also allow for longitudinal tracking of PD pro-
gression and the identification of prodromal symptoms. For instance,
Zhi et al. [114] explores the potential of using static analysis on his-
torical signature based writing samples in the study of disease progres-
sion for 10 PD patients.

Dynamic approaches. Look at the kinematics of handwriting. In this
case, symptoms related to bradykinesia, tremor and rigidity are assessed
by also analyzing the on-surface and in-air movements associated with
writing. Dynamic methods make use of digital tablets, smart pens with
axial pressure of ink and tri-axial accelerometers [116] and EMG [115].
Depending on the modality of recording, different features are extracted.
Digital tablets can usually record the point of contact (x and y directions)
and pressure information. Several kinematic features are extracted
including: speed of writing, changes in acceleration and velocity,
writing duration and length, jerk, stroke length, descriptive statistical
measures [117], the rate of pressure change with respect to time [118].
Smart pens in combination with digital tablets allow for additional
tracking of in-air movements [116,119]. Bradykinesia is assessed by
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calculating the movement time and velocity, whereas tremor by
analyzing the frequency content of the pen tip trajectory during rest. The
use of EMG was explored by Loconsole et al. [115] and specific signal
features are extracted: root mean square, mean absolute value, zero
crossings of the EMG signal.

Classification algorithms. Machine learning algorithms are used for
classification of the PD or HC states. Drotar et al. [118] use SVM in
several handwriting classification tasks. This classification method ob-
tained an accuracy of 81.3% on the kinematic and pressure features
database PaHaW, composed of 37 PD patients and 38 HC [118].
Loconsole et al. [115] observed that SVM outperforms artificial neural
networks with and without PCA based feature reduction on a smaller
EMG database. Deep learning methods were also used by Pereira et al.
[116]. The authors developed a convolutional neural network for
handwritten dynamics differentiation on the HandPD dataset comprised
of 74 PD and 18 HC.

4.4. Face video analysis

In the process of PD neurodegeneration, neurons from the basal
ganglia start dying leading to dysfunctions in the neuronal circuits
controlling facial muscles. As a result, some PD patients suffer from
hypomimia, a reduction in the facial muscle movements (facial brady-
kinesia). Hypomimia in Parkinson’s disease is quite a recent research
topic and efforts are being made to better characterize these movement
deficits. Gunnery et al. [120] used videos of participants mentioning
pleasant activities to map spontaneous facial expressions in PD. The
analysis was performed by extracting facial action units and character-
izing features such as onset, offset and apex. Similarly, Livingstone et al.
[121] used EMG to study facial muscle reaction during presentations of
calm, happy, sad, angry and fearful emotions. Hypomimia was observed
with a reduction in EMG amplitudes and delayed onset in the muscles
controlling smiling. The video based analysis of facial expressions in PD
patients relies on the general knowledge available for video facial
emotion recognition and focuses on distinguishing healthy controls from
diseased individuals. Bandini et al. [122] used a Multi-class SVM to train
a facial expression recognition model from benchmarked databases. The
test dataset comprised videos from both PD and HC. The performance of
the model is proposed as an indication of hypomimia effects.

4.5. Brain imaging

Some of the most common Parkinson’s disease biomarkers are the
changes observed in brain tissue through non-invasive imaging tech-
niques. The identification and characterization of such biomarkers is
important for placing an initial diagnostic and following disease pro-
gression. Perhaps the most relevant application is the use of brain im-
aging biomarkers for the differential diagnostic between PD and other
neurodegenerative diseases with similar early symptomatology. Unlike
the case of Alzheimer’s disease, where brain imaging biomarkers have
been extensively studied through computational approaches and spe-
cifically machine learning techniques [123], the automatic analysis of
PD biomarkers is at an incipient stage.

Topics addressed. Brain imaging biomarkers are identified and
characterized through the automatic analysis of MRI, SPECT or PET
images with the purpose of differentiating between PD and HC
[124-128], but also between PD and other neurodegenerative diseases
(e.g., MSA [129,130], PSP [131]). Haller et al. [124] use MRI diffusion
tensor imaging with specific features extracted for the classification of
PD vs. HC. For the early stage differentiation of PD from HC, MSA and
PSP, Marquand et al. [130] studied the extraction of different anatom-
ical features from the whole brain and a subcortical motor network with
its component regions.

Features. The feature extraction process focuses not only on the type
of information that could result in PD biomarkers, but also on the brain
location from where they are extracted [125,126]. As PD affects
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different regions of the brain throughout different stages of progression,
selecting the most probable brain area where the disease might manifest
is relevant especially in early detection and differential diagnosis. Peng
et al. [126] determined that the best classification results were obtained
from the frontal, parietal, limbic and temporal lobes and the central
region. With regard to the type of features, these can be voxel based
morphometric features or low level features related to the volume of
grey matter, white matter and cerebral spinal fluid, but also high level
features that represent the structural connectivity [126]. Singh and
Samavedham [128] proposed an unsupervised feature extraction
method in combination with a least square SVM. PD data was distin-
guished from HC data with a 99% accuracy in a hold out validation
procedure.

Classification algorithms. The most used algorithm for all the clas-
sification problems is SVM with different implementations [131,125,
126]. Adeli et al. [125] obtained the best performance with a LDA
classifier in combination with a joint feature sample selection for PD
detection on the PPMI database. Hirschauer et al. [127] build an
enhanced probabilistic neural network (EPNN) with four layers for
classifying PD patients with respect to HC. The use of EPNN resulted in a
classification accuracy of 92%.

4.6. Multimedia approaches

The symptoms affecting PD patients can be diverse and monitoring
only one of them might be insufficient for providing a good estimate of
the disease progression. Using multiple modalities for assessing the pa-
tient’s state could be beneficial. These can also be integrated in the day
to day activities of the patient, not only to monitor the disease progress,
but also the effectiveness of the treatment and adherence to medication.

Mobile applications. The HopkinsPD is an application proposed by
Zhan et al. [132] that aims to remotely monitor PD symptoms through a
smartphone platform. Five symptom types are analyzed: voice
dysphonia, postural instability while standing up, gait — bradykinesia,
reduced dexterity and rest tremor. Data is collected from the phone
microphone, accelerometer sensor, push of a button and different
self-evaluation questionnaires. The study was deployed worldwide
through a mobile application and recorded data from 221 PD and 105
HC. An accuracy of 71% was reached. A similar approach was imple-
mented by Neto et al. [133] by using iPhone sensor data for medication
response detection. The best performing classification algorithm on the
specific features extracted were tree based tests, including random for-
est. In the work of Adams [134], keystrokes recorded with the App-Tappy
application were used for classifying early PD and HC. The features
extracted included hold time, statistic measures, latency measures and
statistics on latency. Several machine learning algorithms were tested.

Other smartphone applications focus on assessing dexterity of PD
patients [135,136]. Aghanavesi et al. [136] used a smartphone to track
how subjects performed tapping and spiral drawing tests. Several fea-
tures were extracted and pre-processed using PCA. The best result for
predicting PD symptom severity was obtained using a SVM classifier
which resulted in a high correlation with the UPDRS ratings of each
participant.

Speech and writing. Afonso et al. [137] have used deep learning
methods for assessing PD based on voice analysis and dynamic tech-
niques for writing assessment. A deep optimum-path forest clustering
technique was used on 31 PD and 35 HC performing hand movements
and drawing with a biometric pen incorporating a michrophone, finger
grip, axial pressure of ink, tilt and acceleration. In the work of
Vasquez-Correa et al. [138], speech, handwriting and gait signals are
analyzed in a database containing 44 PD patients and 40 HC. A CNN is
used for the multimodal analysis of PD patient data. The features ob-
tained from the last hidden layer of the CNN are placed into a subject
specific feature vector and fed to an SVM classifier.

11

Artificial Intelligence In Medicine 117 (2021) 102081
4.7. Summary

An abundance of literature is available on the characterization of PD
motor symptoms with computational approaches. The most focus is in
the area of altered movement patterns. Speech disorders caused by PD
have also been often investigated as speech is easy to record and the field
of voice analysis has significant history. A summary of the most prom-
inent works using machine learning for PD characterization presented in
this literature review is available in Table 4.

5. Huntington’s diseases

This section presents a review of the prominent computational ap-
proaches used in the diagnosis and monitoring of Huntington’s disease.
Its prevalence is significantly lower than in the case of AD and PD. As a
consequence, the amount of studies conducted with the purpose of
developing computational approaches for its monitoring and diagnosis
is significantly smaller. The gait of HD patients is characterized by un-
controlled, hyperkinetic movements such as chorea and dyskinesia.
Automatic monitoring of motor symptoms can be useful in analyzing
disease progression.

5.1. Gait abnormalities

Classification of HD. The gait of HD patients presents significant
differences from that of HC and these differences are still a subject of
research. In the study presented by Pyo et al. [139], the step length,
stride length and base support and their corresponding coefficients of
variation of HD patients proved to be increased when compared to HC.
Mirek et al. [140] used magnetic trackers to calculate the gait cycles.
Results show the HD patients present insufficient flexion in the plantar
and knee joints and excessive flexion of the hip when compared to
normal gait parameters. Automated classification of HD gait signals has
also been investigated. Manini et al. [141] uses inertial sensors attached
to the ankles and the lumbar region to record stance and swing in 10 HD
patients rated according to the UHDRS scale (Unified Huntington’s
Disease Rating Scale — clinical assessment of HD severity), 10
post-stroke patients and 10 HC. A HMM was trained in a supervised way
to recognize the foot strike and toe off events with a delay of 20 ms.

Differential diagnosis. Mann et al. [142] also used a magnetic
tracker for analyzing the motion of arms of PD and HD subjects. The
movements caused by the two neurological disorders and recorded with
the magnetic trackers were characterized by their amplitude, frequency,
dispersion, entropy and other statistical features. By studying the subtle
differences in abnormal movements, a more accurate initial diagnosis
can be provided. For instance, Dinesh et al. [143] place a wearable
sensor (BioStampRC) on the arms and legs of 10 PD, 10 HC and 15 HC
for motion characterization in a simple walking test. The signals recor-
ded included 3D accelerometers, ECG and EMG. The features extracted
showed a good visual discrimination between the three conditions.

5.2. Speech impairments

Basal ganglia neurodegeneration leads to motor impairments which
might affect the muscles involved in speech production. Different dis-
eases might cause different types of abnormalities in muscle control and
hence in the produced speech. Differentiation between HD and other
neurodegenerative diseases such as PD, MSA and PSP, based on voice
recordings, was proposed by Rusz et al. [144]. Repetitions of the ‘pa’
syllable where characterized by features representing rhythm instability
and acceleration through the detection of syllable onset. The accuracy of
the syllable onset detector was of 99.6% and the visual observation of
the features showed discrimination power between syndromes. Novotny
et al. [145] characterized PD and HD dysarthia by also looking at syl-
lable onset in ‘pa-ta-ka’ repetitions using the Hilbert transform. The
accuracy of PD syllable onset detection was of 90%, while for HD it was
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Overview of the most relevant research works using machine learning in handling Parkinson’s disease that were presented in this work. Brief details are provided on

the dataset size and content, classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref.
PD vs. HC Ground reaction force 29PD, 18HC SVM LOO 93.6% [74]
PD vs. HC Ground reaction force 93PD, 73HC LSTM, CNN Hold out 98.7% [83]
PD vs. HC Speech data 50PD, 50HC SVM 10fold CV 91.3% [110]
PD vs. HC Handwriting dynamics 37PD, 38HC SVM 10fold CV 81.3% [118]
PD vs. HC Handwriting dynamics 74PD, 18HC CNN Hold out 95% [116]
PD vs. HC MRI 518PD, 245HC SVM Ccv 99% [128]
PD vs. HC MRI 200PD, 375HC EPNN Hold out 92% [127]
PD vs. HC Speech data, handwritten dynamics, gait signals 44PD, 41HC CNN, SVM Hold out 97.6% [138]
Symptom severity Accelerometer 12PD SVM LOO 90% [84]
Severity of tremor Accelerometer 18PD, 5HC HMM LOO 82% [93]
Detect FoG Inertial sensors 21PD CNN Hold out 90% [87]
Detect dyskinesia Accelerometer 5HC, 14PD with D, 10PD ANN LOO 84.3% [96]
Medication effect Speech data, accelerometer, push of a button, questionnaires 221PC, 105HC RF 10fold CV 71% [132]

80%.

5.3. Biomarkers

5.3.1. Brain Imaging

Brain imaging is considered one of the most reliable methods used
for confirming a HD diagnosis. Several works have focused on the
development of (i) MRI biomarkers for the characterization of HD and
their presence (ii) prior to disease onset.

Classification of HD. Rizk-Jackson et al. [146] uses a database of
MRIs of 39 HD and 25 HC patients to extract region-based and
voxel-based features from white and grey matter. Using an LDA classifier
a balanced accuracy of 76% was obtained for differentiating HD and HC.

Pre-onset HD detection. Although HD is a genetic disease and car-
riers of the huntingtin gene are already aware they will develop the
disease, the exact onset is not yet predictable. Several studies have tried
to identify pre-HD signs through brain imaging biomarkers several years
prior to disease onset. For HD carriers, an MRI scan is typically taken
every 2 years. In practice, that is not always the case. Eirola et al. [147]
propose an extreme learning machine with a hidden layer of 1000
neurons for predicting the onset of HD 10 years in advance. The output
result showed an accuracy of 80-90% over the entire 10 year period. In
the Predict-HD study, the MRI scans from a total of 95 preHD subjects
and 95 HC subjects were used for predicting HD several years before
onset. Information was extracted from the gray matter of several regions
of interest and fed to a multivariate SVM. By selecting the region of
interest, an accuracy of 83% was obtained. The performance of the
classification of the preHD subjects increased as time to onset decreased.
Mason et al. [148] used the Track HD consortium data with MRI scans
from 19 preHD and 21 HC subjects to extract both structural and con-
nectivity measures. Using a linear support vector machine preHD was
identified 5 years prior to disease onset and a maximum accuracy of 88%
was obtained. DTI was also used by Georgiou-Karistianis et al. [149] in
obtaining biomarkers for the preHD vs. HC discrimination. Different
tests were performed for extracting features either from the whole brain
or from specific regions. A quadratic discriminant analysis showed a
good discrimination power for the volumetric reduction and increased
fractional anisotropy in the basal ganglia up to 15 years prior to onset.

5.3.2. EEG signal

As Huntington’s disease also implies cognitive and psychological
impairments, changes in the activity of the brain might also be observed
in the EEG measurements. Tommaso et al. [150] analyzed recordings
from 13 HD in order to extract possible EEG biomarkers. Features
extracted from the Fourier transform of EEG signals were fed into an
artificial neural network classifier which correctly predicted 11 out of 13
subjects as containing the HD gene. Odish et al. [151] went further to
create an EEG index on 2 seconds Fourier transformed data. The pro-
posed method was tested by selecting the adequate features through
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PCA and training an SVM model. The classification was tested on 26 HD
gene carriers and 25 HC resulting in an accuracy of 83%.

5.4. Summary

As Huntington’s disease is less prevalent in the population and has a
strong genetic correlation, fewer research works investigating HD were
found when compared to publications investigating AD or PD. Machine
learning techniques are used in the study of HD to bring more clarity on
the onset of the disease. A summary of the most prominent works pre-
sented in this work using machine learning for HD is available in
Table 5.

6. Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a severe motor neurodegenerative
disease with a rapid progression and a low prevalance when compared
to other neurodegenerative diseases. Studies that rely on computational
approaches focus mostly on providing an aid to ALS diagnosis, most
frequently looking at a better differentiation from other neurodegener-
ative diseases at incipient phases with predominant motor abnormalities
such as PD, HD or MSA.

6.1. Gait abnormalities

Characterization of gait in neurodegenerative diseases, particularly
in ALS, HD and PD, has been performed by Hausdorff et al. [152] by
recording the magnitude, duration of stride-to-stride fluctuations and
perturbations in the fluctuations dynamics by using force sensors placed
on the feet of the subjects. The gait of ALS patients was less steady and
more temporarily disorganized. No other studies using other databases
(private or public) characterizing gait dynamics of ALS patients were
found by the authors. Using the neurodegenerative diseases gait dy-
namics database, Dutta et al. [153] automatically identified the different
disorders from healthy controls using several features extracted from a
cross-correlogram with an Elman’s recurrent neural network with one
hidden layer. The result for binary classification (ALS vs. HC) was in the
range of 90.6% to 97.8% average accuracy. Xia et al. [154] used the
Teager Energy Operator to extract features for an SVM classifier. The
proposed method resulted in an accuracy of 92.86%.

6.2. Speech impairments

The muscles involving speech production are also affected in
amyotrophic lateral sclerosis. ALS speech abnormalities were investi-
gated by Yunusova et al. [155] through features as articulatory rate,
duration of speech and pauses. The aim of the study was to evaluate the
effect on speech of diseases predominantly characterized by motor
deficits and those with a predominant cognitive deficit. In this case,
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Table 5
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Overview of the most relevant research works using machine learning in handling Huntington’s disease that were described in this work. Brief details are provided on

the dataset size and content, classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref.

HD vs. HC EEG 26HD, 25HC SVM 10fold CV 83% [151]
HD vs. HC MRI 39HD, 25HC LDA 4fold CV 76% [146]
HD onset MRI 1370HD ANN Hold out 90% [147]
HD onset MRI 19preHD, 21HC SVM LOO 88% [148]
Discriminate stance and swing Inertial sensors 10HD, 10HC HMM — 20 ms error [141]

significant statistical differences were observed between features
extracted from the speech of ALS subjects when compared to the speech
of fronto-temporal dementia. Wang et al. [156] investigated the possi-
bilities of automatically detecting ALS from speech. The proposed
method used both acoustic information and articulatory movement
data. The movement data was recorded with electromagnetic articulo-
graph sensors attached to the tongue and lips of the participant. Features
were extracted from both signal sources and two classifiers were
compared: SVM and a DNN. The SVM was able to classify ALS speech
with an accuracy of 80.91% using both acoustic and movement data.
The DNN resulted in 91.74% accuracy only using acoustic data in a
4-fold cross-validation scenario.

6.3. Video analysis

For the purposes of early diagnosis and tracking of ALS, Bandini et al.
[157] investigated the use of kinematic features extracted from videos of
the face while ALS and HC subjects were performing both speech and
non-speech tasks. As ALS affects all motor neurons, the muscles of the
face are also impaired. Using a logistic regression classifier, an overall
accuracy of 88.9% was obtained when discriminating between ALS and
HC.

6.4. Biomarkers

6.4.1. Brain imaging

Itis used in ALS to investigate its causes and progression. Fekete et al.
[158] used MRI brain scans from 40 ALS and 30 HC subjects to propose
an ALS biomarker based on the organization of brain networks at a
functional level. Features were extracted from the 0.03-0.06 Hz band
using a typical image processing chain: motion correction was applied,
followed by a normalization to the MNI (Montreal Neurological Insti-
tute) space and the use of masks for CSF (cerebrospinal fluid) and white
matter extraction. For the classification task, an SVM with a recursive
kernel elimination was used leading to an accuracy, sensitivity and
specificity of 87%, 88% and 88%, respectively. A method for predicting
the survival in ALS patients was proposed by van der Burgh et al. [159].
Both MRI and clinical characteristics were studied on 135 ALS patients
classified as short, medium or long-term survivors. A deep neural
network was used for prediction, leading to an accuracy of 84.4%.

6.4.2. EMG signal

As motor muscles are significantly affected in ALS, using non-
invasive EMG measurements for ALS diagnosis could be a cost effec-
tive option for an initial diagnosis. Zhang et al. [160] investigated
several statistical features extracted from the EMG of ALS patients and
HC subjects. These were used with an LDA classifier. The classification
provided a sensitivity of 90% and a specificity of 100% for differenti-
ating ALS and HC subjects from EMG data.

6.5. Summary

The characterization of ALS through computational methods is
limited in the available literature. The study of the disease through
machine learning techniques is still at an early stage. Most research

13

works focus on identifying ALS patients from HC. A summary of the
research works using machine learning on ALS that are available in this
literature review are presented in Table 6.

7. Multiple system atrophy

Multiple system atrophy is a severe neurodegenerative disease that
progresses rapidly after onset. Its prevalence is small and as a conse-
quence the number of studies using computational approaches for its
characterization is small. Most of these studies focus on providing better
methods of diagnosis in the incipient stages of the disease when the
symptoms are confusing. MSA bares the closest resemblance to Parkin-
son’s disease, especially the parkinsonian version of MSA (MSA-P).
Computational approaches can help in its better diagnosis by analyzing
imaging biomarkers, evaluating speech alterations and analysis of pro-
teomics data.

7.1. Biomarkers

According to Duchesne et al. [129], the distinction of Parkinson’s
disease and parkinsonian plus syndromes presents an initial error rate of
up to 35%. Brain imaging is generally useful in providing more insights
into the correct diagnosis. Developing biomarkers for automatic detec-
tion has been studied by Duchesne et al. [129] on MRI data from MSA
and PD patients. After image pre-processing, the tissue composition and
deformations from the hind brain were evaluated for their discrimina-
tive power. A model created on these features with an SVM least square
optimization algorithm provided an accuracy, specificity and sensitivity
of 91%, 88% and 93% respectively. Similarly, in the study of Marquand
et al. [130] the midbrain was the anatomical region with most
discriminative power for the selection of nerodegenerative biomarkers.
The MRI images were collected from PSP, PD and MSA patients. An SVM
model was created, leading to an accuracy of 91.7% for MSA detection.

7.2. Speech impairments

Due to the degeneration of neurons in the basal ganglia, control of
the muscles producing speech might be affected in MSA, particularly in
the parkinsonian variant of the disease. MSA-P presents similar symp-
toms to PD. The study of Eun et al. [161] analyzes the differences in
speech patterns between the two diseases. Subjects suffering from
MSA-P showed more speech impairments than those with PD, reflected
in the voice pitch, prolonged pause time and reduced speech rate.
Soli-Soler et al. [162] proposed an analysis of the fundamental fre-
quency of snoring for the identification of MSA patients. Although a
slightly different approach than that of Eun et al. [161], the method
analyzes the sounds produced by the same muscles affected by
neurodegeneration.

7.3. Summary

Very few studies looking at MSA with computational approaches
were found. Machine learning techniques are used to help in the dif-
ferential diagnosis between MSA and other similar motor disorders. A
summary of the studies using machine learning for MSA from this
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Overview of the most relevant research works using machine learning in handling ALS that were presented in this work. Brief details are provided on the dataset size

and content, classification techniques and evaluation methods.

Purpose Modality Dataset Classifier Eval Acc Ref.

ALS vs. HC Force sensors 13ALS, 16HC RNN Hold out 97.8% [153]
ALS vs. HC Force sensors 13ALS, 16HC SVM LOO 92.86% [154]
ALS vs. HC Speech data, articulatory movement data 11ALS, 11HC DNN LOO 91.74% [156]
ALS vs. HC Video data 10ALS Regression LOO 88.9% [157]
ALS vs. HC MRI 40ALS, 30HC SVM LOO 87% [158]
ALS vs. HC EMG 10ALS, 11HC LDA LOO 90% sensitivity [160]
Survival of patients MRI 135ALS DNN Hold out 84.4% [159]

literature review is available in Table 7.

8. Sleep disorders present in various diseases

This section presents an overview of studies analyzing abnormal
sleep behaviors manifested in several neurodegenerative diseases. More
specifically, we investigate the use of computational approaches used
for: REM sleep behavior disorder and Periodic Leg Movements (with or
without restless legs syndrome). These symptoms are presented sepa-
rately as they are present in multiple diseases characterized by alpha-
synucleinopathies such as PD, MSA or DLB [163] and have similar
clinical characteristics throughout all diseases. RBD and PLM have been
until recently characterized as separate disorders. In recent years, the
link with neurodegeneration has been firmly established. RBD is now
considered as part of alpha-synucleinopathic degeneration and its
appearance years prior to the disease onset is a prodromal symptom
[164].

8.1. REM sleep behavior disorder

Rapid eye movement sleep behavior disorder is characterized by the
enactment of dreams and unusual motor behavior during REM sleep,
more precisely REM sleep without atonia (RSWA). The prevalance of
RBD differs per type of neurodegenerative disorder. In MSA and DLB,
more than 80% of patients develop RBD. For PD, the number of patients
who present RBD symptoms is lower. Computational methods are used
both for the characterization of RBD from polysomnographic recordings
but also for the automatic detection of the abnormal recordings related
to RBD.

Characterization of RBD. In recent years, changes in EEG activity in
individuals with RBD have been identified. Brazete et al. [165] have
showed that RBD is linked to a slowing down of EEG activity during
wakefulness, with delta and theta bands presenting higher spectral
powers in RBD patients vs. HC. Ruffini et al. [166] also investigated EEG
complexity during awake EEG recordings using Lempel-Ziv-Welch
Compression Spectrograms and entropy measures. RBD is present in
the prodromal phases of multiple neurodegenerative diseases. Berrada
et al. [167] attempted to differentiate between RBD patients who later
on develop DLB and patients who develop PD from polysomnographic
recordings and data extracted from clinical, neurological and neuro-
physiological exams. By applying an alternating decision tree, the al-
gorithm was able to automatically differentiate only between RBD and
HC subjects, with no significant results on the DLB or PD conversion.

Table 7

Overview of the most relevant research works using machine learning in
handling ALS. Brief details are provided on the dataset size and content, clas-
sification techniques and evaluation methods.

Purpose Modality ~ Dataset Classifier ~ Eval  Acc Ref.
MSA vs. PD MRI 16PSP or SVM LOO 91% [129]
MSA, 16PD
MSA vs. PD, MRI 12PSP, 14PD, SVM LOO 91.7% [130]
PSP 19MSA
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Automatic detection. The automatic detection of RBD patients from
HC subjects is of interest for the reduction in time required for placing a
diagnostic. Several threshold EMG based methods have been proposed
[168,169]. Cesari et al. [169] compare several available threshold-based
methods. The Frandsen Index method outperformed the others with
average sensitivity values of 90% for RBD patient detection. Kempfner
et al. [170] proposed an RBD detection method based on the entire
polysomnographic recording. Subject specific features were extracted
from all signals and were used as input to an SVM classifier. The area
under the curve in a leave-one-out testing scenario was of 0.988 when
using all signals and 0.981 when using only EMG activity. Ruffini et al.
[171] proposed an automatic detection method for RBD based on awake
EEG recordings. Two classification algorithms were proposed and
compared: a DCNN with a 5-layer architecture and a Recurrent Neural
Network with three stacked LSTM cells. The DCNN provided the best
results with a classification accuracy of 80% between RBD patients and
HC in a leave-one-out validation scenario.

8.2. Restless legs syndrome and periodic limb movement

Periodic limb movements appear in patients with and without rest-
less leg syndrome and are characterized by uncontrolled limb move-
ments that occur during sleep [172]. RLS and PLM are present in
movement related neurodegenerative disorders. The highest prevalence
is in PD patients. Due to a paucity of studies, it is difficult to establish the
prevalence of these movement disorders in other neurodegenerative
diseases. Their presence has been observed also in MSA, PSP and HD
[172]. Similar to RBD, the majority of studies including computational
methods focus on the characterization of RLS and PLM or on their
automatic detection either from polysomnographic or actigraphy
recordings.

Characterization. The characterization of PLM through EMG re-
cordings during sleep is still a topic of investigation. Different states of
RLS and PLM were investigated by Ferri et al. [173] by introducing a
periodicity index and using Markov chains for the characterization of
the structure of leg movement sequences. Ferrillo et al. [174] investi-
gated the awakenings and EEG arousal prior and after PLM events. By
analyzing the content of EEG signals through the wavelet transform and
extracting the heart rate from cardiac signals, a significant increase in
the heart rate and delta activity power was observed 3-4 s prior to PLM
onset. Similarly, Sieminski et al. [175] looked at the spectral powers of
the alpha, beta and delta bands of the EEG and found an arousal after
PLM activity was detected.

Automatic detection. The automatic detection of PLM events could
reduce the time required for manual polysomnographic annotations.
Tkach et al. [176] investigated the stability of time-domain features
extracted from EMGs recorded from several muscles during PLM for
their automatic detection. Using several statistical features and a linear
discriminant analysis classifier, an improvement of 16% was obtained
by feature and recording site selection. On the other side, Umut and
Centik [177] investigated the automatic detection of PLM using all PSG
signals except EMG. A combination of Haar wavelet decomposition and
Discrete Fourier Transform was used to extract the power from the delta,
theta, alpha and beta EEG frequency bands. A kNN classifier used in a
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10-fold cross validation scheme provided the highest accuracy of
91.87% for the detection of PLM events. The use of limb actigraphy
might be a good alternative to PSG for classifying sleep disorders.
Several commercial actigraphy devices are already available and have
been tested for their utility in PLM detection. These include PAM-RL
[178], the CE marked actigraphy device KickStrip [179] and Respir-
onics Actigraphy [180].

8.3. Summary

Most literature available for sleep disorders related to neuro-
degeneration, such as PLM or RBD, propose different methods for their
characterization. A few studies use machine learning for their automatic
detection from regular sleep or for differentiating patients from HC. The
studies presented in this literature review using machine learning for
sleep disorders are summarized in Table 8.

9. Overview of the common processing steps

After reviewing the relevant literature for the various neurodegen-
erative disseases, in this section, we identify and analyze the common
processing steps employed by the computational algorithms and ma-
chine learning techniques. These are depicted in Fig. 3. We propose a
view that divides the classification process into six blocks. Neurode-
generative diseases and their symptoms are diverse and so the types of
datasets available for different classification problems are varied.
However, regardless of the data types, similar steps follow in case of
classification problems. The raw data can be directly fed into the clas-
sification algorithm or several pre-processing steps are applied prior to
classification. In some cases, the data might be pre-processed which can
imply filtering, normalization or dimensionality reduction. For some
studies, different types of features are extracted and further selected
based on specific relevance measures. Regardless of the type of pre-
processing applied, a classification algorithm is applied and the result
is evaluated.

We detail these aspects in the following: a summary of the datasets
available for training computational methods (see Section 9.1), an
overview of the pre-processing, feature extraction and feature selection
methods (see section 9.2), an analysis of the classification algorithms
(see section 9.3) and evaluation methods (see section 9.4 found in this
literature review.

9.1. Datasets

The spectrum of neurodegenerative disorders affects patients in
different ways resulting in a variety of symptoms. The type of signals,
protocols and information required to accurately diagnose or monitor
these diseases are diverse. Therefore the datasets found in the literature
proposing computational approaches show a mixture of recorded data,
protocol for recording and size. The chosen protocol depends on the end
goal of the study, e.g., to aid in the diagnosis of the disease, to monitor
progression, to help in the differential diagnosis, to detect prodromal
stages of the disease etc. Most of the times, the data collected is disease

Table 8

Overview of the most relevant research works using machine learning in
handling sleep disorders associated to neurodegenerative diseases. Brief details
are provided on the dataset size and content, classification techniques and
evaluation methods.

Purpose Modality ~ Dataset Classifier ~ Eval Acc Ref.

RBD vs. PSG 16RBD, SVM LOO AUC [170]
HC 16HC 0.988

RBD vs. EEG 121RBD, DCNN LOO 80% [171]
HC 91HC

Detect PSG 153PLM kNN 10fold 91.87% [177]
PLM cv
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specific and cannot be used for other diseases as it was not collected with
a protocol developed for that purpose.

A high number of studies record specific datasets for their chosen
topic of study such as a small variation in symptoms or different sensor
recording modalities. Therefore the amount of data collected is most of
the times small, from a few participants. The majority of the datasets
used are small (67.5 %), with less than 50 participants per class. These
datasets tend to be private and target specific diseases or symptoms.
Medium sized datasets (between 50 and 100 participants per class) make
up 14.41% of the datasets considered in this study and large datasets
(with more than 100 participants per class) make up 18.07%. Large and
medium size datasets are predominant in all diseases in topics such as
Speech processing, Brain Image analysis, Classification of Tests and
Medical Records or Genetic information. Big sized datasets are generally
collected in consortium or projects spanning multiple years. The ma-
jority of large datasets are made available to the research community
free of charge creating the opportunity for more researchers to work on
the development of adequate solutions. In Table 9, an overview of the
most relevant datasets is provided along with details on their content,
availability and size.

9.2. Pre-processing, feature extraction and selection

In some of the studies, when predicting a certain condition or using
computational approaches for placing a diagnostic, features are
extracted from the raw data recorded and fed into a classification al-
gorithm. These features are diverse and are strongly dependent on the
type of input data. Prior to using features as input to a classifier, it might
be useful to select relevant features or to project these into a more
representative space while reducing the dataset dimensions.

When looking at feature selection, most of the studies make use of
statistical measures for eliminating correlated features which add no or
little additional information to the dataset. Statistical methods include
computing correlation coefficients, t-tests, Whitney U-tests, Kruskal
Wallis tests or mutual information [61] [194]. Other methods are based
on entropy or information gain [195].

More complex feature selection techniques such as forward feature
selection are also used. This technique adds features one by one as input
to the classifier and selects the ones that improve the classification
performance [74][196]. It is not recommended for high volume data-
sets. Other methods for feature selection use regression techniques such
as LASSO (least absolute shrinkage and selection operator) or the feature
importance computed using the Random Forest algorithm [112]. Tsanas
et al. [112] also uses the RELIEF feature selection algorithm that also
considers the interaction between the different features.

Dimensionality reduction is also employed in some of the studies as a
pre-processing step. The most popular methods are factor analysis [58],
principal component analysis [129,151], independent component
analysis [197] and autoencoders [70,45]. Besides reducing the dimen-
sion of the input data set, the information is projected in different di-
mensions that might enhance the classification performance.

9.3. Classification algorithms

The problems approached can be binary, such as looking at whether
a disease is present or not, or divided into multiple classes, when
differentiating between different diseases or different stages of pro-
gression of a disease. The methods used for classifying the targeted states
can be as simple as using threshold-based algorithms or imply the use of
advanced machine learning methods.

Out of the studies considered in this review approximately 64% use
machine learning algorithms. Fig. 4 provides an overview of the types of
algorithms used in classification problems. A typical processing chain
involves the pre-processing of raw signals followed by feature extraction
and classification. Most proposed methods make use of supervised
learning techniques where a labeled training set is presented to the
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Fig. 3. Overview of the general steps used in different classification problems for neurodgenerative diseases.

Table 9
Selection of the most relevant datasets found in literature.
Name Disease Year Avail. Purpose Data type Size
ADNI [181] AD 2004-2016 Open Detection of AD and clinical, genetic, MRI, PET, ADNI1 — 200 HC, 400 MCI, 200 AD; ADNI-GO
pre-AD; monitoring of biomarkers — 200 early MCI; ADNI2 — 150 HC, 100 early
progression MCI, 100 late MCI, 150 late mild MCI, 150 AD;
ADNI3 — 133 HC
AZTIAHO [62] AD 2013 Closed  Speech biomarkers for Speech data 50 HC, 20 AD
AD
CADDementia [182] AD 2015 Open Detection of HC, MCI MRI data 384 Recordings
and AD
Daphnet [86] PD 2008 Open Freezing of gait Accelerometer data 10 subjects
DementiaBank [183] AD 1987-2019  Open Speech biomarkers of Speech data 167 AD and 97 HC
dementia
Gait in PD, HD, 2000 Open Gait dynamics and Force sensor recordings 15 PD, 20 HD, 13 ALS, and 16 HC
Neurodegenerative ALS response to medication
Disease [82]
Gait in Aging and PD 1997 Open Gait in PD Force sensor recordings 5PD, 5 old, and 5 HC
Disease [82]
Gait in Parkinson’s PD 2005 Open Gait in PD Force sensor recordings 93 PD, 73 HC
Disease [184]
Oxford PD Detection PD 2009 Open dysphonia in PD Speech data 23 PD, 8 HC
[102]
OASIS [185] AD 2007-2010 Open Detection of AD MRI, PET OASIS1, 416, ASIS2, 150, and OASIS3, 1098
subjects
PaHaW [186] PD 2016 Open Archiedian spiral Pressure, xy-coordinates, tilt, 37 PD, 38 HC
drawings and elevation, and in-air/on-air surface
handwriting for PD status
PC-GITA [101] PD 2014 Closed Speech in PD Speech data 50 PD, 50 HC
PD Speech [187] PD 2014 Open Speech in PD Speech data 20 PD, 20 HC
PD spiral drawings PD 2013 Open Drawings in PD Digital tablet parameters 62 PD, 15 HC
[188]
PDMultiMC [189] PD 2017 Closed  Handwriting, speech Speech, digital tablet parameters 16 PD, 16 HC
and eye movements in
PD
PPMI [190] PD 2002 Open Biomarkers for PD Brain images, clinical data, biological 432 PD, 196 HC, 64 early-PD, 65 RBD
samples
Predict HD [191] HD 2008 Closed HD detection Genetic data, cognitive assessment, 438 pre-HD
correlated to genetic tapping test, verbal learning/memory
data task, odour recognition, MRI
Track HD [192] HD 2008-2014 Closed HD detection Genetic data, MRI, clinical, cognitive, 366 participants
correlated to genetic quantitative motor, oculomotor and
data neuropsychiatric assessments
Tickle-Degen [193] PD 2010 Closed  Quality of life in PD Video recordings 117 PD

classifier for building a model. Such techniques include linear regres-
sion, Naive Bayes, SVM, k-NN, random forests, decision trees, LDA. By
far the most used classifier in all researched diseases is SVM. The
popularity of SVM can also be explained by the problems tackled: a big
majority of the studies look at identifying between patients and healthy
controls and so handling binary classification problems. Shallow and
deep neural networks have also been used, but they are not as popular as
the more conventional algorithms enumerated before. Some studies use
different combinations and variations of MLP, CNN, DNN, ANN. Other
types of classification algorithms look into more elaborated network
architectures such as EasyMKLFS, Extreme Learning, Probabilistic
Neural Networks, Gaussian Neural Networks and Deep Belief Networks.
Unsupervised learning was also attempted in more recent years via
autoencoder networks. Deep neural networks have been more
commonly used in studies using images as input for analysis, and are
gaining more and more traction nowadays.
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9.4. Evaluation metrics

We overview the common practices for assessing the performance of
the computational systems. This brings into discussion the way the data
is used for training the systems and the metrics employed for assessing
the actual performance.

9.4.1. Data splitting

Although the commonly employed practices for training and vali-
dating the systems are the ones used in machine learning, there are some
adaptations to the specificity of the data. We overview here the common
practices: k-fold cross-validation — It tests the performance of the model
on different unseen portions of the same type of data. The entire avail-
able data set is split intro k-folds of equal size. From this division, k-1
folds are used for the training and the kth fold for testing. Besides
providing an indication of how the model would react to unseen data, it
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Fig. 4. Overview of the employed classification algorithms (as analyzed in this review) represented on a per disease basis. The most encountered algorithms include:
Th-b — threshold based, LR — linear regression, NB — Naive Bayes, SVM — support vector machines, kNN — k-nearest neighbors, RF — random forests, DT —
decision trees, LDA — linear discriminant analysis, MLP — multilayer perceptron, CNN — convolutional neural networks, ANN — artificial neural networks.

can also be useful when handling large amounts of data as the data is fed
into the training and test phases in folds and not through large blocks;
leave-one out — It is typically used with small datasets when using k-fold
cross-validation would significantly reduce the amount of data available
for training. In this case, the data from one subject is kept for testing,
while the rest of the subjects are used for training. The testing and
training sets are rotated until all subjects have been used for testing.
Another variation of the leave-one-out validation is the leave-one-record
out, where instead of using subjects, only one record (unit of the data
set) is used for testing while the others are used in training. This tech-
nique is more resource consuming than k-fold cross-validation and is
generally not recommended for large datasets; hold out — Part of the
data set is kept for training while the other for testing. A typical division
would be 80% training and 20% testing, but variations exist. By dividing
the data set, this validation allows the evaluation of performance on
completely unseen data. However, the single division into test and train
sets can lead to a local optimum result, which would not generalize well
to a real-world scenario.

9.4.2. Metrics

Among the exiting metrics employed in machine learning and in-
formation retrieval, some are more predominantly found when dealing
with data from neurodegenerative diseases. We present here the most
prevalent ones: accuracy — represents the ratio between the total
number of correct predictions and the total number of predictions. It
does not provide insights into the rate of true positive and true negative
predictions while also ignoring per-class performance evaluation. An
algorithm for differentiation between different diseases can have a high
predictive power for one disease and an extremely low one for a
different diseases. However, the overall accuracy would be at an
acceptable level; specificity (true negative rate) — represents the number
of true negatives from the total number of predictions that are correctly
identified; sensitivity (recall or true positive rate) — represents the
number of true positives over the total number of predictions. It gives an
indication of how well the algorithm detects specific classes; Area Under
the Curve (AUC) — it is a method suitable for evaluating multi-class
problems. It estimates the area under the receiver operating character-
istic curve (ROC) which relates the true positive to the true negative
rates at different settings of the classifier; F1-Score — represents a har-
monic mean between precision (positive predictive value) and recall
(probability of detection); Cohen’s Kappa coefficient — is a statistical
method that is typically used to quantify inter-rater agreement. The
Kappa coefficient is computed between test labels and the predicted
values obtained as output from the classification; Correlation coefficient
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— provides a measure of the strength of similarity between the predic-
tion result and the desired output.

10. Conclusions and future challenges

In this review, we provided an overview of the general trends in
employing computational approaches for the monitoring and diagnosis
of neurodegenerative diseases. We have focused our efforts on five
neurodegenerative diseases representative for the entire spectrum of
neurodegeneration: AD, PD, HD, MSA and ALS. Neurodegenerative
diseases have been extensively studied in recent years with the help of
computational approaches, especially via traditional machine learning
or deep learning networks. Diseases that present a higher occurrence
rate, such as Alzheimer’s and Parkinson’s disease, are more often
investigated. The higher economic burden imposed by more prevalent
diseases has pushed for faster results and led to more solutions for
automatic diagnostic and health assessment systems. Many solutions
propose methods that incorporate classification algorithms.

10.1. Current state of research

Datasets and evaluation. Many small, closed datasets tailored to
specific diseases and symptoms are used in the existing research. Sur-
prisingly, larger datasets are mostly public. However, the available an-
notated data is not yet capable of coping with the actual requirements of
deep neural networks, to allow maximum performance. Another aspect
is the large variation in proposed evaluation techniques and metrics,
which makes results difficult to compare, even on the same data set.
Usually, the same data set is used for training and testing with different
data folds. Testing on different collections than the ones used for
learning is not as common. There is no consensus on evaluation metrics.
Confusion matrices are rarely used even when dealing with multi-class
problems. Disease specific scales are used as a golden standard only
for PD, e.g., UPDRS and H&Y, but similar scales are rarely used as a
reference for the other neurodegenerative diseases.

Challenges in computational approaches. Most computational
methods proposed for the study of neurodegenerative diseases make use
of shallow networks and handcrafted features. Deep learning networks
along with the extraction of features in an unsupervised manner might
improve the performance of classification solutions. Since for some
diseases and symptoms the data used for classification and study is
scarce, generative adversial networks can be used to generate more
datasets. Transfer learning techniques can also be considered when
studying different diseases with similar symptomatology. For instance, if
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a large data set for RBD or PLM recorded from PD patients is available,
an algorithm can be developed and transfered to ALS or MSA sleep
studies. The same could be applied for gait or speech abnormality
detection.

10.2. Directions for development

Possible research directions. The authors have identified some areas
that might be worth investigating: (i) sleep in AD — can show the effect
of medication on the lifestyle of the patient; (ii) differential diagnosis
based on speech — speech analysis for motor diseases such as PD, HD,
MSA and ALS, lexical analysis for AD and other dementias. Using speech
for differential diagnosis can be advantageous as microphones are
available in many consumer devices; (iii) use of EEG — biomarkers can
be developed for all neurodegenerative diseases. As EEG technology is
non-invasive and less expensive than brain imaging, it can bring ad-
vantages and simplify the diagnostic process. Wearable EEG headsets
can open even more possibilities in the diagnosis of neurodegenerative
diseases; (iv) memory testing applications — differentiate between AD or
other dementing diseases and MCI. Memory tests are currently delivered
by medical professionals. By developing applications that focus on the
ease of use, the diagnostic process can be simplified and made more
accessible, while at the same time allowing for disease tracking; (v) dual
tasking — early onset detection and tracking of dementing and mixed
neurodegenerative disorders. By developing tasks that monitor both the
cognitive ability and the motor functions of a patient, the progress of
disease and risk for further injury can be determined. Dual tasks can be
designed with the purpose of measuring the cognitive reserve of a pa-
tient. The concept of cognitive reserve is related to the ability of the
brain to re-purpose its networks to counter the effects of neuro-
degeneration. In recent research, the presence of a higher cognitive
reserve is indicative of a delayed disease onset or milder symptoms
[198].

Applications. Few real-life available applications have been identi-
fied by the authors. Usability and adoption by the users was not detailed.
Most of the identified applications were developed for PD. These make
use of wearable inertial sensors or smartphones. The development is
generally limited to one particular disease. As the classification of
neurodegenerative diseases is discrete, based on clinical symptoms, the
initial diagnosis is difficult as symptoms overlap. As the cause of the
disease is not yet known and they cannot yet be treated, disease man-
agement focuses on managing the symptoms. An integrative approach
looking at neurodegeneration as a continuum could take information
from multiple sources (gait, voice, sleep, EEG, brain imaging, etc.). This
would provide a global view on the disease. Thus allowing a better
analysis of the symptoms and a subsequent better treatment manage-
ment. It might also improve the initial diagnosis. The prediction of
disease appearance and onset can also be improved by further devel-
oping techniques such as EEG biomarker extraction or sleep character-
ization. Although brain imaging is a powerful tool in disease diagnosis
and monitoring, it is expensive, not easily accessible and might be
difficult to use once the disease has advanced significantly. By providing
more ubiquitous technologies for tracking, such as wearables, the pro-
gression and response to medication might be better observed.
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