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Abstract—Base stations have been widely deployed to satisfy the service coverage and explosive demand increase in today’s cellular
networks. Their reliability and availability heavily depend on the electrical power supply. Battery groups are installed as backup power
in most of the base stations in case of power outages due to severe weathers or human-driven accidents, particularly in remote areas.

The limited numbers and capacities of batteries, however, can hardly sustain a long power outage without a well designed allocation
strategy. As a result, the service interruption occurs along with an increasing maintenance cost. Meanwhile, a deep discharge of a
battery in such case can also accelerate the battery degradation and eventually contribute to a higher battery replacement cost.

In this paper, we closely examine the base station features and backup battery features from a 1.5-year dataset of a major cellular
service provider, including 4,206 base stations distributed across 8,400 square kilometers and more than 1.5 billion records on base
stations and battery statuses. Through exploiting the correlations between the battery working conditions and battery statuses, we
build up a deep learning based model to estimate the remaining lifetime of backup batteries. We then develop BatAlloc, a battery
allocation framework to address the mismatch between the battery supporting ability and diverse power outage incidents. We present
an effective solution that minimizes both the service interruption time and the overall cost. Our real world trace-driven experiments
show that BatAlloc cuts down the average service interruption time from 4.7 hours to nearly zero with only 85% of the overall cost

compared to the current practical allocation.

Index Terms—Mobile network, Backup power system, Battery feature profiling, Deep learning, Battery allocation.

1 INTRODUCTION

Wireless mobile networks, particularly wide-area cellu-
lar networks, have seen deep penetration and broad cov-
erage in the past decades. Base stations play a key role in
today’s cellular networks. Their reliability and availability
heavily depend on the electrical power supply, for such
modules as transceivers, air conditioners, monitoring sys-
tem are all power hungry. The modern power grid is known
to be highly reliable in urban areas, but still suffers from
outages due to the severe weather (e.g., storm, hurricane,
fire, earthquake) or human-driven accidents (e.g., vandalism
or theft) [2], [3]. In many rural areas, the outages can be quite
frequent, no matter in developing or developed countries.

To avoid service interruptions, most base stations are
equipped with energy-storage battery groups as the backup
power. These batteries are usually kept in the float charge
state. Yet when a power outage happens, they will be acti-
vated to maintain cellular services until the electrical grid
recovers or diesel generators are launched. The capacity of a
backup battery group is limited, which typically lasts 10 to
12 hours during power outage. For remote areas or during
extreme weather, however, the power recovery can take a
long time (e.g., during the severe windstorm in March 2010,
the power outage in southwestern Connecticut as well as
parts of Long Island and New Jersey lasted for tens of hours,
and in some of the rural communities the outage lasted as

A preliminary version of this work [1] appeared in ACM e-Energy 2017.
Fangxin Wang, Xiaoyi Fan and Jiangchuan Liu are with the School of
Computing Science, Simon Fraser University, Burnaby, B.C., Canada. E-mail:
{fangxinw,xiaoyif} @sfu.ca, jcliu@cs.sfu.ca.

Feng Wang is with the Department of Computer and Information Science, the
University of Mississippi, MS, USA. E-mail: fwang@cs.olemiss.edu.

long as 6 days [4]), so for technicians to arrive at the base
station with diesel generators, not to mention that many
base stations would be affected at the same time. As such,
a long power outage without timely rescue will inevitably
drain the backup battery, resulting in service interruption
during the extended power outage. In this situation, these
base stations have to rely on diesel generators whose oper-
ating cost is about ten times greater than powering through
the electric grid [5]. Besides the possible long time duration,
some areas may suffer from frequent power outages due
to the bad weathers, e.g., it is reported that there were
as many as 5 severe power outages in Okanagan Valley
area in Canada in the first half of 2017 with an average
duration of 8.4 hours [6]. These situations seriously affect
the user experience and undermines the telecom operators’
service commitments, particularly considering the clients’
high reliance on the network during the incident.

Moreover, different from batteries for phones or
electrical vehicles which regularly experience full
charge/discharge cycles, a deep discharge of an energy-
storage battery group (typically lead-acid) will severely
affect its internal structure, reducing its capacity and
lifetime. Given the long time interval between regular
maintenances (usually three months [2]), the poor working
condition of the battery after a deep discharge will
further accelerate its degradation. In the worst case,
an overdischarge can permanently damage the battery.
Considering the transportation and labor costs, an emergent
battery replacement and maintenance can be prohibitively
expensive, particularly for remote areas.

In this paper, we closely examine the power outage
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events and the backup battery activities from a 1.5-year
dataset of a branch of China Mobile (the biggest cellular
service provider in China), including 4206 base stations and
more than 1.5 billion records on base stations and batter-
ies. Our analysis of the data reveals the ineffectiveness of
existing battery allocation strategies during power outages.
In particular, there is a clear mismatch between the battery
supporting ability and the diverse power outage events.

Based on the logs of batteries, we further identify the
impact of power outages on the conditions of the bat-
tery groups, and estimate the battery lifetime and reserve
time (indicating the duration a battery group can support)
through a deep learning based model. We accordingly de-
velop BatAlloc, a battery allocation framework that allocates
proper numbers of battery groups to each base stations to
address the mismatch between the battery supporting abil-
ity and the diverse power outage incidents. We present an
effective solution that minimizes both the service interrup-
tion time and the overall cost. Our trace-driven experiments
show that BatAlloc reduces the average service interruption
time from 4.7 hours to almost zero (i.e., nearly full service
availability) with only 85% of the overall cost, as compared
to the current real deployment.

The rest of paper is organized as follows. §2 introduces
the related researches in the base station and battery man-
agement. §3 introduces the background and analysis of our
dataset on base stations and backup battery groups. §4
summarizes the existing problems in current base stations
and proposes the BatAlloc framework. §5 formulates the
multi-objective optimization problem for battery allocation
followed by a deep learning based model and an effective
solution for optimization. §6 shows our experiments on
voltage estimation and battery allocation. We provide some
discussions in §7 and conclude our work in §8.

2 RELATED WORK

In this section, we first introduce some recent works related
to our research, including energy aware resource allocation
and battery feature profiling.

Many researches on energy related resource allocation
have been proposed towards better performance and cost
effectiveness. Wang et al. [7] proposed a novel resource
allocation scheme to improve the performance of D2D
communications. They considered battery lifetime as the
optimization goal and employed a game-theoretic approach
to achieve effective power control and radio resource al-
location. Holtkamp et al. [8] focused on minimizing the
base station supply power consumption by exploring the
trade-offs between three basic power-saving mechanisms.
Ramamonjison et al. [9] considered the resource allocation in
a two-tier wireless system and proposed new mechanisms
to efficiently allocate available energy over time. These two
works aimed to increase the base station service availability
by reducing the power consumption. Chamola et al. [10]
considered both the grid energy cost and the quality of
service, and proposed a framework to explore the tradeoff
between the two aspects. Most of these works, however, fo-
cused on reducing the power cost or improving the quality
of service given the fixed batteries [8], [10], [11]. Our work
complements those aforementioned by investigating the

2
TABLE 1
Statistics on number of battery groups for more than 4200 base
stations.
number | 1 2 3 4 other
percent | 65.9% 27.5% 4.7% 1.6% 0.1%

energy related problem in the base station from a different
angle, where we propose a battery allocation framework to
achieve better service availability and reduce the overall cost
in base stations.

Estimation of capacity and reserve time of batteries is
an everlasting topic and has attracted many efforts due to
its considerable importance for continuity of service and
wide use in large or small systems. A lot of approaches
have been proposed to estimate the battery state of charge
(SOC) and lifetime based on battery features, such as open
circuit voltage, ampere-hour characteristics, charge or dis-
charge curves etc. Kutluay et al. [12] proposed an online
battery SOC estimation based on the discharge rate versus
discharge time and coulometric measurement given in the
manufacturer’s data sheets. Anbuky et al. [13], [14] built
up an estimation model to predict battery SOC and reserve
time only based on the battery discharge voltage, which is
robust against discharge rate, ambient temperature, battery
degradation situation etc. with the error ratio less than 10%.
Coleman et al. [15] incorporated the changes occurring due
to terminal voltage, current load and internal resistance to
predict electromotive force (EMF) of battery, and further
estimate SOC based on the EMF. Bhangu et al. [16] utilized a
Kalman Filter based approach for real-time SOC estimation,
and further predicted the state of battery health. These
methods all utilized traditional electrochemical theory to
analyze the battery characteristics, while they may fail to
achieve a high accuracy. Different from prior works, our
work strives to profile the battery features from the aspect
of big data analysis. With the advance of deep learning,
we propose a learning based approach for battery profiling
considering multi-battery deployment, which is based on a
large-scale real world dataset of base station batteries.

3 BACKGROUND AND DATA ANALYSIS

In this section, we mainly profile the collected dataset and
the related observation on the base stations and backup bat-
tery groups. We collaborate with a branch of China Mobile
(the biggest cellular service provider in China) and collect a
dataset from July-28-2014 to February-17-2016, which covers
4206 base stations distributed across 8400 square kilometers
with over 10,616,000 clients. The dataset consists of more
than 1.5 billion! records on battery activities, including such
information as the base station locations, battery voltages
and event records (e.g., power outage, low voltage alert,
high voltage alert, etc.), which are used to analyze the
current situation of base stations.

1. When batteries are in floating charging state, the first-year dataset
has higher resolution and the remaining half-year dataset has relatively
lower resolution. Yet for all other battery states, the resolution is the
same across the whole dataset. Thus, this imbalance does not affect our
data driven observation and evaluation.
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Fig. 1. The backup batteries and the monitor system.
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Fig. 2. Base stations distribution and their power outage situations. Each
point shows the location of corresponding base station and the color
represents the maximum single power outage duration in a year.

3.1 Power Supply in Base Stations

We first introduce a generic backup power system in the
base stations of mobile networks. The equipment in base
stations is usually supported by the utility grid, where the
battery group is installed as the backup power. In case that
the utility grid interrupts, the battery discharges to support
the communication switching equipment during the period
of the power outage. Fig. 1(a) shows two lead-acid battery
groups in a mobile network base station and each battery
group contains 24 cell batteries (the rated voltage of each
battery cell is 2v). The rated capacity of a battery group is
usually 500AH and it can support about 10-12 hours (i.e.,
the reserve time of a battery group is 10-12 hours). Compared
to other types of batteries (e.g., Li-ion battery), lead-acid bat-
tery groups demonstrate some important advantages such
as the mature technologies, safe storage, high capacity and
low price, which make them widely used in base stations.
We observe the number of battery groups from more than
4200 base stations and show it in Tab. 1. We find that about
93.4% of base stations are equipped with one or two battery
groups while only very few base stations have more. In
Fig. 1(b), the monitoring system connects to each cell of
the battery group and periodically records the voltage and
status in both normal and abnormal situations.

When the monitoring system reports an alert status, the
emergency repairing service is scheduled depending on the
accident severity. For instance, grid transmission lines can
be cut off in case of extreme weather (e.g., storm, hurricane
and heavy snow). Then the monitoring system in base
stations will report the power outage to the maintenance
center and an emergent maintenance should be scheduled

0 10 20 30 40 50 60 70
Single Power Outage Duration (h)

Fig. 3. Statistics of power outage duration each time for all base stations.

equipmentid recordtime floatvalue signalseverity
12705658 2015-02-05 11:28 PM 2.22315 255
12705658 | 2015-02-06 06:15 AM 1.95235 0
12705658 | 2015-02-06 12:48 AM 1.62205 0

equipmentid starttime endtime meanings
12705658 2015-02-05 11:26 PM 2015-02-06 06:15 AM | power outage
12705658 2015-02-06 00:45 AM 2015-02-06 04:37 AM voltage low
12705658 2015-02-06 09:27 AM 2015-02-06 12:53 AM voltage low

Fig. 4. A part of real logs of batteries.

according to priorities of different base stations. Since few
base stations have the diesel generators permanently in-
stalled on site, maintenance engineers have to spend a long
time to take diesel generators as well as other necessary
devices to the corresponding base stations. The power out-
age can occur frequently and severely in the rural areas
and developing countries due to the unstable utility grid.
To make it even worse, the construction of infrastructure
often makes that the base stations are difficult to reach, e.g.,
slippery rock trails in the mountains, where the workers
have to manually carry the heavy generators to the site. So
the power recovery time is quite uncertain and can not be
guaranteed.

We extract power outage situations of the base stations
and illustrate the practical distribution of the base stations
as well as the power outage situations in Fig. 2. It is clear
that in the urban regions most base stations have relatively
good power supply, while in the remote rural areas base
stations can suffer from long-time power outages. Fig. 3
shows the statistics of power outages of all base stations,
from which we can find that quite a few power outages last
very long time. However, according to the current battery
allocation in Tab. 1, base stations with inefficient backup
batteries are not able to sustain the long-time power outage
without timely emergent maintenance, which can lead to
service interruptions and cause serious consequences.

3.2 Backup Battery Features Analysis

In our dataset, we have obtained huge amounts of logs from
batteries of 4206 base stations with totally 531 tables and
1,550,032,984 rows. As shown in Fig. 4, the main logs in our
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Fig. 8. Mean voltage versus battery status.
and mean voltage.

collected dataset include two parts, i.e., historybattery and
historystatus. The historybattery logs record the collected
information of each battery cell such as equipmentid (the
unique device number related to a battery cell), record-
time (the timestamp when this log record was generated),
floatvoltage (the monitored float voltage for this cell) and
signalseverity (the level of emergency which decreases as
the value grows). The historystatus logs describes the status
of battery or external environment, such as the equipmentid
(the unique identification of each battery cell), starttime (the
start time of a status), endtime (the end time of a status)
and the meanings (the specific status, such as power outage,
voltage low, voltage high, etc.).

3.2.1 Battery Discharge Analysis

Base station batteries are connected to the electrical grid
and kept in float charging state to compensate the capacity
loss due to the slow self-discharging process. When there
is a power outage, the backup batteries begin to discharge
to support base station services. The battery discharging
process can be divided into three regions: the coup-de-
fouet region [17], the linear region [14] and the hyperbolic
region [18]. Fig. 5 illustrates a typical discharging curve for
a lead-acid cell. The coup-de-fouet region appears at the
start of battery discharging, where the battery voltage first
falls quickly below its open circuit voltage and then rises
to a higher plateau voltage in a short time. This kind of
voltage change is a special characteristic usually observed
from lead-acid batteries. Then the discharging process goes
into a long linear region, where the voltage drop has an
approximately linear relationship with the discharging time.
The discharging characteristic is robust to variations in

Fig. 9. Correlation between the remaining life Fig. 10. Voltage variances versus battery status.

operating conditions as well as battery conditions, such as
the discharging mode (constant current or constant power),
ambient temperature, battery degradation condition [14],
etc. A battery will release most of its energy during the
linear region. In the last hyperbolic region, the voltage falls
very fast while it can only release a very small fraction of
power.

During a long power outage, the backup batteries may
need to discharge to a deep level (e.g., to the hyperbolic
region in Fig. 5), which further exert an impact on the
battery conditions. The conditions of lead-acid batteries are
largely dependent on the depth of discharge (DoD). If a
lead-acid battery frequently discharges to high DoDs, the
lead in the negative plate will form large lead sulfate crystals
adhered to the negative plate and further accelerate the
battery sulfation. This degradation process is accumulative,
which as a result greatly reduces the capacity and lifetime
of lead-acid batteries. Therefore, it is not desirable to allow
a battery group to discharge completely, because the battery
group will be permanently damaged and become incapable
of being fully recharged to its rated capacity again. Accord-
ing to the industry standard, a battery should be replaced
once its capacity falls below the 80% of the rated capacity.
So the fast battery degradation contributes to a high battery
replacement cost. Fig. 6 presents a comparison of the voltage
change between two battery cells, one of which was in
good condition and the other suffered from several deep
discharges. We can see that the cell suffering from deep
discharges degrades quickly with the float voltage showing
a clear decreasing trend.

In base station power management, a low voltage dis-
connect (LVD) strategy is applied for battery protection.
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Fig. 13. Distribution of battery status categories.
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Fig. 14. Correlation between the remaining life and the number of different statuses.

When the battery voltage falls below a first pre-defined
threshold, the lead-acid battery groups will be disconnected
from the secondary devices and only provide backup power
to primary communication devices. When the voltage con-
tinues to drop below a second predefined threshold, power
system cuts off all the loads to avoid the battery groups from
being drained. Base stations usually have a low LVD settings
to prolong the backup power supply, yet actually the deep
discharge before LVD has already exerted an impact on
battery degradation process. Fig. 7 plots the relationship
between the power outage duration and the voltage drop (to
avoid the impact of battery group numbers, we only choose
those base stations with one battery group). We observe
that the discharge voltage could fall below 1.71v during a
long power outage, which in fact will seriously damage the
battery condition.

3.2.2 Battery Voltage Analysis

The voltage of each cell battery is the most important feature
that we have measured, as it reflects the power output
pattern of the battery. In general, we have observed two
representative categories of cell batteries, where we manu-
ally choose 1578 batteries as the newly-installed group and
put 1459 batteries into the nearly-dead group depending
on the repair records. The rated voltage of a cell is around
2.23v and the rated voltage of a battery group is 53.5v,
where 24 cell batteries are connected in serial as one battery
group. Based on this, we further analyze the typical status
of the voltage patterns inside the two representative cell
battery categories. Fig. 8 shows the significant differences
in mean voltage between the newly-installed and nearly-

dead batteries. The blue solid line plots the mean voltage
of newly-installed batteries, which judders between 2.14v
and 2.24v. The red dotted line shows the decay trend on
the mean voltage of the nearly-dead batteries. There is a
clear downward trend close to the failure date, where the
battery power frequently falls down and becomes quickly
exhausted, causing many issues and alerts in the mobile
network base station.

Fig. 9 further plots how the mean voltage and the length
of remaining lifetime correlate with each other, which in-
dicates that the mean voltage has strong correlations with
the battery life. Fig. 10 shows the results on the voltage
variances, where the blue solid line represents the newly-
installed battery can output a steady power and the variance
of the voltage keeps very close to zero. The red dotted
line illustrates that the variance of the nearly-dead batteries
increases much faster than the newly-installed batteries.

Fig. 11 illustrates that the voltage variance has a correla-
tion with the length of the remaining lifetime, indicating that
the variance of the output voltage from the batteries over
time also reflects the aging trend of battery quality degra-
dation. These observations motivate us to correlate battery
working conditions with the battery historical voltages.
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Fig. 15. Systematical design of BatAlloc framework.

3.2.3 Battery Status Analysis

Fig. 12 lists the number and percentage of some selected
status categoriesz, and Fig. 13 also shows the frequency
distribution among all the 105 categories. We can see that
the distribution is highly skewed: the most popular category
is Alert (meaning that there are warnings such as irregular
voltage change), at about 28.09%; the second is Faulty cell
(meaning that the system infers that the corresponding cell
may have fault), at about 20.42%; and the third is Discharge
(indicating that the cell is discharging), at about 10.70%.

We take three statuses as examples to further investigate
the correlations between the status and battery remaining
lifetime. These statuses are Low float voltage (i.e., the mon-
itored float voltage falls below a threshold), Discharge and
Faulty cell as shown in Fig. 14(a), (b) and (c), respectively. We
count the specific status number for each battery until the
batteries are replaced, and pick up 30 batteries with different
number of statuses for observation. There are 576 days in
our dataset, where the remaining lifetime of most batteries
in our dataset is longer than 576 days. Therefore dash lines
represent that those batteries on it have longer remaining
lifetime than 576 days. Fig. 14(a) and (b) plot the corre-
lation between Low float voltage, Discharge and remaining
lifetime. They clearly demonstrate that there exists a strong
correlation between battery remaining lifetime and Low float
voltage, as well as between battery remaining lifetime and
Discharge. We further plot the remaining lifetime against the
number of faulty cell status in the system in Fig. 14(c), which
does not show noticeable correlation between them. These
results imply that the remaining lifetime is comprehensively
affected by some statuses rather than a specific one. The
observations suggest that the diverse statuses have different

2. In the figure, the status category of generator on charge indicates
that the generator is providing power. Too high means the monitored
float voltage of the corresponding cell surpasses a threshold. Failure
means that the power system or the communication system goes
wrong.

influences on the battery working conditions, thus it is
necessary to discriminatingly differentiate these statuses for
the accurate lifetime prediction.

4 BATALLOC FRAMEWORK

Our real trace-driven data analysis clearly reveals that in
the battery allocation strategy currently used in practice,
there exists a mismatch between the supporting ability of
backup batteries and the power outage situations in each
base station. The mismatch can lead to serious problems
in base stations. First, due to the limited numbers and ca-
pacities of backup battery groups, long time power outages
can result in service interruptions in many base stations.
It is even worse during severe weather in rural areas or
remote places, where maintenance engineers are not guaran-
teed to arrive timely. Besides, as the emergent maintenance
is accompanied with service interruptions, more service
interruptions also contributes to extra cost on emergent
maintenance. What is more, long time power outages can
drain the battery capacity, affecting battery structures and
accelerating battery degradation. The results further lead to
sooner battery replacement and higher overall cost.

One intuitive solution is to allocate as many battery
groups as possible for every base station, yet such an
overprovision will cause a large waste of resources and
dramatically increase the overall cost. To this end, we pro-
pose BatAlloc, a battery allocation framework to carefully
address this mismatch by allocating an appropriate amount
of backup battery groups for each base station. As shown in
Fig.15, our framework consists of three major stages, name-
ly, Base Station Feature Profiling, Battery Feature Profiling,
and Battery Allocation Optimization, which will be further
explained as follows:

Base Station Feature Profiling: In this stage, we mainly
extract the features of base stations from massive data, in-
cluding the practical distribution of base stations, numbers
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of battery groups equipped in base stations, power outage
situations, etc. The profiling results lay the foundation for
later analysis such as the severity of power outage, the im-
pact of service interruption, as well as the cost for emergent
maintenance and battery replacement.

Battery Feature Profiling: This stage conducts a solid
analysis on the battery features, so that battery capacity,
battery lifetime and battery degradation under different
levels of discharges can be accurately estimated. Although
the lead-acid battery technology is mature, due to the large
variations of real world factors, it is still very difficult,
if not impossible, to do such estimations directly by the
domain knowledge. To this end, we develop a deep learning
based approach to well model the complicated relationships
between different real world events and various battery
conditions, which will serve as a key component for the
battery allocation optimization in next stage.

Battery Allocation Optimization: Based on the feature
profiling results of previous two stages, the battery alloca-
tion can then be formulated as an optimization problem.
This problem involves multiple optimization goals, e.g., to
minimize the service interruptions and minimize the overall
cost. In addition, a number of real world factors can also be
considered into the optimization, such as the importance
of different base stations, the available budget, and the
practical limitations on the number of battery groups that
can be installed on a base station. Besides, due to the large
number and space span of base stations, the optimization
solution should also be very efficient for computation.

It is worth noting that different battery types (e.g., lead-
acid batteries and Li-ion batteries) may have quite different
degradation characteristics. The battery feature profiling is
only one component of our framework and the remained
part can still be well applied to other chemical battery
scenarios, as long as the battery profiling model is updated
as needed. We have analyzed the base station features in the
previous section. In next section, we present the deep learn-
ing based battery feature profiling model and the solutions
for battery allocation.

5 BATTERY ALLOCATION SOLUTIONS

In this section, we first formulate the battery allocation
optimization stage in our BatAlloc framework as a multi-
objective optimization problem. Then we propose a deep
learning based approach integrated with battery discharge
features to model the battery reserve time and battery
lifetime for a base station equipped with different numbers
of batteries. At last, we propose an efficient algorithm to
solve the formulated optimization problem. Tab.2 lists the
notations to be used in this section.

5.1 Problem Formulation

Current base stations are mostly equipped with one or
two battery groups, which are often insufficient to provide
uninterrupted backup power during a long power outage.
Assume that we assign ng battery groups for a particular
base station s € A, where N is the set of all base stations.
We then need to calculate how long the ng battery groups
can support this base station during a power outage. Recall

7
TABLE 2
Notations
N number of battery groups at base station s
L .. | the reserve time for station s at ¢ with ns battery
groups
ol duration from power outage to grid recovery or
generator launch for stations s at ¢
Ws the importance factor of station s on service inter-
ruption severity
Ts,n, | the expected lifetime of each battery group when
stations s is equipped with ns battery groups
7 the normalized total service interruption time
T the time-based index range
N the set of all the base stations
Cp the replacement cost of a battery group
Cy normalized total cost on battery group replacement
xl a variable indicating whether station s needs an
emergent maintenance at ¢
cm,s | emergent maintenance cost for station s
Cm the normalized total emergent maintenance cost
Call the normalized overall cost
nr lower limit of battery group number in a station
ny upper limit of battery group number in a station
B the budget limit
vff float voltage of battery ¢ in k-th segment
sk voltage slope of battery i in k-th segment
d¥ degradation of battery ¢ in k-th segment
e’ the event set for battery 4 in k-th segment
£ the event set
D the degradation set
€ the voltage drop at start of discharging
! percentage of remaining capacity of a battery group
vf the plateau discharging voltage of battery 7 at ¢
VE the end discharging voltage in linear region
vp plateau voltage at the beginning of discharging
T the rated reserve time before end voltage

that the battery has already severely suffered from deep
discharge at the hyperbolic region. To protect the battery,
when the battery discharges to the end of linear region (as
illustrated in Fig. 5), we disconnect it from the workload. To
this end, we denote 1!, ~as the total reserve time for station
s with ng battery groups at time .

We denote the time duration from the beginning of
power outage to electrical grid recovery or diesel generator
launch in station s as o; = {0%,0%2--- 0%}, where t; is a
time-based index. Once the duration exceeds the battery
reserve time, there will be a service interruption. We assign
importance factor w, to represent the service interruption
severity (e.g., the service interruptions in core station have
more serious consequences). We use T, to denote the
expected lifetime of each battery when station s is equipped
with n, battery groups under its specific working situations.
Thus, we have our first optimization objective, which mini-
mizes the total service interruption time:

Min:I = Y I,
seEN
. Z Ws ZteT[maf(Ov 02 - ré,ns)] (1)
SEN Ts,ns

where 7T is the time-based index range of the considered
period. We use T ,,, as denominator for normalization(i.e.,
representing annual service interruption time).

Besides achieving as short service interruption time as
possible, telecom operators may also want to reduce the
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overall cost, which includes the battery replacement cost
and emergent maintenance cost. Then the battery replace-
ment cost Cp, (including purchase and installment) can be
represented as follows:

Cy = Cop = 2% 2
S%jv , %jv T @)
where ¢, is the replacement cost of a single battery group
of base stations. For simplification, we assume an average
for the shipment and labor cost, and combine all these costs
including the purchase cost as the replacement cost.

When there is a long power outage that the battery ca-
pacity is not sufficient enough, engineers may be scheduled
an emergent maintenance to the corresponding base station
for power generation.

We use ! as a binary indicator that indicates whether
an urgent maintenance is demanded during a power outage
(z, is set to 1 if the battery reserve time is not enough when
there is a power outage at time t, and 0 otherwise). And ¢, s
is the emergent maintenance cost of station s. Then we can
get the total emergent maintenance cost C,, for all the base
stations as follows:

SEN SEN Tsn.

Based on Equation 2 and Equation 3, we then have our
second optimization objective, i.e., minimizing the overall
cost Cyy; for telecom operators:

Min:Cqyy = Cp+Cp
_ Z NsCh + ZteT(mgcm,S) )
seEN Ts’n*"

In practice, there may be other requirements that limit
the number of battery groups being installed at a base
station. We thus use nj, and ny to denote the lower limit
and upper limit on the number of battery groups that can
be installed, respectively, and have the following constraint:

Vs,np <ns <ny,ns € NT (5)

Besides, telecom operators usually want to control the
overall cost within a give upper budget limit 3. So we also
have the following constraint:

Cat < B (6)

5.2 Deep Learning Based Battery Profiling

In order to solve the optimization problem on battery alloca-
tion, we first need to model the lifetime and reserve time of
the batteries in a base station. Given that the battery voltage
is often used as a criterion for battery working conditions
as well as battery capacity, we thus can conduct battery
profiling to build up the models based on the historical
battery activities under different events recorded in our
data logs. Traditional time series estimation models such
as ARIMA [19] and linear regression [20] only explore the
time series features of battery voltages, while they are not
able to capture the impact that external events have on
batteries. Although [21] considered the impacts of events
on voltage trend, its proposed approach can only be used
to model a single battery group. To this end, we develop a

8

deep learning based approach that utilizes the deep neural
network (DNN) to accurately model the voltage trend based
on previous events and voltages with the consideration of
multiple battery groups.

The degradation process of a battery is relatively a long
period impact derived from battery activities. So we focus
on the voltage trend rather than every single voltage value
at each time point. We first filter out the noise voltage
data generated during battery activities (e.g., charging and
discharging) and only extract the effective float voltage
data. Given a time series of float voltages for battery i,
we divide them into a number of time segments where the
length of each segment is [. For each segment k, we fit the
voltage decreasing trend by linear regression and obtain
the Voltage change slope s¥ as well as the initial voltage
value v¥;. Then each time segment can be represented as
{(v} CHN 11), (v? e s2) - (vF Vips 8 sk)}. We define voltage degrada-
tion term as the rate of change on voltage slope for a battery.
Then we have battery degradation d¥ as following:

dF = gF — gkl 7)

For each segment, the battery voltage degradation is
ascribed to the battery activities, which are directly reflected
by the event logs. We define e;* = {eF,,eF, .- e} } as the
input events for battery i in time segment k, where m is the
number of event categories. When a base station is equipped
with multiple battery groups, the impact of activities is ac-
tually shared by all these batteries. Then the impact on each
single battery should be proportionally reduced. Thus, we

can build up a learning model from events e‘k to the battery
degradation d¥ in segment k, where n, is the number of
battery groups in base station s.

Formally, the inputs are the event sets associated with re-
lated segments. Let £ denote the input space of the historical
events and we have & = {71, #2 ... ® } with [V examples.

1 2 N
The outputs are voltage degradations for each segment. Let
D denote the output space of voltage degradation and we
have D = {d;,da, - - - dn }. The modeling process is actually
a mapping from & to D.

As illustrated in Fig. 15, we build up a DNN to model the
battery degradation process. Each node in the input layer is
associated with one kind of events and output layer has
one node for degradation estimation. Assuming the base
station’s situations keep statistically consistent every year,
we can then obtain the voltage degradation utilizing our
deep learning model. Given that the target time ¢ falls in
segment k + 1 and v}} is the initial voltage value, the float
voltage can be calculated as follows:

k

2

vip = Vi} + s+ (A + Bt -kl (8)

With the domain knowledge, a battery is judged in
poor quality when its float voltage is below a pre-defined
threshold 6. Then we can obtain the lifetime of battery 7 in
station s if the float voltage falls below 0 at segment £ 4 1:

0 — iy — Y5 (d + 577
d§+1+si

T, = + ki )
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When there is a power outage, the batteries begin to
discharge to provide backup power. According to the elec-
trochemistry knowledge of base station battery features [22],
there is a voltage drop from the float charge state to the
plateau discharging state mostly due to the cell internal
resistance and polarization. We denote the voltage drop as
€ and we can calculate the plateau discharging voltage as
i =0l —e

Recall that the battery degradation will lead to the bat-
tery capacity decrease. The battery discharge characteristics
can be utilized to estimate the battery state of charge (SOC)
and battery reserve time [14], [23] in the linear region. The
scaled discharge curves of batteries with different degra-
dation keep highly consistent, and the plateau discharge
voltage drops with the degradation level. Thus we can
build the mapping from the plateau discharge voltage to the
corresponding capacity in the linear region. Let v denote
the end voltage and vp is the plateau voltage of discharging
phase for a new battery cell. We use @’ to represent the
percentage of remaining capacity of a battery group in the
linear region at ¢t. Then we can calculate ®’ based on the
discharging voltage v!:

gt = Vvm

S

(10)
Up —VE

Let 7 denote the rated battery reserve time of a new bat-

tery before the end voltage. The reserve time 7% ,, defined

in the previous subsection can thus be calculated as follows:

; (1D

_ t
Ton, = ™Dy

5.3 Battery Allocation Algorithm

With the profiling results of base station features and battery
features, we next solve this battery allocation optimization
problem. Recall that our objectives are minimizing both the
service interruption time (Equation 1) and the overall cost
(Equation 4). Then we have two constraints: the number
of battery groups in each station falls within the limit
range (Equation 5) and the overall cost does not exceed the
budget limit (Equation 6). This multi-objective optimization
problem is actually a multi-objective integer programming
problem, where the battery group number ns must be an
integer between a lower bound ny and an upper bound
ny. This makes the problem NP-hard and we thus design a
heuristic algorithm to solve it efficiently.

Before jumping to the algorithm design, we first briefly
analyze the characteristics of this optimization problem.
Intuitively, given the same external incidents happening to
a base station, the base station can sustain longer power
outages when equipped with more battery groups. The total
service interruption time is thus reduced. Meanwhile, since
the emergent maintenance is accompanied with service in-
terruptions, fewer service interruptions also cut down the
cost of emergent maintenance. Thus in our allocation model
when the battery group number keeps increasing, both the
service interruption time and the emergent maintenance
cost will monotonously decrease until no service interrup-
tion occurs.

However, the battery replacement cost is different, where
the process can be divided into two stages: In the first stage,
when the battery group number of a base station increases,

Algorithm 1: Battery allocation

Input: Results of base station and battery features
profiling.

Output: The allocation results n, for every station s.
1 foreach s in N do
2 Set initial battery assignment as ny=nr, and
calculate Z, and Cg qu1;
3 while ny, < ny do
4 Increase n, when both 7 and C; 41 keep
decreasing; Record n, that results in the
smallest Z; and C g1
5 When C, ,;; begin to rise as n; increases, prune
this branch and switch to next station;

6 while C,;; < B do

7 Try to pre-allocate one more battery group for each
station s and calculate the Z; and C; 41;;
8 Choose station s that leads to maximum Gain and

still keeps the correspondingly calculated Cpy; < B;
9 Do add one battery group for station s and update
the Cyy and Z;

10 return n, for all the station s;

the additional backup power helps the base station sustain
long power outages and reduce deep discharging of batter-
ies. So the battery lifetime is prolonged, achieving a lower
battery replacement cost. In the second stage, if we continue
to increase the battery group number, the extra backup
power becomes redundant due to enough power supply.
Then the service interruption time remains unchanged or
decreases very little, while the battery replacement cost in-
creases due to the unavoidable battery degradation process.
Note that the lead-acid battery itself has a self-aging process
so that too many battery groups will lead to a high average
replacement cost (due to the self-aging process). Therefore,
there may exist three situations for battery replacement cost
according to different conditions of the corresponding base
station, i.e., the cost first drops and then rises (both stage
1 and stage 2), the cost keeps decreasing (only stage 1),
and the cost keeps increasing (only stage 2). As the sum
of battery replacement cost and emergent maintenance cost,
the overall cost can also have this characteristic when the
battery replacement cost dominates, which is future verified
by our real data-driven experiments in §6.

Based on the above analysis, it is easy to see that the
two objectives in our model are conflicting and multiple
Pareto optimal solutions may exist. Considering the prac-
tical situation of telecommunication industry, the most im-
portant objective for telecom operators is to provide more
reliable cellular communication services. So we utilize a
lexicographic method [24] to solve this problem. The lexico-
graphic method assumes that the objectives can be ranked
in the order of importance, and repeatedly solve the most
important objective by fixing other less important objectives
with a bound. We first consider minimizing the service
interruption time when the overall cost has an upper limit
B. Then we strive to minimize the overall cost without
increasing the service interruption time.

The designed heuristic algorithm is shown in Algorith-
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Fig. 16. RMS errors on the voltage estimation by three models under different battery group number.

m 1, where we divide the solving process into two stages.
In the first stage (line 1-5), for each base station we keep
increasing the battery group number until the overall cost
begins to rise. We thus stop and record the battery allocation
results in the first stage. The first stage of our allocation al-
gorithm has the following property as shown in Theorem 1.

Theorem 1: The allocation result of the first stage is optimal
with the minimum possible budget constraint.

Proof: Based on our analysis, in the first stage of alloca-
tion, both Z; and C; 41; are monotonously decreasing as we
increase the battery group number for each base station. So
the two optimization objectives are currently not conflicting.
The allocation result of the first stage has the minimum
overall cost in any case, because a lower budget is not
sufficient for normal management of all the base stations
and batteries. The allocation results in the first stage thus
must be optimal under the same budget limit. O

In the second stage (line 6-9), the two objectives are
conflicting because the battery replacement cost begins to
rise. As aforementioned, we consider reducing the service
interruption time when the overall cost does not exceed
the budget limit. To better balance the tradeoff between
them, we define Gain as the ratio of the weighted service
interruption decrease and the overall cost increase:

Zs(ns) — Zs(ng + 1)
Cs,all(ns + 1) - Cs,all(ns)

We each time select the base station with the maximum
Gain and add one battery group to it until we reach the
budget. By utilizing such a greedy approach we guarantee
to reduce the most service interruption time with the least
cost increase for each step.

We next analyze the complexity of our heuristic algo-
rithm to show its efficiency. In the first stage, we only
access each station once and the complexity is O(n) where
n is the total number of the base stations. In the second
stage, we calculate C; 4;; and iteratively select station with
the maximum Gain, which contributes the complexity of
O(nlog(n)). So the total complexity of this heuristic algo-
rithm is O(nlog(n)).

Gain = (12)

6 EVALUATION

In this section, we present the evaluation of our BatAlloc
framework based on real trace-driven experiments. We first
evaluate our battery feature profiling process and compare

our model with commonly used time series estimation
methods, such as ARIMA [19] and Linear Regression (L-
R) [20]. Based on the base station and battery profiling re-
sults, we present the performance evaluation on the overall
BatAlloc framework.

6.1 Experiment Setup

We conduct data processing on our dataset from China Mo-
bile and extract useful features on base stations and backup
batteries. We process the massive data on our workstation
as illustrated in Fig. 17, including dual Gigabyte AORUS
GeForce GTX 1080 Ti Xtreme Edition 11GB Video Card, dual
Intel I7-6850K BROADWELL-E Processor 6 Core 15M Cache
3.6GHz CPU, Corsair Dominator Platinum 32GB 2x16GB
DDR4 3000MHz Memory Kit, Samsung 850 EVO 1TB SATA
3 Solid State Drive, and etc. We construct the deep learning
based model using Keras [25], which is a neural network
library on top of TensorFlow [26] and Theano [27].

The parameter settings of our experiments are extracted
from our dataset as well as adapted from the typical settings
based on the domain knowledge. The normal float voltage is
2.25v and the plateau discharging voltage vp is set as 2.08v
for a new battery cell. According to the industry standard,
the battery used in cellular communication base station is
designed to provide power supply for about 10 to 12 hours
and we thus set 7 to 10. The second low voltage disconnect
(LVD) of base stations is usually set as 1.8v, and we set
the end voltage vg as 1.85v to avoid extreme deep level
discharge. In our experiments, we set the importance factor
ws based on the population that a base station covers, which
is normalized to a value between 0 and 1. According to the
real world market [28], we set the price of battery cost c; as
$5000. The emergent maintenance cost ¢, mainly consists
of two parts: labor cost for a visit and diesel consumption
cost for power generation. The labor cost is calculated as
Ce(ta + tm), where ¢, is the average wage for engineers per
hour ($30/hr with at least two engineers [29]), ¢4 is the time
spent on road (calculated by location information), and ¢,, is
the emergent maintenance time at a base station. The diesel
cost is computed by c4t.,, where c4 is the diesel cost per
hour and we set ¢4 as $7.6/hr [2].

6.2 Experiment on Voltage Prediction

We first evaluate the performance of our deep learning
based battery profiling model. We use the data of the first
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Fig. 20. Various metrics for a typical base sta-
tion when equipped with different numbers of
battery groups.

365 days as the training set and the data of the next 120 days
as the testing set. And we compare our model with ARIMA
and LR. In our evaluation, the LR and ARIMA method only
capture the time series features of the past voltages, e.g., the
voltage trend and the voltage variance, and use the captured
features to predict the future change of battery voltages.
We use a multiplicative seasonal ARIMA model to learn
the voltage features considering the variance of the wave
and estimate the parameters based on the Matlab economics
toolbox automatically.

Fig. 16 shows the root mean square (RMS) errors be-
tween the estimation results by the three models and the
actual voltage data. We can see that under various numbers
of battery groups, the deep learning based model used in the
BatAlloc framework can always achieve better accuracies
with the RMS error less than 0.008v. This means our deep
learning based model can effectively capture the influences
that different events exert on battery conditions. ARIMA
and LR only extract the features of time series from the
voltages and make corresponding estimations. Although
their RMS errors are relatively small due to the stationary
voltage trend when n, is large, they become worse when
ng is small. Integrated with the accurate estimation on the
future voltage trend and the domain knowledge of battery
features, we can then obtain the battery lifetime and reserve
time used for the battery allocation optimization in the
BatAlloc framework, which will be evaluated next.

We then select one representative battery as a case study
example to illustrate the voltage trend using different pre-
diction methods as shown in Fig. 18. We can see that our
approach captures the voltage varying trend more accurate-
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Fig. 21. The percentage of base stations with Fig. 22. The comparison of battery lifetime in
different numbers of battery groups.

original allocation and lifetime after re-allocation
based on BatAlloc.

ly and the predicted voltage is relatively close to the real
data, while the ARIMA approach fails to capture the voltage
varying trend. This is because ARIMA focuses on extracting
the internal time series features of battery voltages, and
does not consider the impacts of external events on battery
working conditions.

6.3 Experiment on Battery Allocation

We next evaluate our BatAlloc framework on battery alloca-
tion results. For comparison, we extract the current battery
deployment as a baseline from the real world dataset and
use the Original allocation to represent it. Fig. 19 plots
the annual average service interruption time with different
budget limit B. For ease of comparison, the budget limit
is normalized by the baseline budget (i.e., 100% means
the budget limit is equal to 100% of the original baseline
budget). The minimum budget we need is 69% of baseline,
which is actually the allocation result of the first stage in
our optimization algorithm. Even with the 69% of baseline
budget, our framework can still achieve a lower average
service interruption compared to the original allocation,
which is at least a 30% cost saving. The service interruption
time drops observably as the budget limit increases and
we can achieve nearly full service guarantee with only 85%
of the baseline budget. These results demonstrate that our
BatAlloc framework is capable of providing much more
reliable service with a remarkably reduced cost.

To better understand the impact of different battery
group numbers on base stations, we conduct a case study
shown in Fig. 20, which plots our different metrics for a
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typical base station when equipped with different num-
bers of battery groups. As the number of battery groups
increases from 1 to 4, the emergent maintenance cost and
the service interruption time decrease monotonously due to
more sufficient backup power. On the other hand, the bat-
tery replacement cost achieves minimum when the number
of battery groups is 2 since the additional battery group
can drastically reduce the impact of overdischarging and
prolong the battery lifetime. If we keep increasing battery
groups, the extra battery power continues to reduce the
service interruption time, while the battery replacement
cost rises largely mostly due to the unavoidable battery
degradation process.

Fig. 21 compares the different allocation results on bat-
tery group number between the original allocation scheme
and our BatAlloc framework. The original battery allocation
result is largely skewed that over 65% base stations are
equipped with only one battery group. Our framework con-
siders both the base station situations and battery features,
allocating 2 battery groups to most base stations and 3 or 4
battery groups to those with long time power outages.

We also investigate the impact of different battery allo-
cation strategies on battery lifetime. As shown in Fig. 22, in
the original allocation the average battery lifetime is only
around 1.5 years and far less than expected. After using
BatAlloc to allocate suitable numbers of battery groups for
base stations, the average battery lifetime has achieved to
4.3 years, roughly 1.8 times longer than that of the original
allocation. The results indicate that our framework can also
better protect base station batteries and significantly prolong
their average lifetimes.

7 FURTHER DISCUSSION

Though each single power outage of one given base station
is truly hard to predict precisely, the statistical long-term
power outage trends (e.g., in every year) can have a very
similar pattern (e.g., a base station built in cold area may suf-
fer from several power outages due to the heavy snow every
year). In this paper, restricted by the 1.5-year timespan of
the data, the long-term characteristics of the power outages
for each base station might still not be able to be captured
with very high accuracy. In practical application, however,
the service provider can have data for as long as tens of
years and such data can be mined for better power outage
prediction. From this perspective, our framework can still
apply well in the practical battery allocation as long as the
statistical long-term power outage trends can be predicted
with more abundant data.

Different base stations may set different low voltage dis-
connect (LVD) value according to their practical situations.
A high LVD value may potentially help extend the battery
lifetime by avoiding deep discharging but will increase the
service interruption time and result in high service inter-
ruption cost. Thus in reality, most mobile service providers
would set LVD to a quite low value given the service
interruption cost can usually be higher compared to the cost
introduced by shortened battery lifetime due to deep dis-
charge. In this paper we focus on studying the relationship
between the power outage and the battery lifetime duration
with the consideration of allocating multiple battery groups.
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The trade-off between the setting of LVD, battery lifetime
and service interruption cost can be an interesting future
work for further exploring.

8 CONCLUSION

Current cellular communication base stations are facing
serious problems due to the mismatch between the power
outage situations and the backup battery supporting abili-
ties. In this paper, we proposed BatAlloc, a battery alloca-
tion framework to address this issue. We first conducted a
systematical analysis of a massive dataset of base stations
and batteries. Then we built up a deep learning based mod-
el to precisely capture the battery conditions and further
profile the battery features. With the profiling results, we
formulated this battery allocation issue as a multi-objective
optimization problem and designed an efficient algorithm
to solve it. Our real trace-driven experiments showed that
compared to the current practical deployment, our frame-
work can remarkably reduce the service interruptions as
well as the overall cost. It is worth noting that although
our battery profiling model focuses on lead-acid batteries,
the general allocation framework can still be well applied to
other chemical battery scenarios (e.g., Li-ion batteries) once
the battery degradation aspect is updated.
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