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1. ABSTRACT 

 

 

“Risk comes from not knowing what you are doing” 

 - Warren Buffet 

 

 

 

A new investment product category so-called “Structured Products” arises for the past decade and aims to supply 
more important return than conventional assets by providing a pre-packaged investment strategy. Unfortunately 
dealing with such complex structures is quite challenging whatever the implied business desk. Indeed this product 
category introduces lots of discontinuities (options structures with embedded indicator functions, underlying 
stochastic process, market data ...) which are quite challenging regarding the pricing process. 

 

In this dissertation, we will present how to manage a risk exposure generated by an inventory constituted by 
different structured products, so-called “Pipeline Risk”. To do this, we will define and implement a risk measure 
based on the well-known “Value-at-Risk” (VaR) approach. This involves estimating the potential loss on current 
inventory according the underlying risk factor(s) variations and the structured products’ sensitivity factors. 

 

Due to the inner complexity of such products, market practitioners have only one method of reference to evaluate 
a structured product: the Monte Carlo Approach. However this method produces instable results in presence of 
discontinuities (especially on sensitivity factors) which is a major flaw in Risk Management. So we will use an 
alternative pricing approach with the use of a Fourier Transform based approach so-called “Fourier Space Time-
stepping” (FST) method. 

 

This method solves the partial integral differential equation with help of a backward stochastic differential equation 
(BSDE) in Fourier Space and a vector of intrinsic values defined in Real Space. This integration process allows 
the aggregation of new conditioned intrinsic values at intermediate maturities. Finally we produced a complex 
vector representing the actualized value of the option structure which can supply either the price or the adequate 
sensitivity factor estimation by multiplying this vector with the adequate factor. 

 

We will show the FST pricing capacities by producing a benchmark constituted by eight classical options and 
three structured product examples. Through this benchmark we will notice that the FST method supplies 
accurate, fast and stable results whatever the priced item (Price, first order and second order derivatives) and 
then constitutes a relevant alternative pricing method for structured products. 

 

The last part of this dissertation will focus on the integration of the FST method into the Pipeline Risk Framework 
used in Barclays Bank Plc. Thereby we will investigate the influence of Fourier parameters on pricing quality but 
also how to calibrate this method with market data. Thereby we will use a bootstrap-like approach to calibrate 
characteristic exponent factors. This will allow solving an important issue, well known from Monte-Carlo 
practitioners: the integration of complex forward implied volatility nodes during the pricing process. 
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« Le Risque surgit quand on ne maîtrise pas ce que l’on fait » 

 - Warren Buffet 

 

 

 

Les “Produits Structurés” sont une classe d’investissement qui est apparue depuis une dizaine d’année et qui vise 
à fournir des rendements plus importants en fournissant une stratégie d’investissement intégrée. Cependant 
travailler avec de tels produits peut s’avérer assez difficile et ce quelle que soit la facette du métier abordé. En 
effet, cette catégorie de produits introduit de nombreuses discontinuités (structure optionnelle avec présence 
d’indicatrices, nature du processus stochastique employé, données de marché …) qui sont très difficiles à 
intégrer dans le processus de valorisation. 

 

Cette dissertation a pour sujet la gestion d’une exposition générée par un stock constitué de différents produits 
structurés, que nous appellerons « Pipeline Risk ». Pour cela, nous définirons et implémenterons une mesure du 
risque basée sur une approche de type « Value at Risk » (VaR). Ceci implique d’estimer la perte potentielle sur la 
valeur du stock en fonction des variations des facteurs de risques sous-jacents et des sensibilités respectives (ou 
croisées) des produits structurés concernés. 

 

La problématique est que les professionnels des marchés financiers ne disposent actuellement que d’une 
méthode de référence pour valoriser ces produits complexes : l’approche Monte Carlo. Cependant cette méthode 
est connue pour produire des résultats instables en présence de discontinuités. Ceci est surtout visible dans 
l’estimation des facteurs de sensibilité, ce qui est un défaut majeur en gestion des risques. Ainsi nous nous 
intéresserons à une méthode de valorisation alternative dite « Fourier Space Time-stepping » (FST) qui se base 
sur la Transformée de Fourier lors de l’intégration de la valeur « Temps ». 

 

Cette méthode résout une équation intégro-différentielle partielle à l’aide d’une équation stochastique différentielle 
à induction « Backward » définie dans l’espace de Fourier et d’un vecteur de valeurs intrinsèques défini dans 
l’espace Réel. Ce processus d’intégration permet d’agréger dans les étapes temporelles intermédiaires de 
nouveaux éléments de valeurs intrinsèques en fonction de conditions définies par la structure optionnelle. Ceci 
nous permet d’obtenir in fine un vecteur complexe représentant la valeur actualisée probable de cette structure et 
qui nous permettra d’obtenir le prix ou bien les facteurs de sensibilités, à la condition de multiplier au préalable ce 
vecteur avec le facteur d’ajustement adéquat. 

 

Nous montrerons les capacités de valorisation de cette méthode en produisant un banc d’essais constitué de huit 
options classiques et de trois produits structurés typiques. Nous verrons ainsi que la méthode FST produit 
rapidement des résultats stables et précis quel que soit l’élément estimé (Prix, dérivées partielles d’ordre un ou 
deux) et qu’elle est une méthode alternative à considérer sérieusement lors de la valorisation des produits 
structurés. 

 

Finalement nous focaliserons dans la dernière partie la manière d’intégrer la méthode FST dans le cadre de 
gestion du « Pipeline Risk » de la Banque Barclays. Ainsi nous étudierons la sensibilité de cette méthode de 
valorisation aux variations des paramètres de la Transformée de Fourier, mais aussi comment calibrer cette 
méthode avec des données de Marché. Pour cela, nous développerons une méthode de type « bootstrap » pour 
calibrer les facteurs exposants caractéristiques. Ceci nous permettra de nous affranchir de la problématique des 
volatilités implicites forward complexes, écueil bien connu des praticiens de la méthode Monte Carlo. 
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2. OUTLINE 

This dissertation will talk about the management risk management associated to structured products selling 
activity and it will be developed in three parts. 

 

The chapter §3 will introduce the dissertation context in terms of business environment and risk issues raised by 
such activity.  

• The first section will present the business context through a quick description of Barclays Bank Plc. key 
figures, governance and strategy.  

• The second section will focus on risk management in financial activities, how risks are generated, 
measured and controlled. Next we will present Barclays’ Risk philosophy and how it implements its 
general risk framework among its branches, subsidiaries and business units (BU). 

• The third section will present the European Structured Products (SPs) Activity, why such investment 
products are widely used in most of investment strategies, what are advantages and flaws and how 
Barclays manages this activity in terms of internal strategy, commercial offer and integration in its internal 
processes. 

• The last section will present the risk generated by such activity. Thus we will present the risk analysis 
based on the business cycle to identify the most important issues in term of risk management. Next we 
will integrate the most important constraints produced either by financial regulators, internal policies or 
technical matters, this to produce an adapted risk framework to manage such risk exposure. 

 

In chapter §4, we will present a pricing methodology called “Fourier Space Time-stepping” (FST), produced by 
Vladimir Surkov during his thesis (Surkov, 2009). This presentation will be constituted of following sections: 

• In the first section, we will present the evolution of option pricing knowledge since the Black & Scholes 
approach. Thus we will highlight the increase of complexity either in term of payoff, stochastic processes 
or numerical methodologies but also the transition from R  to C  since the Heston work (Heston, 1993). 

• The second section is dedicated to readers unfamiliar with the core principles and properties of Fourier 
Transform (FT). We will start with the basic definitions used in Physic Field and we will present the FT’s 
extensions in statistic and probabilistic fields. 

• The third section will be the continuity of previous one and will present an overview of Carr and Madan’s 
work (Carr, et al., 1999) on Option Pricing with help of FT. This fundamental paper highlights the pros, the 
cons and the numerical principles when implementing an FT-base option model. 

• The fourth part will present the FST Methodology, its principles, its properties and how it extends the work 
done by Carr and Madan especially with complex option structures. 

 

The chapter §5 will focus on the application of FST methodology in option pricing and how it will be integrated into 
the Pipeline Risk Framework: 

• The first section will be related to the technical implementation of FST Pricing Model and how to move 
from a continuous to a discrete space. Moreover we will present the basis of iterative integration process 
of FST Method. 

• In the second section, we will produce a benchmark of pricing models according to the option category. 
The benchmarked options will be divided into four categories: path-independent, path-dependent, multiple 
exercise and lastly structured product examples. During this benchmark we will compare the accuracy 
and performance of FST method versus referenced methods. 

• The third part will be dedicated to technical implementation of the Pipeline Risk Framework where we will 
focus on how to estimate risk factors and how to calibrate the FST method according to its pricing 
sensitivity to FT parameters and the integration of market data. Lastly we will present the production 
process and the produced report used in BAU management (“Business As Usual”). 

 

Finally we will conclude this dissertation by summarizing the pros and cons of designed approach and defining 
the future steps to follow. 
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3. INTRODUCTION 

 

3.1 BARCLAYS’ CONTEXT 

3.1.1 Barclays Group at glance 

Barclays is a major global financial services provider engaged in retail banking, credit cards, corporate and 
investment banking and wealth management with an extensive international presence in Europe, the Americas, 
Africa and Asia. With over 300 years of history and expertise in banking, Barclays operates in over 50 countries 
and employs 147,500 people. Barclays moves, lends, invests and protects money for customers worldwide. 

 

Barclays is made up of two ‘Clusters’: Retail Business Banking (RBB), and Corporate and Investment Banking 
and Wealth Management (CIBW), each of which has a number of Business Units. The third major area of the 
business is Group Centre, which comprises all our essential support functions. 

 

 
 

Barclays Group Chairman is Marcus Agius, and the Chief Executive is Robert E. Diamond, Jr. They are supported 
by Barclays Executive Committee and the Board of Directors (see panel below). 
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Board of Directors  Executive Committee  

 

 

Panel 1: Barclays’ Governance Structure (reference: B arclays 2010 Annual Report) 

 

Barclays’ 2010 key performance indicators are summarized in panel below. 

 

Performance Highlights  Key Performance Indicators  

 

 

Panel 2: Barclays’ Key Performance Indicators (source : Barclays 2010 Annual Report). 

 

3.1.2 Barclays Premier Strategy 

Present in France since 1917 and with more than 1600 employees, Barclays serves more than 170,000 
customers with help of its commercial network (51 branches, 1 Premier Flagship, 64 Premier Clubs in cities of 
medium size and more than 300 “home based” financial advisors).  
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Barclays acquired an extensive experience and expertise in premium banking field dedicated to affluent 
customers. Barclays concentrates its development in the premium banking field to provide a banking relationship 
to its customer based on proximity, quality and innovation. This approach is integrated in a global strategy called 
“Barclays Premier” and overseen by Tony Blanco, France Country Manager. 

 

This strategy is developed in Western Europe Area with help of dedicated retail pack offers, customer supports 
but also a set of managed investments with structured underlying solutions. These solutions are provided by a 
central business unit for Western Europe area which is located in Paris Branch due to its past history. 

 

This dissertation will present the key steps of a risk framework development on Pipeline Risk i.e. the risk 
borrowed by a financial institution during investment products selling phase dedicated to its affluent customers.  

 

3.2 RISK MANAGEMENT IN FINANCIAL ENVIRONMENTS 

3.2.1 What is Risk? 

A general definition of Risk can be the volatility of unexpected outcomes which lies in value of assets (equity or 
earnings). 

 

From a business point of view, firms are exposed to various types of risks which can be classified broadly into 
business and financial risks: 

1. Business Risks are those which the company assumes willingly to create a competitive advantage and to 
add value for shareholders. It includes the consequences of the business strategy and the business 
environment in which they operate. 

2. Other Risks are usually classified into Financial Risks, which relate to possible losses owing to financial 
market activities. 

 

Due to their fundamentals, Industrial Corporations are more exposed to Business Risks than Financial Risks. And 
the situation is reversed in case of Financial Institutions whose core activities are assets and liabilities 
instruments. Hence both constitute the Business ecosystem which looks like the two sided face of Janus, the 
Roman God of beginnings and transitions. 

 

A deeper look on Financial Institutions shows that the Risk Management is the financial business keystone. First 
their core purpose is to assume, intermediate and/or advise on Financial Risks. This implies that Financial 
Institutions have to measure Financial Risk as precisely as possible in order to price them but also to be credible 
toward their customers, regulators and shareholders. The last point is very important because any exchange 
implies Trust, a fragile concept which requires lots of time and endeavour to be built but never acquired. So 
understanding risks is a concern which must be at the very heart of any financial manager because it allows 
planning for consequences of adverse outcomes and being better prepared for unavoidable uncertainty. But it 
also protects shareholders’ interests, the customers’ business and help to build a better Society. 

 

These are theoretical concerns and unfortunately past history shows lots of failures due to the almost 
unpredictable nature of Risk. This assertion implies to ask ourselves what are the risk origins and their potential 
shapes. For instance it can be: 

• human-created such as business cycles, inflation, changes in government policies or wars, 
• the result of unpredictable natural phenomena (weather, earthquake ...), 
• the primary source of long-term economic growth named as technological innovation, 
• an unknown source which lie in our infinite universe. 

 

So Risk remains unpredictable and financial managers learned to prevent it by iterations: 

• The first step of Risk management is learning from our past experiences. This implies to determine their 
causes, to classify risks and to study them to determine how it works.  
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• The second step is to anticipate future risk behaviours and it may be done with help of mathematical tools 
and methodologies development to evaluate them.  

• The third step is to develop a risk system which facilitates exchanges and communication from top to 
bottom and reverse. This implies that top has to define rules to frame any nature of risk and to channel 
business developments, the bottom to evaluate and to report current risk exposures, and lastly both have 
to share their point of view with help of authorizations, reviews and challenges.  

• And last but not least, the whole system may function if and only if used by trustworthy people who have 
an adequate risk education and pragmatic approach. 

 

These elements are the keystone of every Risk Management Framework and we will see how these steps are 
integrated by financial institutions such as Barclays. 

 

3.2.2 What kind of Risks? 

A review of past financial crisis allows classifying risks, and in panel below we presented the Barclays 
classification of major financial risks.  

 

 
Figure 1: Classification of Main Financial Risks 

 

We presented 4 major categories with two or more subcategories which correspond to specialized risks: 

• Market Risk is the risk to have losses produced by market movements generated either by level or 
volatility of market prices 

• Liquidity Risk is generated by two sub-risks: asset-liquidity risk and funding risk. The first arises when a 
transaction cannot be conducted at prevailing market prices owing to the size of the position relative to 
normal trading lots. The second refers to the inability to meet payment obligations which may force early 
liquidation thus transforming potential losses to realized losses. 

• Credit Risk is the risk of losses owing to the fact that counterparties may be unwilling or unable to fulfil 
their contractual obligations. 

• Operational Risk is the risk of loss resulting from inadequate or failed internal processes, people and 
systems or from external events. 

 

Now let’s have a bigger picture of this classification in a dynamic system as financial markets. In panel below we 
present our analysis on how risks propagate in financial markets until they trigger a crisis and how their results 
are integrated by market actors (on left of Panel 3). We also review some crisis to illustrate that our static 
classification in not self-sufficient to be adapted in dynamic system and we have to introduce the notion of 
“trigger” and “realization” (on right of Panel 3):  

• Risk Cycle (left): 1) exogenous events or endogenous activities induce a change of existing paradigm and 
so act as new ideas generator, 2) these new ideas will spread across financial market by introducing new 
models, products and / or practices, 3) This will generate a movement and so a disequilibrium where 
original yields will decrease and financial actors will increase step by step their risk exposures, 4) the 
system becomes more and more tightened until a symbolic event will start a crisis and deflate the 
underlying bubble with the economic consequences, 5) at last most of financial actors will analyse the 
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past crisis and integrate more or less the consequences either in terms of regulation, business practices 
or risk model developments / improvements. 

• Boundary risks (right): we collected some major historical crisis and analysis on how risk propagated 
among the financial markets and impacted assets values. We introduced two new concepts to illustrate 
the risk dynamics and we call “trigger” the risk event which induces the “realization” i.e. the realized risk. 
We also add a new item to previous risk classification that we called “boundary” risk which are risks 
triggered by a risk event with a different risk nature. 

 

Risk Life Cycle Boundary Risk examples 

 

 

Panel 3: Representation of Risk Life Cycle and Exampl es of Boundary Risks. 

3.2.3 How to Measure Risk? 

“How much may I loose on this investment?” is a common question among Investors who are in prospective 
mode or are evaluating the risk embedded in their current position(s) at a given time.  

 

A quick glance on financial history shows that investors developed lots of methodologies to estimate 
approximately their potential losses according the application field: 

• Actuarial Field: Fillip Lundberg developed in 1903 the Ruin theory which aims to estimate insurance 
companies’ insolvency to collective risks. The historical model is based on a compound Poisson risk 
model and was largely extended nowadays. 

• Investment Field: the first mathematical implementation was developed by Harry Markowitz & al. (1953) 
according to their portfolio theory, though their efforts were directed towards a different end, i.e. devising 
optimal portfolios for equity investors. 

• Risk Management Field: a need for a standard risk methodology arose from the most important crisis of 
the eighties and nineties. The first sophisticated measure appeared in the Banker’s Trust internal 
document concerning the fixed income portfolios. And next to the Barings bankruptcy, JP Morgan used 
for the first time the term “Value-at-Risk” (VaR) to describe the risk measure that emerged from data. This 
methodology found a ready audience with commercial and investment banks and became popular 
enough to be the established measure of risk exposure in regulatory frameworks (e.g. Basel and 
Solvency Frameworks). 

 

In its most general form, The VaR measures the potential loss in value of a risky asset or portfolio over a defined 
period for a given confidence interval. In Figure 2 we defined a simple example to illustrate the VaR calculation 
steps: 

1. Mark position exposed to market movements, 
2. Measure variability of underlying risk factors from historical data, 
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3. Set time horizon, 
4. Set a confidence level, 
5. And finally valuates the potential loss / losses. 

 

 
Figure 2: A simple VAR example and its calculation s teps 

 

A closer look to this example will arise the following technical points: 

1. VaR requires using probability distribution to estimate random effects of risk factors and the generation of 
potential losses. Most of VaR calculations are based on Normal Distribution of log returns however last 
decade shows its limitations especially to capture rare events. 

2. A confidence level must be selected according to VaR uses. For instance, its uses may be used for day-
to-day indicators (α  = 95.00 %), Economic Capital / Solvency Capital Requirement (α  = 99.50 %) or 
“Risk Appetite” scale levels (e.g. Barclays uses α  = 99.95 % to estimate its “risk appetite” level – see § 
3.2.4.2). 

3. VaR is strictly oriented to downside risk. 
4. VaR requires historical data to estimate the risk factors volatilities but also their potential correlations. This 

point may be tricky enough and require important technical analysis either on mathematic side or IT side. 
5. VaR is mainly used on Market Risks but it may be employed on commodities, electricity prices and so on. 

However these elements are more volatiles and jumpy so it requires attention on underlying random 
process. 

 

The Value at Risk can be evaluated with three approaches 

1. Parametric VaR: 
Known also as Linear VaR, Variance-Covariance VaR, Greek Normal VaR or Delta-Gamma VaR, it is a 
parametric approach that assumes a normal probability distribution and requires the calculations of 
variance/covariance parameters. An important assumption is that the price variations are linear with 
respect to changes in risk factors. 

a. Pros: Fast calculation, Explicit VaR contributions (split by products, risk factors, business units 
and so on). 

b. Cons: Lack of nonlinear risk, Poor estimation of extreme events, Constant correlations over time. 
 

2. Historical-simulation VaR, 
Historical simulations represent the simplest way for estimating Value at Risk. The principle is to estimate 
VaR by creating a hypothetical time series or returns on that portfolio, obtained by running the portfolio 
through actual historical data and computing changes for each period. 

a. Pros: Easy to communicate results, No required assumptions on underlying risk factors, 
b. Cons: Results are not exhaustive (dominated by most significant recent event), “Window effect” 

on risk estimation (i.e. the VaR decreases significantly when an event pop out from the time 
window). 
 

3. Monte Carlo VaR 
it estimates VaR by forecasting multiple future risk factors paths and using nonlinear pricing models to 
estimate value variations for each path. Then VaR is estimated according to the worst cases. 

a. Pros: Use of full pricing model and non-linearity capture, Non exhaustive scenario generation 
b. Cons: Time and IT consumption, numerous technical issues on random process, Communication 

of results may be tricky. 
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These elements may be summarized by the following panel: 

 

Indicator Parametric VaR Historical VaR Monte Carlo VaR 

Calculation Speed Very high High Low 

Mathematic 
Requirements 

Few Few High 

IT Requirements Average 

(according to the portfolio size) 

Average High  

(Both for developments and IT 
infrastructures) 

Non linearity effects 
capture 

None Full Full 

Jumps capture None Low 

(according to time window size) 

Yes  

(according to the random process) 

Historical data 
dependence 

Average Average High 

Panel 4: Pros and cons for each VaR approach. 

 

3.2.4 Risk Management in Barclays 

Barclays defines clear risk management objectives and has a well-established strategy to deliver them, through 
core risk management processes (see Barclays’ 2010 Annual Report for more details). 

 

The Barclays’ approach is to provide direction on:  

• Understanding the main risks to achieving Group strategy, 
• Establishing Risk Appetite,  
• And establishing and communicating the risk management framework.  

 

At a strategic level, risk management objectives are: 

• To identify significant risks. 
• To formulate Risk Appetite and ensure that business profile and plans are consistent with it. 
• To manage risk profile to ensure that specific financial deliverables remain possible under a range of 

adverse business conditions. 
• To optimise risk/return decisions by taking them as closely as possible to the business, while establishing 

strong and independent review and challenge structures. 
• To ensure that business growth plans are properly supported by effective risk infrastructure. 
• To help executives to improve the control and co-ordination of risk taking across the business. 

 

The process is then broken down into five steps:  

1. Identify,  
2. Assess, 
3. Control, 
4. Report, 
5. And manage/challenge.  

 

Each of these steps is broken down further, to establish end to end activities within the risk management process 
and the infrastructure needed to support it (see panel below). 
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Please note this approach is consistent with Barclays’ Business organization:  

• Group defines general objectives, constraints, policies and limits, 
• All implementations are delegated to business units, this to allow flexibility and adaption, therefore 

business units are in charge of controls and reports; 
• Group’s channels business unit’s developments through limits and authorizations. 
• Lastly compliance with regulatory and inner policies is insured by regular reviews and challenges. 

 

3.2.4.1 Assigning responsibilities 

 

Responsibility for risk management resides at all levels within the Group, from the Board and the Executive 
Committee down through the organisation to each business manager and risk specialist. Barclays distributes 
these responsibilities so that risk/return decisions are taken at the most appropriate level; as close as possible to 
the business, and subject to robust and effective review and challenge. The responsibilities for effective reviews 
and challenges reside with senior managers, risk oversight committees, Barclays Internal Audit, the independent 
Group Risk function, the Board Risk Committee and, ultimately, the Board. 

 

Most important responsibilities are assigned as follow (see also pictures below): 

1. The Board is responsible for Risk Appetite and Internal Control and Assurance Framework (Group 
Control Framework). The Chief Risk Officer (CRO) presents regular reports to the Board summarising 
developments in the risk environment and performance trends in the key portfolios. Thus the Board 
oversees the management of the most significant risks through regular review of risk exposures and 
related key controls. These responsibilities are set in Group’s Principal Risks Policy. 

2. The “Board Risk Committee” (BRC) monitors the Group’s risk profile against the agreed appetite, where 
actual performance differs from expectations; the actions being taken by management are reviewed to 
ensure that the BRC is comfortable with them. The BRC reports its minutes directly to the Board. 

3. The “Board Audit Committee” (BAC) receives quarterly reports on control issues of significance and a 
half-yearly review of the adequacy of impairment allowances, which it reviews relatively to the risk 
inherent in the portfolios, the business environment, the Group’s policies and methodologies and the 
performance trends of peer banks. 

4. The “Board Remuneration Committee” receives advice from the Board Risk Committee on the 
management of remuneration risk, including advice on the setting of performance objectives in the 
context of incentive packages.  

5. The CRO is a member of the “Group Executive Committee” and has overall day to day accountability for 
risk management under delegated authority from the Finance Director. The CRO manages the 
independent Group Risk function and chairs the Group Risk Oversight Committee, which monitors the 
Group’s risk profile relative to established risk appetite. Reporting to the CRO and working in the Group 
Risk function are divided among risk-type heads which are retail credit risk, wholesale credit risk, market 
risk, operational risk, financial crime risk and capital demand. Along with their teams, the risk-type heads 



 Bruno SARRANT – Actuarial Dissertation 

20120224 - Bruno SARRANT - Actuarial Dissertation.docx 02/24/2012 Page 17/130 

are responsible for establishing a Group wide framework for risk control and oversight. Moreover the risk-
type teams liaise with each business as part of monitoring and management processes.  

6. Each business unit has an embedded risk management function, headed by a business risk director. 
Business risk directors and their teams are responsible for assisting business heads in the identification 
and management of their business risk profiles and for implementing appropriate controls. These teams 
also assist Group Risk in the formulation of Group policies and their implementation across the 
businesses. The business risk directors report jointly to their respective business heads and to the Chief 
Risk Officer. 

7. Finally “Risk-type” Heads and Business Risk Director report to the CRO and are member of the “Group 
Risk Oversights Committee”. 

 

 
Figure 3: Representation of the Dual Governance Stru cture of Barclays Bank Plc., divided between the Boa rd and The 
Group Executive Committee (source: Barclays’ 2010 an nual report) 
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Figure 4: Representation of Barclays’ Governance Str ucture by key risk type. Please note “ Capital and Liquidity Risk” 
belongs to the Group Treasurer’s management scope. 

 

3.2.4.2 Risk Appetite 

 

Risk Appetite is defined as the level of risk that Barclays is prepared to sustain whilst pursuing its business 
strategy, recognising a range of possible outcomes as business plans are implemented. Barclays’ framework 
combines a top-down view of its capacity to take risk with a bottom-up view of the business risk profile associated 
with each business area’s medium term plans. The appetite is ultimately approved by the Board. 

 

The Risk Appetite framework consists of three elements: “Financial Volatility”, “Mandate & Scale” and “Risk 
Appetite and Stress Testing”. Taken as a whole, the Risk Appetite framework provides a basis for the allocation of 
risk capacity across Barclays Group. 

 

3.2.4.2.1 Financial Volatility 

 

Financial Volatility is defined as the level of potential deviation from expected financial performance that Barclays 
is prepared to sustain at relevant points on the risk profile. To measure the risk entailed by the business plans, 
management estimates the potential earnings volatility from different businesses under various scenarios, 
represented by severity levels: 

• expected loss: the average losses based on measurements over many years 
• “1 in 7” (moderate) loss: the worst level of losses out of a random sample of 7 years 
• “1 in 25” (severe) loss: the worst level of losses out of a random sample of 25 years 
• “1 in 100” (extreme) loss: the worst level of losses out of a random sample of 100 years 
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These potentially larger but increasingly less likely levels of loss are illustrated in the Risk Appetite concepts chart 
(see Figure 5). Since the level of loss at any given probability is dependent on the portfolio of exposures in each 
business, the statistical measurement for each key risk category gives the Group clearer sight and better control 
of risk-taking throughout the enterprise.  

 

 
Figure 5: Representation of Barclays’ classificatio n of severity levels 

 

The Board sets the Group’s financial volatility risk appetite in terms of broad financial objectives (i.e. “top down”) 
on through the cycle of “1 in 7” and “1 in 25” severity levels. The Group’s risk profile is assessed through a 
‘bottom-up’ analysis of the Group’s business plans to establish the financial volatility. If the projections entail too 
high a level of risk (i.e. breach the top-down financial objectives at the through the cycle of “1 in 7” or “1 in 25” or 
“1 in 100” levels), management will challenge each area to rebalance the risk profile to bring the bottom-up risk 
appetite inline within top-down appetite. Performance against Risk Appetite usage is measured and reported to 
the Executive Committee and the Board regularly throughout the year. 

 

Specifically, Barclays believes that this framework enables it to: 

• Improve management confidence and debate regarding the Group’s risk profile 
• Re-balance the risk profile of the medium-term plan where breaches are indicated, thereby achieving a 

superior risk-return profile 
• Identify unused risk capacity, and thus highlight the need to identify further profitable opportunities 
• Improve executive management control and co-ordination of risk-taking across businesses 

 

3.2.4.2.2 Mandate & Scale 

 

The second element to the setting of risk appetite in Barclays is an extensive system of Mandate & Scale limits, 
which is a risk management approach that seeks to formally review and control business activities to ensure that 
they are within Barclays mandate (i.e. aligned to the expectations of external stakeholders), and are of an 
appropriate scale (relative to the risk and reward of the underlying activities). Barclays achieves this by using 
limits and triggers to avoid concentrations which would be out of line with external expectations, and which may 
lead to unexpected losses of a scale that would be detrimental to the stability of the relevant business line or of 
the Group. These limits are set by the independent Risk function, formally monitored each month and subject to 
Board-level oversight. 

 

Barclays uses the Mandate & Scale framework to: 

• Limit concentration risk 
• Keep business activities within Group and individual business mandate 
• Ensure activities remain of an appropriate scale relative to the underlying risk and reward 
• Ensure risk-taking is supported by appropriate expertise and capabilities  

 

As well as Group-level Mandate & Scale limits, further limits are set by risk managers within each business unit, 
covering particular portfolios. 
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3.2.4.2.3 Risk Appetite and Stress Testing 

 

Stress testing occurs throughout the Bank and it helps to ensure that Barclay’s medium term plan has sufficient 
flexibility to remain appropriate over a multi-year time horizon during times of stress.  

 

Stress testing allows us to analyse a specific potential economic scenario or event using defined macro and 
market based parameters. The results of a stress test, whether at a Group or business level, will produce an 
output which could be compared to a point in the curve of our Financial Volatility based statistical outcomes, 
although stress tests are scenario based and as such are not calibrated to a specific confidence level. 

 

Given that the stress testing, Risk Appetite, and medium term planning timelines are all aligned, the outputs of 
stresses are used by risk functions throughout the Group to inform on Risk Appetite (particularly at a business 
level). The outputs of stresses also feed into the setting of Mandate & Scale limits. For example, via the use of 
primary and secondary stresses in Market Risk, we identify and limit the scale of risks that DVaR (i.e. Daily VaR) 
would not automatically capture.  

 

Reverse stress testing also supports our Risk Appetite framework. Reverse stress testing starts with defining a 
worst case set of metrics and deduces a scenario that could theoretically cause that situation to occur. This will 
help to ensure that we understand the tail risks across our books and explain what would have to happen to 
generate a change in strategy. Group reverse stress testing also identifies risks that in one business alone would 
not have been sufficient to be a critical event, but are significant at Group level, thereby complementing the 
Financial Volatility and Mandate & Scale processes. 

 

3.3 “STRUCTURED PRODUCT” RISK MANAGEMENT 

3.3.1 What is a Structured Product (SP)? 

A Structured Product is generally a pre-packaged investment strategy corresponding to a combination of standard 
financial investment and derivatives. The whole items are then securitized in one instrument as an independent 
product by the issuer. Interest in this kind of investment grows these last years and Structured Products are 
commonly used by investors as a way to diversify their investment portfolios (see Figure 11 for more details 
regarding Barclays’ figures). 

 

Structured Products are not homogeneous because they are “tailored” products and their productions are closely 
linked with market conditions. However they may be classified in the following categories according to the 
derivatives’ underlying(s): 

• Interest Rate SP: this category linked the SP’s performance to IR variations. The underlying may be 
based on a single rate reference or a basket of rate references. 

• Equity-linked: this category linked the SP’s performance to equity market variations. The underlying may 
be a single stock / index or a basket of stocks / indices. 

• FX-linked: the performance is connected to currency variations which must be based on a single or a 
basket of currencies. 

• Credit linked: the performance is linked to credit events of a firm or sector. 
• Hybrid linked: this kind of SP combines a set of multiple underlying types. 

 

The most important features of Structured Products according to the offered strategy are: 

1. An optional principal protection (in general at maturity),  
2. A potential enhanced return, 
3. A stabilized volatility within an investment (known as “Volatility target” product). 

 

Figure 6 illustrates a typical structured product composition: 
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• Initial investment is borrowed by a so-called “Liquidity Support” which depends essentially if the SP 
proposes a principal guarantee or not. Usually the support will be a debt note (bond) with a similar 
maturity when a principal guarantee is offered. Otherwise the support may be an equity support (index or 
stock basket) or a bond combined with a “Down and In” Put through the structured leg of the swap. 

• The SP issuer will exchange cash flows generated by Liquidity Support (coupons, dividends) in exchange 
of a structured leg also called “formula”. This exchange will be settled with help of swap contract which 
will define all the derivative features of the structured leg. 

 

During the “structuring phase” (i.e. the SP development phase in financial lingo), the issuer will have a particular 
attention on Liquidity Support selection and Structured Leg composition due to the impact on SP Pricing. Thus the 
issuer will select bond / equity support on a compromise basis between price and potential credit risk and adjust 
the structured leg composition by selecting, adding and / or retrieving options to find the more accurate formula. 
Hence the issuer will try to generate a spread between paid and received legs to generate an upfront fee 
according to the obtained conditions on liquidity support and structured leg prices, and its inner funding 
conditions. 

 

Financial creativity expressed itself essentially in structured leg composition and may involve: 

• More or less complex payoffs from simple European to digital payoffs, 
• Time dependant options such as “auto call” options (i.e. reaching the strike level at coupon payment may 

induce early redemption), memorized coupons (i.e. realized coupons are paid at maturity) or delay option 
(i.e. past coupons recovery in case of event realization), 

• Terminal option on coupon(s) and principal may be set such as digital payoff on coupons payment, put DI 
on principal with leverage, 

• And so on... 

 

 
Figure 6: An example of Structured Product compositio n. 

 

It is important to note that this kind of structures borrows some drawbacks which include: 

• A High Credit Risk profile compounded of issuer plus the potential liquidity support credit risks, 
• A potential Lack of Liquidity because secondary market is animated only by SP’s issuer and so SP’s price 

may be subject to important bid-ask spread, 
• A Lack of daily quotes on primary market (only on demand), 
• A complex valuation either on primary or on secondary market regarding to the formula complexity and 

shadow parameters as issuer’s funding or complex underlyings (e.g. volatility spread). 
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Professional investors (e.g. financial institutions, pension funds, insurance companies, corporate firm treasuries 
...) show a growing interest to this investment category for past decade because it supplies a packaged 
investment strategy with high potential yields. Regarding the past two decades, competition increased a lot with 
more and more aggressive commercial strategy. Moreover assets selection became more and more difficult with 
the impact of two items: a decreasing trend of riskless assets yield and the growing of assets under management 
due to free cash availability (see Figure 7). The combination of all these effects increased a business instability 
either on shortening of recurrent income horizon (past production became more and more sensitive to customers’ 
arbitrage) or a decrease of new business quality due to a risk appetite increase.  

 

 
Figure 7: Historical Yields for main “riskless” inve stments. 

 

In this context, Structured Products supply many commercial advantages such as: 

• A tailored investment strategy in adequacy with end customers’ appetite, 
• A potential yield higher than classical assets’ yields, 
• A shortening of marketing cycle with help of white-box strategy (i.e. anonymous packaged products), 
• An outsourcing of most important technical issues. 

 

Unfortunately as this investment category has some drawbacks and having a good estimation of underlying risks 
is a must have when they are used to elaborate investment supports dedicated to personal investors. Previously 
we described the cycle of financial crisis (see §3.2.2) and the impact of creativity on their accelerations.  

 

The recent financial crisis triggered by Lehman Brothers’ Bankruptcy highlights the phenomena of unleashed 
creativity. From a Risk Management point of view, we may state the past crisis cycle as follows: 

1. The 2001 crisis triggered the low rate policy for most of central banks which supplied unlimited low-cost 
cash to every financial contributor, 

2. This free cash increase dried out all basic asset pockets by a progressive price increase and so a yield 
decrease, 

3. The investors’ risk appetite increased by selecting riskier investments and creating complex investment 
structures. These new financial supports contaminated gradually end customers’ investment such as 
mutual funds and pension funds. 

4. The underlying risks became less and less perceptible and so measurable. Hence financial actors didn’t 
perceive that general rate tightening induced a push back of general disequilibrium, even if several events 
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punctuated this state of fact such as Bearn Stern’ Bailout, BNPP’s dynamic monetary fund closing or the 
major decreases of main equity index since end of July 2007. 

5. The Lehman Brothers was the culminant point and acted as catharsis to risks materialization and 
propagation through most investment supports. Hence most of financial actors endorsed important losses 
due to major risk endowments. 

6. The risk cycle closed by major recapitalizations with support of their local governments by increasing 
national debt outstanding. This induced a major review of regulatory rules and processes (for instance, 
the future Basel 3 rules or evolution of Solvency 2 rules on “Sovereign Risk” issue). 

 

The last point spread very differently according to the national objective(s). In the case of France, the regulatory 
authorities reviewed and focused on complex investment products dedicated to individual investors. Regarding 
the investment wrappers (Life Insurance, PEA), the regulatory authorities stated new rules to limit complexity and 
to give better explanation on underlying risks (see statements emitted both by AMF and ACP on 15/10/2011 
concerning the marketing of complex financial instruments to the public). 

 

These new rules are essential and necessary because every financial transaction is built upon one concept: 
Trust. And we claim these new constraints are good for business by adding clear rules, improving risk 
management, and industrializing the processes. 

 

3.3.2 Investment Solutions (IS) in Barclays 

For the last two years, Barclays has changed the orientation of its retail business goals to focus essentially on a 
specific customer category just below Private Banking criteria, named “affluent” in most of marketing studies. 
Regarding internal studies, this category of customers are wealthy enough, educated and looking for increasing 
their personal assets. Hence they are more eager to Risk and present a more developed Risk Appetite. This 
category of customers generates a consequent part of Barclays Retail Division’s profit and so represents its core 
business. In current context, Barclays is challenged significantly by its main competitors either on new customers 
or on its core business. Moreover this customer category is aware of its importance and very challenging on 
services and products provided. 

 

Therefore Barclays developed a dedicated strategy labelled “Premier Strategy” to preserve its current business 
and seduce new customers. This strategy is declined in three essential key points: 

• A set of special retail services and products 
• A dedicated customer relationship 
• A set of special events regarding the category. 

 

 
Figure 8: Marketing segmentation of Barclays’ Retai l Customers regarding their annual wages. 
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Regarding the Barclays internal strategy, Customers are categorized regarding their annual income and/or assets 
as presented Figure 8 and are regrouped in two main categories: “Personal” Customers and “Premier” 
Customers. The first category represents the most important part of retail bank population but contributes less to 
Barclays’ profitability than the second main category. Then the “Premier” category is divided into 4 segments 
which represent their potential and / or their wealth origins. Lastly it is important to note that the wealthiest 
customers are not represented in this segmentation because they are eligible to “family office” services. 

 

In early 2009, Barclays France created a new business unit dedicated to special investment sales to fulfil the 
objectives defined by the Premier Strategy in terms of investment products. This division called “Centre of 
Excellence on Structured Products” (CoE) aims to create new investment supports fitting the customer behaviour 
(i.e. risk appetite) and local investment practices (i.e. favourite investment support). At this time, the supplied 
investment support can either be a structured note (issued by external counterpart), deposit (issued by Barclays 
with a BMTN as Liquidity support), or a term account (opened in Barclays’ book) format (see Figure 9) 

 

 
Figure 9: Types of investment products supplied by the CoE 

 

The CoE is a trans-national division because it organizes and coordinates structured products sales across Retail 
Distribution Networks of the Western Europe area (WE), i.e. France, Spain, Italy and Portugal. Hence CoE is 
organized between Local Investment Teams and CoE Central Organization (see Figure 10): 

1. Local Teams are in charge to define and calibrate new investment strategies regarding the local 
customer’s habits and risk appetite, the adequacy with local regulatory rules and customer protection 
rules. Moreover local teams are in charge to assess underlying risk because they are risk owners (i.e. 
they will have to endorse potential losses). And at last they are in charge to get the “New Product 
Approval” committee validation to distribute new products (see Figure 13 for more details), 

2. CoE Central Organization is located both in London (organization and governance line) and Paris (Front 
Office and Risk Management). It is in charge to organize and coordinate the distribution of structured 
investments. This integrates several functions such as: 

a. The interaction with local investment teams to structure accurate strategies regarding collected 
needs, 

b. The negotiation of each financial sub-component with external market counterpart after receiving 
the final go from local investment team. This negotiation is driven by a compromise between 
underlying risks and product’s profitability at issuance during primary market phase. 

c. The management of secondary market of sold structured products after the initialization date (i.e. 
strike date), 

d. The report in term of P&L and Risk Management, 
e. The interaction with Barclays Group in term of development and objectives, 
f. And lastly (but not least) an overall risk unit to assess, valuate and manage risks generated by 

the business unit. 
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Figure 10: Organization Chart of CoE both for Wester n Europe and Local Divisions. 

 

Figure 11 summarizes the key figures generated by this business unit and gives several feedbacks: 

1. A strong interest from our customers for this category of investments, 
2. A significant difference risk appetite regarding the countries in terms of 

a. Capital protection, 
b. Asset natures. 

 

 
Figure 11: CoE key figures for exercise periods 2009  and 2010 

 

These elements constitute also a proof of concept for Premier Strategy regarding the development of dedicated 
investment solutions. However this activity requires a strong and efficient risk management either to protect 
customers or to preserve business’ profitability. This risk management must cover every kind of risk and requires 
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an industrialized process with accurate checks. And this state of risk can be reached through a deep knowledge 
of underlying activity cycle and hazardous event triggering. 

 

3.3.3 Business cycle 

To illustrate the process in place in Barclays, we will present it regarding the life cycle of a structured product. 
This cycle follows the key steps (see Figure 12):  

1. Product Conception: This step concerns all marketing actions concerning customer need appreciation 
and product design under constraints of risk adjustment. 

2. Product Certification: every product distributed through Barclays retail networks must be assessed and 
certified by the “New Product Approval” (NPA) Committee. 

3. Sales: The certified product is sold by retail networks for a period between 3 to 6 months. Please note 
that most structured products with options are bought in “forward starting” mode, i.e. the reference value 
of underlying will be set in the future. Moreover every structured product is closed to subscriptions at the 
end of Sales Period. 

4. Living Products Management: this step concerns the management of closed structured products, i.e. 
collect repurchase orders and dispatch retrieved cash to final customers. This step will focus essentially 
on valuation controls and customers reporting. 

 

 
Figure 12: Life steps of Structured Product Issued by  CoE. 

 

In Figure 13 we present a detailed view of new product approval process which assesses and qualifies every new 
product distributed by Barclays Plc. The key steps of this overall assessment are: 

1. “Ideas Generation” step corresponds to the product design phase where CoE conceives and plans new 
products production. These draft products are presented to key functions (Compliance, Risk ...) to be 
reviewed, challenged and if necessary aligned to become eligible to retail distribution. 

2. “Clients Need identification” step corresponds to assess the adequacy between customers’ needs and 
products offer, 

3. “NPA agreement” corresponds of the full certification process by all function stakeholders (IT, Human 
Resources, Finance ...). This process establishes that risk factors are identified and under control either 
from operational point of view or from internal policies. 

4. “Trade, issuance & settlement” step is a key step for Market Risk. The new product is eligible to retail 
distribution and so BPLC has to constitute a stock, this position is borrowed on BPLC’s balance sheet for 
a given period (a.k.a. “sales period”) and any residual position has to be sold at the end of this period. 
Thus BPLC borrows a potential market risk by trading for given specific market conditions which may 
induce potential losses if a residual position remains and if market conditions worsen. Hence every new 
trade must be assessed and authorized before dealing by a dedicated process. This risk is called 
“Pipeline Risk” and will be presented in §3.4. 

5. “Pre-launch” step corresponds to the generation of official product documentation and its review by 
regulatory authorities (e.g. AMF for France). But also to the preparation of all marketing materials to 
prepare the product selling campaign. 

6. “Selling Period” step corresponds to the product selling period which is finely monitored either in term of 
risk management or profitability. 
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Figure 13: Stepping process followed for each new pr oduct launch 

 

As said in previous paragraph, CoE is in charge of all activities and so must integrate all essential functions to 
manage secondary market (see Figure 14): 

1. “Repurchases Management” function: like for Mutual Funds, customers have the right to repurchase their 
investments at every moment for a given living product. The counterpart is customers are exposed to 
market variations and their consequences on product’s price. Hence CoE organizes this activity and act 
as financial intermediate between end customers and product’s issuer. By the way, this activity generates 
a residual market risk due to issuers’ constraints (minimal amount) and intraday market variations (i.e. 
elapsed time between customers repurchase order and selling to the issuer). This risk will be reviewed in 
§3.4. 

2. “Price controls” function: Structured products may have complex valuation process due to option or/and 
credit stacked structure and a high sensitivity to market conditions variations. Moreover most of structured 
products are OTC and quotes are produced only by issuers. All these facts together give an important 
issue regarding the price evaluation of these products. Hence regulatory authorities ask for financial 
intermediates to counter valuate this kind of product to assess the price fairness. CoE establishes a 
pricing process based on two items: an internal pricing process with a dedicated team and a valuation 
with help of external pricing providers such as Euro VL, SunGard or Pricing Partners. 

3. “Risk Management” function assesses risks generated by CoE activities, put in place a control plan to 
limit operational risk, and reports to Barclays Group the risk statement. 
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Figure 14: Key functions concerning living products . 

 

 

3.4 RISK EXPOSURE GENERATED BY IS ACTIVITIES 

 

3.4.1 Risk Analysis of the generated Risk Exposure 

In previous paragraph we started with a brief description of potential risks generated by residual positions either at 
product issuance (primary market) or during its life after closing customers’ subscriptions (secondary market). In 
this section we will investigate further the nature of risk exposures generated by these activities to produce a 
detailed analysis. Thereafter its conclusions will be helpful to define the underlying risk nature and its dynamics. 
This will drive our theoretical researches to define all the necessary components to produce a risk framework 
such as pricing model, assumptions, limits and calibration process. 

 

At first let’s start our analysis by a short description of underlying risks and we will use following figures to 
illustrate the risk induced by a residual position at a given time (B) and the variation of the market value (A), either 
for the primary market (Figure 15) or secondary market (Figure 16). 

 

Figure 15 represents the potential risk generated on primary market and we can describe it as follows: 

1. CoE starts the stock constitution at time t a=  after getting the NPA certification and the authorization to 
trade. This induces a market position for a given price and market conditions which can either match the 
whole target commercial objective (100 in figure) or a part of it (symbolized by line “Bank Position”), 

2. Sales Period will finish at time t b=  where all residual position must be sold whatever the price. The 
reason of such decision found its sources in Barclays internal risk rules and IFRS constraints: retail 
activities are not allowed to keep products with Market Values on On-Sheet Balance. The exception is the 
sales period where commitments on this category of products are listed on Off-Sheet Balance. Moreover 
structured products are initialized at t b=  to issue the note with underlying credit product and to define 
reference level(s) (i.e. “the strike level”) used by future conditions. 
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3. During the interval ] [,a b , the risk exposure is materialized by the difference 

Risk exposure authorized deals sales= −∑ ∑ . Thus the risk exposure is essentially driven by 

customers’ behaviour and we can define this hazardous as the risk trigger event (see §3.2.2).  
4. The cost/profit linked to this risk exposure is driven by price variations regarding market conditions, 

materialized by the difference Price Price Pricet a∆ = −  with ] [,t a b∈  and stock constituted only at 

t a= . Hence we can define the price variations as the risk realization event. 
5. Thus the compounding of both events gives the primary pipeline risk, i.e. the risk of potential losses 

induced by the residual expositions. 

 

 
Figure 15: Representation of potential on primary m arket. 

 

Figure 16 summarizes the potential risk generated by residual positions in secondary market. Please note that the 
underlying principles are the same as those presented in Figure 15 but with different conditions: 

1. At time t b= , the subscriptions are closed and only outflows can proceed. Moreover all reference 
conditions are initialized. 

2. The product will live until t c=  which corresponds to product’s contractual maturity where the final 
redemption may proceed regarding the structure (presence of early redemption conditions, final 
conditions on final payments ...). 

3. During the interval ] [,b c  the customers may proceed to repurchases, i.e. sell the bought product for a 

given reference price to CoE. 

4. The CoE resells the product to primary issuer either instantaneously or after a delay 2t∆ . The presence 
of a potential delay will depend on issuer’s constraints on secondary market (generally a minimal amount 
for treating the repurchases). Hence the customer behaviour will have a strong incidence on risk 
exposure generation regarding issuer’s constraints and so we can describe it as risk trigger event. 

5. According to delay 2t∆ , market conditions may evolve a lot with the implicit consequences on product’s 

price. The greater the delay 2t∆  is, the more the cost may be. Thus we can design this item as the risk 
materialization event. 

6. As previously the compounding of both events will give the secondary pipeline risk. 
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Figure 16: Representation of potential risk on seco ndary market 

 

Please note that we represented only a long selling position which is the only one authorized by Barclays 
authorities and so will constitute one of the core assumption in current dissertation. 

 

These two linear descriptions give us a taste of what are the constituents of pipeline risk and how they influence 
the risk dynamic. Hence the pipeline risk structure is compounded by two constituents: a risk exposure driven by 
customers’ behaviour (conditioned by its personal situation and the interactions with sales people) and a potential 
loss driven by underlying market conditions. However they produce only a slight insight of the underlying dynamic 
and its factors. 

 

To go further, we have to solve pending questions to appreciate fully the dynamic of pipeline risk and so produce 
an accurate risk management framework. These unsolved questions can be categorized in three sets: the first 
one will concern the customer behaviour to determine its main drivers, the second one will focus on the 
underlying pricing model of structured products and the last one will concern the potential dependency links either 
among these two random events or with external events. 

 

The first set of questions will be related to the customer behaviour as a trigger event: 

1. What are the underlying drivers which influence the customer behaviour? This question will focus our 
attention on how to model a future customer behaviour and hence its impact on final risk exposure. As we 
will see in next chapter, there are several ways to appreciate and estimate future customer behaviour and 
each approach has its own specificities and difficulties. 

2. Will a customer have the same behaviour on primary or secondary market? The two situations are 
different because on primary market the customer estimates the potential yield generated by the 
structured products and on secondary market, the customer estimates the stopping time of its 
investments. Hence there is a significant difference regarding the arbitrage position which may be 
influenced by several factors which may be specific to a customer or due to a contextual situation. 

 

The second set of questions will focus on the realization event (i.e. the structured product’s price): 

1. What are the factors which influence the price of such products? Many factors may influence a product’s 
price according to its structure. Some are common (such as interest rates, credit quality or remaining time 
to maturity), others are specific (e.g. an equity linked note will be sensitive to underlying factor level unlike 
a credit linked note without option). 

2. What kind of model is eligible to a risk framework? To estimate a structured product requires the use a 
pricing model. Since (Black, et al., 1973) and (Merton, 1976), pricing models extended a lot regarding the 
payoff structure, the underlying composition or the way to integrate hazardous market. Moreover the 
markets development generated a richer and richer environment either in term of data or calculation 
capacities and influenced at last the pricing methods used by financial intermediates. Lastly the past three 
decades produced a lot of financial crisis with more or less impacts and helped to extend existing or 
create new pricing model integrating lessons from the past. 

3. How the market type may influence the price? There is a fundamental difference between the market 
types: on primary market, all structured products are bought in forward while they are living in secondary 
market. This difference will have consequences on relevant sensitivity factors and the pricing method to 
use. 

 

And the last set of questions will deal with the relationship(s) between these two variables: 

1. How market conditions may influence a customer decision? The past thirty years, information became 
more and more available with a significant increase due to the use of internet. Hence customers as 
economic agents are more and more aware of market conditions nearly instantly. But how it can influence 
its behaviour and its decisions? Moreover financial cycles are punctuated by crises which generate an 
increase of anxiogenic information. To illustrate this point, we use Google Trends, a tool which supplies 
historical search data concerning the presence of keywords in Google queries and news online. Figure 17 
represents these data for the “Lehman Brothers” keywords and we can notice that historical data are 
punctuated by peaks closely from trigger events (flagged by letters). Hence we have to question 
ourselves if customer behaviour remain the same whatever the market conditions. If not, what will be the 
differences between normal or distressed market conditions? Lastly a structured product will integrate 
market conditions in its price and so how can its variations contribute to a cascading effect on price? 
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2. How the commercial offer composition may generate an interest from customers? This question highlights 
several points concerning a commercial offer. The first concern is the products composition and the 
underlying investment options proposed. Thus, the more adjusted the offer is, the more a customer may 
be interested. So a dedicated analysis has to be conducted to optimize the commercial offer. The second 
concern is how to drive the interaction between customers and the commercial taskforce. This is a very 
important point because it corresponds to the time point which establishes the contractual commitments 
between Barclays and its customers. It is also the reason why most of regulators focus their attention on 
how sales are conducted (see (AMF, 2010) and (ACP, 2010)). 

 

 
Figure 17: Google queries analysis on keywords “ Lehman brothers” (left graphic), where query numbers are scaled 
based on the relative average search traffic (i.e. “1.0”). On Right, Google Trends linked referred web  pages with 
events regarding the query numbers. For instance, “ C” referred to the Lehman’s bankruptcy day where qu ery 
numbers were forty higher than the average search t raffic. 

 

To get a clearer picture, we try to represent the dynamic structure and its underlying factors in Figure 18. To do 
this, we started from the simple equation of pipeline risk to define the random variables which will influence it and 
we add the dynamic factors highlighted with previous set of questions.  

 

Regarding the dynamic factors, we classify them in the following three categories: 

• Exogenous factors: all items produced by the environment at a given period and which have an influence 
on random variables. We define also two sub categories according to the frequency of such factors 
(structural or punctual). 

• Endogenous factors: these are all personal factors specific to a customer situation. As previously we 
distinguished these factors according to their frequency. 

• Commercial factors: these represent the dynamic generated by a commercial taskforce and the product 
packaging. 

 

Next, we add the dynamic impulses generated by these dynamic factors on random variables to highlight the 
integration process and the potential correlations between factors, random variables or both. Looking at the whole 
picture we can distinguish several cases according to their complexities. The simplest case is represented by the 
interaction between the “price estimation” random variable and the exogenous factors which can be collected 
simply and directly to be used for price integration. The opposite case is represented by the influence of 
exogenous factors on the “customer behaviour” random variable where we can define three levels of integration: 
all of these are indirect and may influence a customer on several ways with more or less measurable aspects: 

• The less measurable is the customer sensitivity to global anxiogenic information provided by Medias. This 
will essentially depend on two factors: the customer sensitivity to risk (i.e. its risk appetite) and its capacity 
to be informed. And Figure 17 is a good representation of investors’ capacity to be informed in real time 
with use of internet. 

• The intermediate aspect will be related to the influence of exogenous factors on customer’s investment 
capacity represented by endogenous factors. For instance, a crisis may significantly reduce a customer 
investment capacity either due to unemployment or income’s drop through its variable constituent(s). 
However these impacts will spread more or less quickly and will create a delay between the market event 
and the realized impacts. 
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• And the most measurable aspect will be the estimated prices of customer’s investments: these are 
updated on a regular basis (daily or weekly) and integrate exogenous phenomena. 

 

The final touch integrates the commercial capacity of a retail network to interact with its customers and help them 
to invest on appropriate investment supports. Nonetheless the composition of commercial offer is dependent on 
data provided willingly by customers regarding their personal information and so their investment capacity and 
appetite. Hence it is indirectly connected to exogenous factors and their impacts on a customer’s situation as 
represented in Figure 18. Please note that updating the data can suffer a material delay which may have 
important commercial impact by creating an inaccurate offer. 

 

 
Figure 18: Structural representation of Pipeline Risk ’s underlying dynamic. 

 

At this stage, we performed a static risk analysis which gives a picture of intrinsic value drivers of pipeline risk. 
The next step of the process modelling will be to integrate time value so to estimate the potential risk linked to 
option structure either on structured product or customer. However this may be more or less complex depending 
on the integrated factors and correlations as we described it in previous static analysis. 

 

To give a flavour of the potential model complexity, we represented several model cases according to the market 
type, the used random generator and the potential relationship(s) between the two random variables. We 
summarized the key points of this intuition regarding the items in panel on the next page: 
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Market type Random item Comments 

Primary 

(Figure 15) 

Market Price 
We figure out the forecasted values regarding two random generators: 

1. Either a Gaussian process to give an average picture of price 
dispersion and hence the potential risk of losses. 

2. A Jump process to give a more realistic picture of potential price 
dispersion. In current figure, we represented only one path with a one 

rare negative event (see 1t∆ ). 

From a mathematical point of view, both processes described belong to the 
Lévy Process Family and may be decomposed following the Lévy-Ito theorem. 
The difference between the two processes is the lack of discontinuous 
component in first one, which has lots of consequences regarding the notion of 
market completeness and the pricing process. 

Customer 

Behavior 

We figure out the influence of endogenous and commercial factors on 
customer’s decision to invest or not, which is related to a financial arbitrage 
with no implication but to miss an opportunity. This sum of decisions will have 
a direct consequence on sales level and on the final residual risk exposure.  

According to the number of customers, this phenomenon tends to be normal 
following the central limit theorem and so we can estimate the risk exposure 
dispersion for a given confidence level. Some abnormalities may appear due to 
extreme life events like decease or inappropriate commercial offer and may 
downsize significantly the sales level if it deals with a relevant number of 
customers.  

In current figure, we limited the customer behavior impact by drawing a normal 
dispersion of sales level. 

Correlation(s) We described in Figure 18 the potential impulses generated by exogenous 
factors and how they may influence a customer behavior. We represented in 
Figure 15 this phenomenon with two cases: 

1. The first is the absence of correlation(s) as described in Figure 18 and 
so the customer acts “normally”. Hence we can have an estimation of 
risk exposure dispersion at maturity and define a worst case according 
a confidence level. 

2. The second case is 100% correlation factor and we established the 

second case out with help of the rare event represented by 1t∆  delay 
and how it may influence customers (B, bold gray plain line). Thus the 
most extreme case will be a sales stop which definitively defines the 
residual risk exposure. 

These two cases highlight several issues: the first one is the presence or not of 
correlations and the second one is how to integrate a correlation structure in 
terms of dynamic and weighting. 

Secondary 

(Figure 16) 

Market Price Same as previously 

Customer 

Behavior 

We represented the customer arbitrage following the principles described for 
primary market case. However the measured behavior has a significant 
difference on psychological point of view because it measures the arbitrage on 
an underlying risk. Hence a customer may be more sensitive and acts in a 
more drastically manner which may promote abnormalities appearance. 

Correlation(s) This is represented as previously but it integrates the difference of measured 

behavior. A customer may act in a faster way with a delay 2 1t t∆ ≤∆  

 

In this section, we analysed the pipeline risk by defining a set of questions and trying to fill the empty lines with 
the help of our preliminary investigations. We presented at first the phenomenon according to the market type; 
next step we described the structure of underlying factors and their potential links; and lastly the propagation of 
random events through such a structure according to the random type. From an ideal perspective, all items must 
be integrated to manage fully the pipeline risk and that’s what we try to demonstrate in current dissertation. 
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3.4.2 Defining a Risk Appetite Measure in Complex E nvironment 

All important elements concerning the pipeline risk can be divided into several constraint categories: 

• First we presented a quick overview of risk definition and how it has been integrated by main actors of 
financial markets (financial institutions, institutional investors, regulators ...). This will help to define 
general context and constraints that we will call “The Set of General Constraints”. 

• Second we set up the industrial context in terms of business strategy, commercial objectives and also in 
terms of internal risk rules. All these elements will therefore constitute the “The Set of Local Constraints”. 

• And lastly we presented a macro risk analysis to highlight the essential technical elements which must be 
analysed and integrated to get a complete risk valuation and to define a risk hedging strategy. Thereby 
these elements will constitute “The Set of Technical Constraints”. 

 

We have so far presented, analysed and discussed these elements from a theoretical point of view. Now we have 
to define the implementation strategy to fulfil our main goal: defining a risk measure which is in line with most of 
reviewed principles and rules presented in previous sections.  

 

In this purpose, we will review them to determine those which are integrated or not according to the original set of 
constraints: 

 

3.4.2.1 General constraints:  

 

These are the most important because they are followed by every actor. Most of them are dictated by financial 
regulators and establish the core rules followed by each financial actor. In Barclays’ situation, Paris Branch is 
under three regulatory authorities: FSA (the UK financial regulator), AMF (French financial regulator) and ACP 
(French Bank and Insurance regulator).  

 

The first one imposes that every bank must follow Basel 2 rules which define a set of risk measures. The most 
important and most used is the Value-at-Risk measure and hence this will be our first choice to be in adequacy 
with FSA principles. 

 

The two French regulators define a set of rules to protect customers’ best interest. Recently they published public 
opinions (i.e. new constraints) on complex investment supports. This aims to canalize the inner complexity of 
such products and to define general rules on sales practices compliant with MIF rules. These rules are more 
stringent than those enacted by FSA, symbolized by the Acronym KYC (for “Know Your Clients”) because it 
defines new additional constraints in term of customer information, audit trail, required guarantees and pricing 
fairness.  

 

Hence these rules must belong to the core constraints to be integrated. In Barclays’ situation, all principles 
governed by FSA are under Group Risk’s perimeter and followed the “Identify, assess, control, report, manage 
and challenge” principle. And customers’ protection and sales practices are assessed and controlled by Group 
Compliance. Thus these essential constraints are already integrated in Barclays’ core rules defined in its General 
Risk Framework. 

 

3.4.2.2 Local Constraints:  

 

From business point of view, Investment Solutions represent one of the cornerstones of Premier Strategy due to 
its importance in expected income. However the marketed products are very volatile and carry a more important 
part of risk comparing to classical investment supports.  

 

This issue is apprehended in the General Risk Framework provided by Barclays’ Group Risk which set a risk 
segregation and valuation of each risk component. Each business is in charge to adapt and implement this risk 
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framework and periodic audits practiced by Risk Group insure that the implemented risk framework encompasses 
and aggregates all generated risks.  

 

Regarding the pipeline risk, we can identify three important risk categories: 

• Operation risk: this risk encompasses from operational errors to frauds, the last one being banks’ main 
concern since the infamous rogue trading performed by Jérome Kerviel. In case of structured products, it 
requires to hire dedicated professionals with the granted power to perform market operations. This 
implies to define a limited action perimeter in terms of authorized products and trading limits, but also to 
define a set of controls and deals reviews to assess their conformity. This dictates also a clear 
segregation of duties between front office (i.e. the market operators and first level controllers), middle 
office (i.e. the second level of controllers) and back office (i.e. settlements and cash flows managers). 
 

• Credit Risk: this risk includes all issues related to a structured product’s default event (i.e. a non-respect 
of contractual payments). From a structural point of view, a credit event may rise at several levels: the 
first level deals with the product’s issuer (i.e. the counterpart), the second level is related to the issuer’s 
external financial intermediates which provide one or more financial components integrated into the 
product’s structure (e.g. liquidity support, derivatives, insurance, guarantee(s) ...) and the third level 
corresponds to a legal distortion on contractual documentation. 
 

• Market Risk: this risk includes all events which can influence negatively the value of a financial product 
when a risk exposure is reported. We explained in §3.4 that risk exposure is reported either when a 
traded structured product is not entirely sold (primary market) or when a customer repurchase has not 
been sold back to the product’s issuer (secondary market). Hence these two categories of risk exposures 
are sensitive to the product’s price variations and so may generate consequent losses. This is generated 
by components participating into the product’s structure, i.e. the liquidity support and derivatives. The 
nature of introduced market risks essentially depend on the component nature. For instance, a structured 
product integrating a bond as liquidity support and a structured swap using an equity underlying will 
introduce several market risks such as sensitivities to interest rates, credit rating, and equity sensitivities. 
Regarding derivatives, their pricings will be driven by the fact that their inner strike values are defined 
(secondary market) or not (primary market). 

 

Both Operation and Credit Risks are well integrated by Barclays Group and defined into its General Risk 
Framework. Thereby existing policies define mandatory rules, constraints and reports that every business must 
implement: dedicated IT reporting systems collect evaluate and aggregate all contracted risk; periodical reviews 
assess and challenge the implementations validity; exceptional business situations are reviewed by governance 
instances to mitigate them either by temporary dispensations, waivers or unwinds. Frauds are prevented or 
managed by regular audits provided by Barclays Internal Audit. 

 

Regarding Market Risk, Barclays Group defined two situations: a standard risk framework for usual risks similar to 
those defined for Operation and Credit Risks, and general policies for more unusual products. This last case gives 
more freedom in risk definition and measure because they are locally defined by risk teams. However followed 
principles and implemented models are reviewed and challenged by Group Market Risk in order to be listed and 
integrated into existing risk framework. This bottom-up process is common into Anglo-Saxon financial institutions 
to help and support business development. The principle settles on the fact that businesses are more aware of 
underlying risks generated by their most unusual activities and it allows the businesses to achieve their objectives 
by letting them defining their risk measures. Hence the risk integration doesn’t stop the business development but 
canalizes it by adapting limits, according to the risk management experiences and the granted risk appetite limit. 

 

The Investment Solutions are led by this process according to the unusual business nature. And the purpose of 
current dissertation is to describe the construction of an appropriate market risk measure following the technical 
constraints we will select. 

 

3.4.2.3 Technical constraints 

 

At this stage, we will proceed to a merging operation to produce an accurate risk measure of pipeline risk by 
selecting appropriate components regarding the available knowledge and resources. We will use a pragmatic 
approach due to this last (but not least) constraint. 
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First we will select the VaR methodology presented in §3.2.3 as the backbone of the future risk framework. This 
method has shown its strengths since its first presentation by JPMorgan, especially in results due to its simple 
and structured calculation process. However we will adapt the steps of VaR methodology to Pipeline Risk 
Measurement as follows: 

1. Mark the Structured Products positions exposed to market movement, 
2. Measure their price sensitivities for a given set of underlying risk factors, 
3. Estimate the risk factors dispersion for a given confidence level, 
4. And finally evaluate the potential losses. 

 

Now let’s analyse each step to estimate the technical requirements and constraints. 

 

3.4.2.3.1 Mark the Structured Products Risk Exposure 

 

Regarding the Pipeline analysis presented in §3.4, a residual exposition is clearly driven by customers’ appetite 
for a given structured product. A preliminary literature review shows that the customer behaviour toward risk has 
been deeply analysed by two different schools regarding the perception of underlying returns/risks by the investor. 

They are demonstrating: 

1. Either a linear relationship between real and perceived returns: this field was studied at first by John Von 
Neumann and Oskar Morgenstern in their book “Theory of Games and Economic Behaviour” (Von 
Neumann, et al., 1944) and set up several principles such as the existence of an expected utility function 
used by investors to drive their investments. These principles set up the fundamentals of modern 
monetary principles spread by the economical school of Chicago. The most well-known application is the 
modern portfolio theory set up by Harry Markowitz (Markovitz, 1952) who defined a risk limit regarding the 
investor risk perception. To do this, Markowitz defined a utility function based on the following constraints: 
maximize the expected return of the investment portfolio while minimizing its underlying risks. 
 

2. Or A nonlinear relationship between the real return and the investor perception: this point was raised by 
Maurice Allais (Allais, 1953) when he reviewed the cases presented by Von Neumann. He structured 
them in a way to show a distortion of investor behaviour which can’t respect the core principles of Von 
Neumann’s theory. These cases are known as the “Allais paradoxes” and were exploited further by Daniel 
Kahneman and Amos Tversky to define the “Prospect Theory” (Kahneman, et al., 1979) (Tversky, et al., 
1992) and the “Framing Decision” (Tversky, et al., 1981). These two principles show a nonlinear 
relationship between the real underlying risks and their perception by investors. They were applied in 
finance field to give birth to the “behavioural finance” either to estimate the risk appetite of investors for a 
given investment or to price more efficiently options’ prices regarding the investors’ interactions (Zanotti, 
et al., 2010). 

 

Integrating a customer behaviour model (whatever the selected methodology) can be achieved by following the 
next steps: 

1. Collect customers’ data and analyse them to categorize customers and to define their essential drivers 
(e.g. capital protection, investment capacity, risk profile and so on ...), 

2. Define a relevant customer behaviour model by determining or not the presence of a linear perception 
and adapt it to current structure, 

3. Fitting the data to the selected model and checking the forecasting capacity, 
4. Integrate the model process into an industrial process to deliver the required performance. 

 

Regarding the Barclays’ context, the integration of such model raises several issues: 

• Sample size: most of applied examples show that such models require a lot of refined data to get efficient 
results. But Barclays France has a tiny customer population (near 150k customers) comparing to other 
banks. Preliminary studies showed the presence of a customer effect on SP activity however results are 
subject to biases regarding the population size. Hence a sophisticated model may see its added value 
spoiled by random effects due to a lack of convergence and so may generate model errors with significant 
financial consequences. 
 

• Industrialization process: Adapt the defined model will inevitably require the definition of a project 
structure. Indeed it will require the collaboration of several actors (CoE, Marketing, Risk, IT, HR, 
Compliance and so on) and so we have to define the goals and responsibilities of each actor. Moreover 
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the project advancement must be monitored regularly to determine and solve the potential issues / dead 
ends / bottlenecks to achieve the final objectives. Such management structure will be highly time 
consuming and may be subject to important delays. 
 

• Resource allocation: defining a project structure implies to allocate an identified budget in terms of 
money, equipment or human resources. This will be challenged by Barclays Group by comparing 1) the 
estimated costs and the potential incomes generated by this project and 2) its priority versus current 
projects plan. Nowadays preliminary studies proved only the allocation of insufficient budget to achieve 
complete model integration. 
 

• Confidentiality: customers represent the core business component of Barclays France and the Premier 
Strategy details can’t be publicly communicated without the approvals of Compliance Direction and 
Executive Committee Members. Thereby only a simplified version of applied model can be communicated 
without restriction. 

 

Due to these issues, we won’t integrate at this stage dynamic customer behaviours into Pipeline Risk Framework 
and will assume only deterministic risk exposure profiles all along this dissertation. However we will investigate 
the impact of customer behaviour based on “what-if” scenarios in future developments. 

 

3.4.2.3.2 Measure their price sensitivities for a given set of underlying risk factors 

 

The original Black-Scholes-Merton (BSM) pricing model defined a way to estimate the price of a European option 
but also its sensitivities with respect of underlying factors variations by estimating the appropriate partial 
derivatives. These sensitivity factors are nowadays used widely by financial investors to get a proxy result of their 
potential losses and became a de facto cornerstone for VaR valuation. 

 

However the complexity of derivative products increased a lot since these old days and BSM can’t encompass 
such complexity due to its inner limitations. Nowadays the finance industry increased its knowledge of underlying 
random processes and developed several numerical processes to improve its pricing capacity with more or less 
successes and limitations.  

 

Specifications of future pricing component must take into account the following constraints: 

• To encompass most of payoff structures from the simplest to the most complex, 
• To deliver stable price and sensitivity factors, 
• To integrate any random generators of the Levy Family to get a better picture of potential risk, 
• To be efficient and with a low maintenance cost. 

 

There is a lot of available literature and we will present later in current dissertation the selected approach and how 
we implemented it regarding standard methodologies.  

 

3.4.2.3.3 Estimate the risk factors dispersion for a given confidence level 

 

We explored previously the importance of sensitivity factors to estimate future potential losses but it is linked also 
to the way we forecast the future variations of underlying factors.  

 

An overview of current technical knowledge show several relevant points: 

• A predominance of Monte Carlo based approach to estimate the dispersion at risk regarding a confidence 
level, 

• The generated paths are generated either with help of  
o Market models (Libor model for interest rates, GMB for stocks, SABR for highly volatile assets ...), 
o Econometrical models (AR, MA, ARMA family, GARCH and so on), 
o Or Markovian models (Regime switching process) 

• The model can be univariate or multivariate. In last case, a Variance-Covariance matrix has to be 
integrated (with or without correlation) with static/dynamic correlation structure. 
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Hence we will select the most appropriate model according to the modelled factor to get the most robust result. 
This selection and its application will be presented later in current dissertation (see §4and §5). 

 

3.4.2.3.4 Evaluate the potential losses 

 

This section will be divided in two steps:  

1. The way to combine the implied factors to estimate potential losses and to produce the Risk Measure (i.e. 
VaR). 

2. The definition of the methodology, used to calibrate model parameters and to integrate market data. 

 

To do this requires selecting relevant tools: 

• To collect necessary market data, 
• To produce the required calculations 
• To report risk levels and their underlying constituents.  

 

We will present the way we solved these issues in §5. 
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4. THEORITICAL REVIEW OF OPTION PRICING PRINCIPLES 

In this section, we will review most of theoretical pricing principles to develop a pricing strategy in line with the 
constraints presented in §3.4.2. 

 

In first part, we will present most important pricing theories, methods and paradigm changes since the well-known 
“Black, Scholes and Merton” Model (see (Black, et al., 1973) and (Merton, 1973)). This presentation will focus 
mainly on equity markets specificities for the sake of clarity and we will describe only essential differences among 
the various assets. In the second part, we will review the Fourier Transform principles, properties and uses in 
statistics and probability application fields. The third part will focus on the first application of Fourier Transform in 
finance field by presenting the essential points of Carr and Madan paper on European Option Pricing by FT (see 
(Carr, et al., 1999)) with its pros and cons. And at last, the fourth part will be dedicated to the presentation of the 
Fourier Space Time-stepping methodology and its uses in Option Pricing. 

 

4.1 PRICING MODELS AT GLANCE 

We start this section by a short review of Black-Scholes-Merton (BSM) pricing model which established the core 
principles of most of model pricing. By defining a theoretical portfolio composed of a variable asset, a risk-free 
asset and a number of option contract to hedge the variable asset, BSM defined the theoretical framework 
employed in Modern Mathematical Finance.  

 

But it also defined the basic structure of every pricing model by defining: 

1. A payoff structure ( ( ) ( ), max ,0S K S Kϕ = − ) where S  represents the variable asset , K  the strike 

and ( ),S Kϕ  the payoff function regarding S  and K , 

2. A Random Generator (e.g. the asset follows a Geometric Brownian Motion stochastic process known as 
GBM), 

3. A numerical method to solve the pricing structure (e.g. use of heat equation solutions to get the close 
formula of the PDE defined by BSM), 

4. And an implicit calibration process to fit the model to market data (introducing financial parameters). 

 

We don’t investigate further the mathematical demonstration because it is well documented and reviewed in most 
of mathematical finance courses. However we will replace this model into the historical timeline to highlight the 
function of this model as baseline of modern pricing models. And we will base our comments on the Figure 19 to 
give the intuition of most of developments since the BSM model. 

 

The first field of investigation is the extension of BSM Model with the development of more and more complex 
option structure either by developing mono payoff structure (American, Asian, Digital and more Exotic options), or 
by using one or several underlying assets to trigger the payoff (introduction of correlation matrix) (see (Hull, 2005) 
to investigate further). These developments induced the development of more and more complex models based 
on the BSM scheme. However these developments showed the limits of BSM paradigm and required an 
investigation in other research areas. 

 

The second field of investigation is related to the random process and its embedded random generator. Indeed 
the GBM follows a log-normal stochastic process whose properties and developments are well known since Ito’s 
works. However it shows several limitations especially comparing to the nature of replicated assets. The GBM 
process assumes that the underlying asset follows a continuous process. Nowadays several studies showed that 
this assumption is false. For instance, the distribution of equity indices is leptokurtic and showed lots of 
discontinuities (especially in period of distressed markets).  

 

Merton (Merton, 1976) produced the first study on alternative random generator with the development of GBM 
process with oriented jumps. The second important investigation was done by Heston (Heston, 1993) who defined 
GBM model with an embedded stochastic volatility. This model aimed to integrate the particular nature of equity 
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assets’ volatility. Please note that this work corresponds to the first investigation of pricing model with help of 
Fourier Transform and so the use of C  space. More recently, modern finance researchers discovered the 
properties of the Lévy Process Family and since the end of 90’s, lots of new stochastic processes were developed 
and integrated in modern pricing models (see (Kou, 2002), (Kou, et al., 2004), (Barndorff-Nielsen, 1998) and 
Stochastic processes collected in Panel 5 to get a flavour). 

 

 
Figure 19: Pricing Model Structure and related method s 

 

The third field of investigation deals with numerical methodologies, i.e. the counterpart of theoretical 
demonstrations. Indeed most of papers compile lots of equations however their implementations into real 

algorithms may be very challenging. For instance, the formula of a Matrix A can be simply written as 1−A  
however the implementation of an accurate numerical solution will require lots of skills and craftiness. In our 
examples, the matrix form will impact deeply the choice of the employed algorithm. Thereby we won’t use the 
same algorithm regarding the matrix form (more or less symmetric, flattened or narrowed). Moreover the choice of 
an algorithm will also depend on its performance in terms of pricing convergence and time consumption. Some 
solutions require lots of IT resources to get accurate results and so can be very expensive. This can be the 
source of important dilemma but as market professionals say, “If you give peanuts, you get monkeys”.  

 

Let’s go back to the developments in modern financial model and review numerical solutions developed since the 
BSM model. The first approach was the use of Partial Differential Equations (PDE) to define a theoretical solution 
of pricing issue as did Black and Scholes. With smartness, some of these PDE can be solved with closed-form 
solutions; however it is near impossible to find closed form solutions on complex PDEs. Hence most of papers 
use the extension of “Finite Difference Method”, adapted for solving Stochastic Differential Equations (SDE). This 
is referred in stochastic area as “Kolmogorov equations” which defines a solving process either by backward or 
forward induction. Hence we defined a grid to represent the asset diffusion and by extension the value of payoff.  

 

The development of exotic options so-called “path dependent” promoted the development of lattice / grid solutions 
which mimics the diffusion process of the underlying asset with help of a tree representation (see (Cox, et al., 
1979) and (Hull, 2005) for further investigations). But the most used technique remains the Monte Carlo Method 
(MCM) due to its simplicity of understanding and its statistical properties in terms of convergence (see 
(Glasserman, 2004)). However this technique presents some lacks when used to estimate the sensitivity factors 
of complex option structure and lots of studies aimed to improve the MCM efficiency (see (Fries, 2005), (Giles, et 
al., 2006) and (Giles, 2007)).  
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Following the work produced by Heston, new developments investigated the use of Fourier Transform and the 
most representative is the study produce by Carr and Madan (Carr, et al., 1999) who demonstrated how to price a 
European Option with help of Fourier Transform. Since this paper, new approaches were developed to extend this 
study as we will see with the developments published by (Surkov, 2009). 

 

Process Formula 

Geometric Brownian Motion 
(GBM) 

( )
( ) ( )dS t

dt dW
S

t
t

µ σ= +  

GBM with Jump 

(Merton, 1976)  ( ) ( )t

t

dS
dt d t J

S
W d tµ σ= + +  

GBM with Stochastic 
Volatility 

(Heston, 1993)  

( )
( ) ( ) ( )S

dS t
dt t d

t
t

S
Wµ υ= +  

( ) ( )( ) ( ) ( )d t t dt t dW tυυ κ σθ υ υ= − +  

Where ( ) ( )SdW t dW dt tυ ρ=  

Exponential Levy model ( ) ( ) ( )0 X tS t S e=  

Variance Gamma 

(Madan, et al., 1990)  

(Madan, et al., 1998)  

 

( )
( ) ( )dt dt dtg dW

dS t
g

S
g g dZ

t
+ == +µ µσ σ  

Where ( ),dt d dtg t→ Γ λ ν  or ( ) ( ); ;dtg t dt t= + , − ,ɶ ɶ ɶ ɶγ µ σ γ µ σ  

We may define the dtg  PDF such as: 

( )
22

2

dtdt g

dtf g
g e

dt

−
 
 

   Γ  


=



ɶ ɶɶ
ɶ ɶɶɶ

ɶ ɶ

ɶ

µ µµ
σ σσµ

σ µ
σ

 

Panel 5: Main Stochastic Processes 

 

And the last field of study deals with the calibration of pricing models with market data. This is the meeting point of 
financial models, numerical solution and market realities. Indeed a good pricing model is widely adopted by 
practitioners because it combines simplicity of use, speediness and efficient price estimation.  

These are the most important reasons of BSM model adoption by market practitioners. The practical use of BSM 
by traders developed the famous “implied volatility”, i.e. the volatility level corresponding to the BSM inversion 
according to fixed market conditions. However its overuse showed also its lacks especially during the 1987 equity 
crash which illustrated that equity indices were not continuous processes.  

This major event led to investigate further existing models to improve their accuracies and their fits to market 
data. This contributed to the development of a new risk life cycle as illustrated in Panel 3. This issue was 
integrated as major constraints of famous pricing models such as the BGM Interest Rate Model (Brace, et al., 
1997) whose declinations gave the famous LIBOR Interest Rate model, or the Hull-White Interest Rate model 
(one and two factors) (Hull, et al., 1990) (Hull, et al., 1996). 

 

Regarding the specifications developed in §3.4.2.3, we will now investigate further the use of Fourier Transform in 
Option Pricing and how it can help us to deliver accurate evaluations for Structured Products. 
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4.2 FOURIER TRANSFORM (FT) REVIEW 

This part aims to present most important FT properties to help readers without prior knowledge on this 
mathematical tool. Thus we will review the FT definition, properties and constraints. We will also review its 
extension in statistical and probability fields with the presentation of characteristic function. 

Please see (Matsuda, 2004) for a more detailed presentation. 

4.2.1 Definition 

The Fourier Transform is a mathematical operation that “transforms” one complex-valued function of a real 
variable into another. Most significant uses are found in physic study, wave motion or optics field due to its 
capacity as integrand operator. FT may be continuous or discrete: both operations have the same properties but 
the second is more useful for its ease and integration in algorithms. However it has a sampling issue raised from 
the discretization process (see §4.2.4). 

 

In following panel we present several Continuous FT (CFT) formulas with the first formula as the general FT 

formula and others as specialized formulas depending on values of parameters ( ),a b . Please note that a  and b  

are selected on a conventional basis regarding the field of application. 

 

Application Field Fourier Transform and Inverse Fourier Transform 

General formula 

( ) ( ) ( )
( )

( )1
2

a
ib tb

g t ge t dt
+

−
−

∞

∞

 ≡ ≡  ∫
ωω ω

π
G F

( ) ( ) ( )
( )

( )1
1

2
ib t

a

b
tg t e dωω ω ω

π

+

+

∞
− −

−∞

 ≡ ≡  ∫F G G  

Characteristic function 
formula 

( ) ( ), 1,1  a b =  

( ) ( ) ( ) ( )i teg t g t dtωω ω
∞+

∞−

 ≡ ≡  ∫G F  

( ) ( ) ( ) ( )1 1
2

i tg t et dωω ω ω
π

∞
− −

∞

+

−

 ≡ ≡  ∫F G G  

Mathematical formula 

( ) ( ), 1, 1a b = −  ( ) ( ) ( ) ( )i te t dg t tgωω ω
∞

−
+

−∞

 ≡ ≡  ∫G F  

( ) ( ) ( ) ( )1 1
2

i tg ett dωω ω ω
π

∞
−

−∞

+

 ≡ ≡  ∫F G G  

Physical formula 

( ) ( ), 0,1a b =  ( ) ( ) ( ) ( )1

2
i tg t ge t dtωω ω

π −

∞
−

+

∞

 ≡ ≡  ∫G F  

( ) ( ) ( ) ( )1 1

2
i tg ett dωω ω ω

π

∞
−

−∞

+

 ≡ ≡  ∫F G G  

Signal processing formula

( ) ( ), 0, 2  

and 2

a b

f

= −
=

π
ω π

 
( ) ( ) ( ) ( )2 ifte t df g f g tt π

∞
−

+

∞−

 ≡ ≡  ∫G F  

( ) ( ) ( ) ( )1 i tifg t ef dt π ω ω
∞

−
+

−∞

 ≡ ≡  ∫F G G  
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Panel 6: Main FT and Inverse FT Definitions regardin g the Application Field 

 

4.2.2 Condition of Existence 

The use of Fourier Transform requires assessing the integrability capacity to prove the existence of the FT pair 

( ) ( )( ),g t ωG . A sufficient condition (but not necessary) is to prove that ( )g t  is a convergent function such as 

( )g t dt
∞

∞

+

−

< ∞∫ . This condition is very important and will raise an issue on FFT uses in option pricing (Carr, et al., 

1999). 

 

4.2.3 Properties 

Fourier Transform defines a set of useful properties which are listed in panel below. In current dissertation, we will 
use essentially the “differentiation” property in sensitivity factors pricing. 

 

Properties Time Domain Function ( )y t  Fourier Transform ( ) ( )F y t   ω  

Linearity ( ) ( )af t bg t+  ( ) ( )a bω ω+F G  

Even Function ( )  is even f t  ( )ω ∈F R  

Odd Function ( )  is oddf t  ( )ω ∈F �  

Symmetry ( )tF  ( )2 fπ ω−  

Differentiation ( )df t

dt
 

( )iω ω− F  

Time Scaling ( )f at  1
a a

ω 
 
 

F  

Time Shifting ( )0f t t−  ( )0i te ω ωF  

Convolution 
( ) ( )f g f g t dτ τ τ

+∞

−∞

∗ ≡ −∫  
( ) ( )ω ωF G  

Multiplication ( ) ( )f t g t  ( ) ( )1
2

dω ω ω ω
π

+∞

−∞

−∫ F G  

Modulation 

(Frequency Shifting) 
( )0ie f tω−

 ( )0ω ω−F  

Panel 7: Fourier Transform’s main properties 
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4.2.4 Discrete Fourier Transform and Discretization  issue 

Discrete FT (DFT) is a special case of continuous FT and hence both share the same properties. The purpose of 
DFT is to approximate FT as close as possible by sampling a finite number of points N  of a continuous time 

domain function ( )g t  with time domain sampling interval t∆ . Similarly in FT space, we aim to approximate a 

continuous FT ( )ωG  with angular frequency sampling interval ω∆ . 

 

We define: 

T
t

N
∆ =  and .nt n t= ∆  

2
N t
π

ω∆ =
∆

 and 
2

.k k k
N t
π

ω ω= ∆ =
∆
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Thus we replace the integration step for FT and inverse FT by a sum of N  points. This proxy is very useful in 
applied sciences fields and permits the development of the well-known “Fast Fourier Transform” (FFT). 

 

However the time and periodic samplings raise a question on the most relevant size for both samplings. If a 
domain is sampled at an insufficient high rate, it implies a poor approximation of FT function and generates 
information losses 

 

Below you’ll find an illustration of the issue in signal field called “aliasing” during a signal reconstruction: 

1. An original signal is available for studies ( see “High Frequency Signal”) and we have to do treatments 
with help of Fourier Transform, 

2. Therefore a sample is extracted from the original signal to use FFT but it contains not enough information, 
3. After intermediate treatments, we reconstructed the signal with help of Inverse Fourier Transform. 

However this operation will produce a lower frequency signal due to the irrelevant signal. 
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Figure 20: Sampling issue illustration where the rec onstruction of a high frequency signal from a low s ize sample 
gives a low frequency signal. 

 

 

This issue has been solved by Nyquist-Shannon sampling theorem which states that only half of N  points are 

reliable. So 
2
N

k =  and the implication on ω  sampling is max max2
k N
ω ω

ω∆ = =  where maxω is the Nyquist 

critical frequency. maxω  is defined as max
1

2 t
ω =

∆
. This point will be key implementation point of option pricing 

with FFT as we will see in §5.1. 

 

4.2.5 Characteristic Function 

Right now we will review the use of FT and Inverse FT in probability field under the “characteristic function” theory 
which provides an alternative way to analyse random variables other than by their Probability Density Functions 
(PDF) or Cumulative Density Functions (CDF). The cautious readers can find a more rigorous presentation in 
(Grimmet, et al., 2001). 

 

4.2.5.1 Definition 

 

Let X  be a random variable with its probability density function ( )xP . A characteristic function ( )Xφ ω  with 

ω ∈ �  is defined as the Fourier Transform of the PDF ( )xP  using parameters ( ) ( ), 1,1  a b =  applied to 

general formula. Hence: 

( ) ( )[ ] ( )x
X

i i xe dxx x eω ωφ ω

∞

−∞

+

 ≡ ≡ =  ∫F � P E  

A characteristic function ( )φ ω  may be expressed by using Euler’s as: 
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( )

( )[ ] ( )[ ]cos sin
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E
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Also we may rewrite a characteristic function by using Taylor series expansion about a point 0x =  as: 

( ) ( )
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Where nr  is the n-th moment around 0 (called raw moment). 

4.2.5.2 Properties 

 

Most important properties of a characteristic function ( )Xφ ω  are: 

1. ( ) 1Xφ ω ≤   

2. ( )0 1Xφ =  

3. ( )Xφ ω  is uniformly continuous on �  

4. ( ) ( )
1 2

1
n kX X X X

k

φ ω φ ω
∞

+ + +
=

=∏…  where { }1 2, , , nX X X…  are independent random variables. 

5. A random variable X  has a symmetric PDF ( )xP  if and only if ( )  for Xφ ω ω∈ ∈� �  

 

4.2.5.3 Calculation of statistical moments 

 

Characteristic functions are very useful to estimate statistical moment with help of characteristic exponent ( )ωΨ
 

defined as ( ) ( )( )logω φ ωΨ =  and we define the n-th-cumulant such as: 

( )1
 

0

n
X

n n n
C

i

ω

ωω

∂ Ψ
=

=∂
 

 

This approach may be compared with the Moment Generating Function approach defined as: 

 ( ) ( )xM e x dxωω

+∞

−∞

= ∫ P

. 
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And n-th raw moment 

( )
0

n

n n

M
r

ω

ωω

∂
=

=∂  
 

Panel below summarizes the common statistical moment’s calculations with help either of characteristic function 
or moment generating function. 

 

Calculation Moment nth cumulant nth raw moment 

Mean  [ ]XE  1C  1r  
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[ ]( )
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4
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( )
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2
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( )

4 2 2
1 1 2 2 1 4 4

22
2 1

6 12 3 4r r r r r r r

r r

− + − − +

−
 

Panel 8: Statistical Moments calculation comparison b etween Moment Generating Function and Characteristi c 
Function. 

 

4.2.6 Fourier Transform and Stochastic Processes 

In this part we will review firstly some important definitions concerning stochastic processes, secondly we will 
investigate the notion of distribution divisibility with help of Lévy-Itô Decomposition theorem, thirdly we will 
formulate the Lévy-Kintchine representation and the expression of most important Levy processes.  

 

Most of theorems and propositions are presented without proofs and a curious reader may found a rigorous 
treatment of these points in (Cont, et al., 2004). 

 

4.2.6.1 Definitions 

 

A right-continuous with left limits (“cadlag” in French) or adapted (non-anticipating) stochastic process 

{ };0tX t≤ <∞  on space ( ), ,Ω F P  with values in R  is said to be a Lévy process if it satisfies the following 

conditions: 

1. Its increments are independent of past values. Thus 1t tX X+ −  is said to be independent of the filtration 

tF  if ( ) ( )1 1t t t t tP X X P X X+ +− = −F . 

2. Its increments are stationary, i.e. distribution of increments is independent of t . Thus t h tX X+ −  follows 

the same probability distribution of hX . 

3. 0 0X = . 

4. tX  is continuous in probability, i.e. ( )
0

0, lim 0t h t
h

P X Xε ε+→
∀ > − ≥ = . 
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Hence: 
• A process which fulfils the first three conditions is said to be a process with stationary independent 

increments. 
• If a process fulfils also the fourth condition, then the probability of jumps at time t  is zero however they 

may occur in the future. Hence the fourth condition doesn’t imply a continuous sample path. 
 
A stochastic process { };0tX t≤ <∞  is said to be “cadlag” if it satisfies the following conditions: 

1. Left limit of the process 
,

limt s
s t s t

X X− → <
=  exists, 

2. Right limit of the process 
,

limt s
s t s t

X X+ → >
=  exists, 

3. And t tX X += . 

 
We will finish the review of basic definitions with the notion of distribution divisibility: 

• A random variable is said divisible if it can be represented as the sum of two independent random 

variables with identical distributions. Example: 1 2Y Y Y= + . 

• A random variable is said infinitely divisible if it can be represented as the sum of n  independent random 

variables with identical distributions and 2n> . Example: 1 2 nY Y Y Y= + + +…  
 
Regarding the characteristic function of an infinitely divisible process Y , we may highlight the relationships 
between ( )φ ω  and ( )nφ ω : 

• ( ) ( )( )nnφ ω φ ω=  

• ( ) ( )( )
1
nnφ ω φ ω=  

 
Now we will formulate the following lemma which is very important: indeed it means infinitely distributions can 
generate Lévy Process and conversely. 
 

{ } ( )Lévy Process ; 0  is an infinitely divisible distributiont t h tX t P X X+≥ ⇔ −  

 
But what does this notion of distribution divisibility mean and what is its implication in stochastic process inner 
capacities?  
 

4.2.6.2 Levy-Itô decomposition theorem 

 
The use of Lévy-Itô decomposition theorem allows a further investigation by stating that a Lévy process may be 
represented as the sum of two independent processes: 

• On one hand you have a continuous process constituted by a Brownian motion with drift, 
• On the other hand, you have a discontinuous jump process, i.e. a sum of centred independent jumps. 

 
Let { }; 0tX t ≥  be a Lévy process on R  with a Lévy measure ν  which measures the number of jumps per unit 

of time whose sizes belong to any positive measurable set A .  
 
The Lévy-Itô Decomposition theorem states in formal way that: 

1. A Lévy measure must satisfies two conditions: 

( )1x dxν

+∞

≥
−∞

⋅ <∞∫ �  and ( )
{ }

2
1

0

xx dxν<
−

⋅ ⋅ <∞∫
R�

�  

a. The first condition implies that a Lévy process must have an almost-surely finite number of large 
jumps (i.e. jumps with absolute values greater or equal to 1) by time unit, 

b. The second one implies that a Lévy measure must be square-integrable around the origin. 
2. There exists a drift µ  and a Brownian motion with diffusion coefficient σ  
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Hence the Lévy process { }; 0tX t ≥  is characterized by its characteristic triplet ( )µ σ ν, ,  and can be defined 

such as: 

0
limL s

t t t t t
s

L s
t t t t

X t W X X

t W X X

µ σ

µ σ

→
= + + +

= + + + ɶ
 

Where  
• µ : Drift 

• tσ : Diffusion coefficient 

• tW : Wiener process where ( )0,tW N t>∼  

• L
tX : Sum of finite number of large jumps during the interval [ ]0,t , 

• s
tXɶ : Sum of number of small jumps during the interval[ ]0,t . Please note the number of small jumps may 

be infinite in the limit 0s→ . 
 

Hence t tt Wµ σ+  represents the continuous part and 
0

limL s
t t

s
X X

→
+ ɶ the jump part which are represented by 

compensated (i.e. centred around 0) Poisson processes according to their definition range.  
 
With help of this theorem, it is possible to characterize all Lévy processes by looking at their characteristic 
functions (i.e. the Fourier Transform of the Lévy processes) and this will supply two important properties. 
 
The first important property concerns the Time Divisibility of Lévy processes. Let define { }; 0tX t ≥  an infinitely 

divisible Lévy process with a triplet ( )µ σ ν, ,  and a measure satisfying { }( )0 0ν = . Thus the time divisibility 

can be defined such as: 
 

( ) ( )( ) ( )1
1 1

t
t

ti X i tX
X X Xe e tω ωφ ω φ ω φ ω   = = = =   �E E � . 

 
Sketch of proof: 
 

( )
( )

( )

( ) ( )

t s
t s

t s s s

t s s s

t s

i X
X

i X X i X

i X X i X

X X

e

e e

e e

ω

ω ω

ω ω

φ ω

φ ω φ ω

+
+

+

+

−

−

 =  
 =  
   =   

=

E

E

E E
 

 
The second property is that the general characterization of random variables distribution underlyings the Lévy 
jump-diffusion defined previously by the Lévy-Kintchine formula. Let define { }; 0tX t ≥  an infinitely divisible 

Lévy process with a triplet ( )µ σ ν, ,  and a measure satisfying { }( )0 0ν = . Thus a law P  of a tX  may be 

defined by the Lévy Kintchine formula such as: 
 

( )
{ }( ) ( )

( )

2

11
2

i x
x

t
t

t i e i x dx
ti X

X e e e
ωω σ

ωµ ω ν
ωωφ ω

<

   − + − −   Ψ 
∫

 = = = 
RE

�

  

 

Where ( )ωΨ  defines the characteristic exponent of Lévy process tX . 

 
Sketch of Proof: 
 



 Bruno SARRANT – Actuarial Dissertation 

20120224 - Bruno SARRANT - Actuarial Dissertation.docx 02/24/2012 Page 50/130 

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

1 1 1

1 11

1 1

t
t

L s

L s

L s

i X
X

i tX

i t W X X

i t X i t Xi t i t W

t
W X X

e

e

e

e e e e

ω

ω

ω µ σ

ω ωω µ ω σ

µ σ

φ ω

φ ω φ ω φ ω φ ω

+ + +

 =  
 =  
 =   

      = ⋅ ⋅ ⋅          

= ⋅ ⋅ ⋅

ɶ

ɶ

ɶ

E

E

E

E E E E

 

With  

( ) i i te eωµ ωµ
µφ ω  = = E  

( )
2 2

2t
t

t
i W

W e e
ω σ

ω
σφ ω

− = = E  

( )
( ) ( )

{ }11

1

1i x

L
x

L

e dx
i X

X e e

ω ν
ωφ ω ≥

−∫
 = =  E  

( )
( ) ( )

{ }11

1

1i x

s
x

s

e i x dx
i X

X e e

ω ω ν
ωφ ω <

− −∫
 = =  

ɶ
ɶ E  

Thus 

( )
( ) ( )

{ }
( ) ( )

{ }

( ) ( )
{ }

( ) ( )
{ }

{ }( ) ( )

2 2

1 1

2 2

1 1

2 2

1

2 2

1 1
2

1 1
2

1
2

2

i x i x

x x

t

i x i x

x x

i x
x

t
e dx e i x dxt

i t
X

t
t

i t e dx e i x dx

t
t

i t e i x dx

t
t i t

e e e e

e

e

e

ω ω

ω ω

ω

ν ω νω σ
ωµ

ω σ
ωµ ν ω ν

ω σ
ωµ ω ν

ω σ
ωµ

φ ω ≥ <

≥ <

<

− − −
−

− + − + − −

− + − −

− +

 ∫ ∫  = ⋅ ⋅ ⋅    

  ∫ ∫  =     

  ∫  =    

=

R

�

{ }( ) ( )11i x
xe i x dxω ω ν<

   − −   
∫
R

�

 

 
We collect in Panel 9 examples of Lévy densities and characteristic exponents for most used Lévy processes 
(single mode). 
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Process Lévy Density ( )dν ν  Characteristic Exponent ( )Ψ ω  

Geometric Brownian Motion 0 2 2

2
i

σ ωγω −  where 
2

2
r q

σγ = − −  

Merton Jump-Diffusion 
(Merton, 1976)  

( )2

22

22

y

e
µ

σλ
πσ

−
−

ɶ

ɶ

ɶ
 

2 22 2
2 1

2

i
i e

σ ωµωσ ωγω λ
− 

− + − 
 
 

ɶ
ɶ

 where 

22
2 1

2
r q e

σµσγ λ
− 

= − − − − 
 
 

ɶ
ɶ

 

Kou Jump-Diffusion 
(Kou, 2002)  { } { }0 0

1
yy

p p

y ye eη ηη η
λ

η η
+ −

− −

> <
+ −

 −
 +
 
 

� �  

2 2 1
1

2 1 1
p pi

i i

η ησ ωγω λ
ωη ωη+ −

− 
− + + − − + 

  

Variance Gamma 
(Madan, et al., 1990)  

(Madan, et al., 1998)  

1 2
1 C y C ye
yµ

−
 

2 21
ln 1

2
i

σ µωγµω
µ

 
− − + 

 
 where 

2

2
r q

σγ = − −  

Normal Inverse Gaussian 

(Barndorff-Nielsen, 1998)  ( )13
1 4

C yC
e K C y

y
 ( )2 21

1 2 1ιγµω σ µω
µ

− − + −  

Carr-Geman-Madan-Yor 
(Carr, et al., 2002)  { } { }( )0 01

G y My
y yY

C
e e

y

− −
< >+ +� �  ( ) ( ) ( )Y YY YC Y M i M G i Gω ω Γ − − − + + −

 
 

Panel 9: Levy densities and Characteristic Exponent s of main stochastic processes. 

Where r  is the risk-free rate, q  the dividend yield, γ  the risk-neutral drift and σ  is the volatility of the driving Brownian Motion, 1 2C
γ

σ
= , 

2

2 2

/
C

γ σ µ
σ

+ 2
= , 

2

3 2

/
C

γ σ µ
πσ µ
+ 2

= , 
2

4 2

/
C

γ σ µ
σ

+
=  and ( )pK x  is the modified Bessel function of the second kind. 
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4.3 OPTION PRICING WITH FOURIER TRANSFORM 

Now we will present briefly the method used by (Carr, et al., 1999) which defines a stable way of inverting the 
characteristic function to get the price of a European call option.  

4.3.1 Payoff function definition 

The first step will focus on the definition of an accurate payoff function compliant with Fourier Transform. At first 

glance, the payoff function of a European call can be expressed as  ( ) ( )T tC K S K += −  or 

( ) ( )x k
TC k e e

+
= −  in the exponential form.  

 

However ( )TC k  tends to 0S  as k →−∞  and hence the payoff function is not square integrable, which is a 

mandatory condition to use Fourier Transform as seen in §4.2.2.  This issue may be escaped by using a damping 
factor to modify the call price function and to obtain a square integrable function. Thus a new payoff function 

( )Tc k  is defined by ( ) ( )k
T Tc k e C kα=  where α > 0 . 

 

4.3.2 Fourier Transform of a European Call function  

From the ( )Tc k  definition, we can express the Fourier Transform and its Inverse as follows: 

( )[ ]( ) ( )

( )

TT c

i k
T

c k

e c k dkω

ω φ ω

+∞

−∞

=

= ∫

F

 

( ) ( )[ ]( )

( )

( )

1

0

1
2

1

T

T

T

T c

i k
c

i k
c

c k k

e d

e d

ω

ω

φ ω

φ ω ω
π

φ ω ω
π

−

+∞
−

−∞
+∞

−

=

=

=

∫

∫

F

 

And by consequence ( )TC k  can be written such as: 

 

( ) ( )

( )
0

2 T

T

k
i k

T c

k
i k

c

e
C k e dk

e
e dk

α
ω

α
ω

φ ω
π

φ ω
π

+∞−
−

−∞
+∞−

−

=

=

∫

∫
 

The next step followed by Carr and Madan is to find the closed form expression of ( )
Tcφ ω  depending on  

( )Tφ ω , the characteristic function of underlying diffusion process, following the solving process below: 
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( ) ( ) ( )

( ) ( )( )

( )
( ) ( )

( )( )
( )

1

1 1

2 2

1

1

1 2

T

i k k rT x k
c

k

x
krT i k x k

i x i x
rT

rT
T

e e e e e P x dx dk

e P x e e e dk dx

e e
e P x dx

i i

e i

i

ω α

αω α

α ω α ω

φ ω

α ω α ω

φ ω α

α α ω α ω

+∞ +∞
−

−∞
+∞

+− +

−∞ −∞
+∞ + + + +

−

−∞
−

= − ⋅ ⋅

= − ⋅ ⋅

 
 = − ⋅ + + + 

− +
=

+ − + +

∫ ∫

∫ ∫

∫

 

 

4.3.3 FFT implementation of Carr-Madan Scheme 

After obtaining the characteristic function of ( )Tφ ω , we reintroduce it into the closed form solution of ( )
Tcφ ω  to 

solve the integral defined by ( )TC k . In this purpose, Carr and Madam showed how to use the FFT algorithm to 

solve ( )TC k  with help of trapezoidal rule. The numerical scheme is outlined as follows: 

 

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )[ ]

0

0

1
2

1
1

1

2
2

1
2

T

i k
T c

g

M

N

n N
n

N

n N
n

c k e d

g d

g g g

g g g

ω

ω

φ ω ω
π

ω ω

ω
ω ω ω

ω ω ω ω

+∞
−

=

=

=

≈

 ∆  ≈ + +   
 
 ≈ ∆ − +   

∫

∫

∑

∑

�������

 
 

With  

M N u= ∆   

( )1nu n u= − ∆ . 

 

Then Carr and Madan discretized the log-strike axis to create a full Fourier Matrix. The discretization proceeds 
such as ( )1mk b m k=− + − ∆ , with 1, ,m N= …  and b ∈R  a constant assumed as the lower boundary 

point of the log-strike axis. By inserting the discretized mk  into previous equation we will obtain the following 
result: 
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( ) ( )
( )

( )( )

( )( )

( ) ( ) ( ) ( )[ ]

( )( ) ( ) ( ) ( ) ( )[ ]

1 1

0

1 1 1
1

1

1 1 1
1

1

1

1
2

1
2

m
T

T
n m

N

T

i k
T m c

g

N
i k u n m i n b u

c n N
n

N
n m i n b u

c n NN
n

c k e d

e e g g

e g g

ω

ω

ξ

φ ω ω
π

ω φ ω ω ω

ω ξ φ ω ω ω

− −

+∞
−

−∆ ∆ − − − ∆

=

− − − ∆

=

=

 
 ≈ ∆ − + 
 
 
 
  ≈ ∆ − +    

∫

∑

∑

�������

�������  

 

Thus we can rewrite the pricing process in matrix form such as: 

 

( )
( )

( )

( )
( )

( )

( )

( )

1 1 2 1 1

1 2 2 2 2

1 2

11 1

22 01
2

N
T

N
T

N N N N
T

iu k iu k iu k
cT

iu k iu k iu k
cT

iu k iu k iu k
c NT N N

c k g ue e e

c k e e e
u

c k g ue e e

φ ω

φ ω

φ ω

− − −

− − −

− − −

                          ≈ ∆ × −                          

⋯

⋯

⋮⋮ ⋮⋮ ⋮ ⋱ ⋮

⋯

( )

( ) ( ) ( )

( )
( )

( )

( )1

2

11
1

2

1 1 1

Matrix A

1 1 1

01 1
2

1

T

T

N
T

iu b
c

i N u ki u k iu b
c

iu bi u N k i N u N k
c N

g ue

e e e
u

gee e

φ ω

φ ω

φ ω

− − ∆ ∆−∆ ∆

−∆ − ∆ − − ∆ − ∆

        

              ≈ ∆ × −                

⋯

⋯

⋮⋮ ⋮ ⋱ ⋮ ⋮

⋯�������������������
( )Nu

            

 

 

And Matrix A is solved efficiently by the FFT algorithm. 

 

4.4 FOURIER SPACE TIME-STEPPING METHOD 

4.4.1 Introduction 

In the previous section, we reviewed the approach developed by Carr and Madan concerning the pricing of a 
European Option with help of Fourier Transform. The followed process requires: 

1. Defining a square integrable payoff,  
2. Calculating its characteristic counterpart  
3. And defining the discretization process in order to use the Fast Fourier Transform.  

 

This is a first step which presents lots of limitations if applied to more complex options, especially with the two first 
steps of the process which can be limitative enough. 

 

A new methodology was developed by Vladimir Surkov in his Thesis (Surkov, 2009) to outreach these limitations 
but also to fulfil some essential functions to develop modern pricing software such as: 

1. The necessity to get convergent results with precision, high speed, 
2. To handle efficiently path-independent and path-dependent derivatives, 
3. To handle mono and multi-assets derivatives, 
4. To define a generic handling of random process generators, 
5. And to be naturally adaptable whatever the IT architecture complexity. 

 

During the next sections, we will refer to the several papers written by the author during his thesis (see (Jackson, 
et al., 2008), (Jaimungal, et al., 2009), (Jaimungal, et al., 2010) and (Davison, et al., 2010). In §4.4.2, we will 
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recall the mathematical context of a pricing model using Lévy processes. The section §4.4.3 will introduce the 
PIDE context and how to solve it and lastly in §4.4.4, we will present how to use it to estimate sensitivity factors 

 

4.4.2 Spot Price Model 

In current section, we will recall the mathematical definitions used by the author to develop the FST pricing model.  

 

At first, the author defines a “Spot Price process” such as ( ) ( ) ( )0 tt e= XS S  and ( )tX  a Lévy process with 

characteristic triplet ( )γ,Σ,νγ,Σ,νγ,Σ,νγ,Σ,ν  where γγγγ  represents the vector of unadjusted drift, ΣΣΣΣ  the variance-covariance 

matrix and νννν  the multi-dimensional Lévy density. So the process ( )tX  is eligible to the Levy-Ito Decomposition 

Theorem and can be represented with its diffusion and jump components as follows:  

 

( ) ( ) ( ) ( )
0

limlt t t t tX W J J
→

= + + + ε

ε
γγγγ   

( ) ( )
1

0

t
l

y
t d dsJ y y

≥
= ×∫ ∫ ɶυ , 

( ) ( ) ( )
0 1

t

y

t d ds d dsJ y y y
<≤

 = × − × ∫ ∫ ɶε υ υ
ε

 

 

Where  

 

( )tW
 
is a standard Brownian motion,  

( )d dsυ ×yɶ  is a Poisson random measure counting the number of jumps of size y  occurring at time s ,  

And ( ) ( )d ds d dsυ υ× =y y  is its compensator.  

 

( )l tJ
 
and ( )tJε

 
are interpreted as presence tokens of large and small jumps which can have some incidence 

from a theoretical point of view. Thus the presence or not of an infinite number of small jumps defines if the 
process is with finite or infinite activity. In the last case, the small jumps integral must be centred to obtain the 
convergence. 

 

Secondly the author enforced the risk-neutral condition to determine a unique drift which is uniquely when the 
volatility and Lévy density are specified. Thus γ  can be chosen such as: 

( ) ( )1
0       j r

je e i rX 1  = ⇒ Ψ − =
 

E  

Where ( )Ψ ωωωω  is the characteristic exponent of d-dimensional Lévy process, defined with help of the Lévy- 

Khintchine formula: 

( ) { }( ) ( )1

1
1

2 n

ii e i dy
y

y y≤Ψ = ⋅ − ⋅ + − − ⋅∫ℝ νωωωωω γ ω Σω ω ωω γ ω Σω ω ωω γ ω Σω ω ωω γ ω Σω ω ω�  (1) 

 

These elements define a pricing framework where the BSM model is integrated by simply setting the Lévy density 
to zero, as presented by Cont and Tankov in their book (Cont, et al., 2004). 
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4.4.3 Partial Integral Differential Equation (PIDE)  Solution 

Next the author uses the fundamental theorem of asset pricing to recall that a discounted log-transformed price 

process ( )( ) ( ) ( ) ( )( ), , 0r T t tt t e V t eXX S−≜ν  is a martingale under the measure Q. This implies that the 

associated drift of underlying stochastic process equals zero. Thus the author defined the PIDE by coupling the 
application of previous condition on ( ),v t x  and its boundary condition at maturity which gives the following 

system: 

( ) ( )
( ) ( )( )

,  0

,               = 0

t t

V T eX

x

x S

L ∂ + =



ν

ϕ
   (2) 

 

Where L represents the infinitesimal generator of the multi-dimensional Lévy process and acts as a twice 

differentiable function ( )g x  as follows: 

( ) ( ) ( ) ( ) { } ( )( ){ }
( )

\ 10

1

2 n
g g g g g dx x x xy

x x x y x y x yL <
 = ⋅∂ + ∂ ⋅∂ + + − + ⋅∂ 
 

∫ℝ νγ Σγ Σγ Σγ Σ �  (3) 

 

As the author reminds, the Fourier and Laplace Transforms have been used widely to solve PDEs, and the next 
stage aims to develop a methodology to solve PIDEs as those presented in equation (2). The idea beneath such 
approach is avoiding the limitations highlighted in Carr and Madan’s work.  

 

To do this, the author reminds the definitions of Continuous Fourier Transform (CTF), its inverse function (ICFT) 

and the CFT property that transforms partial derivative n
x∂  into a linear operator according to spatial (see §4.2): 

Definition Equation 

Continuous FT [ ]( ) ( ) 'ig g e dxx xF
∞

∞

+
−

−
∫≜

ωωωωωωωω  

Inversed Continuous FT [ ]( ) ( )1 '1
ˆ ˆ

2
ig g e dxxF

+
−

∞−

∞

∫≜
π

ωωωωω ωω ωω ωω ω  

Property on partial derivatives ( ) ( ) ( ) [ ]( )1 nn ng i g i gx xF F F−   ∂ = ∂ = =    ⋯ω ω ω ω ωω ω ω ω ωω ω ω ω ωω ω ω ω ω   (4) 

 

Next he applies the CFT to the infinitesimal generator L of ( )tX  defined in equation (3) which allows the 

definition of a solution by factorizing out the characteristic exponent of ( )tX : 

[ ]( ) { }( ) ( ) [ ]( )

( ) [ ]( )
1

1
, 1 ,

2

                      = ,

n

it i e i d t

t

y
y

y yF L F

F

≤
 = ⋅ − ⋅ + − − ⋅ 
 

Ψ

∫ℝν ν ν

ν

ωωωωω γ ω Σω ω ω ωω γ ω Σω ω ω ωω γ ω Σω ω ω ωω γ ω Σω ω ω ω

ω ωω ωω ωω ω

�
 (5) 

 

Applying Fourier Transform to both part of the PIDE (2) and replacing [ ]( ),tF Lν ωωωω  by (5) give the following 

system: 

[ ]( ) ( ) [ ]( )
[ ]( ) [ ]( ) ( )( ) ( )

, , 0

,                                 

t t t

V T S T

F F

F F F

∂ + Ψ =


 = =  

ν ν

ϕ ϕ

ω ω ωω ω ωω ω ωω ω ω

ω ω ωω ω ωω ω ωω ω ω
 (6) 
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Hence the PIDE is transformed into a multidimensional ODE system, parameterized by ω . Given the value of 

[ ]( )2,tF ν ωωωω  at time 2t T≤ , the system can be solved to find the value at time 1 2t t< : 

[ ]( ) [ ]( ) ( )( )2 1

1 2, , t tt t eF F
Ψ −=ν ν ωωωωω ωω ωω ωω ω  with 1 2t t T< ≤  (7) 

 

Taking the inverse transform of (7) leads to the final result: 

( ) [ ]( ) ( )( ) ( )2 11
1 2, , t tt t ex xF F

Ψ −−  =  ν ν ωωωωωωωω   (8) 

 

Applying previous results to payoff valuation gives the following result: 

( ) ( ) ( )

[ ]( ) ( ) ( )

[ ]( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )( )( ) ( ) ( ) ( )

( ) ( )( )( )( ) ( ) ( )

[ ]( ) ( )( ) ( )

1

1

1

1

1

1

, ,

, ,

,

,

0 ,

0 ,

, ,

LK

LK

FST

r T t

r T t

r T t

r T t

T t r T t

r T t

T t

v t V T e

V T e t

e t

S T e t

S e e t

S e t

v T e t

x x

x

x

x

x

x

x

F F

F F

F F

F F

F F

F F

− −

− −−

− −−

− −−

Ψ − − −−

Ψ − −−

Ψ −−

=

 =  

 =  

  =   

  =    

  =     

 =  

ϕ

ϕ

ϕ

ϕ

ωωωω

ωωωω

ωωωω

ωωωω

ωωωω

ωωωω

ωωωω

ωωωω

ωωωω

 (9) 

Where  

• ( ) ( )( )FST LK r−Ψ ω = Ψ ωΨ ω = Ψ ωΨ ω = Ψ ωΨ ω = Ψ ω  

• ( )LKΨ ωΨ ωΨ ωΨ ω : the characteristic exponent defined by the Lévy Khintchine formula in equation (1), 

• ( )FSTΨ ωΨ ωΨ ωΨ ω : the transformed characteristic exponent employed by FST methodology. For the remainder of 

the dissertation, we will design ( ) ( )FST=Ψ ω Ψ ωΨ ω Ψ ωΨ ω Ψ ωΨ ω Ψ ω  by convention. 

 

The consequences of this demonstration are: 

1. No parameter is introduced to define a square integrable process, 
2. No payoff transformation is required to proceed to the evaluation. You just have to define a vector of 

intrinsic value according to the payoff structure and proceed to the FT. Then you will add the time value 
with help equation (7) and applying the IFT gives a vector of actualized values. 

3. The infinitesimal generator is just a modular component of the evaluation process. Hence it can be 
changed easily only if the characteristic exponent is defined, which is the case for most of stochastic 
processes (see Panel 9 for examples). 

 

4.4.4 Computing Sensitivity Factors 

Previous section was dedicated to the definition of the pricing process and now we will see how to estimate the 
sensitivity factors for a given option structure.  

 

We will distinguish the sensitivity factors into two categories:  

1. Sensitivity factors depending on state variables (i.e. variables integrated into the payoff vector ( ),t xν ), 

2. And those depending on model parameters (i.e. variables integrated into ( )Ψ ωΨ ωΨ ωΨ ω ) 
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Please note we will assume that no parameter belongs into both categories for the sake of simplicity. 

 

4.4.4.1 Sensitivity Factors versus State Variables 

 

The first thing to define is the so-called “Scaling Principle”, i.e. how to establish a relationship between ( ),
k
v tx x∂

and ( ),
k
v tS x∂  according to the relationship established between the two variables by ( )0 k

k k exS S= . From this 

formula, we can obtain its inverse defined as ( )ln
0

k
k

k

S
x

S

 
=   

 
. Let’s now introduce this relationship into partial 

derivatives versus kx  with help of the Product Rule.  

 

The results of these calculations are summarized into Panel 10. 

 

Order Impact of scaling on PDE 

1st 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

, ,
, , 0 ,

,
,

0

k

k k k

k

k k

k
k k

k k k

k

v t v t
v t v t e v t

v t
v t

e

∂ ∂ ∂∂ = = = ∂ ⋅ = ∂ ⋅
∂ ∂ ∂
∂

⇒ ∂ =

x
x S S

x
S x

x x S
x x S x S

x S x

x
x

S

 

2nd 

(mono asset)t ( )
( ) ( ) ( ) ( )

( )
( ) [ ] ( )

( ) ( ) ( )

2

2 2 2

, , 0 ,
,

,
                = , 0

                = , , ,

k

k k k

k

k k

k

k k k

k kk k

k k k k k

k
k k

k k

k k k

v t v t e v t
v t

v t
v t e

v t v t v t

x
x S S

x

S x
S

S S S

x x S x SS S
x

x S x S x

x S
S x S

S S

x S x S x S

     ∂ ∂ ∂ ∂ ⋅ ∂ ∂ ⋅∂ ∂     ∂ = = =
∂ ∂ ∂ ∂ ∂

  ∂ ∂ ∂  ⋅ + ∂ ⋅ ⋅
∂ ∂  

 ∂ ⋅ + ∂ ⋅ = ∂ ⋅ +  ( )
( ) ( )

( )
( ) ( )( )

( )( )

2 2

2

2
2

,

, ,

, ,
,

0

k

k k

k k

k
k

k

k

k

v t

v t v t

v t v t
v t

e

S

S x

x x

S
x

x S

x S x

x x
x

S

∂ ⋅

= ∂ ⋅ + ∂

∂ − ∂
⇒ ∂ =

 

2nd 

(multi assets) ( )
( ) ( )

( )

( ) ( ) ( ) ( )( )

2 2

2 2

, ,
, ,

, , / 0 0

k k

k l k l

k l

k l k l

k l
k l

l l l

k l

v t v t
v t v t

v t v t e e

   ∂ ∂ ∂ ∂ ⋅ ∂   ∂ = = = ∂ ⋅ ⋅
∂ ∂ ∂

⇒ ∂ = ∂ ⋅

x S

x x S S

x x
S S x x

x x S S
x x S S

x S x

x x S S

 

Panel 10: Scaling principles adapted to first order a nd second order partial derivatives. 

 

So Greeks based on state variables can be calculated according to the PIDE solution expressed in equation (8), 
the property on partial derivatives (see equation (4)) while in Fourier Space and the scaling principle defined 
previously in Panel 10 regarding the derived variable ( kx  or kS ).  

 

The results of these calculations are summarized in Panel 11. 
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Sensitivity 
Factor Versus kx  Versus kS  

 

Delta 

 

Continuous: 

( ) [ ]( ) ( )1, , ,
k kv t i v t t−  ∂ = ⋅ x x xF Fω ωω ωω ωω ω  

 

 

 

 

 

Discrete: 

[ ]1
, 1 1ˆ= FFT

k m k mi−
− −⋅x v∆ ω∆ ω∆ ω∆ ω  

Where [ ] ( )  
1ˆ FFT mt

m m eΨ ⋅ ∆
− = ⋅v v  

 

 

Continuous: 

( ) ( )
( )

[ ]( ) ( )
( )

1

,
,

0

, ,
                =

0

k

k k

k

k

k

k

v t
v t

e

i v t t

e

−

∂
∂ =

 ⋅ 

x
S x

x

x
x

S

x

S

F Fω ωω ωω ωω ω
 

Discrete: 

[ ]
( )

1
1

, 1

ˆFFT
= 

0k k

k m
m

k

i

e

−
−

−

⋅
S x

v

S

ωωωω
∆∆∆∆  

Where [ ] ( )  
1ˆ FFT mt

m m eΨ ⋅ ∆
− = ⋅v v  

 

 

Gamma 

 

Continuous: 

( ) [ ]( ) ( )2 1 2, , ,
k kv t v t t−  ∂ = − ⋅ x x xF Fω ωω ωω ωω ω  

 

 

 

 

 

 

 

Discrete: 

1 2
, 1 1ˆFFT

k m k m
−

− − = − ⋅ x vΓ ωΓ ωΓ ωΓ ω  

 

 

Continuous: 

( )
( ) ( )( )

( )( )
( ) [ ]( ) ( )

( )( )

2

2
2

1 2

2

, ,
,

0

,
 = 

0

k k

k
k

k

k

k k

k

v t v t
v t

e

i v t

e

x x

S
x

x

x x
x

S

x

S

F F−

−∂ + ∂
∂ =

 − − ⋅ ω ω ωω ω ωω ω ωω ω ω
 

 

Discrete: 

( )
( )( )

1 2
1

, 1 2

ˆFFT

0
k

k

k k m

m

k

i

e

−
−

−

 − − ⋅ =S
x

v

S

ω ωω ωω ωω ω
ΓΓΓΓ  

Panel 11: Sensitivity Factors of State Variables. 

 

4.4.4.2 Sensitivity Factors versus Model Parameters 

 

In current section, we will use the following sign convention to distinguish two model parameters such as: 

1. Model parameter #1: � 
2. Model parameter #2: � 

 

Now let’s start the derivation of equation (8) according to the Fourier Transform property with partial derivatives. 

 

The results are presented below: 

 

1st order partial derivative: 

 

We present the demonstration of how to calculate 1st order partial derivative with help of Continuous Fourier 
Transform: 
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( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ, ,

ˆ               = ,

ˆ               = ,

ˆ               = ,

T t

T t

T t

v t v T e

v T e

T t v T e

T t v t

⋅ −

⋅ −

⋅ −

∂ = ∂ ⋅

⋅∂

∂ ⋅ − ⋅ ⋅

∂ ⋅ − ⋅

Ψ ωΨ ωΨ ωΨ ω

Ψ ωΨ ωΨ ωΨ ω

Ψ ωΨ ωΨ ωΨ ω

ω ωω ωω ωω ω

ωωωω

Ψ ω ωΨ ω ωΨ ω ωΨ ω ω

Ψ ω ωΨ ω ωΨ ω ωΨ ω ω

� �

�

�

�

 

 

We assume that ( )ˆ , 0v T∂ =ωωωω
�

, hence: 

 

( ) ( ) ( ) ( ) ( )1 ˆ, ,v t T t v tx xF −  ∂ = ∂ ⋅ − ⋅ Ψ ω ωΨ ω ωΨ ω ωΨ ω ω
� �

 (10) 

 

The equivalent DFT form is: 

 

( )1
, 1 1ˆFFTm m mt v−

− − ∇ = ∂ ⋅∆ ⋅ Ψ ωΨ ωΨ ωΨ ω
� �

  (11) 

 

 

2nd order partial derivative (mono assets): 

 

As previously, we provide the demonstration of the calculation of 2nd order partial derivative with respect to a 
single asset with help of CFT:  

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

2

2

22

ˆ ˆ, ,

ˆ               = ,

ˆ ˆ               = , ,

ˆ ˆ               = , ,

               =

v t v t

T t v t

T t v t T t v t

T t v t T t T t v t

T t T t

 ∂ = ∂ ∂ 

 ∂ ∂ ⋅ − ⋅ 

∂ ⋅ − ⋅ + ∂ ⋅ − ⋅∂

∂ ⋅ − ⋅ + ∂ ⋅ − ⋅∂ ⋅ − ⋅

 ∂ ⋅ − + ∂ ⋅ −

ω ωω ωω ωω ω

Ψ ω ωΨ ω ωΨ ω ωΨ ω ω

Ψ ω ω Ψ ω ωΨ ω ω Ψ ω ωΨ ω ω Ψ ω ωΨ ω ω Ψ ω ω

Ψ ω ω Ψ ω Ψ ω ωΨ ω ω Ψ ω Ψ ω ωΨ ω ω Ψ ω Ψ ω ωΨ ω ω Ψ ω Ψ ω ω

Ψ ω Ψ ωΨ ω Ψ ωΨ ω Ψ ωΨ ω Ψ ω

� � �

� �

� � �

� � �

� � ( )ˆ ,v t⋅ ωωωω

 

With ( )ˆ , 0v T∂ =ωωωω
�

 

Thereby, 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )22 1 2 ˆ, ,v t T t T t v tx xF −   ∂ = ∂ ⋅ − + ∂ ⋅ − ⋅   
Ψ ω Ψ ω ωΨ ω Ψ ω ωΨ ω Ψ ω ωΨ ω Ψ ω ω

� � �
 (12) 

 

The equivalent DFT form is: 

 

( ) ( )( )22 1 2
, 1 1ˆFFTm m m mt t v−

− −
  ∇ = ∂ ⋅∆ + ∂ ⋅ ∆ ⋅   

Ψ ω Ψ ωΨ ω Ψ ωΨ ω Ψ ωΨ ω Ψ ω
� � �

 (13) 

 

 

2nd order partial derivative (multi assets): 

 

Lastly we provide the demonstration of the calculation of 2nd order partial derivatives with respect to two assets 
(based on CFT): 
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( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2

2

2

2

ˆ ˆ, ,

ˆ                  = ,

ˆ ˆ                  = , ,

ˆ ˆ                  = , ,

                  =

v t v t

T t v t

T t v t T t v t

T t v t T t T t v t

T

 ∂ = ∂ ∂ 

 ∂ ∂ ⋅ − ⋅ 

∂ ⋅ − ⋅ + ∂ ⋅ − ⋅∂

∂ ⋅ − ⋅ + ∂ ⋅ − ⋅∂ ⋅ − ⋅

∂ ⋅

ω ωω ωω ωω ω

Ψ ω ωΨ ω ωΨ ω ωΨ ω ω

Ψ ω ω Ψ ω ωΨ ω ω Ψ ω ωΨ ω ω Ψ ω ωΨ ω ω Ψ ω ω

Ψ ω ω Ψ ω Ψ ω ωΨ ω ω Ψ ω Ψ ω ωΨ ω ω Ψ ω Ψ ω ωΨ ω ω Ψ ω Ψ ω ω

Ψ ωΨ ωΨ ωΨ ω

��

�

��

��

�

� �

�

� �

� �

� ( ) ( ) ( ) ( ) ( )2
ˆ ,t T t v t − + ∂ ⋅∂ ⋅ − ⋅

 
Ψ ω Ψ ω ωΨ ω Ψ ω ωΨ ω Ψ ω ωΨ ω Ψ ω ω

� �

 

 

By assuming that ( )ˆ , 0v T∂ =ωωωω
�

 and ( )ˆ , 0v T∂ =ωωωω
�

, we get: 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )22 1 2 ˆ, ,v t T t T t v tx xF −  ∂ = ∂ ⋅ − + ∂ ⋅∂ ⋅ − ⋅  
Ψ ω Ψ ω Ψ ω ωΨ ω Ψ ω Ψ ω ωΨ ω Ψ ω Ψ ω ωΨ ω Ψ ω Ψ ω ω

�� �� � �
 (14) 

 

Below you will find the discrete version: 

 

 ( ) ( ) ( )( )2 1 2 2
1, 1 ˆFFT m m mm t t v−

−−
 ∇ = ∂ ⋅∆ + ∂ ⋅∂ ⋅∆ ⋅ Ψ ω Ψ ω Ψ ωΨ ω Ψ ω Ψ ωΨ ω Ψ ω Ψ ωΨ ω Ψ ω Ψ ω

�� �� � �  (15) 
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4.4.4.3 Partial Derivatives of the Characteristic Exponent: An example with the GBM process 

 

Now let’s apply the valuation of the sensitivity factors based on Model parameters according to the Geometric 
Brownian Motion process. This implies to derivate its characteristic exponent factor Ψ  (see Panel 9) versus each 
model parameters (i.e. r , t  and σ ).  

 

The results are listed in panel below: 

Model Parameter Formula 

BSM Interest Rate r  ( ) ( )
( )( ) ( )( )

( )( ) ( )
( ) ( )

( )
2 2 2

1

1

with 
2 2

r r FST

r LK

r LK

r LK r

r T t

T t

i T t

i r q

i

ω ω

ω

ω

ω

σ σ ωω ω

ω

∂ Ψ = ∂ Ψ

= ∂ Ψ − ⋅ −

= ∂ Ψ − ⋅ −

= − ⋅ −

  
∂ Ψ = ∂ − − −  

  

=

 

Time t  ( ) ( )
( )( ) ( )( )

( )( ) ( )
( )( )

( )

( )
2 2 2

with 0
2 2

t t FST

t LK

LK t LK

LK

t LK t

r T t

r

r

i r q

ω ω

ω

ω ω

ω

ω

σ σ ωω ω

∂ Ψ = ∂ Ψ

= ∂ Ψ − ⋅ −

= − Ψ − + ∂ Ψ

= − Ψ −

= −Ψ

  
∂ Ψ = ∂ − − − =  

  

 

Diffusion Volatility σ  ( ) ( )
( )( ) ( )( )
( )( ) ( )( )

( ) ( )

( )

( )

2

2 2 2

2

with 
2 2

FST

LK

LK

LK

r T t

r T t

i T t

i r q

i

σ σ

σ

σ

σ σ

ω ω

ω

ω

ω ω σ

σ σ ωω ω

ω ω σ

∂ Ψ = ∂ Ψ

= ∂ Ψ − ⋅ −

= ∂ Ψ − ⋅ −

= − + ⋅ ⋅ −

  
∂ Ψ = ∂ − − −  

  

= − + ⋅

 

Panel 12: Partial Derivatives of the GBM characteris tic exponent factor versus a model parameter. 

 

Hence these partial derivatives can be reintroduced in equations presented in §4.4.4 to get the value of Rho, 
Theta and Vega. 

 

In this situation we use only equation (11), however these results can be extended regarding the desired 
Sensitivity Factors (see §7.3 for examples of uncommon sensitivity factors) with help of equations (13) and (15). 
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5. IMPLEMENTATION OF PIPELINE RISK FRAMEWORK 

This section will present how to use the FST Method to evaluate structured products and how we will integrate it 
into the future Pipeline Risk Framework: 

• The first stage will focus on the discretization principles to follow and how to produce pricing algorithms 
with help of the iterative integration process.  

• The second stage will present a pricing benchmark to compare the FST efficiency versus well-known 
pricing models. This benchmark will be based on a set of eight classical options and three typical option 
structures. 

• The third stage will be dedicated to the implementation aspects of Pipeline Risk Framework. We will see 
how to forecast risk factors, how to calibrate the FST parameters regarding the option structure and the 
market data. Lastly we will present the Excel Calculator used to monitor and manage risk exposure 
generated by Structured Products. 

 

5.1 DISCRETIZATION PRINCIPLES OF FST METHOD 

This section will focus on two important concepts to be applied during the discretization of FST method: the 
mapping process of R  and C , and the Iterative Integration process. These two concepts are essential and will be 
used all along this dissertation. 

5.1.1 Mapping Process 

In section §4.2.4, we presented the “aliasing” issue raised by the discretization of Fourier Transform and how to 
solve it with help of the Optimal frequency of Nyquist.  

 

 
Figure 21: Mapping process between vectors x, s (Ti me Space) and     ωωωω (Fourier Space) 

 

Hence we are able to map C  to R  following the mapping process presented in Figure 21: 

1. Definition of Fourier Parameters in R : Let’s define minx  and maxx  (these two values will act as proxy 

values of −∞  and +∞ ) and N , the number of points used to discretize [ ]min max,x x  and produce 

vector x . 
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2. Vector Creation: Next we define the vector x  which contains 1N +  points with minx  and maxx  as 

extrema. This vector will help to define the s  vector such as e= xs  and will represent the potential 
values of the option underlying. 

3. Mapping between R  and C  spaces: the final stage will be the definition of the ω  vector, the counterpart 
of x  in C  space with help of Nyquist’s Optimal Frequency. 

 

In the current disseration, we will apply a linear discretization (i.e. a constant x∆  discretization step) as 
presented in (Surkov, 2009), (Jaimungal, et al., 2009) and (Jaimungal, et al., 2010). 

 

5.1.2 Iterative Integration Process 

Following the mapping process presented in previous section, we will describe the integration process of an 
option value (see Figure 22 for a graphical representation). 

 

 
Figure 22: FST Iterative Integration Process. 1) Evalu ate the option intrinsic value at t(n), 2) Apply Fo urier Transform, 
3) Add Time value with help of PIDE solution and 4) B ack to Real Space to get option’s present values at t(n-1). 

 

This process follows the next steps: 

1. Adding the Intrinsic Value: we define the vector nv  which represents the vector of intrinsic value of an 

option such as ( ) ( ), ,n K e Kϕ ϕ= = xv s . 

2. Going to the FT Space: With help of FFT, we convert nv  into nvɶ , its C  counterpart. Due to the mapping 

process, ( ),n e Kϕ=v ωɶ . 
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3. Adding the Time Value: we add the time value of an option such as ( )1
1

n nt t
n ne −−
− =v v Ψɶ ɶ . Please note 

that Ψ  corresponds to the characteristic exponent factor and so is specific to each random generator 
process. 

4. Back to the Real Space: this last step is done with help of Inversed FFT and gives the vector 1n−v  

 

We just described the integration process of one-step option. However this process can be reiterated for n-steps 

option. As example, the 1n−v  calculated by the integration process may be reagregated into a final 1n−v  which 
will be rebalanced into a new integration step. This case will be presented more explicitely from sections §5.2.2 to 
§5.2.3. 

 

5.2 PRICING BENCHMARK 

In this section, we present the benchmark pricing results of several options according to multiple valuation 
approaches. The idea of this benchmark is to start with simple options to explore the way to use FST method and 
compare its pricing capacity by comparing with well-known methods. The next step of the benchmark will be to 
confront FST method with more complex options which belong to structured products. Lastly we will compare the 
results of structured products valuation. An issue will rise shortly from the second part of the benchmark: the 
decrease of comparison method only to the Monte Carlo approach. Indeed these structures can’t be priced with 
closed-formula and PDE approaches are not efficient enough to price such option structures. Thus the only 
reference method which will remain will be the Monte Carlo approach. It’s why the first part will be important to 
prove the accuracy of FST approach. 

 

In first stages, we will use INTLAB (Rump, 1999), a Matlab implementation of “Automatic Differentiation” (AD) 
Algorithm. This method consists of a set of techniques based on the mechanical application of the chain rule to 
obtain derivatives of a function given as a computer program. AD exploits the fact that every computer program, 
no matter how complicated, executes a sequence of elementary arithmetic operations such as additions or 
elementary functions such as exponential. By applying the chain rule of derivative calculus repeatedly to these 
operations, derivatives of arbitrary order can be computed automatically, and accurate to working precision. This 
approach is highly reliable when a closed-formula is defined however it seems limited when you have to integrate 
one or more conditional terms such as { }x p<�  for instance due to the difficulty to define its elementary operation. 

This approach is currently studied to improve Monte Carlo efficiency (see (Giles, et al., 2006), (Giles, 2007) and 
(Giles, 2008)). For more details on this numerical approach, please see www.autodiff.org. 

 

The pricing models used in this section are referred as follows: 

1. BSM: Black Scholes Closed Formula, 
2. FST: the FST method, 
3. ADF: the Automatic Differentiation method implemented in INTLAB, 
4. MCM: Monte Carlo Method, 
5. CRR: the Cox Ross Rubinstein method (Cox, et al., 1979) 
6. FiD: the Finite Difference Method, 
7. LSM: The Longstaff and Schwartz Method (Longstaff, et al., 2001). 

 

For the sake of simplicity and dissertation clarity, we will use only the Geometric Brownian Motion Stochastic 
Process as Random Generator Process. However the results presented can be extended with more complex 
processes but this would require to define the partial derivative of their characteristic exponent factor Ψ  to 
proceed the valuation, as we did in §4.4.4.3. 

 

This benchmark will price options based on theoretical parameters and will focus on market data calibration in 
section §5.3.3. The value of each parameter will be summarized in the results panel. All calculations are done 
with help of a Mac Book Pro with a 2.80GHz Intel Core(TM) 2 Duo CPU with 4.00 Go of RAM Memory and Matlab 
2010b. 
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5.2.1 Path independent Options 

5.2.1.1 European Option 

 

We start the pricing benchmark with the “guinea pig” of every option pricing model: the European Option. In this 
section, we will compare the pricing results of four pricing models: BSM, FST, ADF and MCM.  

 

In panel below, we present the FST Iterative Integration algorithm (see §5.1.2) adapted to European option. 
Comparing the initial algorithm, we detailed the last stage of option valuation: determining the price and greeks 

value at 0t = . This step proceed by interpolating the dedicated real vector according to the 0S  value with an 
accurate interpolation method (we will use cubic polynomial interpolation).  

 

Please note that this calculation step will be applied all along this dissertation and so won’t be detailed in next 
stages. 
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Panel 13: FST Algorithm used to evaluate a European Op tion. 

 

Now we present the pricing results and the used parameter values in Figure 23. As we can see, most results are 
in line with the pricing results produced by the BSM closed formulae (see §7.3). The ADF method will estimate 
price and greeks by using the call / put closed formula used to estimate the price. Regarding the performance, the 
FST is ranked third with a time consumption near instant with pricing errors below the bips (i.e. 0.01%) value. We 
will study later in §5.3.3 the pricing errors between BSM and FST according to the variations of financial 
parameters. 
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Figure 23: Example of pricing results of a European Option (Call and Put). 

 

Let’s have a deeper look at the MCM results which present few differences due to the stochastic nature of its 
valuation process.  

 

Here we recall the two statistical theorems underlying to the MCM valuation process: 

1) The Law of the Large Numbers:  
If we define ( ), 1iX i ≥  a serie of real random numbers which are independent and equally distributed 

such as ( )1X <+∞E , then [ ]1
1

1 n

n i n
i

X X X
n →+∞
=

= →∑ E  almost surely. 

2) The Central Limit Theorem:  
We define ( ), 1iX i ≥  a serie of real random numbers which are independent and equally distributed 

such as ( )1X <+∞E . We note 2σ  the variance of 1X  and ( )0,1N  a centered and scaled gaussian 

distribution.  

Then 

[ ]
( )

1
1

1

0,1

n

i
di

n

X X
n

n N
σ

=
→+∞

−
→

∑ E

 

 

Thus the first theorem demonstrates that Monte Carlo Simulations will converge to the mean results of Price and 
Greeks. And the second theorem demonstrates that we can produce a confidence interval for all results produced 

by MCM such as [ ]1 1
2

X X t
n
α

σ
< ±E . Most of the time 2σ  is unknown but it can be estimated with its 

unbiaised estimator ( )( )22
1

1

1
1

n

i
i

s X X
N =

= −
− ∑ E . 

 

Hence there is a stability issue due to the statistical construction of MCM which is well known (see (Glasserman, 
2004)) and is highlighted while estimating sensitivity factors. To converge toward stable estimation, we have to 
reduce the width of the confidence interval. So several variance reduction methods were developed to decrease 
the results’ volatitliy and the most employed consists to increase the number of simulations. 
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Figure 24: .Study of MCM convergence on mean pricing  values (Price and Greeks) for a European Call Option . 

 

In Figure 24 we compare the MCM pricing results according to the simulations number and as expected we note 
the convergence effect with the increase of simulations. Please note that we estimate the greeks nature by using 
the difference finite as derivative proxy. This method produces convergent results on Price evaluation however 
the derivative results remain volatile enough as we can see in Figure 25.  

 

Regarding the sensitivity factors estimation by MCM, Glasserman summarized several methods to solve this 

issue such as chain-rule application on 
V
x

 ∂
 
∂  

E  however most of them have limited impacts on more complex 

option structures. Unfortunately, proxy evaluation of sensitivity factors is also highly employed on trading floors 
and belongs as core constituent of prices broadcasted through information networks such as Reuters, Bloomberg 
or Fininfo. Hence we will use only this proxy approach in current disseration to highlight this phenomena and so 
the stability of FST method. 
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Figure 25: Variance estimation of MCM Pricing (price and Greeks) for a European Call Option. 

 

 
Figure 26: Pricing results of a European Call accordi ng to the Pricing method and the Strike level. 

 

Finally we assessed the pricing capacity of FST method by producing a pricing comparison between BSM, FST 
and ADF methods according to the strike level. These results are summarized in Figure 26 where we draw the 
priced items and we can notice few differences between the three methods. 
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5.2.1.2 Digital Options 

 

Now let’s study another “guinea pig” option with the digital option. Previously we highlighted the volatile issue on 
MCM evaluations, especially while concerning the Greeks estimations. In case of Digital Option, this phenomena 
is highlighted by the presence of an indicator function (i.e. { }x p>� ) in the payoff structure. 

In panel below, we presented the FST algorithm employed in digital option evaluation (whatever the type) and 
please note that the only difference with the European one presented in Panel 13 is the definition of payoff at 
t n= . 

 

t  R  C  

n 
1) 

( ) ( )

{ }

, asset

 where asset ,

n K

n

K

cash S

ϕ +−= = ×

∈
Sv S �

 
2) [ ]ˆ FTn n=v v  

0 4) Price & Greeks 

See algorithm on §5.2.1.1 
3 ) ( )0

0ˆ ˆ n
neΨ −=v v  

Panel 14: FST Algorithm used to evaluate a Digital Ca ll Option (Cash or Asset). 

 

5.2.1.2.1 “Cash or Nothing” Digital Option (DCON) 

 

We start the digital benchmark with the most likely indicator function known as “Cash or Nothing” Option in market 
jargon. Its payoff structure is simple enough and can be expressed as ( ) ( ), cash

S K
S Kϕ +−= × �  (call case), 

i.e. the counterpart gives a cash amount when the index is above the fixed strike. 

 

The Figure 27 presents the pricing results produced by the four following methods: BSM, FST, ADF and MCM. 
Most of priced items are strongly convergent with little time consumption (i.e. a few milliseconds). However some 
MCM results show some relevant differences especially on sensitivity factors based on rate, time and volatility 
(around ±  50 – 100% difference versus the BSM results). 

 

 
Figure 27: Example of pricing results of a DCON Opti on (Call and Put). 

These volatile results are the perfect illustration of derivative estimation of an indicator function. In Figure 28 we 
plotted the convergence speed regarding the simulation number for each priced items. We can notice that 
convergence speeds can be divided into two categories: fast convergence and slow convergence. This second 
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category applies especially to Rho and Theta measures which show important differences with FST measures 
even for high simulations number. 

 

 
Figure 28: MCM convergence speed on mean pricing va lues (Price and Greeks) for a DCON Call. 

This fact is correlated with the Variance estimations plotted in Figure 29 where variances remain stable whatever 
the simulations number. This phenomenon represents the influence of the presence of indicator functions into a 
payoff structure in terms of lack o f convergence. 

 

 
Figure 29: Variance estimation of MCM Pricing (price and Greeks) for a DCON Call. 
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Figure 30: Pricing results of a DCON Call according to the Methodology type and the Strike level. 

 

We assess the FST pricing capacity by comparing the priced items according to the strike level with BSM and 
ADF methods. We can notice in Figure 30 that there are few differences among the three methods and results 

seem coherent ( )
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5.2.1.2.2  Digital “Asset or Nothing” Option (DAON) 

 

Now we continue the digital benchmark with the “Asset or Nothing” Option which has the a payoff structure 
defined as ( ) ( ),

S K
S K Sϕ +−= × �  (call case). The difference with the previous digital option is in the delivered 

asset, i.e. the underlying index/stock instead of a cash amount. 

 

We presented in Figure 31 the pricing results produced by BSM, ADF, FST and MCM methods. Thus we can see 
that BSM, ADF and FST produced convergent pricings with few time consumption. Regarding the MCM results, 
we see strong divergences essentially located in greeks estimation. Thus the most striking point is the calculation 
of non zero gamma which is in contraction with the closed formula calculation. Moreover we can see high volatile 
results on other sensitivity factors estimations, especially with Vega which is ten times higher than values 
calculated by other methods. 

 

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

K/So Ratio 

Price

 

 
BSM

ADF
FST

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

K/So Ratio 

Delta

 

 
BSM

ADF
FST

0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2
x 10

-5

K/So Ratio 

Gamma

 

 

BSM

ADF
FST

0 0.5 1 1.5 2
-300

-250

-200

-150

-100

-50

0

50

100

150

200

K/So Ratio 

Rho

 

 

BSM

ADF
FST

0 0.5 1 1.5 2
-6

-4

-2

0

2

4

6

K/So Ratio 

Theta

 

 

BSM
ADF
FST

0 0.5 1 1.5 2
-150

-100

-50

0

50

100

K/So Ratio 

Vega

 

 

BSM
ADF
FST



 Bruno SARRANT – Actuarial Dissertation 

20120224 - Bruno SARRANT - Actuarial Dissertation.docx 02/24/2012 Page 73/130 

 
Figure 31: Example of pricing results of a DAON Opti on (Call and Put). 

 

We continue the investigation by analyzing the convergence speed evolution (see Figure 32) by comparing FST 
and MCM results. The striking fact while looking at the results is the lack of convergence capacity for most of 
measures. Some differences are negligible (e.g. delta and gamma), others are important (e.g. Theta and Vega).  

 

 
Figure 32 MCM convergence speed on mean pricing val ues (Price and Greeks) for DAON Call. 

 

The next question is “Is this phenomenon raised from a high variance?” The analysis of variance measures (see 
Figure 33) shows that most of them are stable and but some of them remain at high variance level. Hence the 
lack of convergence could find its origin in the presence of high and stable variance, in the presence of the 
function indicator into the payoff structure, but also in the delivery of underlying Index / Stock. 
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Figure 33: Variance estimation of MCM Pricing (price and Greeks) for a DAON Call. 

 

The last part of the analysis is to compare FST pricing results with other methods (only BSM and ADF). We 
followed the same approach seen in previous section and results are produced in Figure 34. As we can see, there 

are few differences and results seem coherent( )0
0

lim  Price
K

S
→

= . 

 
Figure 34: Pricing results of DAON Call according to  the Pricing Methodology and the Strike Level. 
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5.2.1.3 Preliminary analysis on “path-independent” option benchmarks 

 

The digital benchmark aims to highlight the pricing capacity of FST method of payoff with discontinuities. The two 
digital payoffs are widely used in financial literature to show the lack of convergence capacity of Monte Carlo 
approach. Several works demonstrate that this issue can be solved by using different derivative estimation 
methods. However this complexity increase propagates in the implementation of more complex structure.  

 

As we will see in §5.2.3, most of Structured Products integrate a large number of digital options and then show a 
highly discontinuous profile. In the two last sections we show the lack of convergence capacity for “simple” digital 
payoff. Fortunately closed-formulae exist to assess the pricing measures produced by FST and MCM but it won’t 
be the case for more complex structures. Then we can extrapolate that this issue will go worse and worse for 
payoff structures with compounded digital options. 

 

5.2.2 Path-Dependent Options 

In the current section, we will evaluate more complex options socalled “Path Dependent”. This means that the 
value of such options is dependent of the followed path between start date and maturity date. The benchmark will 
encompass two different options: American Option and Barrier Option. 

 

In terms of implementation, both option types will illustrate how to adapt the Iterative Integration process 
presented in §5.1.2. This is a key stage to understand how to construct FST algorithm adapted to Structured 
Product Pricing. 

 

5.2.2.1 American Option 

 

We began the “path-dependent” benchmark with the american option. This option in its simplest form defines a 
European payoff which can be exercised at each time bucket between the starting date and the maturity date. 
The purpose of this benchmark is to illustrate the declination of generic FST algorithm for payoff structures with 
interstage valuation between the start date and the maturity date.  
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Panel 15: FST Algorithm used to evaluate an American Option. 

 

In Panel 15, we present the adapted algorithm for american option and note the key differences: 

1. We divide the time space into several buckets, each representing an arbitrage opportunity, 
2. At each time bucket after adding time value, we make a round trip such as → →C R C , 
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3. While in R  space, we proceed to the arbitrage estimation with the following payoff 

( )( )max , ,i iKϕ=v S v . Please note that this apply on each point of iv  and not for the whole vector 

values. 
4. We repeat the process until arriving at 0t =  then we estimate the priced items with the same estimation 

process presented in §5.2.1.1. 

 

The american option benchmark is produced with help of four pricing models: 

1. CRR: The Cox-Ross-Rubistein method (Cox, et al., 1979) which approximates the dispersion of the 
underlying Index / Stock by building a tree. 

2. FiD: The finite difference model which build a probability grid to approximate the Index / Stock Dispersion, 
3. LSM: The Longstaff-Schwartz method (Longstaff, et al., 2001) which develops a backward evaluation 

method adapted to Monte Carlo Pricing. The arbitrage process is replicated by introducing a regression 
approach to estimate the expected payoff at 1t i= − . 

4. FST: And finally the FST method following the algorithm presented in Panel 15. 

 

In Figure 35 we present the results produced by each method regarding an American Call / Put Option. As we 
know, an American Call Pricing must be identical to a European Call Pricing which can be assessed by 
proceeding to a comparison with results presented in Figure 23. Regarding the results produced for an American 
Put Option, we can see that most of results are quite similar apart for the LSM method which has relevant 
differences in sensitivity factors’ estimation. 

 

The analysis of these results shows a high consistancy between CRR, FiD and FST methods with negligible 
differences for the call valuation. The situation is different with MCM evaluations which show important 
differences, especially for the Rho, Theta and Vega measures. Regarding the calculation time consumption, the 
FST method shows the best perfomance with a time consumption from twice lower (FiD) to twenty times lower 
(CRR). 

We also produced the pricing results for the put option to assess the good behavior of pricing models. However 
we were surprised by some differences on some sensitivity factors pricing. Thus the CRR method shows a null 
value for most of sensitivity factors while other methods calculated a sensitivity value for Rho and Theta. 

 

The presence of these sensitivity factors seems normal because: 

1. A rate increase will impact the drift and so the Index / Stock will tend to higher values than its initial value. 
Hence the american put must loose value with rate increase. 

2. A Time increase will favorize the dispersion and so increase the probability to produce positive payoff. 

 

 
Figure 35: Example of pricing results of an American  Option (Call and Put). 

We continue the analysis by producing a benchmark on an American Put Option between CRR and FST 
according to the Strike level. These results are produced in Figure 36 which represents the calculated values for 
Price and Sensitivity Factors by the two methods. 
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As we can see, both methods produce very similar results for each priced items, exception of Gamma where we 

notice differences for 0K S  near 1. However the gamma values are very low (less than 0.01) and these 
differences are representatives of proxy evaluations around 0. 

 

 
Figure 36: Pricing Results Comparison of an American  Put according to Pricing methods and Strike Level 

 

We can conclude the “American Option” benchmark that the FST method produces accurate and relevant results 
but with less time consumption where it is five up to fifty times faster than the methods of reference used in this 
benchmark. 

 

5.2.2.2 Barrier Option 

 

In this section we will study another type of “path-dependent” option with help of Barrier Options. This aims to 
introduce a new complexity in interstage payoff valuation with the presence of an indicator function. Firstly we will 
start with the European Barrier Option (exercise date limited to maturity date) and lastly we will finish with the 
American Barrier Option which adds the interstage arbitrage process. 

 

5.2.2.2.1 European Option with Barrier (“EOB”) 

 

In Panel 16, we presented the FST algorithm adapted to a European Call Option with Barrier: the only difference 
with a simple European Call Option is the introduction of an indicator function into the native payoff structure. 

 

The EOB benchmark is produced with help of the CRR, FST and MCM methods. We identify the several barrier 
options with the following acronyms: 

1. DI means “Down and In”, i.e. the payoff is activated only when the stock reached down the barrier level. 
2. DO means “Down and Out” and is the opposite of DI barrier option. 
3. UI means “Up and In”, i.e. the payoff is activated only when the stock reached up the barrier level 
4. UO means “Up and Out” and is the opposite of UI barrier option 
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Panel 16: FST Algorithm used to evaluate a European Ca ll Option with Barrier. 

 

 
Figure 37: Example of pricing results of a European Option with Barrier (Call and Put). 

 

The valuation is related to Call and Put Options with relevant and irrelevant barrier levels to assess that results 
remain in line with option structure. Thus a Call with a DI Barrier Option can’t be activated and generate a payoff 
instrinsic value at the same time. And the Put with UI Barrier Option represents the same situation adapted to a 
put payoff. 

 

We presented the EOB benchmark results in Figure 37 

1. Most of Price estimations are convergent (the highest difference represents 0.28% of 0S ), 
2. Partial Derivatives: 

a. CRR and FST are convergent most of the time apart from Vega estimation where FST method 
calculates higher values and with some sign differences. 
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b. The MCM method is convergent on Delta and Gamma estimations and diverges highly on other 
sensitivity estimations. 

3. Time consumption: the FST is 360% to 500% faster than CRR or MCM methods. 

 

Going forward we will review the robustness of FST method by comparing its results with CRR. Thus we 

produced several calculations based on a moving 0K S  ratio and Barrier level 0 0 0.1B S K S= + . The 
results are presented in Figure 38: 

 

 
Figure 38: Pricing Results of a European Call with a moving UI Barrier (B/S = K/S + 0.1) depending of Prici ng Method 
and Strike Level. 

 

We can see that Price, Delta and Rho measures show similar results whatever the method and strike levels. 
Regarding the Theta measure, results are similar with more important values produced by FST method. We can 
see the same difference type on Gamma as presented for American Option (see §5.2.2.1), i.e. minor differences 
on low Gamma values. The most striking difference concerns the Vega measure where FST presents Volatility 
levels twice time greater than those produced by CRR. 

 

At this stage we can say that the FST method seems relevant on most priced items apart from the Vega. However 
we can’t establish the origin of such differences either in terms of level or sign. 

 

5.2.2.2.2 American Option with Barrier (AOB) 

 

Now we will increase the payoff structure complexity by using an American Payoff instead of the European 
Payoff. The consequences on option structure are the presence of a continuous barrier option combined with an 
American Evaluation condition. Hence this structure will integrate several interstages all along the evaluation 
period which will combine an indicator function into the American Payoff evaluation.  

The presence of a permanet Barrier imposes to us to to distinguish the “knock-in” option types by adding the 
value of knocked-in options during the insterstage period: 

1. The backward valuation will start by adding the terminal payoff value, i.e. the knocked-in option only at 
t n= . 
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2. we propagate this value to 1t n= −  by considering this value won’t touch a new the barrier level. But 
we have to integrate the value of knocked-in options at 1t n= − . We combine the two option values 
according to the following formula: 

[ ] ( )[ ] ( )
{ }

11 1
1 1 ,ˆFT FT FT max ,0 n n

n n DI UIB K eΨ − +− −
− −  = × + − × v v S� �  

3. Lastly we evaluate the american payoff as follows: ( )( )1 1max , ,n nKϕ− −=v S v  

4. We repeat the process until 0t =  

 

Next we described the FST algorithm adapted to an American Option with Barrier where we add the interstage 
evaluation steps as for a simple American option. 
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See algorithm on §5.2.1.1 
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Panel 17: FST Algorithm used to evaluate an American Call Option with Permanent Barrier. 

 

Now we will evaluate the pricing capacity of FST method by comparing its results with the CRR method adapted 

to evaluation of AOB. We produced two pricing results according to the barrier proximity to 0S : one with closed 
barriers ( Down = 90% and Up = 110%, see Figure 39) and another with further barriers levels (Down = 50% and 
Up = 200%, see Figure 40): 

1.  Price estimations are almost equal whatever the barrier type and barrier level. 
2. Sensitivity Factors show more disparate results especially for Rho and Vega pricing results where we can 

notice sign mismatches and / or great differences (up to ten times the result produced with help of CRR, 
see vega of a Call DI Option in Figure 39). 

3. Regarding the time consumption, FST is 4 to 6 times faster than the CRR method. 
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Figure 39: Example of pricing results of an American  Option with Barrier (Call and Put) with close barri ers (Down = 
90% of So, Up = 120 % of So). 

 

 
Figure 40: Example of pricing results of an American  Option with Barrier (Call and Put) with Far Barrie rs (Down = 50% 
of So, Up = 200 % of So). 

 

The pending question regarding the two benchmarks’ results concerns the relevancy of sensitivity factors 
evaluated by FST method. This phenomenon is also observed with previous benchmarks at lower level. However 
most of pricing methods reviewed previously use a path diffusion proxy either with help of lattice (CRR) or grid 
(FiD), while the FST method use a proxy evaluation by interpolating calculated values.  
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Figure 41: Pricing Results of an American Put with a fixed DI Barrier (B/So = 0.5) depending of Pricing Me thod and 
Strike Level 

 

We investigate further the pricing capacity of FST method by producing a benchmark between CRR and FST with 

several strike levels and a constant Barrier Level ( 0 2B S= ). There we can see that both methods are close 
enough with less convergent results than those presented in previous sections. Most of priced items are “near 
convergent”, i.e. the divergence increases slightly with the Strike Level. The only exception is the Vega measure 
where there are an opposition of sign, plus an absolute value twice higher than the CRR pricings. This situation is 
similar to the one presented in section §5.2.2.2.1. 

 

5.2.2.3 Forward Starting Option (FSO) 

 

In this section we will focus on the forward starting option, i.e. options whom strike will be set up in the future. This 
is a common feature in Structured Products’ Primary Market because it cancels the basis effect and so the 
implication of Delta and Gamma. 

 

Please remind that FST Method is a backward evaluation method and so adapting generic algorithm implies to 
define a new dimension according the future value of the strike k . Thereby we move from a vectorial valuation 

with size ( ),1sN  to a matrix valuation with size ( ),s kN N  during the evaluation period [ ],s nt t  where sN  and 

kN  represents respectively the number of points in discrete vectors S  and K , nt  represents the maturity date 

and st  the strike date. The next step is to estimate the option price for each ( )1, kk N∈K  to constitute the 

value vector 
stv  where the option price “At The Money” (ATM) is the fixed strike k . Lastly we get the value 

vector 
0tv  by actualizing the vector 

stv . To give a better intuition of the adapted algorithm, we represented in 

Figure 42 the pricing process according to the employed dimensions and the detailed version is presented in 
Panel 18 for a Forward Starting European Option. 
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Figure 42: Pricing Representation of Forward Starting  Options 
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Panel 18: FST Algorithm used to evaluate a European Fo rward Starting Option. 

 

Next we will produce the European FSO Benchmark with help of four methods: BSM (see forward formulae in 
§7.3), ADF (based on fwd BSM closed formula), FST and MCM. We produced two benchmark results according 
to the number of simulations employed in MCM evaluations which are either 1 million paths (Figure 43) or 5 

millions paths (Figure 44). Regarding the FST Method, we define the assumption s kN N=  and use only 

1000N =  (preliminary tests showed the best ratio “Accurate Results / Time consumption”). 
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Figure 43 Example of pricing results of a Forward Sta rting European Option (Call and Put) (low simulation number). 

 

 
Figure 44: Example of pricing results of a Forward S tarting European Option (Call and Put) (higher simula tion 
number). 

 

A common market assumption says that FSOs have a null Delta and Gamma due to the lack of basis effect (i.e. 
the strike is not fixed). This assumption is partially right regarding the closed formula of the European FSO: the 

Delta corresponds to a formula independent of tS , and consequently the Gamma has a null value. This point is 
assessed by both benchmarks which produced a null Gamma and a low Delta, and hence certified the adapted 
FST algorithm presented in Panel 18. 

 

Concerning the produced results, Both Benchmarks show a strong convergence either in term of Price or 
Sensitivity Factor evaluations. However we can notice that MCM requires an important number of simulations to 
get stable estimations. Meanwhile the FST method shows a strong accuracy even with a low number of 
discretization points. But we can see that the matrix approach is highly time consuming with a calculation time half 
time to MCM with 5 million paths. A code analysis of the Matlab code shows that 80% of time is consumed by the 
Mathworks’ “interp1(…)” function and the remaining by the adapted code (i.e. 1.3 second). Hence there are 
possibilities to improve the FST performance by developing a more accurate interpolation method. 
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We extended this analysis by producing a more detailed benchmark between BSM, ADF and FST methods 
depending on the Strike Level. These results are presented in Figure 45 and we can notice a general 
convergence between the three methods apart from the Delta and Gamma measures. However the differences 
are negligible reported to the FSO Price (less than a basis point). 
 
So we can estimate that the FST method is relevant on pricing of Forward Starting European Option and we 
assume we can extend this point on other option types. Nevertheless an assessment must be produced to 
validate completely this assumption. 
 

 
Figure 45: Pricing Results of European Forward Startin g Call according to Pricing Methods and Strike Level.  

 

5.2.2.4 Automatic Early Redemption Option (AERO) 

 

We continue the “path-dependent” option review with a bond option structure called “Auto Callable” option which 

define a bond with automatic redemption when S K≥  for each { }1,2, , 1t n∈ −…  where n  is the bond 

maturity.  

 

In next panel, we described the adapted FST algorithm for AERO Structure where we define 1n−  evaluation 
steps to agregate the value of the bond according to the option trigger.  
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Panel 19: FST Algorithm used to evaluate an Automatic  Early Redemption Option. 

 

We produced the AERO Benchmark with help of two methods only (FST and MCM) because there are no closed-
form solution and no well-established pricing model. This situation gives a taste of the pricing issue regarding the 
structured products. Please note that the presented AERO is an Equity-linked Structure regarding the exercise of 
the redeemed option. 

 

The benchmark results are produced in Figure 46 and correspond to the pricing results according to three time 

positions: Spot (i.e. 0t t= ), Living (i.e. 1 0 1 yeart t t= = + ) and Forward (i.e. 1 0 1 yeart t t−= = − ). To give 
a better idea of AERO impact, we add the calculation of the Net Actualized Value (NAV) of bond which redeemed 
at a given coupon date. Hence the Bond’s NAV corresponds to the sum of actualized perceived coupon(s) and 

actualized nominal according to the date value. For instance, the NAV redemption date 8rt =  corresponds to 

the value of 8Y vanilla bond priced at 0t , while the NAV at redemption date 1rt =  corresponds to the value of 

redeemed bond 1 year later than the issue date 0t .  
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Figure 46: Example of pricing results of a Bond with  AERO according the Pricing Method and time position (Spot, 
Living or Forward Starting Option). 

 

The next demonstration step is to compare the FST capacity versus other methods. Unfortunately we are limited 
to Monte Carlo Method and we know it may not be the most adequate. Although we produced the benchmark and 
summarized the results in Figure 47 where we can see the following points: 

1. A strong convergence on Price estimation between the both methods, 

2. Similar results on derivates versus S  or T (see the scale), 
3. Rho measures show strong differences between MCM and FST: the first one seems oriented with a step 

level around -100 until 
0

0.75K
S ≈  and after it decreases significantly until -700, while the FST method 

estimates a more important Rho with the same effect as seen previously. 
4. Concerning Vega, MCM shows estimation near null whatever the situation while the FST method defines 

a “wave” effect depending on the ratio value. With a ratio below one, the option is in the money so a 
higher volatility increases the probability not to trigger the AERO effect and hence it increases the bond 
value (see static bond values presented in Figure 46). And we do the opposite rationale with a ratio above 
one: the AERO option is out the money so high volatility increases the probability to trigger the option and 
so the bond loses value. 
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Figure 47: Results of a Bond with AERO according to Pricing Methods and Strike Level (simulation number =  1 
million paths). 

 

Next we finished the benchmark by producing a comparison between FST pricings according to the pricing date 
(i.e. spot, living or forward). The rationale is to highlight the potential impacts depending on time position and the 
presence (or not) of a basis effect.  

 

We can notice that most measured items are mostly similar (Delta, Gamma, Theta and Vega). However the two 
others (Price and Rho) have to be analyzed carefully. Indeed a Bond with AERO is a common liquidity support for 
Structured Products issued in primary market. 

 

And we can highlight two important points which have strong consequences on deal negotiation: 

1. A lower bond price: this allows getting better price and so increases the intermediate fee (there we have 
upfront discount of near 4%). 

2. The Forward Rho equals nearly its Spot counterpart: this Sensitivity Factor will concern interest rate 
movements but also credit spread approximated as risk premium. So selecting the counterpart will have 
also strong consequences on the final price delivered and so the intermediate fee. 

 

Hence an alerted investor will keep in mind these two parameters while proceeding to a new investment due to 
their influence on negotiated price. 
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Figure 48: FST Pricing Results of a Bond with AERO, a ccording to the ratio level “Strike/Current Underlyi ng Level” 
(K/So) and the Scenario Type. 

 

5.2.2.5 Preliminary Conclusions on “Path-Dependent” Options 

 

We presented in this section a set of “Path-Dependent” Options to assess the Pricing Capacity of the FST Method 
regarding the increase of Payoff Structure Complexity. To reach this goal, we compared its results with those 
produced by methods of reference for a given Option Structure. 

 

Regarding the presented results, we can say that FST method is convergent on Price estimation and most of the 
underlying Sensitivity Factors. However we saw in particular cases some divergences especially while estimating 
the Vega of American Option with Continuous Barrier. We will conclude the FST efficiency but remain aware that 
this point will require a further investigation to validate this assessment. 

 

In the last two sub sections, we presented uncommon option structures with the FSO and AERO Options and the 
linked issue which is the limitation of referred method to the Monte Carlo Method. Thus we adapted and extended 
the inital work presented by Vladimir Surkov to evaluate such structures and assessed the FST efficiency with the 
benchmark results. Regarding the AERO assessment, we presented also the economic issues linked to this 
structure, especially during the negociation phase with Forward Starting Products. 

 

The next stage is to evaluate real Structured Products which integrate some of the options presented in §5.2.1 
and §5.2.2. 

 

5.2.3 Examples of Structured Product Pricing 

Now we arrive at the final stage of the FST Tests by producing benchmarks based on real Strutured Products. 
Due to confidentiality measures, the presented structures have been changed but they remain similar enough to 
be the assessment of real versions. 

 

The Structured Products presented in this part are: 
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1. BMB: A Note with 8Y maturity with a laddered coupon delivered at maturity, defined by a set of digitals 
and framed by floor and cap option (i.e. min = 0%, max = 75%), 

2. BSB: A Note with 8Y maturity and a structured coupon with AERO for each date { }1,2, ,7t ∈ … , a 

memorized coupon option and a final Put DI Barrier at maturity, 
3. BFT: A Note with 3Y maturity, an AERO for each working day until maturity and an final Put DI Barrier at 

maturity. 

 

5.2.3.1 8 years Ladder Equity-Linked Structure with Guaranteed Capital at Maturity (BMB) 

 

Let’s start the evaluation of Structured Products with the BMB Structure which is represented in Figure 49 
according to its financial characteristics: 

1. Maturity : Eight years, 
2. Underlying Index: Euro Stoxx 50 (STX5), 
3. Capital: Protected, , i.e. 100% delivered at maturity whatever the variation of STX5 
4. Performance: 

a. A coupon delivered at maturity, 
b. The delivered coupon is laddered between 0% and 75%, with 15% intermediate cumulative 

thresholds according the final performance of STX5. For instance, if STX5 performance is 135%, 
the delivered coupon will be 45%. 

 

 
Figure 49: Option Structure of BMB Product. 

 

Similarly to previous benchmarks, we presented the FST algorithm adapted to this Option Structure in Panel 20. 
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Panel 20: FST Algorithm used to evaluate a BMB Product . 



 Bruno SARRANT – Actuarial Dissertation 

20120224 - Bruno SARRANT - Actuarial Dissertation.docx 02/24/2012 Page 91/130 

 

Now we present the BMB results produced by the FST and MCM methods according to the Pricing Type (Figure 
50): 

1. Spot: Pricing at issued date, 
2. Living: Pricing one year after the issued date (i.e. T = 7) 
3. Forward: Pricing one year before the issue date (i.e. T = 9). 

 

 
Figure 50: Example of pricing results of a BMB Produc t according the time position (Spot, Living or Forwa rd). 

 

We can see that both pricing methods converge for each priced items, even if we can see relevant differences on 
Rho and Vega. Please note that the MCM’s results are volatile enough due to the presence of digital options in 
fine. This is not surprising as we saw this phenomenon previously (see §5.2.1.2). On performance side, we can 
see that FST is 600% more efficient on Spot and Living Pricing scenarios, while it is 50% less efficient than the 
MCM method on forward scenario due to the time consumption by “interp1()” function. 

 

 
Figure 51: MCM convergence speed on mean pricing va lues (Price and Greeks) for a BMB Product 
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Now we investigate the convergence capacity by producing a comparison between FST and MCM regarding the 
number of simulations employed by MCM (from 10k to 10M, see Figure 51 ). There we can see most of priced 
items converge fast enough but Rho and Theta require important simulations number to produce results similar to 
FST method. 

 

By combining these results with those produced in Figure 50, the MCM requires at least 5 million of simulations to 
produce results as efficient as FST Method. Hence the time consumption is multiply by 5 and so FST becomes a 
better pricing method either in terms of estimation or time performance. 

 

5.2.3.2 8 Years Equity- Linked Structure with Memorized Coupons, Automatic Early Redemption and Final Put 
DI Options (BSB) 

 

Now we will study a more complex option structure with the following financial characteristics: 

1. Maturity : Eight years, 
2. Underlying Index: Euro Stoxx 50 (STX5), 

3. Capital: Partially protected, i.e. 
8

8 0
DI Barrier

0
100 1 S

S S
S <

 − × +   
�  where DI Barrier = 60%. 

4. Coupon: a 6% coupon is memorized for each { }1,2, ,8t ∈ …  if 0tS S≥ . 

5. Redemption: 
a. Automatic Early Redemption: BSB may be redeemed earlier for each { }1,2, ,7t ∈ …  if 

0tS S≥ . Then the delivered amount is 100 6 t+ ×  

b. Final Redemption ( 8t = ): 
8

8 0
DI Barrier

0
100 1 S

S S
S <

 − × +   
�  + 

8 0
48 S S≥×�  where DI Barrier = 

60%. 

 

The option structure is summarized in Figure 52 where we represented the generated cash flows depending on 
the evolution of STX5 index. 

 

 
Figure 52: Option Structure of BSB Product 

 

As usual, we present now the FST algorithm adapted to this Option Structure in Panel 21, where we adapt the 
backward approach by integrating step by step the different options into the value vector. 
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Panel 21: FST Algorithm used to evaluate a BSB Product.  

 

In Figure 53 we present the pricing results for FST and MCM methods, depending on the Pricing Type (Spot, 
Living or Forward). As we can see, the results are similar whatever the priced item, apart from Theta and Vega 
estimations which present relevant differences (from one to five). 

 

 
Figure 53: Example of pricing results of a BSB Product  according the time position (Spot, Living or Forwar d). 

 

Analysing the results of MCM method according to the simulation numbers input (see Figure 53) shows its 
difficulties to converge efficiently on particular sensitivity factors even for high simulations numbers. For instances, 
Rho and Vega estimated by MCM converges toward zero while FST estimates negative values.  
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Figure 54 MCM convergence speed on mean pricing val ues (Price and Greeks) for a BSB Product 

 

On operational side, MCM will produce random values which will gravitate around zero with potential change of 
sign. In term of Risk Management, this lack of stability is an important issue: we can’t define a stable risk measure 
with such volatile values. 

 

5.2.3.3 3 Years Equity-Linked Trigger Return Structure (BFT)  

 

We finish the benchmark dedicated to Structured Products with a SP similar to previous except for the time basis 
which is based on daily evaluation. 

 

Here we summarize its financial characteristics: 

1. Maturity : Eight years, 
2. Underlying Index: Euro Stoxx 50 (STX5), 
3. Time basis: daily (1 year = 252 working days). 

4. Capital: Partially protected, i.e. 
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5. Coupon: An 8% coupon delivered in case of exercise of AER Option, i.e. for each { }1,2, ,755t ∈ …  

when 0tS S≥ . 
6. Redemption: 

a. Automatic Early Redemption: BSB may be redeemed earlier for each { }1,2, ,755t ∈ …  if 
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Figure 55 sketches the Structured Product evolution according to t  and variations of STX5: 
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Figure 55: Option Structure of BFT Product. 

 

Now we present the FST Algorithm adapted to the BFT Structured Product in Panel 22. As we can see, the 
backward algorithm is straight forward where the most important trick remains in the composition of the vector of 
integrated values (see step n°4). 
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Panel 22: FST Algorithm used to evaluate a BFT produc t. 

 

Below we present the benchmark results produced by the FST and MCM methods according to the Pricing Type. 
We can see that most of priced items show convergent results whatever the pricing method used. The only 
exceptions are Rho and Vega which present significant differences in amount and/or sign. Please note that the 
MCM was limited to a thousand paths due to the daily discretization. Indeed a superior number of simulations will 
induce a Matlab error and produce no results. Hence the MCM results show a high volatile profile on particular 
Sensitivity Factor estimations. 

 

Regarding the performance of each method, we can see that the daily estimation creates an overhead for both 
methods, with a neat advantage for the FST method for the first two scenarios (Spot and Living). However the 
FST performance decreases a lot while estimating the Forward BFT. Indeed the Forward FST algorithm requires 
to perform “N+1” pricings (see §5.2.2.3) and so the time consumption is multiplied by one thousand (Forward FST 

belongs to the ( )o n  algorithm category). However the MCM used only Ten Thousand paths which are few to get 

accurate results. With a minimum of one million paths, the MCM consumption will increase at least by 100 and 
push the forward BFT estimation near to 1100 seconds, i.e. 20 minutes.  
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Figure 56: Example of pricing results of a BFT Produc t according the time position (Spot, Living or Forwa rd). 

 

We lead further our investigations by providing a convergence study on MCM depending on the number of 
employed simulations (see Figure 57). We can notice that BFT Product presents the same lack of convergence 
capacity on Rho and Vega as for BFT Product. Thereby these two sensitivity factors converge to zero value while 
FST converges to negative values. This fact raises a Risk Management issue due for BSB Product to the volatile 
value of these Sensitivity Factors. 

 

 
Figure 57: MCM convergence speed on mean pricing va lues (Price and Greeks) for a BFT Product. 
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5.2.4 Conclusions on Structured Product Benchmark 

 

We presented in this part a set of structured products provided by official market counterparties, and we provided 
a comparison of pricing results between FST and MCM methods. Due to their inner complexity, most of SP can 
be priced with only a reference method which presents some issues, especially on sensitivity factor estimations. 

 

These issues have lots of consequence such as the product negotiation (“is the price fair?”), the risk management 
(“how to manage a neutral position with volatile estimations?”) or the accountancy of such products (“How to 
provide a fair value accounting with a complex OTC Product?”). Moreover reaching these goals requires a 
dedicated IT System with the consequences on budget dedicated to its uses and maintenance. 

 

The study of FST method highlights: 

1. It is accurate and fast enough whatever the option structure and can be used in trading context, 
2. Its results are stable for a given calibration. Hence repeating the valuation process will produce the same 

results whatever the time spent since the last produced valuation. This fact solves the issues in risk 
management and accountancy. 

3. The FST algorithms are easy to implement and to maintain once the algorithm is defined. Moreover the 
FFT is deployable on Distributed Grids and so FST can manage a huge volume of calculations. 

 

With such results, FST method is a good candidate on complex option structure pricing in financial environment. 
However this must be moderated by the following points: 

1. Scope Extension of Current Study: This study is limited to mono equity asset options. Regarding the 
papers produced by Vladimir Surkov and Al., the FST method was applied on several different cases: 
Options with multi asset underlyings (Jackson, et al., 2008), different asset categories (IR, Commodities, 
see (Jaimungal, et al., 2010) and (Jaimungal, et al., 2011)) or different random generator processes 
(GBM with Jump for instance, see (Surkov, 2009)). We limited the benchmark for the sake of simplicity 
and to focus on the FST capacity to handle Complex Structure Pricing. However that method can be 
extended and the interested readers may investigate these points further with the referred papers in §8. 

2. FST Requirements: The use of FST method requires a good mathematical knowledge to define accurate 
algorithms and avoid misconceptions or misunderstandings. Having a Look on the FST application on IR 
Options highlights these difficulties (Jaimungal, et al., 2010). This is an important constraint that will limit a 
broad use of this method comparing to the simplicity of MCM. 

3. Limited Application with Particular Option: The FST method is a backward approach and its application on 
payoffs with forward valuation can be complex enough. As example, we presented the case of Forward 
Starting European Option in §5.2.2.3 and so highlighted this situation. This difficulty will increase a lot with 
Asian Options and use of “spaces within spaces” approach will be reflected on high degradation of 
performances. 

 

From our point of view, FST method is a good candidate to complete and challenge MCM method but not to 
replace it completely. We estimate it is better to have two pricing methods than one when you have to produce 
quantitative studies of complex option structures. FST presented a set of qualities which outreach some MCM 
limitations. We will use it in the next part to help measuring the SP sensitivities and so managing the underlying 
risk. 

 

5.3 PIPELINE RISK FRAMEWORK (PRF) IMPLEMENTATION 

Now let’s come back to the application context presented during the introduction where we decided to use a VaR 
approach as backbone of the Pipeline Risk Framework.  

 

To get an accurate risk measure, the following items are necessary: 

1. Define the positions at Risk, 
2. Estimate its sensitivities regarding the underlying risk factor(s) variations, 
3. Estimate the dispersion at risk of underlying factors for a given confidence levels. 
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�Thus thee combined elements will supply a measure of pipeline risk. 

 

As explained during the introduction, we won’t investigate the forecast of risk exposure because it is highly linked 
to the customers’ behavior, a sensitive and highly confidential business topic. So we will mark the positions at risk 
statically by assuming that the whole or a part of these positions is submitted to price variations. This assumption 
helps to solve #1. 

 

In sections §4.4 and §5.2, we presented and studied the FST method to evaluate its pricing capacities of 
Sensitivity Factors. We concluded that this study must be completed but already proves that FST method is 
relevant to estimate sensitivity factors. Thus we decided to use it to solve partially point #2 because we defined 
the methodology but not how to calibrate FST method with market data to get market estimations. 

 

And a last point to solve is the estimation of the dispersion at risk of underlying factors, presented in point #3. And 
there remains an important issue because the model to use depends highly of the underlying factor’s nature. 

 

So we will present in the following sections the solutions we agreed but not as detailled as for the FST Method. 
Indeed technical details are part of Barclays Internal Risk Management and so submitted to confidentiality. We 
will present only the main facts without detailing the technical implementations. 

 

5.3.1 Mathematical Expression of Pipeline Risk Meas ure 

Let’s start from the VaR formula adapted to the Pipeline Risk, defined as follows: 

, , ,
1 1

s n k
tk

t t i T t
ik i

V
PR RE x

xα α−
= =

∂
≈ × ×∆

∂∑ ∑   (16) 

With 

k : Index dedicated to Structured Products with { }1,...,k s∈  and s , the total number of Structured 

Products, 

i : Index dedicated to Underlying Factors with { }1,...,i n∈  and n  the total number of Underlying 

Factors, 

,tPRα : The Pipeline Risk generated by all Structured Products estimation at time t for a given confidence 

levelα , 
k
tRE : The Risk Exposure at time t  (i.e. the remaining inventory) for a given Structured Product # k  

ix : Underlying Factor # i  

k
tV : Estimated price of a given Structured Product # k  at time t  

k
t

i

V
x

∂
∂

: Estimated Sensitivity Factor versus underlying factor ix  for a given Structured Product k  at time 

t  

, ,i T tx α−∆ : Estimated Variation at Risk for a given Underlying Factor ix  at maturity date T t− , based on 

a confidence level α . 

 

We will use this simplified formula with the following assumptions: 

1. The Risk Exposure k
tRE  is static, 

2. The potential loss will be estimated only with first order derivatives, 
3. The potential correlations between Underlying Factors are neglected. 

 



 Bruno SARRANT – Actuarial Dissertation 

20120224 - Bruno SARRANT - Actuarial Dissertation.docx 02/24/2012 Page 99/130 

We are aware that these assumptions may be challenged and current approach can be improved on most of 
these points.  

 

However we agreed on this simple approach for the following reasons: 

1. Risk Communication: the Pipeline Risk Measure will be employed also as communication tool. Hence it 
must be understandable by Executive Staff independently of its professional background. The more 
complicated a model is, the more difficult it is to explain results and variations in front of an uninformed 
auditory. Risk may be complex and our duty is to present the situation in clear terms to give the full insight 
to executive officers and help them to be fully informed. 

2. Model Resilience: Another important reason is the model resilience in distressed market conditions. 
Indeed most of high level models are fragile and have a bad resistance in worst market conditions for 
several reasons such as spoiled data, outbound model conditions and so on. Regarding the Risk 
Management function, our duty is to be able to estimate our current positions to establish the necessary 
actions plan to mitigate the risks, in all market conditions. 

3. Backup and Maintenance: this is a pragmatic reason based on the fact that this model will be distributed 
and employed among Barclays Business Units. So the model must be understandable by different people 
among several countries. And the more people use a model, the more bugs are detected. Solving these 
bugs will consume time according to its complexity. 

 

For all these reasons, we decided to use this simplified version of Pipeline Risk Measure. Later we will investigate 
the tracking record of produced results to improve (potentially) this measure. 

 

5.3.2 Risk factors forecastings 

Now we have to select the most relevant underlying factors to get the most relevant measure. To do this, we have 
to analyse the contributions of each Underlying Factors in Structured Product Pricings (see §5.2.3). 

 

Thus we can observe from the produced benchmark that: 

• On Primary Market (Forward), the most important risk contributions are generated by Rho, Theta and 
Vega. As expected, the sensitivity factors based on state variables have few effects due to the lack of 
basis risk. 

• On Secondary Market (Spot and Living), the most relevant sensitivity factors remains the same with the 
introduction of the basis risk with the fixing of strike levels of reference (i.e. introduction of Delta and 
Gamma). However we can notice that this basis risk is less significant than the other risks. 

 

So we decided to integrate at this stage only “Interest Rates” and “Equity Volatility” as Underlying Risk Factors. 
However we have to segregate the IR contribution in two categories: zero risk interest rate and funding 
conditions. Indeed the first one depends essentially on the continuous negotiations on IR market while the second 
one is specific to an issuer’s signature.  

 

5.3.2.1 Interest & Funding Risk Factors 

 

The Pipeline Risk Framework (PRF) requires to forecast the future forward interest rate for a given risk exposure. 
From a practical approach, the risk exposure is carried for a limited time period (a few days to a few months) 
where interest and funding rates are fixed at purchase. Hence we have to forecast their forward counterparts to 
estimate the future rate deviations and the potential loss at risk. 

 

Several techniques exist to estimate the “Forward Interest Rate at Risk” (FIRAR) from econometric methods to IR 
market model. In the case of Pipeline Risk estimation, we need a resilient and accurate method with the simplest 
implementation possible. For these reasons, we selected the Libor Market Model (LMM) developed by (Brace, et 
al., 1997) due to its wide use by market places and its capacity to produce results comparable to those produced 
by the Black Closed Formula on Cap Pricing (see (Black, 1976)). 
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Basically the LMM demonstrates that Forward Rates follow a log-normal process under a forward measure such 
as: 

( )
( )

1 2

1 2 1 2

2
, ,1 2

, , , ,
1 2

, ,
, , 2

t T TF
t T T t T T

dF t T T
dW dt

F t T T

σ
σ= × −   (17) 

Where 

• t  is the time point of evaluation, 1T  the beginning of the forward period, 2T  is the end of forward period, 

and 1 2t T T< <  

• ( )1 2, ,F t T T  represents the Forward Interest Rate at evaluated at time t  for the period between 1T  and 

2T , 

• 
1 2, ,t T Tσ is the instantaneous volatility at time t  for the period between 1T  and 2T , 

• 
1 2, ,

F
t T TdW  is a standard Brownian motion under the forward measure F  

 

Regarding the literature, two LMM exist according to the employed measure (forward or spot). The first one is the 
basic model defined by Brace and is adapted for forward period near to t , while the second one is adapted to 
evaluate forward periods far from t  (e.g. distant caplets). Regarding the requirements of PRF, we only need to 
estimate near forward periods and so we decided to keep the formula defined with help of the forward measure. A 
rigorous reader can find more details regarding the LMM theory in (Brigo, et al., 2006) and its technical 
counterpart in (Gatarek, et al., 2007). 

 

Next steps deal with the adaptation of LMM to produce the necessary forecasts required by the PRF.  

 

The first step is to find a proxy valuation to estimate the FIRAR for a given confidence level. Thus we used the 
Wiener Process definition which states that ( ) ( )0, 0,1dW N dt dt N> = ×∼ . So dW  can be approximated 

such as dW dt tα≈ ×  where tα  is the cumulative distribution value for a given confidence level α  (e.g. if 

α = 99.5%  then 3.35tα ≈ ). Hence we can forecast the FIRAR with the following adapted formula: 

( ) ( )
( )

2
, ,1 2

, , 1 11 2 2
1 1 2 1 2, , , ,

t T T
t T T T t t T t

FIRAR T T T F t T T e α

σ
σ × − × − × −

≈ ×  (18) 

 

The second step concerns the way to calibrate such a model and we use the historical data of Euro Zero Coupon 
Bonds because these financial instruments are the reference while dealing with Structured Products. These data 
are extracted with help of Reuter Xtra 3000 and used to estimate appropriate forward interest rates and to 
estimate its historical volatility. 

 

For the sake of simplicity, we adapted this approach to estimate the “Forward Funding Rate at Risk” (FFRAR) by 
using Credit Default Swap Spread instead of Euro Zero Coupon Bonds. We are aware that these choices can be 
challenged because: 

1. It is well known that CDS price are sensitive to switching regimes which are not integrated in a such 
model, 

2. And CDS are very questionable as representative of market risk estimation. Indeed these instruments are 
subject to high speculation positions which violate the “Lack of Arbitrage Opportunity”, the core principle 
of pricing theory.  

 

This is a common use done by market practitioners to get a simple proxy of this parameter but CDS raised 
several criticisms on the validity as “Credit Risk Measure” (CRM). For instance, an important criticism is the 
presence of high speculative positions generated by few counterparts and hence produce biased CRM. This 
phenomenon is increased with the narrowness of CDS market on particular issuers by comparison with the 
respective bond market.  
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Other approaches exist however they are far more complex because they required refined issuers data and 
sophisticated mathematical models to estimate the underlying CRM: 

1. The first approach is to produce its own CRM however the biggest issue of these approaches is to get 
relevant, refined and up-to-date data. Or these data are essentially confidential and require lots of 
resources to be collected in terms of IT, staff and Time consumption. For instance, Barclays’ Group Credit 
Risk has its own credit grading system dedicated to pocket rooms’ allocation and monitoring. But it can’t 
be used to estimate a funding risk measure due to a lack of reactivity. 
 

2. A second approach is to use a Credit Analyst Provider (Rating Agencies, credit quantitative analyst such 
as Reuters’ Starmine) either to feed an internal model or to get direct applicable results. The biggest 
issues with such approach is 1) the cost of such services, 2) a strong dependency with provider’s results / 
data and 3) a lack of understanding / control of underlying methodologies. 
 
Please note that both approaches demand more attention and require a last step to get a relevant FFRAR 
by mapping the underlying CRM to an IR Benchmark according to the issuer’s credit grading and the 
investment’s maturity. 
 

3. A third approach is to produce an IR benchmark based on a set of relevant financial debt instruments 
(bonds essentially) to map the funding risk measure like previously. A first issue is that the measure 
estimation is based on a statistical approach and it doesn’t take account of issuer’s specificities / current 
situation. A second issue is that IR benchmark doesn’t integrate OTC debt instruments such as Notes 
and so may produce a bias on the funding risk level by itself. 

 

We are aware that using CDS Spreads as proxy is not the best solution but our main concern is to produce a first 
implementation of this framework with the funding risk integration. Hence we decide to keep this approach and 
investigate further this subject to improve the PRF following an iterative process. 

 

5.3.2.2 Equity Volatility Risk Factor 

 

Now we will focus on the forecast of volatility of equity indices / stocks to estimate a “Forward Equity Volatility at 
Risk” (FEVAR). A quick review of the literature shows that the best way to estimate FEVAR is the use of GARCH 
Model, the de facto volatility model developped by (Bollerslev, 1986). 

 

A preliminary study focused on the definition of an econometric model adapted to the forecast of such “asset” 
class and we proceeded following the next stages. 

1. The first stage aims to analyze statisticaly historical volatility data to demonstrate if they are stationary 
(KPSS Test), and if they integrates ARCH effects (either with Philipps-Perron unit root Test or Engle’s 
Test. 

2. The second stage is to determine 1) what kind of econometrical component we have to integrate and 2) 
what will be their parameter’s values. To do this, we estimate the best fitted model by recombining 
graphic results (see Figure 58) and statistical results (see Figure 59). Hence we decided to select an 
ARMA(2,2) + GARCH(1,1) Model to estimate FEVAR (see Panel 23 for a mathematical presentation). 
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Figure 58: Auto- Correlogram (up) and Partial Auto- Correlogram (down) results of EuroStoxx 50 Volatility data. We 
compare the analysis of original time series (left)  with the selected model to estimate FEVAR (right) 

 

 
 

 

 
Figure 59: Comparison of Econometric Models with hel p of Matlab Econometric Toolbox. 
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Model Definition 

Autoregressive Moving Average 

( )ARMA ,R M   
1 1

R M

t t i t i j t j
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= =

= + + +∑ ∑  

With  

 1, , Rϕ ϕ… : model parameters 

 c : constant 

 1, , Mθ θ… : model parameters 

 µ : expectation of tX  (i.e. ( )tXE ) 

 1, , ,t t t Mε ε ε− −… : error terms (or innovations) 

Generalized Autoregressive 
Conditional Heteroskedacity 
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With following constraints: 
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 0 0α >  

 0iα ≥  

 0jβ ≥  

Panel 23: Econometric Components used to forecast Equi ty Volatility Indices. 

 

Next we implemented a FEVAR Estimation Solution based on Excel, Reuters Xtra 3000 and Matlab which 
proceeds as follows: 

1. Historical data are extracted from Reuters Xtra 3000 and stored into an Excel spreadsheet, 
2. These data are sent into Matlab to calibrate the Volatility Model, 
3. After calibration, Matlab proceeds to 50k simulations to estimate the FEVAR Returns with a confidence 

level of α = 99.95%  (Barclays’ internal rule) on a time horizon of 252 working days, 
4. These returns are sent back to Excel which will estimate the FEVAR levels according to the defined time 

horizon. 

 

Figure 60 presents the FEVAR estimations according to the econometric model type and we compared these 
results with historical data (see Figure 61) to estimate the reliability of FEVAR estimations. As we can expect, 
FEVAR estimations recreate the Lehman Brother Bankruptcy as worst case situation. With such results, we 
adopted the FEVAR Estimation Model and integrated it as PRF component. 
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Figure 60: FEVAR estimation for EuroStoxx 50 Volatility according the model type. 

 

 
Figure 61: Historical analysis of EuroStoxx 50 Volatil ity according the lag size.  

 

5.3.3 FST Model Calibration 

In section §5.1, we presented the overall discretization process and the way we put it in place to get relevant 
pricings in the section §5.2. All pricings produced in this section are based on theoretical data and now we will 
present how to calibrate the FST Pricing Model to get Market Evaluations. 

 

The first part of this section will be dedicated to FST parameters by themselves. Indeed we highlighted that FST 

discretization is driven by three parameters: minx , maxx  and N . So we will estimate the potential pricing errors 
on a European Call valuation between the FST and the BSM methods, either with one or two variable parameters. 
Thus we will investigate how to define appropriate levels for FST parameters regarding the pricing context. 

 

The second part of this section will focus on how to calibrate the FST model with market data. We will continue on 
the simple example of GBM process with drift due to its simplicity and its understanding by most of market 
practitioners. 
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5.3.3.1 Fourier Discretization Parameters 

 

We begin this section with the study of the log error between FST and BSM while varying one pricing parameter 
(i.e. strike, rate, time, or volatility) whatever the pricing measure. We fixed the FST parameters with 

max min 10x x=− =  and 8192N =  (basic conditions used by Vladimir Surkov) and results are presented in 
Figure 62 according to the measure number (see figure legend). As we can see most of pricing errors are 
negligible except for high volatility values. Thus we can see the pricing errors exceed the unit error (i.e. 

( )log 0∆ > ) when volatility rates are superior to 80%. This represents extreme market conditions where most 

of pricing models reach the limit conditions. 

 

 
Figure 62: Log Error on pricing results for one vari able parameter (Strike, Rate, Time or Volatility). Me asures are 
respectively Price (1), Delta (2), Gamma (3), Rho (4 ), Theta (5) and Vega (6). 

 

Going forward, we will investigate the accuracy of FST model versus the BSM model while varying two market 
parameters. We produced this analysis for each possible pair. However we presented only results produced with 
the “Time and Volatility” couple (see Figure 63). Indeed other couples present accurate results while this couple 
presents strong pricing errors on each measure when 40%σ ≥ . Vladimir Surkov noted this point in his thesis 
and proposed the use of higher values for FST parameters to get more accurate results. 

 

We investigated this point by varying { }max 10,20,30x ∈  (with the inner relationship min maxx x=− ) and 

{ }8000,16000,32000,64000N ∈ . Results are presented in Figure 64 and we can highlight the following facts: 

1. Log Error decreases significantly when maxx  increases. Thus we can see that the pricing divergence is 

confined below the unit error while 10 yearsT ≤  and 5σ ≤ 6 %  when max 30x =  

2. N  seems to have little influence on FST pricing quality or acts as 2nd order pricing factor. 

 

These results are very acceptable because they are coherent with Market Realities: indeed σ  tends to fall when 
T  increases, and market conditions as those tested were never observed even in case of distressed situations. 

Hence we will use higher values for maxx  when pricing products with long maturity and / or with high volatility 
conditions. 
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Figure 63: Log Error of pricing results according to  variations of “Time” and “Volatility” parameters 

 

 

 
Figure 64: Log Error of pricing results while varyin g the couple “Time and Volatility” and the FST param eters x_max 
and N. 
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5.3.3.2 Market Data Integration 

 

Fitting a pricing model to the Market data is  a very important issue for professional investors due to its 
economical consequences. All researches on this area deal with : 

• Either the development of underlying market data structure (e.g. Implied Volatility (IV), Volatility 
Skewness...), 

• Or the development of models based on alternative random processes (e.g. Heston model, Variance 
Gamme, Ku’s model, ...), 

• Or the use of new mathematical techniques (e.g. optimization processes when calibrating on option 
prices). 

 

We will briefly present in this section how to proceed to the market calibration with the FST model following the 
next stages: 

1. Which market data are required during the integration process, 
2. What are their structures regarding their nature and the data sources, 
3. And how to integrate these data into the FST Pricing Model. 

 

Please note that a “model to market” fitting process is strictly linked to the steps corresponding to the “time value 
integration” (i.e. the use of underlying random process(es)). For instance, calibrating a GBM is strictly different 
from a Variance-Gamma process because the two processes don’t share the same parameters (see Panel 5 for 
mathematical details). Thus we will present the Market Calibration Process of FST Model based on GBM, the 
reference random process used all along this dissertation. So keep in mind that it must be adapted when using 
another random process, to integrate its specificities. 

 

The first stage requires to identify the “time value integration” steps into FST Model which is limited to the 
mono/multi application(s) of equation (8). Below we recall the unidimensional definition of the adapted GBM’s 
Characteristic Exponent Factor (CEF): 

( ) ( )
2 2 2

2 2LK r i r q r
 

Ψ = Ψ − = − − − − 
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σ σ ωω ω ω
 

 

This represents the only entry point in FST Model which involves market parameters and we can easily identify 
that calibrating the CEF will require Interest Rates, Dividend Rates, and Implied Volatility rates. 

 

Looking further at these data structures give the following comments: 

• IR is compounded of Risk Free Rates and Risk Premium Rates. The first ones are generaly approximated 
by Zero Coupon Rates and the second ones by CDS Spreads of the underlying counterpart. Both data 
are easily available through Reuters, Bloomberg or Markit under vector format. 

• Dividend Rates are more difficult to approximate because they are calculated values limited to most 
important indices / stocks. Morevoer data providers are limited and supply a vector with a limited time 
horizon. Nevertheless this issue is easily solved when “No Return” Equity Indices are employed as 
underlyings which is the general case of most Equity Linked Structured Products. 

• Implied Volatility Rates are the least available data because these data are calculated by reverting the 
BSM closed formula. So this calculation implies having updated bid-offer option values which are specific 
and volatile. These data can be retrieved either from an internal or consolidate derivatives book and so 
may project differences regarding the price dispersion. In current dissertation, we use the implied volatility 
surface provided by Bloomberg for a given index (paying service) under a matrix format. We assumed 
these data are consistent with those used by our main counterparts (mostly based on their volatility 
surface based on its internal derivate books).  

 

Please note these are raw data and required intermediate transformations and calculations to get their forward 
counteparts. This process is easy on IR Data and we detail only the extraction of forward implied volatility surface.  

 

The classical approach to calibrate a model with Implied Volatility Surface (IVS) is: 

1. Get option values for given maturities and strikes: these data are provided by BloomBerg for a given 
equity indice, 
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2. Estimate local IV values: we get this estimation for each node with help of the option value and the BSM 
reversed formula. 

3. Extrapolate the IVS: to do this, we used the “gridfit.m” matlab function provided by (D'Errico, 2005) and 
the result is represented by Figure 65. 

 

 
Figure 65: Plot of Implied Volatilities. Market Data are extracted From Bloomberg and interpolated with help of 
“gridfit.m” function; see (D'Errico, 2005). 

 

4. Estimate the Forward IVS for a given time step. This stepd is solved with help of the Bootstrap formula, 
adapted to Volatility specificities and presented in equation (19) 
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where 

2
1,n nσ −  is the forward implied volatitily rate between time buckets 1nt −  and nt  

0,nτ  is the time period between 0t  and nt , 

2
0,nσ  is the implied volatility rate between 0t  and nt , 

1,k kτ −  is the time period between 1kt −  and kt , 

2
1,k kσ −  is the implied volatility rate between 1kt −  and kt , 

1,n nτ −  is the time period between 1nt −  and nt , 

 

However this methodology raises an important flaw while pricing in R  with the potential presence of negative 
forward variance points, i.e. volatility points with complex values. This kind of issue is common on the shortest 
maturities where arbitrages are the most intense. For instance, we extrapolated the Forward Implied surface with 
a 1 Month time step and represented the results in Figure 66. As you can see, we can detect the presence of 
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complex forward volatilities for low strike levels which will disrupt any calculation process. To solve this issue, 

praticionners use smoothing calculations to estimate proxy points compatible with R - based Pricing Methods. 

 

 
Figure 66: Forward Implied Volatility Surface, calcul ated from extrapolated values, with real values on left and 
imaginary values on right. 

 

Regarding the FST Model, this issue seems to have no real impact because Time Value Integration is proceeded 
in C  with help of Fourier Transform where the presence of complex values are not annoying but part of the 
valuation process. 

 

Thus we adapted the previous process from step #4 because we proceed the bootstrap process as follows: 

1. Calibrate Characteristic Exponent Factors (CEF) with spot values for a given maturity (IR, Volatility). 
2. Determinate the Forward Characteristc Exponent Factors (fCEF) with help of a bootstrap process similar 

to those employed in forward IR estimation. 

 

Mathematically we can estimate at time t n=  the complex value of n τ−vɶ  in Fourier Space such as: 

,n n

n n e
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−
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Based on the vector value nvɶ  and for given delays τ  and κ  with κ τ< , this equation can be also expressed 
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Next we can estimate the fCEF with help of equation (20): 

( ), ,
,

n n n n
n n

τ τ κ κ
κ τ τ κ

κ

− − + −
− − −

=
Ψ ΨΨ  (20) 

 

Hence estimating fCEF is an easy task which will require only accurate data to estimate CEF.  
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To assess this calibration process, we proceeded to a pricing benchmark based on European Call Option with 
financial characteristics summarized in Panel 24.  

 

Parameter Value(s) 

Initial Value 0S  2500 

Maturity { }1,2,3,4,5t ∈  

 

Strike { }0
0 0,1.2 ,2

2
S

K S S∈ × ×   

 

Interest Rates 

 
 

Volatility Scenarios 

 
 

Pricing Method 1. BSM Closed Formula and calibrated on Spot Values 
2. FST Method with direct integration (one step) and calibrated Spot Values (CEF), 
3. FST Method with stepping integration and calibrated according the bootstrap 

process presented in equation (20) 

 

Panel 24: Main Financial Characteristics used to ass ess the FST Calibration Process 

 

The Idea of this benchmark is to validate the calibration process described previously but also to highlight the lack 
of impact from complex forward implied volatilities. Thereby we defined three scenarios for forward implied 
volatility curves: 

1. A forward volatilitiy curve with real values only, 
2. Another with a node with complex value, 
3. And a last one based on market data which presents three successive nodes with complex values. 

 

To give a complete benchmark, we selected several maturities from 1Y to 5Y and different strike values with an 
Out-of-The-Money (OTM), a Deep In-The-Money (DITM) and a Deep Out-of-The-Money (DOTM). These last two 
strike levels are well known for their pricing issues for complex models. Lastly we will compare the BSM results 
with either FST with direct integration (calibrated on spot values) or with stepping integration (calibrated on 
forward values, through the use of fCEF).  

 

We presented the pricing results according to the selected volatitility scenario ( #1 = Panel 25 , #2 = Panel 26 and 
#3 = Panel 27) and we can conclude that: 

1. There is no relevant differences whatever the selected volatility scenario, 
2. The presence of forward volatility points with complex value has no impact on FST pricing with stepping 

integration. 

 

Thus we have a simple and elegant calibration process which supplies reliable pricing results and solves an 
important issue for R -based pricings. We only presented a calibration example based on curve, however this 
process can be easily adapted to IVS to capture the skewness.  

 

Interest Rates 0 0.2 0 0 0
Spot IR 1.99% 2.47% 2.81% 3.05% 3.25%
Forward IR 1.99% 2.96% 3.49% 3.77% 4.05%

Market Data Type Scenario ID 1 2 3 4 5
1 30.00% 31.62% 33.17% 33.54% 33.91%
2 30.00% 22.36% 24.49% 25.00% 25.50%
3 26.17% 25.52% 25.29% 25.14% 25.32%
1 30.00% + 0.00% i 10.00% + 0.00% i 10.00% + 0.00% i 5.00% + 0.00% i 5.00% + 0.00% i
2 30.00% + 0.00% i 0.00% + 20.00% i 10.00% + 0.00% i 5.00% + 0.00% i 5.00% + 0.00% i
3 26.17% + 0.00% i 0.00% + 5.79% i 0.00% + 3.43% i 0.00% + 2.74% i 3.08% + 0.00% i

Spot Vol.

Forward Vol.
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Hence we will integrate this calibration process in the final Pipeline Risk Framework. 

 

 
Panel 25: Pricing Results of a European Call Option, b ased on volatility scenario #1 (Theoretical Forward  Volatility 
Curve with only real values) 

 

Maturity Strike Method Price Delta Gamma Rho Theta Vega
BSM 1 276.09  0.99   0.00    1 209.52  30.16 -   40.98       
FST (direct) 1 276.09  0.99   0.00    1 209.52  30.16 -   40.98       
FST (stepped) 1 276.09  0.99   0.00    1 209.52  30.16 -   40.98       
BSM 149.83     0.35   0.00    719.39     152.85 -  923.76     
FST (direct) 149.83     0.35   0.00    719.39     152.85 -  923.76     
FST (stepped) 149.83     0.35   0.00    719.39     152.85 -  923.76     
BSM 4.48         0.02   0.00    40.81       17.50 -   111.28     
FST (direct) 4.48         0.02   0.00    40.81       17.50 -   111.28     
FST (stepped) 4.48         0.02   0.00    40.81       17.50 -   111.28     
BSM 1 325.59  0.97   0.00    2 199.97  46.12 -   239.02     
FST (direct) 1 325.59  0.97   0.00    2 199.97  46.12 -   239.02     
FST (stepped) 1 325.59  0.97   0.00    2 199.97  46.12 -   239.02     
BSM 316.56     0.47   0.00    1 720.60  132.50 -  1 406.68  
FST (direct) 316.56     0.47   0.00    1 720.60  132.50 -  1 406.68  
FST (stepped) 316.56     0.47   0.00    1 720.60  132.50 -  1 406.68  
BSM 50.93       0.11   0.00    458.45     58.93 -   673.70     
FST (direct) 50.93       0.11   0.00    458.45     58.93 -   673.70     
FST (stepped) 50.93       0.11   0.00    458.45     58.93 -   673.70     
BSM 1 389.58  0.95   0.00    2 953.12  52.55 -   449.58     
FST (direct) 1 389.58  0.95   0.00    2 953.12  52.55 -   449.58     
FST (stepped) 1 389.58  0.95   0.00    2 953.12  52.55 -   449.58     
BSM 474.02     0.55   0.00    2 676.63  119.95 -  1 715.73  
FST (direct) 474.02     0.55   0.00    2 676.63  119.95 -  1 715.73  
FST (stepped) 474.02     0.55   0.00    2 676.63  119.95 -  1 715.73  
BSM 140.81     0.22   0.00    1 227.04  82.37 -   1 281.89  
FST (direct) 140.81     0.22   0.00    1 227.04  82.37 -   1 281.89  
FST (stepped) 140.81     0.22   0.00    1 227.04  82.37 -   1 281.89  
BSM 1 452.07  0.94   0.00    3 586.87  52.50 -   599.37     
FST (direct) 1 452.07  0.94   0.00    3 586.87  52.50 -   599.37     
FST (stepped) 1 452.07  0.94   0.00    3 586.87  52.50 -   599.37     
BSM 602.13     0.60   0.00    3 561.69  108.33 -  1 935.43  
FST (direct) 602.13     0.60   0.00    3 561.69  108.33 -  1 935.43  
FST (stepped) 602.13     0.60   0.00    3 561.69  108.33 -  1 935.43  
BSM 236.69     0.30   0.00    2 083.06  89.11 -   1 746.22  
FST (direct) 236.69     0.30   0.00    2 083.06  89.11 -   1 746.22  
FST (stepped) 236.69     0.30   0.00    2 083.06  89.11 -   1 746.22  
BSM 1 514.00  0.93   0.00    4 107.23  50.98 -   715.73     
FST (direct) 1 514.00  0.93   0.00    4 107.23  50.98 -   715.73     
FST (stepped) 1 514.00  0.93   0.00    4 107.23  50.98 -   715.73     
BSM 721.24     0.64   0.00    4 368.84  99.47 -   2 095.35  
FST (direct) 721.24     0.64   0.00    4 368.84  99.47 -   2 095.35  
FST (stepped) 721.24     0.64   0.00    4 368.84  99.47 -   2 095.35  
BSM 339.33     0.37   0.00    2 981.89  91.24 -   2 118.49  
FST (direct) 339.33     0.37   0.00    2 981.89  91.24 -   2 118.49  
FST (stepped) 339.33     0.37   0.00    2 981.89  91.24 -   2 118.49  
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Panel 26: Pricing Results of a European Call Option, b ased on volatility scenario #21 (Theoretical Forwar d Volatility 
Curve with only real values except on maturity poin t #3) 

 

Maturity Strike Method Price Delta Gamma Rho Theta Vega
BSM 1 276.09  0.99   0.00    1 209.52  30.16 -   40.98       
FST (direct) 1 276.09  0.99   0.00    1 209.52  30.16 -   40.98       
FST (stepped) 1 276.09  0.99   0.00    1 209.52  30.16 -   40.98       
BSM 149.83     0.35   0.00    719.39     152.85 -  923.76     
FST (direct) 149.83     0.35   0.00    719.39     152.85 -  923.76     
FST (stepped) 149.83     0.35   0.00    719.39     152.85 -  923.76     
BSM 4.48         0.02   0.00    40.81       17.50 -   111.28     
FST (direct) 4.48         0.02   0.00    40.81       17.50 -   111.28     
FST (stepped) 4.48         0.02   0.00    40.81       17.50 -   111.28     
BSM 1 312.08  0.99   0.00    2 345.37  32.43 -   60.96       
FST (direct) 1 312.08  0.99   0.00    2 345.37  32.43 -   60.96       
FST (stepped) 1 312.08  0.99   0.00    2 345.37  32.43 -   60.96       
BSM 187.78     0.40   0.00    1 607.91  96.09 -   1 362.91  
FST (direct) 187.78     0.40   0.00    1 607.91  96.09 -   1 362.92  
FST (stepped) 187.78     0.40   0.00    1 607.91  96.09 -   1 362.92  
BSM 8.34         0.03   0.00    134.52     15.20 -   242.15     
FST (direct) 8.34         0.03   0.00    134.53     15.20 -   242.16     
FST (stepped) 8.34         0.03   0.00    134.53     15.20 -   242.16     
BSM 1 360.48  0.98   0.00    3 265.31  39.34 -   213.50     
FST (direct) 1 360.48  0.98   0.00    3 265.31  39.34 -   213.50     
FST (stepped) 1 360.48  0.98   0.00    3 265.31  39.34 -   213.50     
BSM 324.54     0.49   0.00    2 720.66  96.03 -   1 727.17  
FST (direct) 324.54     0.49   0.00    2 720.66  96.03 -   1 727.17  
FST (stepped) 324.54     0.49   0.00    2 720.66  96.03 -   1 727.17  
BSM 48.04       0.11   0.00    686.36     39.84 -   818.09     
FST (direct) 48.04       0.11   0.00    686.36     39.84 -   818.09     
FST (stepped) 48.04       0.11   0.00    686.36     39.84 -   818.09     
BSM 1 411.25  0.97   0.00    4 054.80  41.58 -   340.39     
FST (direct) 1 411.25  0.97   0.00    4 054.80  41.58 -   340.39     
FST (stepped) 1 411.25  0.97   0.00    4 054.80  41.58 -   340.39     
BSM 434.88     0.55   0.00    3 775.98  90.63 -   1 978.04  
FST (direct) 434.88     0.55   0.00    3 775.98  90.63 -   1 978.04  
FST (stepped) 434.88     0.55   0.00    3 775.98  90.63 -   1 978.04  
BSM 102.79     0.19   0.00    1 450.59  52.94 -   1 339.90  
FST (direct) 102.79     0.19   0.00    1 450.59  52.94 -   1 339.90  
FST (stepped) 102.79     0.19   0.00    1 450.59  52.94 -   1 339.90  
BSM 1 463.96  0.96   0.00    4 717.21  42.22 -   452.47     
FST (direct) 1 463.96  0.96   0.00    4 717.21  42.22 -   452.47     
FST (stepped) 1 463.96  0.96   0.00    4 717.21  42.22 -   452.47     
BSM 541.99     0.60   0.00    4 776.02  86.16 -   2 161.30  
FST (direct) 541.99     0.60   0.00    4 776.02  86.16 -   2 161.30  
FST (stepped) 541.99     0.60   0.00    4 776.02  86.16 -   2 161.30  
BSM 171.99     0.26   0.00    2 380.90  61.65 -   1 810.62  
FST (direct) 171.99     0.26   0.00    2 380.90  61.65 -   1 810.62  
FST (stepped) 171.99     0.26   0.00    2 380.90  61.65 -   1 810.62  
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Panel 27: Pricing Results of a European Call Option, b ased on volatility scenario #3 1 (Forward Volatility  Curve 
extracted from market data and with several complex  value nodes) 

  

Maturity Strike Method Price Delta Gamma Rho Theta Vega
BSM 1 275.02  1.00   0.00    1 219.62  26.43 -   16.91       
FST (direct) 1 275.02  1.00   0.00    1 219.62  26.43 -   16.91       
FST (stepped) 1 275.02  1.00   0.00    1 219.62  26.43 -   16.91       
BSM 115.13     0.31   0.00    664.99     128.93 -  884.50     
FST (direct) 115.13     0.31   0.00    664.99     128.93 -  884.51     
FST (stepped) 115.13     0.31   0.00    664.99     128.93 -  884.51     
BSM 1.45         0.01   0.00    16.80       6.95 -     50.54       
FST (direct) 1.45         0.01   0.00    16.80       6.95 -     50.54       
FST (stepped) 1.45         0.01   0.00    16.80       6.95 -     50.54       
BSM 1 314.82  0.99   0.00    2 307.35  35.90 -   115.20     
FST (direct) 1 314.82  0.99   0.00    2 307.35  35.90 -   115.20     
FST (stepped) 1 314.82  0.99   0.00    2 307.35  35.90 -   115.20     
BSM 231.20     0.43   0.00    1 665.53  109.02 -  1 385.86  
FST (direct) 231.20     0.43   0.00    1 665.53  109.02 -  1 385.87  
FST (stepped) 231.20     0.43   0.00    1 665.53  109.02 -  1 385.87  
BSM 18.29       0.05   0.00    235.68     27.81 -   390.20     
FST (direct) 18.29       0.05   0.00    235.69     27.81 -   390.20     
FST (stepped) 18.29       0.05   0.00    235.69     27.81 -   390.20     
BSM 1 362.26  0.98   0.00    3 240.31  40.36 -   236.43     
FST (direct) 1 362.26  0.98   0.00    3 240.31  40.36 -   236.43     
FST (stepped) 1 362.26  0.98   0.00    3 240.31  40.36 -   236.43     
BSM 338.21     0.50   0.00    2 721.76  98.33 -   1 727.45  
FST (direct) 338.21     0.50   0.00    2 721.76  98.33 -   1 727.45  
FST (stepped) 338.21     0.50   0.00    2 721.76  98.33 -   1 727.45  
BSM 54.72       0.12   0.00    741.97     43.64 -   870.36     
FST (direct) 54.72       0.12   0.00    741.97     43.64 -   870.36     
FST (stepped) 54.72       0.12   0.00    741.97     43.64 -   870.36     
BSM 1 411.72  0.97   0.00    4 047.77  41.74 -   345.23     
FST (direct) 1 411.72  0.97   0.00    4 047.77  41.74 -   345.23     
FST (stepped) 1 411.72  0.97   0.00    4 047.77  41.74 -   345.23     
BSM 437.59     0.55   0.00    3 773.15  90.93 -   1 977.51  
FST (direct) 437.59     0.55   0.00    3 773.15  90.93 -   1 977.51  
FST (stepped) 437.59     0.55   0.00    3 773.15  90.93 -   1 977.51  
BSM 104.63     0.19   0.00    1 463.65  53.56 -   1 348.98  
FST (direct) 104.63     0.19   0.00    1 463.65  53.56 -   1 348.98  
FST (stepped) 104.63     0.19   0.00    1 463.65  53.56 -   1 348.98  
BSM 1 463.19  0.96   0.00    4 729.28  42.05 -   445.87     
FST (direct) 1 463.19  0.96   0.00    4 729.28  42.05 -   445.87     
FST (stepped) 1 463.19  0.96   0.00    4 729.28  42.05 -   445.87     
BSM 538.30     0.60   0.00    4 784.11  85.88 -   2 162.46  
FST (direct) 538.30     0.60   0.00    4 784.11  85.88 -   2 162.46  
FST (stepped) 538.30     0.60   0.00    4 784.11  85.88 -   2 162.46  
BSM 168.91     0.26   0.00    2 363.29  60.98 -   1 801.02  
FST (direct) 168.91     0.26   0.00    2 363.29  60.98 -   1 801.02  
FST (stepped) 168.91     0.26   0.00    2 363.29  60.98 -   1 801.02  
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5.3.4 Pipeline Risk Framework 

 

Now we present in this section the production process defined to the Pipeline Risk linked to a given structured 
products portfolio. Thus the Panel 28 summarizes its main tasks with a quick description of most important sub-
stages and the softwares employed to implement the solutions. 

 

This process defines three important tasks: 

1. Pricing ans Sensitivity Factors estimation: this process focuses essentially on the pricing matters and 
used the FST Method to estimate the price and sensitivity factors of defined structured products. This 
implementation is centered on an Excel spreadsheet solution which collect data from Bloomberg (Equity 
options, Interest Rates and CDS data), drive the calculations on Matlab and publish the pricing 
parameters to produce accurate audit trails. 

2. “Forward Equity Volatility at Risk” estimation (FEVAR): The next step focuses on the estimation of 
Volatility Log Return at Risk estimation. It involves Reuters to retrieve volatility data and Matlab to 
produce the GARCH calibration and forecastings. The final sub-steps consist to retrieve Matlab’s results 
to produce the audit trail. 

3. Pipeline Risk Calculation and Report Production: this is the last stage of PRF to produce a real-time 
estimation of Pipeline Risk. It requires data produced by the two previous tasks but also market data such 
as interest rates, CDS and Volatility indices. Thus it involves only Excel and Reuters and all intermediate 
calculations are produced by Excel. The final goal is to produce a daily report linked to the underlying risk 
exposure. 

 

# Task Description Software 

1 1) Pricing Model Calibration 

 
 2) Retrieve Market Volatility Data 

  
 3) Estimate Spot Implied Volatility Surface and Calibrate the FST 

Model 
 

 4) Fill Pipeline Risk Report (see 3.1)  

2 1) FEVAR Estimation 

 
 2) Retrieves Historical Volatility Data 

 
 3) Estimates GARCH Parameters and Produce Simulations to 

Estimate FEVAR Returns 
 

 4) Fill Pipeline Risk Report (see 3.1)  

3 1) Pipeline Risk Report 

 
 2) Retrieves Historical Market Data 

• Zero Coupon Rates, 
• CDS Spread, 
• Equity Implied Volatility 

 

 3) Estimates GBM Parameters  

 4) Fill Structured Products Parameters See Figure 67, #1 

 5) Automatic Calculations See Figure 67, #2 and #4 

 6) Manage the Risk Exposure regarding the Measure Level See Figure 67, #3 
Panel 28: Overview of the Pipeline Risk Production Pro cess 
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We present in Figure 67 an anonymized example of Pipeline Risk Report used in Barclays Bank Plc to manage 
risk exposures during the primary market phase. This report defines several areas: 

1. The first area aims to introduce the essential parameters of a given Structured Product in terms of 
Business Unit, Risk Exposure Size (Traded and Sold), Periods, Sensitivity Factors and Fixed Values. 

2. The second area give a detailled view of underlying risk with several metrics such as remaining sales 
period or risk amount for each risk factors, 

3. The third area supplies an agregated view of Pipeline measure according the business unit and position 
in pipeline workflow, 

4. And the fourth area supplies the averaged values of risk factor estimations at the end of the sales period. 

 

We presented in §3.2.4 the principles followed in Barclays Bank Plc (BBPLC) to asses, authorize, scale and 
manage the risk exposures generated by bussinesses. These principles are defined to get compliant with Basel 2 
rules and their implementations are monitored by the “Financial Services Authority” (FSA), i.e. the BBPLC’s 
official regulator. These rules aims to estimate the solvency level of a given bank regarding its risk exposures with 
help of the “Economic Capital” (EC). Its estimation varies according to the business and/or the product type, and 
involves intermediate values to get its final estimation. For instance in retail banking, a mortgage activity requires 
to calculate the “Risk-Weighted Asset” (RWA) intermediate value to get the EC estimation. In case of Market 
Activities, the allocated EC is based essentially on agregated “Daily Value-at-Risk” (DVaR) estimation of 
underlying risk exposures. 

 

BBPLC’s Risk Framework involves that EC allocated to market-linked risk exposures have to be valuated with 
help of DVaR based on a 99.95% confidence treshold. The Pipeline Risk Framework supplies all of this and so is 
elligible to EC calculation with the adapted confidence treshold.  

 

The current implementation, designed by the author, supplies an EC estimation following the production process 
described in Panel 28, but also a set of advanced real-time risk indicators. These indicators detect early signs of 
market crisis and allow an efficent risk exposure management to avoid the materialization of substantial losses. It 
is in use only in BBPLC Paris Branch for two years and underwent two important period of distressed market, 
known as “The European Crisis” in mass media. With help of these advanced indicators, we detected the early 
signs of market crisis and managed efficiently the risk exposure to avoid the materialization of substantial losses 

 

The future steps for current framework are: 

1. to standardize the framework following the BBPLC Model Design Policy, 
2. to get the necessary assement from Group Market Risk to be elligible to EC calculcation, 
3. To homogenize the pipeline risk governance and management in each european country with help of this 

framework. 

 

Update from the Author: At this moment, this framework is reviewed by Group Market Risk to get the final 
assessment to be Group EC model. 
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Figure 67: Example of Pipeline Risk Report used in Barclays Bank Plc Paris Branch (Area #1 = Structure d Products Parameters, Area #2 = Intermediate Measu res, Area #3 
= Consolidated Pipeline Risk Measure segregated by Workflow State and Business Unit (BU), Area #4 = We ighted Average Risk Factor Values). 
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6. CONCLUSIONS 

 

In this dissertation, we presented that pipeline risk issue is generated by the temporary inventory management of 
structured products, which are complex market products with important valuation issues. We produced a risk 
analysis of this situation and showed that pipeline risk is driven by two macro random processes: at first the 
customer behaviour and at second the influence market movements on prices. After a review of most important 
constraints, we decided to produce a risk framework which must be able to estimate market price and sensitivity 
factors of each structured product, and forward risk factors to produce a “Value-at-Risk” (VaR) measure. Due to 
its complexities and all necessary requirements, we couldn’t produce a relevant measure of forward impacts of 
customers’ behavior and hence we considered it as static. However we keep in mind to produce “What-If” based 
scenarios to integrate it in future developments. 

 

 

 

Producing the Pipeline Risk Framework required to integrate several model approaches to estimate each 
component. The core technical component dealt essentially with by the presentation of the “Fourier Space Time-
stepping” (FST) method and how to use it to price derivatives and option structures.  

 

Thereby we proceeded to the FST assessment in three steps:  

• The first step aimed to present the essential theoretical points of FST method, such as how to solve the 
PIDE in Fourier Space and how to produce accurate estimations of the price and sensitivity factors for a 
given derivative / option structure. 

• The second step consisted in the production of a pricing benchmark where we increased step by step the 
underlying complexity of the priced derivative to finish with real structured products estimations. During this benchmark, we highlighted two important issues in

• The third step presented the calibration process of FST method regarding the parameters used in 
Discrete Fourier and the market parameters. In this part, we highlighted one important issue according to 
the market data integration: the presence of complex valued nodes while estimating forward implied 
volatilities. This is an important issue for R  based pricing methods because it introduces a bias during 
the Time value integration. 

 

All these assessments reavealed several important strenghts of FST method in option pricing: 

1. Its capacity to integrate discontinuities introduced either by the option structure (presence of one or more 
indicator functions), the stochastic process(es) replicating the underlying(s) (i.e. Levy processes) or the 
calibration process (e.g. complex valued forward volatility). 

2. It produces accurate estimations with low time consumption, as showed all along the pricing benchmark. 
Moreover we presented each FST algorithms used and most of them are easily implementable and 
maintainable. The only exception is the implementation of American option with continuous barrier which 
requires more effort during the conception of its algorithm. 

3. The last one is the pricing stability: a pricing produced with fixed parameters will remain constant 
whenever it will be produced. 

 

Hence we demonstrated that FST method is a good alternative to Monte Carlo approach for well known 
derivatives and a complementary method while pricing complex option structures. However all results produced in 
this dissertation were based on a restricted assumption space, i.e. mono equity underlying with a GBM stochastic 
process. So this limits the scope of this conclusion, and its extension requires further investigations on the FST 
pricing capacity with multiple underlyings (e.g. correlation issues), different assets (i.e. interest rates, 
commodities, ...) or different stochastic processes (e.g. Variance Gamma, GBM with Jumps, ...).  

 

However Vladimir Surkov investigated most of these points in his papers and demonstrated the FST capacity to 
encompass these issues. For examples, he showed how to integrate an IR specific stochastic process, how to 
price a spread option or how to integrate different stochastic processes. These results combined with 
mathematical and implementation principles presented all along this dissertation assess the extension capacity of 
FST method to solve the issues presented in previous paragraph. 
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Now let’s have a look on the potential consequences on business practices if FST method is broadly adopted. 
Thus these impacts can be divided into three categories: 

1. Cost of IT infrastucture, 
2. Pooling needs of several internal businesses, 
3. And Business evolution in a post “Solvency 2” (S2) environment. 

 

1) Cost of IT infrastructure: 

 

The first impact is the consequence of flaws of Monte Carlo Method while pricing (and hedging) structured 
products: producing unstable estimations and requiring high time consumption. These two flaws can be “avoided” 
with use of technical tricks but the drawbacks is an expensive IT structure. Indeed most of financial institutions 
developed IT solutions based on distributed calculations and / or grid computing. These requires powerful 
computers / servers, dedicated softwares and skilled IT teams to manage this highly competitive environment. As 
we saw during the pricing benchmark, FST method is ten to one hundred faster than Monte Carlo while producing 
accurate and stable estimations. Please note that FST method is only a logic solution and its performance can be 
improved further with accurate hardware / distributed software environment. Hence use of FST method allows to 
outreach these limits while decreasing the cost of the IT infrastructure. 

 

2) Pooling needs of several internal businesses 

 

The second impact is the capacity to provide a repository to fulfil several business needs at once. Indeed we can 
give several examples with a more or less common need: 

1. A front office team needs fast and accurate results, fitted to “spot” market conditions, 
2. Prices used to feed general ledgers and to produce official results must be stable and have a reliable 

audit trail to be provided to the firm’s writers. 
3. Estimating potential VaRs for given risk exposures requires stable estimations of price and sensitivity 

factors, 
4. Or forecasting future incomes / losses / impairments used in strategic decisions requires reliable 

assumptions and methodologies inline with business reality. 

 

All these needs can be fulfilled with help of FST method if implemented inside a firm’s business processes. This 
will centralize all calculations into one single repository, managed by fewer people to maintain / evolve them. And 
the final consequences will be coherent figures whatever the business perspective and a relevant decrease of HR 
and IT costs. 

 

3) Business evolution in a post-S2 environment 

 

The last impact concerns the future evolution of bank practices induced by the implementation of S2 regulatory 
rules by all main european insurance firms. These firms collect an important part of individual investments and are 
critical customers for bank institutions. In few words, these new solvency rules require that insurers must have a 
good knowledge and control of risks under their responsabilities. Thereby risks are divided into three pillars 
(similarly to Basel 2 rules) where all the most important quantification aspects are collected into the first pillar. And 
this pillar defines with two major risk measures:  

1. The “Minimal Capital Requirements” (MCR) which represents the minimal required capital to exercise 
legally the insurance activity, 

2. The “Solvency Capital Requirement” (SCR) which represents the necessary capital to hedge a global risk 
exposure, estimated on a 99.50% confidence level. 

 

These new risk measures will change deeply the investment behaviour of insurance firms because: 

1. Investment teams will have to estimate finely underlying risks according to the investment risk profile and 
risks embedded into current assets portfolios, 

2. New “Investment Key Indicators” (IKIs) will be produced to integrate these new internal measures. For 
instance, we can imagine an “Asset yield / SCR” ratio used during the asset selection phase. 

3. And the investment follow-up will require to update the risk key indicators on a regular basis (at least 
quarterly). 
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Structured Products are eligible investment products for insurers for their BAU asset management. However they 
present three important issues regarding these new solvency rules: 

1. Transaction nature: It is an “Over The Counter” (OTC) operation with only one counterpart, thereby the 
notion of “Mark To Market Price” is sullied because a given structured product can be negotiated only in a 
limited market constituted by a single contributor. Hence this implies that both counterparties must agree 
on each detail, including the pricing methodology, to estimate that a fair price has been negotiated. 

2. Preliminary risk assessment by insurers during investment phase: the asset management team must 
evaluate the new investments and assess that they are inline with firm’s policies, guidances and risk 
measures. This last item is an internal risk measure which can’t be apprehended by external 
counterparties. 

3. Post-Report: It is related to the risk indicators provided by the product’s issuer and S2 rules require these 
figures to be reliable and stable. So dealing with counterparties requires also to put in place post-trade 
agreements and services to get these figures and the required audit trail. 

 

We saw previously that the random nature of Monte Carlo creates unstable results which are not adapted to a 
post S2 environment. Moreover this numerical approach produces an opacity, generated mostly from market data 
used during the calibration phase. This could artificially hide additional margins that are not compliant with the 
insurers’ commitment to act on the behalf of policyholders’ best interest. 

 

Hence all these points will downgrade current investment bank business model, based essentially on products 
uniformization. Indeed submitting an investment product in such an environment will be more difficult because it 
may be adapted to one insurer and not to another, regarding their respective risk measures and IKIs. So the 
investment bank model has to evolve to be inline with insurers’ needs. This evolution will be essentially related to 
trade and post-trade agreements, but also on the underlying calculation processes used to evaluate the fairness 
of an investment price. Thereby we can imagine the evolution of ISDA documentation with the integration of a 
standard “calculation clause” to establish the basis of price evaluation. And knowing now the strenghts of FST 
method, this method can be part of this evolution as method of reference. 

 

 

 

We will conclude this dissertation with the fact that the FST method developed by V. Surkov is an interesting 
alternative to Monte Carlo pricing method, because it presents lots of strenghts we highlighted all along this 
dissertation. And we think we demonstrated that it is farly elligible to be part of business evolution because it 
clarifies the pricing process of derivative-based products (whatever their complexities) and it can be easily 
adapted in any business environment with simple tools. 
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7. ANNEXE 

7.1 NOTATIONS 

 

Stochastic Processes 

( ) ( ),X t tX  Log Spot Price 

( ) ( ),S t tS  Spot Price 

( ) ( ),W t tW  Brownian motion 

( ) ( ),N t tN  Poisson process governing the arrival of jumps or losses 

( ) ( ),J t tJ  Jump processes 

 

Model Parameters 

r  Risk free interest rate 

γ , γ  Brownian motion with drift 

,σ Σ  Brownian motion volatility and variance-covariance matrix 

ρ  Correlation of Brownian motions 

vɶ  Poisson random measure 

,v ν  Lévy density 

ϑ  Stochastic volatility level 

κ, κ  Mean-reversion speed 

,θ θ  Mean-reversion level 

λ  Jump arrival rate 

µ σ,ɶ ɶ  Merton jump-diffusion model 

, ,pη η η+ −  Kou jump-diffusion model 

VG  Variance Gamma model 

CGMY  Carr-Geman-Madan-Yor model 

 

Option Parameters 

( )ϕ S  Payoff function 

K  Strike Price 

T  Time to maturity 

B  Barrier 
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Option Value 

( ),V t x  Option Value function 

( ),v t x  Discount-adjusted, log-transformed option value function 

mV  Option value on a discrete grid at time t m=  

mv  Discount-adjusted, log-transformed option value on a discrete grid at time t m=  

,N Mv  Discount-adjusted, log-transformed option value on a discrete grid as a function of 
N  space point and M  time points 

 

Others 

[ ]( ) ˆ,ωF � �  Continuous Fourier transform of � 

[ ]( )1− xF �  Continuous inverse Fourier transform of � 

L Infinitesimal generator 

,D J  Diffusion and integral (jump) components of the infinitesimal generator 

I  Identity vector / matrix 

( )Ψ ω  Characteristic exponent 

P  Risk-neutral pricing measure 

Q Real-world pricing measure 

tE
�  Expectation under  measure given information at t  

f�  Probability density function of � 
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7.2 SENSITIVITY FACTOR TYPES 

Panel 29: First order derivatives: 

Name Definition 

Delta It measures the sensitivity to changes in the underlying asset's price. Delta is the first 
derivative of the value V of the option with respect to the underlying instrument's 

price S such as: 
V

S

∂∆ =
∂

 

Vega It measures sensitivity to underlying asset’s volatility. Vega is the derivative of the 

option value with respect to the volatility of the underlying such as 
V

v
v

∂=
∂

 

Theta It measures the sensitivity of the value of the derivative to the passage of time  

V

τ
∂Θ = −
∂

 

Rho It measures sensitivity to the applicable interest rate. Rho is the derivative of the 
option value with respect to the risk free rate. Except under extreme circumstances, 
the value of an option is least sensitive to changes in the risk-free-interest rates. For 

this reason, Rho is the least used of the first-order Greeks with 
V

r
ρ ∂=

∂
 

 
Panel 30: 2 nd order derivatives 

Name Definition 

Charm It measures the instantaneous rate of change of delta over the passage of time. 
Charm can be an important Greek to measure/monitor when delta-hedging a position 
over a weekend. Charm is a second-order derivative of the option value, once to 
price and once to time. It is also then the (negative) derivative of theta with respect to 

the underling’s price. Hence 
2

Charm
V

S Sτ τ
∂∆ ∂Θ ∂= = − =
∂ ∂ ∂ ∂

 is also known as “delta 

decay” 

dVega/dTime It measures the rate of change in the Vega with respect to the passage of time. 
dVega/dTime is the second derivative of the value function: once to volatility and 

once to time such as 
2Vν

τ σ τ
∂ ∂=
∂ ∂ ∂

 

Gamma It measures the rate of change in the delta with respect to changes in the underlying 
price. Gamma is the second derivative of the value function with respect to the 
underlying price. Gamma is important because it corrects for the convexity of value 

and it is measured as 
2

2

V

S S

∂∆ ∂Γ = =
∂ ∂

 

Vanna It is a second order derivative of the option value, once to the underlying spot price 
and once to volatility. It is mathematically equivalent to the sensitivity of Delta with 
respect to change in volatility; or alternately, the partial derivative of Vega with 
respect to the underlying instrument's price. Vanna can be a useful sensitivity to 
monitor when maintaining a delta- or Vega-hedged portfolio as Vanna will help the 
trader to anticipate changes to the effectiveness of a delta-hedge as volatility 
changes or the effectiveness of a Vega-hedge against change in the underlying spot 

price. Its measure is 
2

Vanna
V

S S

ν
σ σ

∂∆ ∂ ∂= = =
∂ ∂ ∂ ∂
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Volga It measures second order sensitivity to volatility. Volga is the second derivative of the 
option value with respect to the volatility, or stated another way. Volga measures the 
rate of change to Vega as volatility changes. With positive Volga, a position will 
become long Vega as implied volatility increases and short Vega as it decreases, 
which can be scalped in a way analogous to long gamma. And an initially Vega-
neutral, long-Volga position can be constructed from ratios of options at different 
strikes. Volga is positive for options away from the money, and initially increases with 
distance from the money (but drops off as Vega drops off). (Specifically, Volga is 
positive where the usual d1 and d2 terms are of the same sign, which is true when 

d2 > 0 or d1 < 0.). Hence we define 
2

2
Volga

Vν
σ σ

∂ ∂= =
∂ ∂

 and it is also known as 

“Vomma” or “Vega Convexity” 

 
Panel 31: 3 rd order derivatives 

Name Definition 

Color It measures the rate of change of gamma over the passage of time. Color is a third-
order derivative of the option value, twice to underlying asset price and once to time. 
Color can be an important sensitivity to monitor when maintaining a gamma-hedged 
portfolio as it can help the trader to anticipate the effectiveness of the hedge as time 

passes. We define 
3

2
Color

V

Sτ τ
∂Γ ∂= =
∂ ∂ ∂

 

Speed It measures the rate of change in Gamma with respect to changes in the underlying 
price. Speed is the third derivative of the value function with respect to the underlying 
spot price. Speed can be important to monitor when delta-hedging or gamma-

hedging a portfolio. 
3

3
Speed

V

S S

∂Γ ∂= =
∂ ∂

 is also sometimes referred to as the “Delta 

of the Gamma”. 

Ultima It measures the sensitivity of the option Volga with respect to change in volatility. 
Ultima is a third-order derivative of the option value to volatility. We define

3

3

Vomma
Ultima

V

σ σ
∂ ∂= =

∂ ∂
  

Zomma It measures the rate of change of gamma with respect to changes in volatility. 
Zomma is the third derivative of the option value, twice to underlying asset price and 
once to volatility. Zomma can be a useful sensitivity to monitor when maintaining a 
gamma-hedged portfolio as Zomma will help the trader to anticipate changes to the 
effectiveness of the hedge as volatility changes.

3

2

Vanna
Zomma

V

S Sσ σ
∂Γ ∂ ∂= = =
∂ ∂ ∂ ∂

 

 
Panel 32: Special Sensitivity Factors 

Name Definition 

Alma Measures the sensitivity of option price to change in the jump arrival rate. 

Fugit The fugit is the optimal date to exercise an American or Bermudan option. It is useful 
to compute it for hedging purpose, for example you can represent flows of an 
American swaption like the flows of a swap starting at the fugit multiplied by delta 
then use these to compute sensitivities. 

Lambda It is the percentage change in option value per percentage change in the underlying 

price, a measure of leverage, sometimes called gearing.
V S

S V
λ ∂= ×

∂
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7.3 CLOSED FORMULAE OF PRICE AND SENSITIVITY FACTOR S 

Common factors to all closed formulae: 

 

2

1

2 1

ln
2

 = 

S
b

K
d

d d

T t

b r q

σ
τ

σ τ

σ τ

τ

    + +       
=

= −

−
= −

 

 
Panel 33: Closed Formula for a European Option 

European 
Option 

Call Put 

Price  ( ) ( )1 2
rC S N d Ke N d−= ⋅ − τ   ( ) ( )2 1

rC Ke N d S N d−= − − ⋅τ  

Delta 
( )1

C
N d

S

∂ =
∂

 ( )1

P
N d

S

∂ = − −
∂

 

Gamma ( )2 2
1

2 2

dC P

S SS

∂ ∂= =
∂ ∂

φ
σ τ

 

Rho 
( )2

rC
Ke d

r
−∂ =

∂
ττ φ  ( )2

rC
Ke d

r
−∂ = − −

∂
ττ φ  

Theta ( ) ( )1
2

2
rS dC

rKe N d
t

−⋅ ⋅∂ = − −
∂

τσ φ
τ

 
( ) ( )1

2
2

rS dP
rKe N d

t
−⋅ ⋅∂ = − + −

∂
τσ φ

τ
 

Vega 
( )1

C
S d

∂ = ⋅ ⋅
∂

φ τ
σ
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Panel 34: Closed Formula for an “Asset or Nothing” D igital Option 

Payoff Call Put 

Price  ( )1C S N d= ⋅   ( )1P S N d= ⋅ −  

Delta 
( ) ( )1

1

dC
N d

S

∂ = +
∂

φ
σ τ

 ( ) ( )1
1

dP
N d

S

−∂ = − −
∂

φ
σ τ

 

Gamma ( )2
1 1

2
1

d dC

S S

∂  = − ∂  

φ
σ τ σ τ

 
( )2

1 1
2

1
d dP

S S

−∂  = − − ∂  

φ
σ τ σ τ

 

Rho 
( )1

C
d

r

∂ =
∂

τφ  ( )1

P
d

r

∂ = − −
∂

φ τ  

Theta 

( )
2

1
1

2
2

2

r
S dC

d
t

  
+  ⋅∂   = ⋅ −

 ∂
 
 

σ τ
φ

τ σ τ
 

( )
2

1
1

2
2

2

r
dP

S d
t

  
+  −∂   = − −

 ∂
 
 

σ τ
φ

τ σ τ
 

Vega 
( )2

1

d SC
d

∂ = − ⋅
∂

φ
σ σ

 ( )2
1

d SP
d

∂ = −
∂

φ
σ σ

 

 
Panel 35: Closed Formula for a “Cash or Nothing” Dig ital Option 

Payoff Call Put 

Price  ( )2
rTC cash e N d−= ⋅   ( )2

rTP cash e N d−= ⋅ −  

Delta ( )2r dC
cash e

S S
−∂ = ⋅ ⋅

∂
τ φ

σ τ
 

( )2r dP
cash e

S S
− −∂ = − ⋅ ⋅

∂
τ φ

σ τ
 

Gamma ( )2
2

22

1r dC
cash e d

S SS
−∂  = − ⋅ ⋅ ⋅ + ∂  

τ φ
σ τ

 
( )2

2
22

1r dP
cash e d

S SS
− −∂  = ⋅ ⋅ ⋅ + ∂  

τ φ
σ τ

 

Rho ( ) ( )2
2

r dC
cash e N d

r S
−
 ⋅∂ = ⋅ − 

∂   

τ τ φ
τ  

( ) ( )2
2

r dP
cash e N d

r S
−
 ⋅ −∂ = − ⋅ + − 

∂   

τ τ φ
τ

 

Theta ( ) ( )2

2
12

r rcash d eC
d rC

t

−  +⋅ ⋅∂
 = − −

∂   

τ σ τφ
τ σ τ

 
( ) ( )2

2
12

r rcash d eP
d rP

t

−  +⋅ − ⋅∂
 = − − −

∂   

τ σ τφ
τ σ τ

 

Vega ( )1 2
rcash d e dC −⋅ ⋅∂ = −

∂

τφ
σ σ

 
( )1 2

rcash d e dP −⋅ ⋅ −∂ =
∂

τφ
σ σ
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Panel 36: Closed Formula for a Forward Starting Europ ean Option 

Payoff Call Put 

Price ( )

( ) ( ) ( )
0

1 2

b r t

b r r

C S e

e N d e N dτ τα

−

− −

=
 × − 

 
( )

( ) ( ) ( )
0

2 1

b r t

b rr

P S e

e N d e N dττα

−

−−

=
 × − − − 

 

Delta 
( )

( ) ( ) ( )
0

1 2

b r t

b r r

C
e

S

e N d e N dτ τα

−

− −

∂
=

∂
 × − 

 

( )

( ) ( ) ( )
0

2 1

b r t

b rr

P
e

S

e N d e N dττα

−

−−

∂
=

∂
 × − − − 

 

Gamma 2

2
0

C

S

∂
=

∂
 

2

2
0

P

S

∂
=

∂
 

Rho ( ) ( )0 2
b r t rC

S e N d
r

τα τ − −∂
= ⋅ ⋅ ⋅ ⋅

∂
 ( ) ( )0 2

b r t rP
S e N d

r
τα τ − −∂

=− ⋅ ⋅ ⋅ ⋅ −
∂

 

Theta ( )
( )

( ) ( )

0
1

0 2

2

b r T

b r t r

C S e
d

t

r S e N dτ

σ
φ

τ

α

−

− −

∂ ⋅ ⋅
= − ⋅

∂

− ⋅ ⋅ ⋅ ⋅

 

( )
( )

( ) ( )

0
1

0 2

2

b r T

b r t r

P S e
d

t

r S e N dτ

σ
φ

τ

α

−

− −

∂ ⋅ ⋅
= − ⋅

∂

+ ⋅ ⋅ ⋅ ⋅ −

 

Vega ( ) ( )0 1
b rC

S e dτ φ
σ

−∂
= ⋅ ⋅ ⋅

∂
 ( ) ( )0 1

b rP
S e dτ φ

σ
−∂

= ⋅ ⋅ ⋅ −
∂

 

 

With 
0

K
S

α =  
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