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In this investigation built-up columns with a linear variation of depth 
under various support conditions are analysed as rigid-jointed 
frameworks. A rigorous analysis for determining critical loads allows 
formulae to be established for buckling load estimates of practical 
importance. The individual and coupling effects on the critical loads 
are assessed for a variety of parameters such as: degree of nonuni- 
fortuity, number of panels as well as stiffness and length ratios of 
component members. The proposed solution technique is demon- 
strated with examples. 
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Frameworks with built-up members of varying cross 
section are frequently encountered in engineering prac- 
tice. The earliest study on this problem was by 
Engesser ~ who established approximate formulae for 
the buckling load of battened and laced columns. 
Bleich" and Timoshenko and Gere ~ presented more 
accurate and understandable stability analyses fi)r 
nonuniform battened and laced columns. Nevertheless 
such built-up columns were not considered as frame- 
works of a high degree of indeterminacy. Indeed, 
various simplifying assumptions regarding the buckled 
configuration, the slope continuity of the chords, and the 
degree of end fixity of the lacing bars were made which 
permitted approximate formulae for establishing the in- 
ternal forces of the framework. More accurate studies 
dealing with the stability analysis 4'~ and the post- 
buckling response 6 of simple frames having latticed 
members with linear depth variation have been 
presented. 

In this investigation tapered built-up members are 
analysed as rigid-jointed frameworks with particular 
emphasis on battened columns. The main objectives of 
this paper are to use a linear stability analysis to 
establish critical loads of tapered battened columns; to 
discuss the effect of various parameters on the critical 
loads; and to avoid the aforementioned intractable 
analysis by proposing approximate but reliable formulae 
for predicting the load-carrying capacity of such 
members. 

Post-buckling effects on the critical load are not 
accounted for, however, the inclusion of such effects 
could be justified in view of some residual post-buckling 
strength in the members under consideration. In this 
case one can employ a reliable simplified post-buckling 
analysis 7.8 
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Figure 1 M e m b e r s  w i t h  b a t t e n  p l a t e s  o f  v a r y i n g  cross-section 

Sta tement  of  the p rob lem 

The axial load-carrying capacity of tapered members 
having a linearly varying depth with a constant cross- 
sectional area along their axis is studied. Such members 
with batten plates are shown in Figure 1. In this case the 
moment of inertia of the cross-section varies as a second 
power of the distance from the point of intersection of 
the two chord axes, as follows (Figure 2) 

l(x) = Io (!) 
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Figure 2 G e o m e t r y  and sign c o n v e n t i o n  of a par t ia l ly  f i xed-  
h inged  no -nun i f o rm  co lumn  

M a t h e m a t i c a l  ana lys i s  

Consider the built up column shown in Figure 2a which 
is composed of N - 1 equal panels of length 10 cos ~,. 
The column, being symmetric with respect to its 
longitudinal axis. is subjected to an axial compressive 
load 2P. The detailed geometry and the sign convention 
of the internal forces are shown in Figure 2. The slope 
deflection method which includes the effect of axial 
forces is used below. 

The bending moments and the shearing force cor- 
responding to the (i - 1. i) chord segment with length 
/, have the following expressions 9 

M,-i ,  - Io oL,,O,_, + (x:O, 

6,_ I + 6, ] 
+ (~,, + o,j) - - ) ~ -  ........ ] 

2El, [ 
M,.i_, = io a,  Oi + o40, _, 

6,_ i - -  ~, ] 
+ (or,, + c 9) l0 ] 

V, M,_ I., + M,.i- I P 6,_ t - 8, 

/. cos ~o 10 

(3) 

where at, x are distances from the origin as shown in 
Figure 2a. a n d / .  is the moment of inertia at the bottom 
of the member (x = o0. Such a law corresponds with 
sufficient accuracy to the case of a tapered member con- 
sisting of fi)ur angles or two channels (or double tees) 
connected by lacing bars or batten plates. The joints for 
the latter case are considered to be rigidly connected. 
Hence the battened member is a highly redundant 
framework. 

The analysis that follows refers to members under an 
axial compressive load P with the lower end hinged and 
the upper end partially fixed, as shown in Figure 2. It 
is also assumed that the batten plates are subjected only 
to bending since their axial load is negligible before 
buckling. The axial deformation of the members is not 
taken into account. The geometrical description, internal 
forces and sign convention are also shown in Figure 2. 
The deformed state will be established by using a linear 
stability analysis in terms of 0, and 6,. where 0, and 6, 
are the angle of rotation and the lateral deflection respec- 
tively of the ith joint (i = 0. I . . . . .  N -  1). 

The following auxiliary quantities are also used 

where 

, , , ( x / =  2 ( e , ~ -  " ¢i) 

. . . . . . . . . .  

I - B,.cot B,. sin ~,. 

I J; 

i 

+ : -nL-'v 
",,1 \2  + U 

(4) 

and /3~ =/3-'/cos~o being constant along the length of 
each chord. Equilibrium of  moments at each joint i '  and 
i yield 2N equations, while the equilibrium of  shearing 
forces as the free-body diagram of Figure 2b shows, 
yields N - 2 equations. 

These equations can be written in the matrix form as 
follows 

L, h,,, 1 ~ , PI: 
# =  . n =  - [ =  . = - (2 )  

I, I ot El, KT = 0 (5) 

where i,, and /h are the moments of inertia of each 
chord and each batten plate respectively; h,. the depth 
of the cross-section at the middle of the member: I is the 
length of the member, and E is the modulus of elasticity. 

where 6 = 811 o, while the matrices A (of order 
2 N x 2 N ) ,  B(of order ( N - 2 )  x ( N - 2 ) )  and K (of 
order 2N x (N - 2)) are functions of the quantities a,,, 
a / (equations (4)), #. n. [ (equations (2)), and K r is the 
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transpose of  matrix K. The vanishing of the (stability) 
determinant associated with equation (5) leads to the 
overall buckling equation of the member from which the 
successive buckling loads are numerically evaluated. 

Using this equation one can treat the case of a simply 
supported column by setting c = 0, as well as the case 
of the propped cantilever column (fixed-hinged column) 
by setting c -  oo (implying 00 = 00' = 0), where c = 
rotational spring constant (Figure 2a). 

Numerical results and discussion 

With the aid of numerical evaluation of the buckling 
equation one can obtain critical (buckling) loads cor- 
responding to various geometrical configurations of 
simply supported and fixed-hinged columns. A variety 
of numerical results are given in graphical form. 

Figures 3a and b, correspond to a simply supported 
beam and a proposed beam respectively, they show the 
variation of the dimensionless critical load/~,  versus # 
for various values of n(=0.1 ,  0.3, 0.5), [(=0, 10) and 
f o r N =  10. 

The critical loads corresponding to nonuniform col- 
unms ([ ~ 0) are higher than those of the uniform col- 
umns ([ = 0), for the segments of the curves/3~., versus 

which are located below the dotted lines in both plots. 
For the usual case of a simply supported column with 

n = 0. I and/,t = 0.5, the critical load of the uniform col- 
umn is greater by about 10% than the critical load of the 
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Figure 4 Crit ical loads ~ ,  versus I:  for  # = 1. N = 10 and 
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Figure 3 Critical loads/~, for a simply supported (a) and a fixed- Figure 5 Critical loads /~'~, for simply supported (a) and fixed- 
hinged (b) column, as funct ions of  p,, n and f hinged (b) columns, as funct ions of/~, / 'and n 
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F i g u r e  6 Coe f f i c i en t s  ao, bo and  co as f u n c t i o n s  o f  I~ n and N c o r r e s p o n d i n g ;  a. to  s i m p l y  s u p p o r t e d  c o l u m n s ;  and  b, to  f i xed -  
h inge  c o l u m n s .  ( . . . . .  ), N = 5; ( -  - - ) ,  N = 10;  ( ), N = 15 

For the case of a fixed-hinged column, the maximum 
difference between the critical load of  the nonuniform 
column and that of  the uniform one, occurs for n = O. ! 
and # = O. 1 and reaches 20%. Contrary to the previous 
case, the critical load of  the nonuniform column is 
greater than that of the uniform column. 

It is also worth observing that the difference in the 
critical loads corresponding to a simply supported 
column and a fixed-hinged column for the same 
geometrical configurations is much less than the cur- 
responding difference for colunms with solid cross- 
sections. Indeed for solid cross-sections obtained for 
# -- up and n - 0 (in the case [ = O) such a difference 
tends to I/0.7" = 2, while for battened members it is 
much less as is shown in Figure 4. From this figure, one 
can see the variation of/3~., versus [ for N = 10, /x = 1 
and various values of  n (=O. l ,  0.3, 0.5). It should be 

noted that this figure has been taken from Figure 5 in 
order to show the difference of  the critical loads between 
the cases of a pinned-pinned (Figure 5a) and a pinned- 
fixed (Figure 5b) column. 

A three-dimensional graphical repremntation of/3~, 
with respect to # and / ,  corresponding to a simply sup- 
ported column and a fixed-hinged column is given for 
various values of  n(=O. I, 0.3, 0.5), in Figures 5a and 
5b respectively. In these plots the projection of  the 
curves (corresponding to n = O. 1, 0.3, 0.5) o f  the plane 
[ = O, on the plane / = 10 gives the intersection points F, 
C, D and E, as shown in Figure 3. Note that such a pro- 
jection has not been included in Figures 5a and 5b, in 
order to avoid any confusion. From these figures it is 
evident that the effect of  nonuniformity on the critical 
load is more pronounced for the fixed-hinged column 
than the corresponding simply supported one. 
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Figure 7 Crit ical loads /Jc2,, for  s imply suppor ted  (a), and f ixed-  
h inged (b) co lumns,  as func t ions  of  N, n and /~ 

A reliable fi~rmula fi~r establishing the critical load 
B~r of both types of columns is given as a function of 
the parameters #, n, / and  N(=5 ,  !0, 15), as follows 

B~:~ = ao#" + bo# + co (6) 

where the dimensionless coefficients ao, b0 and co are 
taken from the nomograms presented in Figure 6a 
(simply supported column) and Figure 6b (fixed-hinged 
column), for various values of [ and n. 

For instance, for a simply supported column cor- 
responding to /~ = 0 . 2 ,  [ =  4, n = 0.1 and N =  15, 
using Figure (m we find a u = -230 ,  b, = 800, co = 22. 
Using equation (6) we obtained B~, = 172.8 which 
slightly differs from the value of the exact critical load 
B~,= 165.4. Similarly: for a propped column cor- 
responding to # = 0.4 ! = 6, n = 0.3 and N = 10, using 
Figure 6b we find: a,  = - 8 0 ,  b0 = 230, Cn = 24, and 
therefore B~, = 103.2 while the exact value is 
B~, = 106.6 

Considering columns with given length (1) and 
moment of inertia (/,) one can study the dependence of 

the critical load /~ ,  versus N, /~, n and [ for a simply 
supported column as well as for a fixed-hinged column, 
as shown in Figures 7a and 7b respectively. In both 
columns the increase in the number of panels implies an 
increase in the critical load. Such an increase is more 
pronounced for slender columns (i.e. n = O. 1) than it is 
for short ones (n = 0.5) regardless of the degree of 
nonuniformity of  the cross-section. This is because 
the latter columns behave like slender frames. 

Conc lus ions  

The most important conclusions of this investigation 
based on two types of columns are as follows. First, 
there are ranges of variation of the stiffness and length 
ratio parameters for which the nonuniformity of the 
cross-section for both types of columns implies an in- 
crease in the load-carying capacity. Such an increase of 
the load-carrying capacity may reach 10% for the simply 
supported column and 20% for the fixed-hinged column. 
Second, it should also be noted that the difference in the 
critical loads between these two types of columns is 
much less than the corresponding difference of critical 
loads of columns with solid cross-sections. Third, for 
large values of the ratio of the moments of inertia/~ and 
for very small values of the length ratio n both types of 
nonunifi~rm colunms behave as those of solid cross- 
section. Finally, the cumbersome numerical evaluation 
for establishing the exact load-carrying capacity of both 
types of colunms can be avoided by using a simple 
approximate but very reliable fi~tmula. 
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