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In this investigation built-up columns with a linear variation of depth
under various support conditions are analysed as rigid-jointed
frameworks. A rigorous analysis for determining critical loads allows
formulae to be established for buckling load estimates of practical
importance. The individual and coupling effects on the critical loads
are assessed for a variety of parameters such as: degree of nonuni-
formity, number of panels as well as stiffness and length ratios of
component members. The proposed solution technique is demon-
strated with examples.
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Frameworks with built-up members of varying cross
section are frequently encountered in engineering prac-
tice. The earlicst study on this problem was by
Engesser' who established approximate formulae for
the buckling load of battened and laced columns.
Blcich® and Timoshenko and Gere® presented more
accurate and understandable stability analyses for
nonuniform battened and laced columns. Nevertheless
such built-up columns were not considered as frame-
works of a high degree of indeterminacy. Indeed,
various simplifying assumptions regarding the buckied
configuration, the slope continuity of the chords, and the
degree of end fixity of the lacing bars were made which
permitted approximate formulae for establishing the in-
ternal forces of the framework. More accurate studies
dealing with the stability analysis*® and the post-
buckling response® of simple frames having latticed
members  with  linear  depth  variation have been
presented.

In this investigation tapered built-up members are
analysed as rigid-jointed frameworks with particular
emphasis on battened columns. The main objectives of
this paper are to use a lincar stability analysis to
establish critical loads of tapered battened columns; to
discuss the effect of various parameters on the critical
loads; and to avoid the aforementioned intractable
analysis by proposing approximate but reliable formulae
for predicting the load-carrying capacity of such
members.

Post-buckling effects on the critical load are not
accounted for, however, the inclusion of such effects
could be justified in view of some residual post-buckling
strength in the members under consideration. In this
case one can employ a reliable simplified post-buckling
analysis’™®,
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Figure 1 Members with batten plates of varying cross-section

Statement of the problem

- The axial load-carrying capacity of tapered members

having a lincarly varying depth with a constant cross-
sectional area along their axis is studied. Such members
with batten plates are shown in Figure /. In this case the
moment of inertia of the cross-section varies as a second
power of the distance from the point of intersection of
the two chord axes, as follows (Figure 2)

Ix) = I, (i) (1)
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Figure 2 Geometry and sign convention of a partially fixed-
hinged no-nuniform column

where a, x are distances tfrom the origin as shown in
Figure 2a, and [ is the moment of inertia at the bottom
of the member (x = ). Such a law corresponds with
sufficient accuracy to the case of a tapered member con-
sisting of four angles or two channels (or double tees)
connected by lacing bars or batten plates. The joints for
the latter case are considered to be rigidly connected.
Henee the battened member is a highly redundant
framework.

The analysis that follows refers to members under an
axial compressive load P with the lower end hinged and
the upper end partially fixed, as shown in Figure 2. It
is also assumed that the batten plates are subjected only
to bending since their axial load is negligible before
buckling. The axial deformation of the members is not
taken into account. The geometrical description, internal
forces and sign convention are also shown in Figure 2.
The deformed state will be established by using a linear
stability analysis in terms of §, and é,, where 8, and §,
are the angle of rotation and the lateral deflection respec-
tively of the ith joint (( =0, 1, ..., N-1).

The following auxiliary quantitics are also used

where I and [, are the moments of inertia of each
chord and each batten plate respectively: h,, the depth
of the cross-section at the middle of the member: [ is the
length of the member, and E is the modulus of elasticity.
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Mathernatical analysis

Consider the built up column shown in Figure 2a which
is composed of N — 1 equal panels of length /,cos ¢.
The column, being symmetric with respect to its
longitudinal axis. is subjected to an axial compressive
load 2P. The detailed geometry and the sign convention
of the internal forces are shown in Figure 2. The slope
deflection method which includes the effect of axial
forces is used below.

The bending moments and the shearing force cor-
responding to the (i — 1, i) chord segment with length
l, have the following expressions®
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and B; = B*/cos ¢ being constant along the length of
each chord. Equilibrium of moments at each joint i* and
i yicld 2N equations, while the equilibrium of shearing
forces as the free-body diagram of Figure 2b shows,
yields N — 2 equations.

These equations can be written in the matrix form as
follows

PR

where & = 8/l,, while the matrices A (of order
2N X 2N), B(of order (N —2) X (N —2)) and K (of
order 2N X (N — 2)) are functions of the quantities a,,
a; (equations (4)), u. n, [ (equations (2)), and K7 is the



Stability of battened columns with and without taper: J. C. Ermopoulos et al.

transpose of matrix K. The vanishing of the (stability)
determinant associated with equation (5) leads to the
overall buckling equation of the member from which the
successive buckling loads are numerically evaluated.

Using this equation one can treat the case of a simply
supported column by setting ¢ = 0, as well as the case
of the propped cantilever column (fixed-hinged column)
by setting ¢ — o (implying d, = d, = 0), where ¢ =
rotational spring constant (Figure 2a).

Numerical results and discussion

With the aid of numerical evaluation of the buckling
equation one can obtain critical (buckling) loads cor-
responding to various geometrical configurations of
simply supported and fixed-hinged columns. A variety
of numerical results are given in graphical form.

Figures 3a and b, correspond to a simply supported
beam and a proposed beam respectively, they show the
variation of the dimensionless critical load 8}, versus u
for various values of n(=0.1, 0.3, 0.5), /(=0, 10) and
for N=10.

The critical loads corresponding to nonuniform col-
umns ([ # 0) are higher than those of the uniform col-
umns ([ = 0), for the segments of the curves B2, versus
p which are located below the dotted lines in both plots.

For the usual case of a simply supported column with
n=0.1and g = 0.5, the critical load of the uniform col-
umn is greater by about 10% than the critical load of the
corresponding nonuniform column. Note that such a dif-
ference decreases substantially with an increase in n.
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Figure 3 Critical loads 82 for a simply supported {a) and a fixed-
hinged (b) column, as functions of u, n and I
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Figure 4 Critical loads B% versus I, for u = 1, N = 10 and
various values of n. I = O corresponds to a uniform column.
(——), fixed-hinged; (- — -), hinged-hinged
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Figure 5 Critical loads 8% for simply supported (a) and fixed-
hinged (b) columns, as functions of x, /'and n
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Figure 6 Coefficients aog, b and co as functions of /, n and N corresponding; a. to simply supported columns; and b, to fixed-
hinge columns. (- - - - - ), N=65, {---}, N=10; (—), N =15

For the case of a fixed-hinged column, the maximum
difference between the critical load of the nonuniform
column and that of the uniform one, occurs for n = 0.1
and p = 0.1 and reaches 20%. Contrary to the previous
case, the critical load of the nonuniform column is
greater than that of the uniform column.

It is also worth observing that the difference in the
critical loads corresponding to a simply supported
column and a fixed-hinged column for the same
geometrical configurations is much less than the cor-
responding difference for columns with solid cross-
sections. Indeed for solid cross-sections obtained for
pu — o and n — O (in the case [ = 0) such a difference
tends to 1/0.7° = 2. while for battened members it is
much less as is shown in Figure 4. From this figure, onc
can see the variation of 8>, versus / for N =10, p = |
and various values of n(=0.1, 0.3, 0.5). It should be
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noted that this figure has been taken from Figure 5 in
order to show the difference of the critical loads between
the cases of a pinned-pinned (Figure 5a) and a pinned-
fixed (Figure 5b) column.

A three-dimensional graphical representation of 87,
with respect to u and /, corresponding to a simply sup-
ported column and a fixed-hinged column is given for
various values of n(=0.1, 0.3, 0.5), in Figures 5a and
5b respectively. In these plots the projection of the
curves (corresponding to n = 0.1, 0.3, 0.5) of the plane
[ =0, on the plane [/ = 10 gives the intersection points F,
C. D and E, as shown in Figure 3, Note that such a pro-
jection has not been included-in Figures 5a and 5b, in
order to avoid any confusion. From these figutes it is
evident that the effect of nonuniformity on the critical
load is more pronounced for the fixed-hinged column
than the corresponding simply supported one.
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Figure 7 Critical loads 82, for simply supported (a), and fixed-
hinged (b) columns, as functions of N, n and u

A reliable formula for establishing the critical load
B:, of both types of columns is glven as a function of
the parameters u, n, [ and N(=5, 10, 15), as follows

Bfr = “0#2 + by + ¢y (6)

where the dimensionless coefficients «,, b, and ¢, are
taken from the nomograms presented in Figure 6u
(simply supported column) and Figure 6b (fixed-hinged
column), for various values of [ and n.

For instance, for a simply supported column cor-
responding to u =0.2, f—4 n=0.1 and N =15,
using Figure 6a we find «" = =230, b(, = 800, ¢, = 22.
Using equation (6) we obtained B2, =172.8 which
shz,htly differs from the value of the exact critical load
B}, = 165.4. Similarly, for a propped column cor-
responding to u = 0.4 /=6, n=0.3 and N = 10, using
Figure 6b we find: a,= —80, b, = 230, ¢, = 24, and
therefore B2, = 103.2 while the exact value is
B, = 106.6

Considering columns with given length (/) and
moment of inertia (/) one can study the dependence of

the critical load 383, versus N, u, n and [ for a simply
supported column as well as for a fixed-hinged column,
as shown in Figures 7a and 7b respectively. In both
columns the increase in the number of panels implies an
increase in the critical load. Such an increase is more
pronounced for slender columns (i.e. n = 0.1) than it is
for short ones (n =0.5) regardless of the degree of
nonuniformity of the cross-section. This is because
the latter columns behave like slender frames.

Conclusions

The most important conclusions of this investigation
based on two types of columns are as follows. First,
there are ranges of variation of the stiffness and length
ratio parameters for which the nonuniformity of the
cross-section for both types of columns implies an in-
crease in the load-carying capacity. Such an increase of
the load-carrying capacity may reach 10% for the simply
supported column and 20% for the fixed-hinged column.
Second, it should also be noted that the difference in the
critical loads between these two types of columns is
much less than the corresponding difference of critical
loads of columns with solid cross-sections. Third, for
large values of the ratio of the moments of inertia u and
for very small values of the length ratio n both types of
nonuniform columns behave as those of solid cross-
section, Finally, the cumbersome numerical evaluation
for establishing the exact load-carrying capacity of both
types of columns can be avoided by using a simple
approximate but very reliable formula.
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