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Flexural buckling of laced column with serpentine lattice
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Unlike the technique accepted in existing design specifications, the buckling problem of a laced column with a
serpentine lattice is formulated as a stability problem of a statically indeterminate structure. The problem is reduced
to a two-point boundary value problem for a system of recurrence dependences relating the deformation parameters
of column cross-sections passing through the lattice joints. These relations are derived by using the initial value
method for solving differential equations of column chord equilibrium. For columns with any degree of static
indeterminacy, the critical force is determined as the smallest eigenvalue of the fourth-order system of homogeneous
linear algebraic equations. The obtained mode shapes have the form of irregular curves with many points of
inflection and disprove a concept that the stability problem of a laced column can be reduced to the analogous
problem for an ‘equivalent’ continuous solid column based on Engesser’s assumption. Euler critical forces calculated
for a column as a statically indeterminate system are compared with the critical forces from Engesser’s equivalent
solid column. The phenomenon which is similar to the Boobnov effect can occur for the serpentine column: it can
lose stability so that panels of one of the chords are buckled as isolated simply supported bars. This type of buckling
is possible when the lattice rigidity of the column exceeds a specific limit. For columns with identical chords, the
critical force is a function of the number of sub-panels and the special lattice rigidity parameter. The relationships
between the critical force and the lattice rigidity parameter for columns with a varied number of sub-panels can be

applied in designing steel-laced columns.

Keywords: buckling; laced serpentine column; statically indeterminate structure

1. Introduction

In design practice, determination of the nominal
critical force for a laced column in the direction
parallel to the lattices (Ballio and Mazzolani 1983,
Gaylord et al. 1992, Galambos 1998, American
Institute of Steel Construction 2005) is reduced to
calculation of Euler’s critical force for the ‘equivalent’
solid pin-ended column. To take into account the
sensitivity of laced columns to shear deformation, the
component depending on lattice parameters is intro-
duced in the expression of the slenderness ratio for the
equivalent column. This approach (Bleich 1952,
Timoshenko and Gere 1961) that has been suggested
by Engesser (1891) recognises the possibility of the
only sinusoidal half-wave buckling mode shape. In
actual fact, laced columns are highly redundant
systems, and the loss of column stability can occur
by various buckling mode shapes depending on
correlation between chord rigidity and lattice rigidity.
The stability analysis of systems with a large number of
static indeterminacy degrees by traditional methods
requires determination of the smallest eigenvalue for a
linear algebraic equation system of a higher order.

However, a buckling problem for a laced column with
any degree of static indeterminacy can be formulated
as a two-point boundary value problem for the eighth-
order system of linear recurrence relations (Razdolsky
2005, 2008). As a result of this formulation of the
problem, a determination of the critical force is
reduced to finding the smallest eigenvalue for the
fourth-order system of linear algebraic equations. This
technique of solving the static stability problem for the
laced column with a crosswise lattice is represented in
the author’s preceding articles: the torsional buckling
problem of the column and the static-geometric
analogy between the torsional and flexural buckling
of the column were considered by Razdolsky (2005);
the flexural buckling of the column was studied by
Razdolsky (2008). This article is devoted to the flexural
buckling problem of laced columns with a serpentine
lattice. Euler critical forces and buckling mode shapes
are determined for the column as a statically indeter-
minate system. The obtained critical forces are
compared with those following from Engesser’s model
of the equivalent solid column. Rigidity properties of
the serpentine lattice are described by a special
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parameter. The critical force of the column can be
represented as a function of this parameter, and the
number of sub-panels in which the column chords are
divided by the lattice joints. The graphic representation
of this relationship for columns with a varied number
of sub-panels can be applied in designing steel-laced
columns. Similar relationships for laced columns with
a crosswise lattice have been derived in (Razdolsky
2008).

2. Relations between deflections/forces at bound
cross-sections of chord sub-panels

Consider a laced column, which consists of two
longitudinal chords 1 and 2 connected by two mutually
parallel lattices in one. Each chord has a solid cross-
section with at least a single axis of symmetry. This
axis coincides with the axis of symmetry of the whole
column cross-section and is parallel to the lattice
planes. In actual practice, the serpentine lattice is one
of the most frequently employed lattice types. Each
lattice brace connects two joint cross-sections located
on the opposite chords. We assume that the joint cross-
section of the chord is located between the ascending
and descending braces arriving at the joint. In design
practice, it is usually assumed that the joints of the
lattice make up hinges in the lattice plane. Sections of
the chords between adjacent joints are named as
panels. We shall distinguish identical quantities corre-
sponding to the different chords by means of subscript
indices i = 1, 2, where i = 1 refers to the left chord.
For laced column with serpentine lattice, each column
cross-section, which passes through the lattice joint
located on one of the chords inside the column, divides
the corresponding panel of the opposite chord into two
sub-panels (Figure 1). The column cross-sections
passing through the lattice joints divide each column
chord along its length into n sub-panels. These cross-
sections are shown in Figure 1 by dotted lines. We shall
name a chord cross-section which divides the panel
into sub-panels as off-joint cross-section. Introduce an
ordinal numeration k = 0, 1, 2, ... n for the joint and
off-joint cross-sections of each chord. Note that
numeration is taken for each chord separately. Assume
that both the column lattices start at the lower (initial)
cross-section of the left chord. A length of sub-panels
can change along the column length. However, we
have denoted the sub-panel length as 4. Both
the chords are supported at the end cross-sections
k = 0 and k = n. Each chord is compressed by an axial
force N,.

A local Cartesian orthogonal coordinate system is
adopted for each chord. It is formed by the principal
axis of inertia O;Y of the cross-section and by the
longitudinal axis O,;Z (Figure 1). It is assumed that the

Y O y O

Figure 1. Laced column with serpentine lattice.

column chords can lose stability in the direction of axis
O,Y. The virtual displacements of the column chords in
the critical state are defined by the well-known
differential equation for the bar subjected to axial
compression (Brush and Almroth 1975). We denote the
displacement, its derivative, the bending moment and
the transverse force for the joint and off-joint cross-
sections by symbols y(k), yi(k), Mfk) and Q. k),
respectively, where 7 is a chord number and k is a cross-
section number. The coordinate along the axis O;Z is
denoted by the symbol z. The transverse force is
supposed to direct normally to the chord axis in the
initial unstressed state. In contrast to the common
transverse shearing force, the expression for this
transverse force includes the component of the axial
force that is directed normally to the mentioned chord
axis (Rzhanitsyn 1982). The displacement, its
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derivative and the bending moment are continuous at
the joint cross-sections of the chord. The transverse
force takes a constant value inside the sub-panel but
undergoes a jump at the joint cross-sections of the
chord. The jump is caused by the effect of the braces
meeting at the joint. The lateral force along the axis
O,Y applied to the joint cross-section k of the chord i
from the two parallel braces connecting this cross-
section with the joint cross-section j of the opposite
chord (Figure 2) is defined by the displacements of
these cross-sections and the rigidity characteristics of
the connecting braces (Razdolsky 2005)

Ri(k,j) = =2ci(k,j)[yi(k) = y3-i(j)] (1)

where y;_4j) is the displacement of the joint cross-
section j of the chord 3—i, which is opposite to the
chord i; ¢; (k, j) = EF; (k, j) cos® ¢; (k, j)/I; (k, j) is the
brace rigidity characteristic; £ is the Young’s modulus;
Fdk, j), li(k, j) and @k, j) are, respectively, the cross-
sectional area, length and inclination of the brace,
connecting the joint cross-section k of the chord i with
the joint cross-section j of the opposite chord. A
uniformity of expressions including characteristics of
both chords at the same time is attained by using
notation 7 and 3 —i for the chord indices. The braces of
the front column lattice only are shown in Figure 2. In
the case of a sub-panel located between the joint and
off-joint cross-sections of the chord, we shall take that
the initial cross-section of the sub-panel immediately
following the ascending brace.

Consider a sub-panel of the chord i between the
cross-sections k£ and k + 1. The values of the

Q; (k+1) M, (k+1)
<-——<—A

i
Left chord // /
/
7y
/
/ //
/
Rk k| |7
- 4 Qi (k)
M; (k) —
——a
Qi1 (k) ¢ ‘7 :\ M; (k)
R k1) L\
AN\
Left chord \\\\
AN
A\
N~
> A |-
M, (k_l;\_"' >
Qi (k-1)

Figure 2. Transverse forces and bending moments at joint
cross-sections of left column chord.

displacement, its derivative and the bending moment
at the initial cross-section of the sub-panel are

yoi(k,k +1) = yi(k) (2)
yoi(k, k+ 1) = yi(k) (3)
Moi(k, k4 1) = M, (k). (4)

When a sub-panel starts from a joint cross-section, the
transverse force at the initial cross-section of the sub-
panel is given by

Qoi(k, k4 1) = Qi(k) — Ri(k,k +1). (5)

Recall that the joint cross-section of the chord is
located between the ascending and descending braces
arriving at the joint. When a sub-panel starts from an
off-joint cross-section j, the transverse force at the
initial cross-section of the sub-panel is

Qoi(j,j + 1) = Qi(j)- (6)

The transverse force inside of any sub-panel takes the
constant value

Oik.k+ 1) = Quilk. k+1) (7)
and is expressed through the transverse force at the
preceding sub-panel. If the cross-sections k and k— 1 are
the joint and off-joint cross-sections, respectively, then

Qilk) = Qi(k — 1,k) — Ri(k,k — 1)
= Quilk — 1,k) — Ri(k,k — 1) (8)

Qui(k — 1,k) = Qi(k — 1). )

The expression of the transverse force at the joint
cross-section takes a form

Qi(k) = Qi(k = 1) = Ri(k,k = 1). (10)

The following non-dimensional notations are used

S SN
C_daél_davl_dé_iia
_ Mid O

Fi ) Al

N.
- Q=) td=vid (11
EJ; EJ;’ grd=vd (1)

and the non-dimensional lattice rigidity parameter is
given by

o 2Ci(kaj)d3

ai(k7j) EJ:

(12)
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This parameter can be represented as

Fl(kal)dZ

1

ai(k,j) = sin2¢; (k,j)cos @,(k,j). (13)

The non-dimensional deformation parameters &, v;
and I'; at the chord cross-section k + 1 can be
expressed through parameters &; (k), v; (k) and T'; (k)
at the cross-section k by using relations of the initial
value method (Rzhanitsyn 1982)

sin Q; 1 —cosQ;
Eilk+1) = &i(k) +vi(k) o Pi(k)T[;
Q —sinQ,
—/\Oi(k7k+1)$ (14)
vilk + 1) = v;(k) cos Q; — T;(k) %
| — cosQ;
_AOi(k7k+l)% (15)

i

F,(k -+ 1) = Ui(k)Qi sin Ql‘ —+ F,(k) COS Q,’
+Am(k,k+1)%gi, (16)

1

The non-dimensional transverse forces at the
initial cross-section of the sub-panels that start
from the joint and off-joint cross-sections, respectively,
are

Aoi(k, k + 1) = Ai(k) + oi(k, k + 1)[E;(k) — &_i(k + 1)]
(17)

Aoi(k — 1,k) = Ai(k — 1). (18)

The non-dimensional transverse forces at the joint and
off-joint cross-sections, respectively, are defined by the
following expressions

Ai(k) = Ai(k = 1) + ai(k, k = 1)[Ei(k) — &3_i(k = 1)]
(19)

Ai(k = 1) = Agi(k — 2,k —1). (20)

Since the serpentine lattice starts at the initial cross-
section of the left chord (Figure 1), the joint cross-
sections of the left chord are even-numbered and the
joint cross-sections of the right chord are odd-
numbered.

3. Reducing buckling problem to a boundary value
problem

We introduce the following vector notation

V(k) - {él(k)a Ul(k)arl(k)aAl(k)7 éZ(k)a I)Z(k)a F2(k)a
A (k)3T (21)

where superscript “T” denotes the transposition opera-
tion of a vector. The recurrence relations between
parameters &; (kK + 1), v; (k+ 1), T'; (k + 1) and A,
(k + 1) at the cross-section k + 1 of each chord (i = 1,
2) and parameters &; (k), v; (k), T'; (k) and A, (k) at the
cross-sections k of both the chords can be derived from
the expressions Equations (14)—(20). These relations
may be represented in a matrix form

V(k+1) = [BV(K) (22)

where elements of the matrix [B] are functions of the
chord compression parameters Q; and Q,. These
recurrence relations represent the eighth-order system
of homogeneous difference equations. Such recurrence
relations were first derived for a column with a
crosswise lattice (Razdolsky 2005, 2008). The form of
these relations for such column remains unchanged
throughout a column length. For a column with a
serpentine lattice, the form of recurrence relations
Equation (22) varies along its length at regular 2d
intervals because the cross-section k of any one of the
chords is either the joint cross-section or the off-joint
(Figure 1). Four possible forms of recurrence relations
Equation (22) for a laced serpentine column are given
in the Appendix. The buckling problem consists in the
determination of the smallest axial compressive force
at which the system Equation (22) has a nontrivial
(non-zero) solution satisfying four conditions at the
initial point (initial conditions) of the column and four
boundary conditions at its endpoint. Thus, the
buckling problem is reduced to a two-point boundary
value problem for the homogeneous system of
difference equations. The complete solution of the
boundary value problem can be expressed as the linear
combination of four particular solutions V; (k), V5 (k),
V3 (k) and V4 (k) of the Cauchy problem

V(k) = A1Vi(k) + A2Va(k) + A3V3(k) + A4Va(k)
(23)

where the particular solutions satisfy the given initial
conditions. The coefficients A4, 4,, Az and 4, must be
chosen so that the complete solution satisfies the given
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a

Figure 3. Plots of relative critical force for columns with number of sub-panels n = 8, 10.
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Figure 4. Buckling mode shape of column without displacements of joints (number of sub-panels, n = 12; lattice rigidity

parameter, o > 0, relative critical force X, = 0.25).

boundary conditions at the endpoint (Roberts and
Shipman 1972). The values of four linearly independent
particular solutions (of vectors V) satisfying four given
initial conditions are calculated at the column endpoint
by a repeated use of the obtained recurrence relations.
In order to prevent the loss of linear independence of the
particular solutions during calculations, while the
current cross-section is moving away from the initial
point, a vector re-orthogonalisation must be applied
(Godunov 1961, Conte 1966). The substitution of
solution (23) in the boundary conditions at the endpoint
of the column leads to a system of four homogeneous
linear algebraic equations with respect to constants A4,

A,, Ay and A4. For a nontrivial solution of this system to
exist, the determinant of the coefficients of this system
must equal zero. The smallest non-zero value of the
axial compressive force is the Euler critical value. The
numerical technique for solving the present two-point
boundary value problem has been described more fully
in the author’s previous article (Razdolsky 2005).

4. Critical forces and buckling mode shapes of column

The serpentine lattice does not possess axial symmetry.
Therefore, the buckling mode shape is different for the
left and right chord of a serpentine column. This fact
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Figure 5. Buckling mode shapes of chords for column with small lattice rigidity (number of sub-panels n = 14, lattice rigidity

parameter o = 5, relative column critical force X, = 0.2106).
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Figure 6. Plots of relative critical force for columns with number of sub-panels n = 7, 10, 15.

can be found only by a consideration of column as
statically indeterminate system. The solving of the
buckling problem for the serpentine laced column is
illustrated by using examples with the assumption that
column chords are identical and compressed by the
same forces. The lattice braces and their inclination are
assumed to be the same. The design specifications
proceed from the analogous assumption. Because of
these assumptions, the lattice rigidity parameter takes
a constant value throughout the column length
2
o= %sin 2¢ cos ¢ (24)

where the subscript indices for distinguishing the
geometric characteristics of the chords and braces may
be omitted. Both the chords are assumed to be simply
supported at the ends. The critical force for column with
any number of sub-panels can be represented as a
function of the lattice rigidity parameter. Plots of this
function may be used in designing the steel-laced
columns. It is appropriate to express the relative critical
force through the critical force value N, corresponding
to flexural buckling of the isolated chord sub-panel

Nee  Ned?
Ny m®2EJ’

X = (25)
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Recall that each chord at the critical state is compressed
by the force N,. The column chord may contain either
entire panels only (the even number of sub-panels), or
several entire panels and one or two sub-panels. A figure
showing the loss of stability for a column with the even
number of sub-panels differs from a figure for a column
with the odd number of sub-panels.

Typical plots of the critical force for the column
with the even number of chord sub-panels (n = 8§, 10,
14) are shown in Figure 3. When parameter o > 6, the
panels of the left chord of the serpentine column lose
stability as isolated simply supported bars of length 2d

(the joint cross-sections are not displaced) (see
Figure 4). The right chord remains straight since it
has more intermediate lattice joints than the left chord
and the arrangement of joints on the chord prevents
the division of the chord into panels of length 2d
without displacements of joints. The relative critical
force is defined by the Euler formula Eq. (25) and is
equal to X, = 0.25. This phenomenon is analogous to
the Boobnov effect for a simply supported compressed
solid bar with a number of intermediate elastic supports
(Timoshenko and Gere 1961). However, in contrast to
the classical Boobnov example, such buckling mode
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Figure 7. Buckling mode shapes of chords for column with small and medium-size lattice rigidity (number of sub-panels
n = 15, lattice rigidity parameter oo = 5, relative column critical force X, = 0.2529).
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Figure 8. Buckling mode shapes of chords for column with medium-size lattice rigidity (number of sub-panels n = 15, lattice
rigidity parameter o = 5, relative column critical force X, = 0.2544).
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shape is due to internal constraints of the structure.
When the lattice rigidity parameter is less than 5.7 — 6.0
(Figure 3), the critical force increases with increase of
this parameter and the loss of column stability is

accompanied by displacements of the intermediate
lattice joints. The buckling mode shapes of both the
column chords with number of sub-panels n = 14 at
the rigidity parameter o = 5 are shown in Figure 5. The
relative critical force of the column is X, = 0.2106.

Table 1. Sub-panel geometric parameters of column The buckling deflections of both the chords are nearly
samples. equal in magnitude and directed on the same side.
A (cm?) 7 (em®) d (cm) 6 ) : In the case of aniodd number' of sub-panels (the
column chords contain several entire panels and sub-
100 1040 100 45 0.00415 panel), it is impossible to generate a deflection mode
118 1360 110 45 0.00380 ;
shape of the chord from those of simply supported
138 1730 120 45 0.00348 ..
bars of length 2d, and the critical force of the column
0,35 ‘ ; : ]
3 ! Eﬁgesser's scﬂeme, Y= 0.00:348
0,3 T D i e + s - T
| | l | Engesser's
3 | : 3 '\schem]e, y=0.0038
L a5 -
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02— N S Y ?,Q-??‘!!? ,,,,,,,
o | 1
0,15 - oo T T S T T dessamsoad
T T e
(1 i U AR DU S S— —
0 : . ; : : :
1 2 3 4 5 6 7 8
o

Figure 9. Comparison of critical forces for column as a statically indeterminate structure and Engesser’s model of equivalent

solid column, number of sub-panels n = 10.
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Comparison of critical forces for column as a statically indeterminate structure and Engesser’s model of equivalent
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Figure 11. Comparison of critical forces for column as a statically indeterminate structure and Engesser’s model of equivalent

solid column, number of sub-panels n = 20.
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Figure 12. Comparison of critical forces for column as a statically indeterminate structure and Engesser’s model of equivalent

solid column, number of sub-panels n = 25.

can exceed the critical force of the isolated simply
supported bar of a length 2d. The plots of the relative
critical force for columns with the number of sub-
panels n = 7, 10, 15 are shown in Figure 6. The curve
of the critical force for column with n = 15 is little
more than the critical force of the isolated simply
supported chord panel of length 2d, when the lattice
rigidity parameter is more than a = 4.8. However, the
critical force for the column with n» = 7 can more
significantly exceed this force value and reaches
X = 0.2715 when the lattice rigidity parameter

o = 50. The buckling mode shapes of both column
chords with number of sub-panels n = 15 for the
columns with small and medium-size lattice rigidity
are shown in Figures 7 and 8. In the case of the weak
lattice (¢ =35, X, = 0.2529), the buckling mode
shapes of both chords have a tendency to deflection
in the same side (Figure 7). A picture of the column
loss stability which is close to the Boobnov effect
occurs when the lattice rigidity increases: intermediate
joint cross-sections of both chords are not displaced
except for those closest to the chord ends. A typical
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example of such buckling is shown in Figure 8 for
column with o = 15; the relative critical force is
X = 0.2544.

We correlate the critical forces calculated for
the column as a statically indeterminate structure
with the critical forces corresponding to Engesser’s
model. A relative value of the Engesser critical
force acting upon the chord of column is described
by the formula (Timoshenko and Gere 1961,
Section 2.18)

NI, n 17/, ML -
D i S R (ROl
No 2n2J 2n2sin @pcos 2¢p Fd? I

where 7 = 2J + 0.54 (d/tg ¢)* is a moment of inertia
of the whole column cross-section, A4 is an area of the
chord cross-section, and 7 is a non-dimensional
geometric parameter of column sub-panels,

<)] o

We shall carry out the comparison of the critical forces
for three values of parameter y that correspond to
column samples generated by the chords in the form of
rolled steel I-beams. The parameters of these columns
are represented in Table 1. The plots of the critical
forces for the columns with the number of sub-panels
n =10, 15, 20 and 25 are shown in Figures 9-12.
Analysis of these plots shows that the loss of stability
of column as a statically indeterminate structure
precedes the loss of stability of Engesser’s model with
the exception of the small-sized region of small values
of the rigidity parameter . Over the most part of a
region of the lattice rigidity parameter, Engesser’s
approach gives a physically inadmissible values of the
critical force which significantly exceed the critical
force of the isolated chord panel being considered as a
simply supported bar.

5. Conclusions

In contrast to the technique accepted in the design
specifications now in force, the flexural buckling
problem of a laced column with a serpentine lattice
is formulated as a stability problem of a statically
indeterminate structure. The problem is reduced to a
two-point boundary value problem for a system of
recurrence dependences relating the deformation
parameters of column cross-sections passing through
the lattice joints. The critical force for column with
any degree of static indeterminacy is determined as

the smallest eigenvalue of the system of linear
algebraic equations. In the general case, the buckling
mode shapes for column as a statically indeterminate
structure is non-sinusoidal, irregular and contain
points of inflection. This fact disproves a concept
that the stability problem of the laced column can be
reduced to the analogous problem for a continuous
solid column. The buckling mode shapes of the
column chords depend on the number and location
of intermediate lattice joints on the chord and the
lattice rigidity of the column. The column chords may
contain either the entire panels only, or entire panels
and sub-panels. A picture of the loss of stability for a
column with the even number of sub-panels differs
from a picture for a column with the odd number of
sub-panels. The column can lose stability so that
panels of one of the chords are deflected as isolated
simply supported bars while the other chord remains
straight. This phenomenon is analogous to the
Boobnov effect for a simply supported compressed
solid bar with a number of intermediate elastic
supports. However, in contrast to the classical
Boobnov example, such buckling mode shape is due
to internal constraints of the structure and is possible
when the lattice rigidity of the column exceeds a
specific limit. For columns with the identical chords,
the critical force is a function of the number of sub-
panels and the special lattice rigidity parameter. Euler
critical forces for columns as statically indeterminate
structures are compared with the critical forces
following from Engesser’s model of the equivalent
solid column. The loss of stability of column as a
statically indeterminate structure precedes the loss of
stability of Engesser’s model with the exception of a
small-sized region of small values of the Ilattice
rigidity parameter. The obtained relationships be-
tween the critical force and the lattice rigidity
parameter for columns with a varied number of
sub-panels can be validly applied in designing steel-
laced columns.
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Appendix. System of recurrence relations
(Equation (22)) between deflections/forces at bound
cross-sections of chord sub-panels of column

(a) Relations for even cross-sections (k = 0, 2, 4 ...) of the
left column chord:
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(b) Relations for odd cross sections (k = 1, 3, 5 ...) of the
left column chord:
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(c) Relations for even cross sections (k = 0, 2, 4 ...) of the
right column chord:
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(d) Relations for odd cross sections (k = 1, 3, 5 ...) of the I (k+1)
right column chord: sinQ,
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