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We investigate the pricing of traits in the U.S. corn seed market under imperfect competition. In a
multiproduct context, we examine how substitution/complementarity relationships among products
can affect pricing. This is used to motivate generalizations of the Herfindahl-Hirschman index captur-
ing cross-market effects of imperfect competition on pricing. The model is applied to pricing of U.S.
conventional and biotech seeds from 2000 to 2007. We reject the standard component pricing in biotech
traits in favor of subadditive bundle pricing. The econometric estimates show how changes in market
structure (as measured by both own- and cross-Herfindahl indexes) affect U.S. corn seed prices.
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In the past 15 years, biotechnology has had
a major impact on U.S. agriculture. Most
notable has been the commercial develop-
ment of genetically modified (GM) seeds
for corn, cotton, and soybeans. GM seeds
have contributed to agricultural productivity
growth and exhibited rapid adoption among
U.S. farmers (Fernandez-Cornejo 2004). GM
traits involve patented technologies that offer
specific on-board services to the plant, such
as insect resistance and herbicide tolerance.
The research and development (R&D) of
seeds combining germplasms with GM traits
has spawned increased product differentiation.
GM seeds may carry either a single trait or
combinations of several traits (often called
stacked seed), sometimes patented by different
biotech firms. GM seeds marketed to farmers
are typically priced higher than conventional
seeds, are often associated with modifications
in farm production practices and carry legal
restrictions related to the use or resale of
patented seeds to others.

The structure of the seed markets involving
GM traits has changed significantly over the
last two decades (Fernandez-Cornejo 2004).
While over 300 seed firms remain in the corn
hybrid market, the four firm concentration
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ratio (CR4) in this market has risen above
70% since 2005.1 GM corn accounted for about
80% of the total U.S. corn acreage in 2007.
Of the GM corn acres planted in 2007, 56%
involved seeds with two or more stacked traits.2
Similar trends are present in cotton and soy-
beans. After a flurry of horizontal and vertical
mergers in the 1990s, the corn seed industry
is now dominated by six large biotech firms
(Fernandez-Cornejo 2004),3 four of which own
subsidiary corn seed companies. According to
Graff, Rausser, and Small (2003), these merg-
ers have been motivated in part by the com-
plementarities of assets within and between
the agricultural biotechnology and seed indus-
tries. Such asset complementarities indicate
that trait bundling may be associated with cost
reductions obtained from capturing economies
of scope in the production of genetic traits.
But bundling can also be part of a product
differentiation strategy and price discrimina-
tion scheme intended to extract rent from
farmers. If so, increased market concentration
can raise concerns about adverse effects of

1 The CR4 indexes (and the acreage statistics) are calculated
from the survey data discussed below.

2 Single-trait GM corn seeds were first commercialized in 1996.
Two years later the double-stacked corn seed (i.e., the bundling
of two traits) was introduced, followed by the introduction of the
triple-stacked system, and then the quadruple-stacked system in
2006.

3 They are: Monsanto, Syngenta, Dow AgroSciences, DuPont,
Bayer CropScience, and BASF.
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imperfectly competitive pricing and the strate-
gic use of bundling (Fulton and Giannakas
2001; Fernandez-Cornejo 2004). These issues
suggest a need to investigate empirically the
economics of pricing of hybrid corn seeds.

The objective of the present paper is to
evaluate the pricing of conventional and GM
hybrid corn seeds under imperfect compe-
tition and product differentiation. We begin
by developing a pricing model of differ-
entiated products under a quantity-setting
game. In a multiproduct context, we exam-
ine the linkages between pricing and substi-
tution/complementarity relationships among
products with different bundled charac-
teristics. A multiproduct generalization of
the Herfindahl-Hirschman index (hereafter
GHHI) is then motivated, which captures
cross-market effects of imperfect competi-
tion on bundle pricing. The GHHIs are then
included in an econometric analysis of bundle
pricing in the U.S. hybrid corn seed industry. To
our knowledge, the present analysis is the first
econometric investigation using GHHI to esti-
mate the linkages between imperfect competi-
tion and multiproduct pricing. The model also
allows for a test of standard component pric-
ing for seeds with stacked GM traits. Applied
to farm survey data, the econometric estimates
provide useful information on the role of trait
bundling and market structure in the pricing of
U.S. hybrid corn seeds.

The paper is organized as follows. The model
section presents a conceptual framework of
multiproduct pricing under imperfect compe-
tition. We then provide an overview of the U.S.
corn seed market, followed by an econometric
model of seed pricing,where the GHHIs reflect
the exercise of market power. The estima-
tion method and econometric results are then
presented. Finally, we discuss the empirical
findings and their implications.

The Model

Consider a market involving a set N = {1, . . . ,
N} of N firms producing a set T = {1, . . .,
T} of T products. Denote by yn ≡ (yn

1, . . . , yn
m,

. . . , yn
T ) ∈ �T+ the vector of output quantities

produced by the nth firm, yn
m being the mth

output quantity produced by the nth firm,
m ∈ T, n ∈ N. The price-dependent demand for
the mth product is pm(

∑
n∈N yn). The profit of

the nth firm is πn = ∑
m∈T[pm(

∑
n∈N yn)yn

m] −
Cn(yn),where Cn(yn)denotes the nth firm’s cost

of producing yn. Assuming a Cournot game
and under differentiability, the nth firm’s profit
maximizing decision yn must satisfy πn ≥ 0 and
the Kuhn-Tucker conditions:

pm +
∑
k∈T

∂pk

∂yn
m

yn
k − ∂Cn

∂yn
m

≤ 0(1a)

yn
m ≥ 0(1b) (
pm +

∑
k∈T

∂pk

∂yn
m

yn
k − ∂Cn

∂yn
m

)
yn

m = 0.(1c)

Equation (1c) is the complementary slackness
condition. It applies whether the mth product
is produced by the nth firm (yn

m > 0) or not
(yn

m = 0). Equation (1c) is important for our
analysis: it remains valid irrespective of the
firm entry/exit decision in the industry. And
equation (1c) holds no matter how many of the
T products the firm chooses to sell.

Below, we consider the case of linear
demands, pk = αk + ∑

m∈T(αkm
∑

n∈N yn
m), with

∂pk
∂yn

m
= αkm and αmm < 0, k, m ∈ T. We also

assume that the cost function takes the form
Cn(yn) = Fn(Sn) + ∑

m∈T cmyn
m, where Sn = {j ∈

T : yn
j > 0} is the set of products produced at

positive levels by the nth firm. Here, Fn(Sn) ≥ 0
denotes fixed cost that satisfies Fn(Ø) = 0. Such
fixed cost may include R&D expenditure, dis-
tribution channel costs, federal registration
fees, and other relevant marketing costs. And
the term cm denotes constant marginal cost
of producing the mth output. Note that the
presence of fixed cost (where Fn(Sn) > 0 for
Sn �= Ø) implies increasing returns to scale.
With positive fixed cost, marginal cost pric-
ing would imply negative profit (πn < 0) for
any yn �= 0, corresponding to prices not high
enough to cover the fixed cost Fn(Sn) > 0.
Therefore, any sustainable equilibrium must
be associated with departures from marginal
cost pricing. Fixed cost can also reflect the
presence of economies of scope, which would
occur when Fn(Sn

a) + Fn(Sn
b) > Fn(Sn

a ∪ Sn
b) for

some Sn
a , Sn

b ⊂ T, i.e., when the joint produc-
tion of outputs in (Sn

a ∪ Sn
b) reduces fixed cost

(Baumol,Panzar,andWillig 1982,p. 75).A rele-
vant example is R&D investment as a fixed cost
contributing to the joint production of outputs
in (Sn

a ∪ Sn
b). Indeed, because of synergies in

R&D across biotech traits, a biotech firm could
reduce its aggregate fixed R&D investment by
working on the joint development of several
traits (compared with traits being produced by
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specialized firms). In the case of joint devel-
opment of traits, scope economies could come
from cost savings obtained from sharing know-
ledge and laboratory equipment and reducing
management cost of the research team. Alter-
natively, diseconomies of scope could develop
in situations where managing multi-output
processes increase fixed cost. Examples include
increased setup costs and excessive administra-
tive burdens.

Our analysis exploits the information
presented in equation (1c).4 Let
Ym = ∑

n∈N yn
m > 0 denote the aggregate out-

put of the mth product. Define sn
m = yn

m
Ym

∈ [0, 1]
as the market share of the nth firm for the
mth product. Similarly, let sn

k = yn
k

Yk
∈ [0, 1] be

the market share of the nth firm for the kth
product, with Yk = ∑

n∈N yn
k > 0 denoting the

aggregate output of the kth product. Dividing
equation (1c) by Ym and summing across all
n ∈ N yields

(2) pm = cm −
∑
k∈T

(
αkm

∑
n∈N

sn
ksn

mYk

)

where cm is the marginal cost of the mth out-
put, and αkm = ∂pk

∂yn
m

is the slope of the demand
curve measuring the marginal impact of the
mth quantity demanded on the kth price. Note
that equation (2) applies for any arbitrary num-
ber of products in the product space T. It
includes own-market effects when k = m, and
it captures pairwise cross-market effects when
m �= k.

Equation (2) can be alternatively written as

(3) pm = cm −
∑
k∈T

αkmHkmYk

whereHkm ≡ ∑
n∈N sn

ksn
m.

Equation (3) is a price-dependent supply
function for the mth product. It is a structural
equation in the sense that both price pm and the
market shares in the Hkm values are endoge-
nous (as they are both influenced by firms’

4 Note that under Cournot behavior, equation (3) is a neces-
sary but not sufficient condition for profit maximization by the nth
firm. For example, equation (3) does not include the role of fixed
cost Fn(Sn), which affects the nonnegative profit condition πn ≥ 0.
To the extent that fixed cost can generate economies of scope (as
discussed above), it means that equation (3) cannot reveal direct
information on economies of scope. However, indirect information
about economies of scope can still be obtained, as scope benefits
would affect the observed prices and market share of each firm
(through the profit condition πn ≥ 0).

strategies). Thus, equation (3) provides use-
ful linkages between price and market struc-
ture. With cm being marginal cost, equation (3)
shows that any departure from marginal cost
pricing can be measured as

(4) Mm = −
∑
k∈T

αkmHkmYk.

The Lerner index is defined as Lm = pm−cm
pm

. It
measures the proportion by which the mth out-
put price exceeds marginal cost. It is zero under
marginal cost pricing, but positive when price
exceeds marginal cost.5 The Lerner index pro-
vides a simple characterization of the strength
of imperfect competition (where the firm has
market power and its decisions affect market
prices). From equations (3) and (4), the Lerner
index can be written as Lm = Mm

pm
= Mm

cm+Mm
.

Thus Mm in equation (4) gives a measure-
ment of price enhancement beyond marginal
cost. Equation (4) also provides useful infor-
mation on the structural determinants of Mm.
Indeed, while Hkm ∈ [0, 1], note that Hkm → 0
under perfect competition (where the num-
ber of active firms is large) and Hkm = 1 under
monopoly (where there is a single active firm
operating across all markets). In other words,
the term Mm in equation (4) captures the
effects of imperfect competition and the exer-
cise of market power on prices.

When k = m, note that Hmm is the traditional
Herfindahl-Hirschman index (HHI) provid-
ing a measure of own-market concentration.
The HHI is commonly used in the analysis of
the exercise of market power (e.g., Whinston
2008). Given αmm < 0, equation (3) indicates
that an increase in the HHI Hmm (simulating
an increase in market power) is associated with
an increase in the Lerner index Lm and in price
pm. As a rule of thumb, regulatory agencies
have considered that Hmm > 0.1 corresponds
to concentrated markets where the exercise of
market power can potentially raise competitive
concerns (e.g., Whinston 2008).6

Equation (3) extends the HHI to a multi-
product context. It defines Hkm as a GHHI.
When k �= m, it shows that a rise in the “cross-
market” GHHI Hkm would be associated with

5 As pointed out by an anonymous reviewer, the Lerner index
captures information about only the difference between price and
marginal cost. It therefore neglects information about fixed cost
and its effect on firm profit.

6 Market shares are often expressed in percentage terms in
the calculation of the Herfindahl-Hirschman index. Then, the rule
becomes Hmm > 1000 (Whinston 2008).
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an increase (a decrease) in the Lerner index
Lm and in the price pm if αkm < 0 (> 0). This
shows how the signs and magnitudes of cross-
demand effects αkm = ∂pk

∂yn
m

affect the nature
and magnitude of departure from marginal
cost pricing. Following Hicks (1939), note that
αkm = ∂pk

∂yn
m

< 0 (>0) when products k and m are
substitutes (complements) on the demand side,
corresponding to situations where increasing
yn

m tends to decrease (increase) the marginal
value of yn

k. It follows that the terms {Hkm : k �=
m} in equations (3) and (4) capture the role of
substitution or complementarity among prod-
ucts (through the terms αkm) and the effects
of cross-market concentration on the Lerner
index and prices. Indeed, a rise in Hkm would
be associated with an increase (a decrease) in
the Lerner index Lm and in the price pm when
yk and ym are substitutes (complements).

Previous research has pointed out the com-
plex linkages between bundling strategies and
the exercise of market power in bundling (e.g.,
Adams and Yellen 1976; McAfee, McMillan,
and Whinston 1989; Venkatesh and Kamakura
2003; Fang and Norman 2006). Equation
(3) captures the essence of bundle pricing
under imperfect competition in a multiproduct
framework. On the supply side, to be sustain-
able,prices given in equation (3) must generate
nonnegative profit for each firm, πn ≥ 0. As
noted above, fixed cost may imply economies
of scope when Fn(Sn

a) + Fn(Sn
b) > Fn(Sn

a ∪ Sn
b).

It means that a firm can lower its (fixed) cost by
selling multiple products, which may allow it to
charge lower prices without making losses. In
this case,economies of scope may contribute to
discount bundle pricing. On the demand side,
equation (3) shows how the HHI and GHHIs
capture the effects of market power on bun-
dle pricing. In particular, for m �= k, the GHHIs
capture the effects of complementarity or sub-
stitutability across products. Equation (3) will
be used below in our empirical investigation of
pricing in the U.S. hybrid corn seed market.

The U.S. Corn Seed Market

Our analysis relies on a large dataset providing
detailed information on the U.S. corn seed mar-
ket. The data were collected by dmrkynetec
(hereafter dmrk)7 using computer assisted

7 The firm dmrkynetec changed its name to GfK Kynetec in May
2009, web address: www.gfk.com. The seed data set is one of their
products, called TraitTrak.

telephone interviews. The dmrk data come
from a stratified sample of U.S. corn farmers
surveyed annually from 2000 to 2007.8 The sur-
veys provide farm-level information on corn
seed purchases, corn acreage, seed types, and
seed prices. About 40% to 50% of the farms
surveyed each year remain in the sample for
the next year. The dmrk data contain 168,862
transactions from 279 USDA crop-reporting
districts (CRDs). A total of 38,617 farms were
surveyed during 2000–2007, with each farm
purchasing on average four to five different
corn seed types each year. Our analysis consid-
ers only transactions in CRDs in the Midwest
with more than ten farms sampled each year.
In total, our data contain 139,410 observations
from 80 CRDs in 12 states.9

There are two major groups of genes/traits
in GM corn seeds: insecticide resistance and
herbicide tolerance. The insect resistance traits
focus on controlling damages caused by the
European corn borer (ECB), and rootworms
(RW).10 The herbicide tolerance technology
provides farmers with on-board early plant
protection from applying formula-specific (i.e.,
branded) herbicides. Insect resistance reduces
yield damages caused by insects and reduces
or eliminates pesticide applications. Herbi-
cide tolerance helps reduce yield reductions
from competing plants (weeds) and allows for
greater flexibility in making spring planting
decisions. Figure 1 shows the evolution of corn
acreage shares reflecting adoption rates of con-
ventional and GM hybrid corn seed in the
United States from 2000 to 2007 using the dmrk
data. The acreage share of conventional seeds
decreased rapidly:from 67.5% in 2000 to 20.6%
in 2007. Table 1 presents the average price of
different hybrid corn seeds ($ per bag) in our
sample. The presence of a biotech trait tends
to add value to the conventional germplasm,
and multiple trait-stacking or bundling is typi-
cally worth more than single-trait seeds. Note
that,being at the national level,the information
presented in figure 1 and table 1 masks impor-
tant spatial market differences. For example,
in spite of a rapid adoption of biotech seeds,
the dmrk data show that conventional seeds

8 The survey is stratified to oversample large corn producers.The
sampling weights are constructed using farm census data.

9 They are: Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan,
Minnesota, Missouri, Nebraska, Ohio, South Dakota, and
Wisconsin.

10 Yield loss due to ECB or RW has been estimated for each to
average about 5% with wide variability over time and space (Hyde
et al. 1999; Payne, Fernandez-Cornejo, and Daberkow 2003).

 at U
niversity of C

alifornia, San Francisco on D
ecem

ber 15, 2014
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/


1328 October 2010 Amer. J. Agr. Econ.

0%

10%

20%

30%

40%

50%

60%

70%

80%

2000 2001 2002 2003 2004 2005 2006 2007

Year

Conv share Single share Double Share Triple share Quad share

Figure 1. Percentage of U.S. acreage planted in conventional and GM corn seed, 2000–2007

Table 1. Average Nominal Price for Different Seeds ($ per bag), 2000–2007

Year Conv. ECB Single RW Single HT Single Double Triple Quadruple

2000 79.37 100.24 n/a 87.34 95.21 100.95 n/a
2001 80.73 103.77 n/a 89.85 100.43 105.29 n/a
2002 81.81 103.91 n/a 89.08 103.19 94.64 n/a
2003 83.79 104.93 114.88 94.73 108.78 82.10 n/a
2004 86.42 108.61 120.49 98.88 113.68 112.21 n/a
2005 86.96 104.46 114.52 101.50 114.49 123.78 n/a
2006 91.36 109.69 116.67 109.93 123.03 139.21 131.29
2007 93.53 111.36 121.07 114.67 124.71 133.02 140.03
Total 84.29 105.37 117.33 101.51 118.25 133.47 139.60

still dominate in some local markets. This indi-
cates the presence of spatial heterogeneity in
the U.S. corn seed market. As discussed below,
such heterogeneity also applies to seed prices.

Econometric Specification

Our analysis of corn seed prices builds on
equation (3), which, as derived, is a structural
equation reflecting the determinants of pricing
in a multiproduct quantity-setting game.11 As
discussed in the model section, cost can affect
bundle pricing. Also, the effects of imperfect
competition on price were shown to depend
on the nature of substitution/complementarity
across traits. Below, we specify a modified ver-
sion of equation (3) that reflects the effects of

11 The use of a quantity-setting assumption is motivated in two
ways. First, due to time lags in the production of seeds, the quan-
tity of each seed type is determined in the previous growing year:
seed firms contract with farmers to produce conventional and GM
hybrids. Second, price games under a capacity constraint map to
quantity-setting outcomes (Kreps and Scheinkman 1983).

both bundling and market structure on corn
seed prices.

Consider the case of seeds exhibiting differ-
ent genetic characteristics. Partition the set of
seeds into mutually exclusive types. Let Ki ∈
{0, 1} be a dummy variable for a seed of the
ith characteristics, i = 1, . . . , J. In our analy-
sis, we consider J = 5. Conventional seeds are
denoted by K1 = 1, while {K2, . . . , K5} corre-
spond to the GM traits in corn seeds. The
GM seeds include two insect resistance traits,
to European corn borer ECB (K2 = 1) and
to root worm RW (K3 = 1); and two herbi-
cide tolerance traits, HT1 (K4 = 1) and HT2
(K5 = 1).12 Single-trait GM seeds include only
one GM trait. But bundled/stacked GM seeds
include more than one GM trait. We let
Ki = 1 if a GM seed includes the ith GM trait
(either individually or stacked),and Ki = 0 oth-
erwise. In the absence of bundling/stacking,

12 In our data, we observe that farmers purchase seeds inserted
with both herbicide tolerance traits, implying that farmers see HT1
and HT2 as being differentiated.
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K satisfies
∑J

i=1 Ki = 1. However, in the pres-
ence of stacking, biotech seeds include the
genetic traits of more than one type, imply-
ing that

∑J
i=1 Ki ≥ 1. Therefore, evaluating the

effects of the genetic characteristics on seed
prices requires a flexible specification that can
capture bundling/stacking effects.

We start with a standard model in which each
purchase observation is at the farm level and
the price of a seed varies with its characteristics
(e.g., following Rosen 1974). The price p rep-
resents the net seed price paid by farmers (in $
per bag).13 Consider the hedonic equation rep-
resenting the determinants of the price p for a
seed of characteristics {K1, K2, . . . , K5}:

p = β +
5∑

i=1

δiKi +
5∑

j=i+1

5∑
i=2

δijKij(5a)

+
5∑

z=j+1

5∑
j=i+1

5∑
i=2

δijzKijz +
5∑

r=z+1

5∑
z=j+1

×
5∑

j=i+1

5∑
i=2

δijzrKijzr + φX + ε

where X is a vector of other relevant covari-
ates, and ε is an error term with mean zero
and constant variance. In equation (5a), Kij is
a dummy variable for double-stacking the ith
and jth GM traits. Similarly, Kijz and Kijzr are
dummy variables representing triple-stacking
and quadruple-stacking, respectively.14

For conventional seeds and single-trait seeds,
the dummy variables Kij, Kijz, and Kijzr are all
zero. This implies that the coefficients δij, δijz,
and δijzr in equation (5a) capture the supply-
side effects of bundling on seed price. The
dmrk data reveal that trait bundling is common,
which allows us to test for its price impact. One
important special case occurs when δij = δijz =
δijzr = 0, which corresponds to standard com-
ponent pricing. Here, the price of seed is just
the sum of the value of its genetic components

13 We also estimated a log specification of the price equation.The
econometric results were qualitatively similar to the ones reported
below.

14 Note that K in equation (5a) satisfies
∑

Ki − ∑ ∑
Kij −

2
∑ ∑ ∑

Kijz − 3
∑ ∑ ∑ ∑

Kijzr = 1, because the trait dummy
variable K is double-counted once in the double-stacking dum-
mies, twice in the triple-stacking dummies, and three times in
the quadruple-stacking dummies. This equality implies that these
dummy variables are perfectly collinear with the intercept. To deal
with this issue below,we set δ1 = 0 in equation (5a),meaning that the
intercept reflects the price of conventional seeds and that the other
δ parameters measure price differences relative to conventional
seeds.

(as captured by
∑

i δiKi, with δi measuring the
unit value of the ith genetic material). When
the parameters δij, δijz, and δijzr are not all
zero, equation (5a) allows for nonlinear pricing
associated with bundled goods under stacking.

The parameters δij, δijz, and δijzr can be either
negative or positive. When negative, these
parameters would reflect sub-additive bundle
pricing. The price of the bundle would then
be “discounted” compared to component pric-
ing. This could be associated with economies
of scope on the production side, if the joint
production of bundled goods leads to a cost
reduction that gets translated into lower bun-
dle price. Alternatively, positive parameters
would correspond to super-additive bundle
pricing.

Next, we introduce market structure effects
in equation (5a) by specifying

(5b) δi = d0i + diiHii

where,for each CRD,Hii ≡ ∑
n∈N sn

i sn
i is the tra-

ditional HHI, in which sn
i represents the market

share of the nth firm in the market for the ith
characteristics. We construct the market share
using trait acreage. Thus in the GM trait mar-
ket, only a few biotech firms owning the patent
of each trait are involved. The market share of
each company’s trait is constructed as the firm-
specific trait acreage divided by the total trait
acreage in the local market. In the conventional
seed market, many more seed companies are
involved, and the market share is constructed
as the firm-specific conventional seed acreage
divided by total conventional seed acreage in
the local market.

We further specify

β = β0 +
5∑

j=i+1

5∑
i=1

βijHijKi(5c)

+
5∑

j=i+1

5∑
i=1

βjiHjiKj

where Hij ≡ Hji ≡ ∑
n∈N sn

i sn
j is the cross-

market GHHI that measures concentration
for firms operating in the market for both ith
and jth characteristics. With this specification,
the coefficients on the GHHI terms capture
the net effects associated with efficiency gains,
market power, and other possible strategic
considerations across different product types.
Since the HHI and the GHHIs are zero under
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competitive conditions, it follows from equa-
tions (4) and (5a)–(5c) that the market power
component of the price of seed with the ith
characteristics is given by

(6) Mi = diiHiiKi +
5∑

j=i+1

5∑
i=1

βijHijKi.

In a way similar to equation (4), equation (6)
provides a representation of the linkages
among market structure, imperfect competi-
tion,and pricing.As noted in the model section,
the term Mi in equation (6) measures the dif-
ference between price and marginal cost. It can
be used to obtain the associated Lerner index
Li = Mi

pi
.

Our model specification allows us to esti-
mate the pricing of each seed type along
with stacking effects. To illustrate, from equa-
tions (5a)–(5c), for a double-stacked seed with
ECB and HT1 (K2 = 1, K4 = 1, and K24 = 1),
the price equation is

p24 = β0 + δ02 + δ04 + δ24 + d22H22(7)

+ d44H44 + β21H21 +
5∑

j=3

β2jH2j

+
3∑

i=1

β4iH4i + β45H45 + φX + ε.

Equation (7) shows how traits, stacking, and
market concentration are associated with pric-
ing. Specifically, the δ02 and δ04 terms measure
the component value of each respective trait,
and δ24 measures the marginal impact of stack-
ing ECB and HT1 in a single GM seed. The
dii terms capture own-market concentration
effects (measured by HHI), and β captures
cross-market concentration effects (measured
by the GHHIs).

The relevant covariates in X include a time
trend, each farm’s total corn acreage, binary
terms that control for the source of each trans-
action, and a set of location variables. The time
trend is included to capture advances in hybrid
and genetic technology and other time-related
factors such as structural changes taking place
during the study years. Farm acreage captures
possible price impacts associated with farm size
(including productivity differences and/or vol-
ume discounts that could vary with farm size).
Although the surveys defined 16 possible pur-
chasing sources, over 80% of the transactions

were classified into three categories: “Farmer
who is a dealer or agent”(33.1%);“Direct from
seed company or their representatives” (29%);
and “Myself, I am a dealer for that company”
(16.1%). The source of purchase can capture
possible price differences linked to alternative
marketing strategies.

Spatial effects enter our model via state
dummy variables along with linear and
quadratic terms for the longitude and latitude
of the county. Since the inception of the hybrid
corn seed technology in the 1930s, new hybrids
have been developed and marketed to farms on
a regional basis (Griliches 1960). The advent of
GM seeds has not changed the need for seeds
to perform well under specific growing condi-
tions that can vary across regions. Our location
variables are designed to control for possible
pricing differences associated with spatial het-
erogeneity in farming systems (e.g., differing
crop rotations) and agro-climatic conditions
(soil quality, length of the growing season,
rainfall patterns, etc.).

The market share of biotech seeds has
increased significantly during the years of our
study (see figure 1). In many cases, we found
“entry” and “exit” of traited seeds in some
local markets. In order to investigate whether
entry/exit may affect seed prices beyond the H
effects,we also introduce entry/exit variables in
the specification in equation (5a). In our data,
we observe local exits in the conventional seed
(K1) markets. We also observe local entry in
the HT1 trait (K4) markets, the ECB trait (K2)
markets, and the RW trait (K3) markets. To
capture entry/exit effects on seed price, the fol-
lowing binary terms are included: Post-exit1 =
1 for the K1 market; Pre-entry2 = 1 for the K2
market; Pre-entry3 = 1 for the K3 market; and
Pre-entry4 = 1 for the K4 market.15

Estimation

Table 2 reports summary statistics of key vari-
ables used in the analysis. Each CRD is pre-
sumed to represent the relevant market area
for each transaction;thus,all H terms are calcu-
lated at that level. We report the sample mean
of the Hii and Hij across all CRDs for each
seed type.While the average of HHI shows that
the conventional seed markets appear concen-
trated (with H11 = 0.242, which is above the

15 Note that we do not construct an event dummy for K5, as we
do not observe any pattern of entry or exit for this trait.
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Table 2. Summary Statistics

Number of Standard
Variable Observations Mean Deviation Minimum Maximum

Price ($) 139410 99.61 23.61 3 230
Farm size (acre) 30273 489.48 587.87 5 15500
Longitude 30273 91.59 4.783 80.75 103.76
Latitude 30273 41.71 2.010 36.71 46.98
H11 639 0.242 0.152 0.067 1
H22 639 0.769 0.188 0.337 1
H33 313 0.907 0.150 0.430 1
H44 639 0.772 0.175 0.434 1
H12 601 0.085 0.070 0.99E-04 0.518
H13 291 0.108 0.088 1.10E-03 0.632
H14 580 0.075 0.079 9.58E-05 0.526
H23 312 0.761 0.169 0.172 1
H24 617 0.577 0.261 0.010 1
H34 311 0.785 0.198 0.056 1

Note: The data contain 139,410 observations from CRDs spanning 8 years (2000–2007). Each farm purchases multiple seeds, therefore the number of observations
for farm size is the total count of farms per year. The longitude and latitude information is based on the county level measurement for each farm. For the market
concentration measurement H values, we report the summary statistics of only those nonzeros at the CRD level; therefore, the number of observations is at
most 80 × 8 = 640.

Department of Justice’s threshold of 0.18 for
identifying “significant market power”), they
are not as concentrated as the biotech trait mar-
kets. The average HHI for the three biotech
trait markets is over 0.80.

One econometric issue in the specification
in equations (5a)–(5c) is the endogeneity of
H . Market concentrations (as measured by H)
and seed pricing are expected to be jointly
determined,as they both depend on firm strate-
gies. For example, if a major seed firm uses a
strategy focusing on increasing farmers’ adop-
tion, it may price the seed lower. The low
price may increase the firm’s market share
and result in higher H (for both HHI and
GHHIs). To the extent that parts of the deter-
minants of these strategies are unobserved by
the econometrician, this would imply that H is
correlated with the error term in equation (5a).
In such situations, least-squares estimation of
equations (5a)–(5c) would yield biased and
inconsistent parameter estimates (due to endo-
geneity bias). To address this issue, we first
test for possible endogeneity of H using a C
statistic calculated as the difference of two
Sargan statistics (Hayashi 2000, p. 232). The
test is robust to violations of the conditional
homoscedasticity assumption (Hayashi 2000,
p. 232).16 In our case, the C statistic is 200.16,
showing strong statistical evidence against the
null hypothesis of exogeneity of H .

16 Under conditional homoscedasticity, the C statistic is numer-
ically equivalent to a Hausman test statistic.

To correct for endogeneity bias, equa-
tions (5a)–(5c) are estimated by an instru-
mental variable (IV) estimator. We used as
instruments the lagged values of each H and
the lagged market size for each seed type.These
lagged variables are good candidates for instru-
ments: given the time lag required to produce
seeds, they are part of the information avail-
able to firm managers at the time seed quantity
decisions are made. We investigated the statis-
tical validity of these instruments. The Hansen
overidentification test is not statistically signif-
icant, indicating that our instruments appear
to satisfy the required orthogonality condi-
tions. On that basis, equations (5a)–(5c) was
estimated by two-stage least squares (2SLS).

A second test was used to evaluate the
presence of unobserved heterogeneity across
farms. A Pagan-Hall test17 found strong evi-
dence against homoscedasticity of the error
term in equation (5a).As reported earlier,each
farm purchases on average four to five differ-
ent seeds. Some large farms actually purchase
up to thirty different hybrid seeds in a single
year. Unobserved farm-specific factors affect-
ing seed prices are expected to be similar within
a farm (although they may differ across farms).
This suggests that the variance of the error term
in equation (5a) exhibits heteroscedasticity. On
that basis, we relied on heteroscedastic-robust

17 Compared with the Breusch-Pagan test, the Pagan-Hall test
is a more general test for heteroscedasticity in an IV regression,
which remains valid in the presence of heteroscedasticity (Pagan
and Hall 1983).
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standard errors with clustering at the farm level
in estimating equations (5a)–(5c).

Additional tests of the validity of the instru-
ments were conducted. In the presence of
heteroscedastic errors, we used the measures
by Bound, Jaeger, and Baker (1995) and the
Shea (1997) partial R2 statistic to examine
the possible presence of weak instruments. The
F-statistics testing for weak instruments were
large (i.e., well above ten). Following Staiger
and Stock (1997), this means that there is no
statistical evidence that our instruments are
weak. Finally, we conducted the Kleibergen-
Paap weak instrument test (Kleibergen and
Paap 2006).18 The test statistic is 5.81. Using
the critical values presented in Stock and Yogo
(2005), this indicated that our analysis does not
suffer from weak instruments.

Empirical Results

Equations (5a)–(5c) are estimated using 2SLS,
with heteroscedastic-robust standard errors
under clustering at the farm level. We first
tested whether the cross-market GHHI impact
is symmetric: H0 : βij = βji, where β terms are
the coefficients of the corresponding GHHIs.
Using a Wald test, we fail to reject the null
hypothesis for H13. On that basis, we imposed
the symmetry restriction for H13 in the analysis
presented below.

Table 3 reports the results. For purpose of
comparison, the ordinary least squares (OLS)
estimation results are also reported. The OLS
estimates of the market concentration param-
eters differ substantially from the 2SLS results.
This reflects the endogeneity of our market
concentration measures (and the associated
bias of the OLS estimation). Our discussion
below focuses on the 2SLS estimates. We
first discuss the price impacts associated with
introducing single biotech traits. This builds
toward a broader assessment of the impacts
of bundling/stacking of traits and of the role
of market power. These effects are further
investigated below.

Characteristic effects

The coefficients of the terms K2 (ECB), K3
(RW), and K5 (HT2) show statistically signif-
icant price premiums of $25.64, $46.06, and

18 Note that the Kleibergen-Paap test is a better choice com-
pared with the Cragg-Donald test for weak instruments: the former
remains valid under heteroscedasticity (while the latter does not).

$9.63 per bag, respectively, over the price of
conventional seed.The coefficient of K4 (HT1)
is negative but insignificant.

The coefficients of the terms Kij, Kijz, and
Kijzr provide useful information on the effects
of trait bundling/stacking on seed price. All
of the stacking coefficients except for K35
are negative and statistically significant. The
coefficient for K35 is positive but not statis-
tically significant. As discussed in the econo-
metric specification section,component pricing
is associated with the null hypothesis that all
stacking coefficients are zero. Using a Wald
test, the null hypothesis that the stacking coef-
ficients are all zero is strongly rejected. This
provides convincing evidence against compo-
nent pricing of biotech traits in the corn seed
market. The negative and significant stacking
effects also indicate the potential prevalence
of subadditive pricing of corn seed in their
individual components. However, an overall
evaluation of the bundling effects also requires
including the market concentration effects.
Such an evaluation is presented below.

Market concentration effects

The price effects of changes in the traditional
Herfindahl indexes for each seed type are pre-
sented in the first four rows of the “Market
concentration effects” in table 3.19 Our esti-
mates indicate that an increase in market con-
centration for conventional seeds (as measured
by H11) has a positive and statistically signifi-
cant association with the price of conventional
seeds. More specifically,a one-point increase in
H11 is associated with a $14.81 per bag increase
in the price of conventional seeds. The partial
effect of concentration in the RW trait market
(H33) and the HT1 trait market (H44) was also
positive and statistically significant:a one-point
increase in H33 (H44) is associated with a $32
($14.92) per bag increase in the price of RW
(HT1) seeds. Finally, the concentration effect
in the ECB trait market (H22) is negative but
not statistically significant.

We have argued in the model section that
the effects of cross-market concentration
Hij, i �= j, depend on the substitutabil-
ity/complementarity relationship between
traits i and j. We expect that an increase
in the cross-market concentration Hij will

19 We do not observe nonzero H15 because no firm that operates
in the HT2 market sells a conventional seed. Similar situations arise
for H25, H35, and H45. Finally, note that H55 = 1 because only one
firm operates in this trait market.
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Table 3. OLS and 2SLS Regression with Robust Standard Errors

OLS 2SLS

Robust
Dependent Var: Price ($/bag) Coefficient t-Statistic Coefficient z-Statistic

Characteristic effects, benchmark is K1: Conventional seed
K2 (ECB) 24.31∗∗∗ 46.93 25.64∗∗∗ 12.65
K3 (RW) 31.89∗∗∗ 23.82 46.06∗∗∗ 5.09
K4 (HT1) 1.93∗∗∗ 2.97 −3.78 −1.16
K5 (HT2) 6.92∗∗∗ 18.68 9.63∗∗∗ 10.28
K23 −9.49∗∗∗ −11.20 −11.20∗∗∗ −7.06
K24 −10.06∗∗∗ −30.10 −13.83∗∗∗ −13.75
K25 −3.44∗∗∗ −7.96 −5.82∗∗∗ −6.00
K34 −11.03∗∗∗ −12.74 −14.35∗∗∗ −10.13
K35 0.39 0.33 −1.27 −0.67
K45 −19.70∗∗ −2.25 −21.95∗∗∗ −2.92
K234 −24.52∗∗∗ −28.17 −30.62∗∗∗ −11.82
K235 −13.63∗∗∗ −12.26 −18.71∗∗∗ −6.47
K245 −16.51∗∗∗ −24.34 −22.92∗∗∗ −11.84
K345 −12.26∗∗∗ −6.17 −17.36∗∗ −5.98
K2345 −28.85∗∗∗ −24.78 −37.88∗∗∗ −10.05

Market concentration effects
H11 (conventional seed) 11.71∗∗∗ 15.83 14.81∗∗∗ 6.47
H22 (ECB) 1.45∗∗ 2.41 −0.57 −0.27
H33 (RW) 4.82∗∗ 2.04 32.00∗∗∗ 2.93
H44 (HT1) 11.25∗∗∗ 12.70 14.92∗∗∗ 2.91
H12 on conventional seed 28.06∗∗∗ 11.72 36.07∗∗∗ 3.10
H21 on ECB trait −7.22∗∗∗ −4.73 −7.29 −0.95
H13 on conventional seed/RW trait −1.74 −1.00 2.78 0.21
H14 on conventional seed −24.19∗∗∗ −9.93 −14.58 −1.04
H41 on HT1 trait 9.22∗∗∗ 6.49 22.42∗ 1.78
H23 on ECB trait −2.10∗∗∗ −6.14 −3.42∗∗ −2.38
H32 on RW trait 1.79 0.74 −28.87∗∗∗ −3.45
H24 on ECB trait −2.58∗∗∗ −5.10 3.00∗ 1.66
H42 on HT1 trait 6.53∗∗∗ 9.59 10.07∗∗∗ 4.17
H34 on RW trait −8.41∗∗∗ −4.54 −24.98∗∗∗ −2.98
H43 on HT1 trait 3.99∗∗∗ 9.35 7.77∗∗∗ 4.15

Other variables
Post-exit1 −4.36∗ −1.58 −2.77 −0.59
Pre-entry2 −5.50∗∗ −2.21 −4.52 −1.21
Pre-entry3 −0.30 −1.34 0.12 −0.11
Pre-entry4 −7.75∗∗∗ −3.64 −6.57∗∗ −2.02
Total farm corn acreage (1,000 acres) 0.75∗∗∗ 9.61 0.72∗∗∗ 4.68
Longitude 0.33∗∗∗ 2.90 0.37 1.49
Longitude squared −0.01 −1.52 −0.01 −1.00
Latitude 0.97∗∗∗ 5.59 1.18∗∗∗ 3.30
Latitude squared −0.11∗∗∗ −6.93 −0.13∗∗∗ −4.20
Year 2.30∗∗∗ 47.42 1.95∗∗∗ 13.95
Constant 71.01∗∗∗ 71.41 70.36∗∗∗ 29.39
Number of observations 123,861

Note: Statistical significance is noted by an asterisk (∗) at the 10% level, two asterisks (∗∗) at the 5% level, and three asterisks (∗∗∗) at the 1% level. The R2 is
0.54 for the OLS estimation. For the 2SLS estimation, the centered R2 is 0.53, and the uncentered R2 is 0.98. Results for the location and purchase source effects
are not reported here but are discussed in the text. The longitude and latitude measures are normalized by subtracting the lower bound (80 for longitude and
36 for latitude) from the true value.
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be associated with a rise (decrease) in the
price if the two components are substitutes
(complements).

Of the five GHHIs that involve conven-
tional seeds (H12, H21, H13, H14, H41), only
the coefficients on H12 (conventional mar-
ket share crossed with ECB market share)
and H41 (conventional market share crossed
with HT1 market share) are statistically sig-
nificant. The positive effect of both coeffi-
cients suggests that the ECB trait is viewed
as a substitute for the conventional seed
from the perspective of non-GM farmers and
that conventional seed is viewed as a substi-
tute for the HT1 trait for the HT1 traited
seed adopters. This is plausibly explained by
the presence of a “yield drag” associated
with adding a trait into a seed (Avise 2004,
p. 41), which would induce some substitution
in demand between GM trait and conventional
seed.

All the cross-market concentration effects
involving biotech traits are statistically signif-
icant. This is a major finding that stresses the
importance of the general market structure
in a multiproduct setting. The ECB and RW
cross-market effects (H23 and H32) are both
negative, suggesting that insect resistance traits
are complements to each other. A plausible
explanation may be that crop damages caused
by one insect infestation are larger in the pres-
ence of damages from other insects. The ECB
and HT1 effects (H24 and H42) are both pos-
itive, suggesting that the ECB and HT1 traits
are substitutes. The RW and HT1 effects (H34
and H43) are statistically significant but with
opposite sign, suggesting that the RW trait and
HT1 trait may have asymmetric effects on each
other: the HT1 trait is viewed as a complement
to the RW trait by RW traited seed adopters;
and the RW trait is viewed as a substitute for
the HT1 trait by HT1 traited seed adopters.
This suggests that the effects of insect infesta-
tion on corn yield differ significantly from those
for weed infestation.

Location effects

Corn seed prices are found to vary significantly
across states. Compared with Illinois, the price
difference is statistically significant for Iowa
($1.53), Indiana (−$1.13), Ohio (−$2.16), Wis-
consin (−$2.34), and Kentucky (−$3.22). It
appears that seed companies are able to price-
discriminate across regions, reflecting spatial
differences in farmers’ willingness-to-pay and
demand elasticities. The longitude variables

are not statistically significant. But the lati-
tude variables have significant effects on corn
seed price: the linear term is positive, while
the quadratic term is negative. Seed price rises
from south to north, reaches a peak near the
center of the Corn Belt,20 and then declines
when moving farther north. This confirms sig-
nificant differences in seed prices between the
center of the Corn Belt and fringe regions.

Other variables. Except for Pre-entry4,which
represents the entry of HT1 into specific mar-
kets, all other exit and entry dummies are sta-
tistically insignificant. The negative sign on the
Pre-entry4 variable indicates that the introduc-
tion of HT1 traited biotech seed may raise the
price for all seeds, including the conventional
ones. This result is consistent with the finding
by Shi (2009), who argues that the introduction
of biotech seed can raise the conventional seed
price. The farm size effect is statistically signif-
icant: large farms within each state pay more
for corn seed.21 The time trend effect is positive
and statistically significant, possibly capturing
the effect of inflation.

Finally, we found statistically significant
differences in pricing across seed purchase
sources. Compared with purchasing from
“Farmer who is a dealer or agent,” buying
“Direct from seed company or their represen-
tatives” cost about $4.57 less, while purchasing
from “Myself, I am a dealer for that company”
cost about $4.40 less. These results may reflect
the effect of farmers’ bargaining position, but
also possibly the presence of price discrimina-
tion across different modes of purchase.

Implications

In this section, our empirical estimates are
used to generate additional insights on bun-
dle pricing and the interactive role of market
structure within and across markets on seed
pricing. Our analysis focuses on Illinois, which
is one of the largest corn-producing states in
the United States. It has the largest number
of farms in our sample. The year 2004 is cho-
sen, as it is in the middle of our sample period
and avoids entry/exit events for traits. In each

20 For the latitude, the peak is reached at 40.54. Note that the
mean latitude of our study region is 41.71.

21 This suggests that larger farms may be relatively more pro-
ductive (compared with smaller farms) and thus may have a higher
willingness to pay for seeds. Note that this result is conditional on
a particular purchase source. Note that, as pointed by the editor,
larger farms are also more likely to be dealers (who tend to face
lower prices, as discussed below).
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Table 4. Simulated Lerner Indexes

Lerner Index Standard
(100 × L) Error t-Ratio

Conventional 5.92∗∗∗ 1.51 3.91
ECB single −2.44 2.05 −1.19
RW single −8.99 6.31 −1.43
HT1 single 20.87∗∗∗ 2.79 7.47
ECB/RW double −10.11∗∗ 5.02 −2.01
ECB/HT1 double 15.90∗∗∗ 2.89 5.50
RW/HT1 double 8.47 6.72 1.26
ECB/RW/HT1 triple 6.00 5.64 1.06

Note: Lerner indexes are calculated from prices at the mean GHHI levels compared with the case of competition (GHHI = 0). Statistical significance is noted
by an asterisk (∗) at the 10% level, two asterisks (∗∗) at the 5% level, and three asterisks (∗∗∗) at the 1% level.

of our exercises, bootstrapped standard errors
are obtained to support hypothesis testing.

Bundling

For the first simulation, we evaluated the
effects of bundling/stacking on seed prices. The
bundling literature has identified situations
where component pricing may not apply (e.g.,
when the demands for different components
are correlated, when consumers are heteroge-
neous in at least a subset of the component
markets). As discussed above, an overall eval-
uation of the bundling effects needs to com-
bine both supply-side and demand-side effects.
Our econometric results strongly reject com-
ponent pricing on the supply side while finding
some statistical evidence suggesting both com-
plementarity and substitutability in demand
(implying the possibility of observing either
subadditive or superadditive pricing). The sim-
ulation results (available upon request) suggest
that in general, traited seeds generated statis-
tically significant premiums over conventional
seeds, with strong statistical evidence of subad-
ditive pricing in bundling two, three, and four
traits. Subadditive pricing may be driven by
price discrimination associated with imperfect
competition and complementarity in demand
or the presence of scope economies in the pro-
duction of bundled/stacked seeds, or both. As
discussed above, scope economies would be
consistent with synergies in R&D investment
(treated as fixed cost) across stacked seeds.The
subadditivity of prices encourages more rapid
farm adoption of stacked seeds.

Estimated Lerner indexes

Second, we simulate the Lerner indexes
applied to the pricing of different seed
types. The Lerner index provides a simple
characterization of the strength of imperfect

competition: it is zero under marginal cost pric-
ing but positive when price exceeds marginal
cost. The market power component Mi in
equation (6) gives a measure of price enhance-
ment beyond marginal cost.And the associated
Lerner index, expressed as a percentage term,
is 100 × Mi

pi
. Evaluated at sample means for Illi-

nois in 2004, the Lerner indexes are reported
in table 4 for selected seed types.

The Lerner indexes are statistically signifi-
cant at the 5% level in four of eight cases.22

The significant Lerner indexes are positive in
three cases: conventional seed (5.92%), HT1
traited seed (20.87%), and double-stacked
seed of ECB and HT1 (15.9%); and nega-
tive in the case of double-stacked seed of
ECB and RW (−10.11%). The results pro-
vide empirical evidence that market structure
affects seed prices. The effect of market power
on price is found to be smallest in the con-
ventional seed market but large in the HT1
seed market and the ECB/HT1 bundled seed
market. While the Lerner indexes are not sta-
tistically different from zero for single trait
ECB and RW seed markets, they exhibit a neg-
ative and statistically significant price effect
in the stacked market ECB/RW. Thus, our
analysis shows empirical evidence of comple-
mentarities interacting with market structure:
an increased market concentration in these two
submarkets is associated with a price reduction
in the relevant stacked seed market.

Market structure

In our conceptual framework, we develop the
GHHIs (Hij ≡ ∑

n∈N sn
i sn

j for submarkets i and
j) as a way to link market structure with pricing

22 Cases involving the HT2 trait are dropped due to lack of
variation in the HT2 market concentration.

 at U
niversity of C

alifornia, San Francisco on D
ecem

ber 15, 2014
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/


1336 October 2010 Amer. J. Agr. Econ.

in a multiproduct framework. When market
shares of different products change, several
GHHIs also change. Thus, the assessment of
changing market structures is complex in the
presence of bundling. To evaluate such issues,
we simulated the effects of changing market
structures associated with alternative merger
scenarios. Several simulations are presented
to evaluate the potential effects of increased
market concentrations on seed prices. Each
simulation considers a hypothetical merger
leading to a monopoly for a given GM trait
market.While these are rather extreme scenar-
ios, the simulated effects can be interpreted as
upper-bound estimates of the potential impact
of market power. Three sets of (hypothetical)
mergers are simulated: (a) mergers between
biotech companies within each GM trait mar-
ket (biotech/biotech within trait); (b) mergers
between biotech companies producing differ-
ent GM traits (biotech/biotech across traits);
and (c) mergers between biotech companies
and traditional independent seed companies
(biotech/seed merger). Each merger scenario is
counterfactual and is used to illustrate how our
analysis can evaluate the price implications of
changing market structures.

The price effects of three sets of merger sce-
narios are reported in table 5. The first set
(scenarios 1–3) considers mergers of biotech
firms within the ECB market (scenario 1),
within the RW market (scenario 2), and within
the HT1 market (scenario 3). As shown in
table 5, the effect of such mergers on seed
price would not be statistically significant for
ECB and RW, but would be for HT1. Our

simulation results show that mergers of biotech
firms in the HT1 markets could induce a
price increase of up to $19.08/bag of HT1
seed.

The second set (scenarios 4–6) considers
mergers between biotech companies produc-
ing different genetic traits. This covers mergers
of biotech firms involved in ECB and RW mar-
kets (scenario 4), in ECB and HT1 markets
(scenario 5),and in RW and HT1 markets (sce-
nario 6). In each case, the simulations assume
that the merger leads to a monopoly in the cor-
responding market. The cases within scenario
4 allow the evaluation of possible efficiency
gains that might emerge from mergers. Merg-
ers across ECB and RW markets are associated
with price reductions of $5.99/bag for ECB
seeds (scenario 4a), $25.10/bag for RW seeds
(scenario 4b), and $31.09/bag for ECB/RW
stacked seeds (scenario 4c). Merging ECB and
HT1 is shown to have no impact on the ECB
trait market (scenario 5a) but would induce a
price increase of up to $22.22/bag for HT1 seed
(scenario 5b) and $22.55/bag for ECB/HT1
stacked seeds (scenario 5c). Merging RW and
HT1 could be associated with a price reduc-
tion of up to $21.34/bag for RW seed (scenario
6a) and a price increase of up to $19.91/bag for
HT1 seed (scenario 6b). However, the price
effects on RW /HT1 stacked seeds (scenario 6c)
are not statistically significant.

Finally, the third set (scenarios 7–9) con-
siders mergers involving biotech companies
and traditional independent seed compa-
nies. Again, the simulations assume that the
mergers lead to the monopolization in the

Table 5. Simulated Merger Effects

Market/Price Induced Price Standard
Sector Affected by Mergers Scenarios Affected Change ($/bag) Error t-Ratio

ECB (K2) 1 ECB (K2) −1.88 2.82 −0.67
RW (K3) 2 RW (K3) −3.37 3.21 −1.05
HT1 (K4) 3 HT1 (K4) 19.08∗∗∗ 3.74 5.10
ECB and RW (K2, K3) 4a ECB (K2) −5.99∗∗ 3.01 −1.99

4b RW (K3) −25.10∗∗∗ 9.35 −2.68
4c ECB/RW double −31.09∗∗∗ 10.45 −2.97

ECB and HT1 (K2, K4) 5a ECB (K2) 0.33 3.33 0.10
5b HT1 (K4) 22.22∗∗∗ 4.52 4.92
5c ECB/HT1 double 22.55∗∗∗ 6.20 3.64

RW and HT1 (K3, K4) 6a RW (K3) −21.34∗∗∗ 6.30 −3.39
6b HT1 (K4) 19.91∗∗∗ 3.62 5.50
6c RW /HT1 double −1.43 6.14 −0.23

Conv. and ECB (K1, K2) 7 Conventional (K1) 32.37∗∗∗ 8.93 3.62
Conv. and RW (K1, K3) 8 Conventional (K1) 7.87 10.09 0.78
Conv. and HT1 (K1, K4) 9 Conventional (K1) −5.99 10.16 −0.59

Note: Statistical significance is noted by an asterisk (∗) at the 10% level, two asterisks (∗∗) at the 5% level, and three asterisks (∗∗∗) at the 1% level.
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corresponding biotech trait market. However,
since the monopolization of seed companies
is unlikely (given many seed companies), the
mergers in scenarios 7–9 are assumed to
increase market concentrations for conven-
tional seed only to the maximum observed in
our sample. The results show that the merger
involving ECB biotech firms leads to sta-
tistically significant price increases of up to
$32.37/bag (scenario 7). The mergers involv-
ing RW biotech firms (scenario 8) and HT1
firms (scenario 9) do not generate statistically
significant price changes. Importantly, these
simulation results capture cross-market effects
that play a significant role in the evaluation of
the exercise of market power.

The simulations in table 5 illustrate the
potential usefulness of the model in studying
the effects of changing market concentrations.
For example, in a pre-merger analysis, this
would involve evaluating the HHIs and GHHIs
in all relevant markets before and after a pro-
posed merger with a quantitative assessment
of the price effects. Alternatively, the model
could be used to estimate the spin-off effects
by evaluating the anticipated effects on HHIs
and GHHIs and by simulating the associated
price changes.

Concluding Remarks

This paper has presented an analysis of bundle
pricing under imperfect competition. A multi-
product Cournot model identifies the role of
substitution/complementarity in bundle pric-
ing. It explains how oligopoly pricing manifests
itself and motivates GHHI measures of mar-
ket concentration. The model is applied to the
U.S. corn seed market and is estimated using
transaction-level data for the period 2000–
2007. The U.S. corn seed industry is highly
concentrated and involves conventionally bred
hybrid seeds and other seeds with various
combinations of patented GM traits that add
value and service to the plant. GM seeds com-
pete alongside conventional seeds in a spatially
diverse farm sector. There is considerable vari-
ation in the spatial concentration of conven-
tional seeds and seeds with various patented
genetic traits. Through the years analyzed in
this study, GM seeds were adopted quickly
among U.S. farmers and are part of a broader
wave of technological progress impacting the
agriculture sector.

The econometric investigation documents
the determinants of seed prices, including the

effects of bundling and the pricing compo-
nent associated with imperfect competition.
The research findings yield several major con-
clusions. First, we find extensive evidence of
spatial price discrimination. We observe that,
ceteris paribus, seed prices vary by state and
in a south-to-north pricing pattern that peaks
in the central part of the Corn Belt. This
would be consistent with a type of price dis-
crimination pattern that reflects the varying
productivity of land in the Corn Belt. Sec-
ond, we find strong evidence of subadditive
bundle pricing, thus rejecting standard compo-
nent pricing. This is consistent with the pres-
ence of economies of scope in seed production
and/or demand complementarities. Third, we
investigated the interactive role of market con-
centrations with complementarity/substitution
effects in the pricing of seeds. Using GHHIs,
this helps to document how traditional and
cross-market effects of imperfect competition
can contribute to higher (or lower) seed prices.
For example, our results indicate that Lerner
indexes are positive and statistically significant
for three seed types. Fourth, our simulation
of hypothetical mergers produced numerous
interesting results. It documented how com-
plementarity effects can contribute to lower
prices. It also found that mergers between
a biotech firm and a conventional seed firm
can contribute to increasing the conventional
seed price. Such a price increase may be
of concern to policymakers if it contributes
to raising the price of the entire corn seed
complex.

Our analysis could be extended in several
directions. First, it would be useful to explore
the implications of bundle pricing and imper-
fect competition in vertical markets. Second,
there is a need for empirical investigations of
bundle pricing analyzed jointly with bundling
decisions. Third, it would be useful to investi-
gate farmers’ adoption behavior with a focus
on dynamics and social learning in the pres-
ence of bundling and imperfect competition.
Finally, there is a need to explore empirically
the economics of bundling applied to other sec-
tors. These appear to be good topics for further
research.
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